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Recall: continuous-time Markov chains

Continuous-time Markov chain

Continuous-time Markov chain
A CTMC is a tuple (S,P, r , ιinit,AP, L) where
I (S,P, ιinit,AP, L) is a DTMC, and
I r : S → R>0, the exit-rate function

Let R(s, s ′) = P(s, s ′) · r(s) be the transition rate of transition (s, s ′)

Interpretation

I residence time in state s is exponentially distributed with rate r(s).
I phrased alternatively, the average residence time of state s is 1

r(s) .
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Recall: continuous-time Markov chains

CTMC semantics

Enabledness
The probability that transition s → s ′ is enabled in [0, t] is 1− e−R(s,s′)·t .

State-to-state timed transition probability
The probability to move from non-absorbing s to s ′ in [0, t] is:

R(s, s ′)
r(s) ·

(
1− e−r(s)·t

)
.

Residence time distribution
The probability to take some outgoing transition from s in [0, t] is:∫ t

0
r(s)·e−r(s)·x dx = 1− e−r(s)·t
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Recall: continuous-time Markov chains

Paths in a CTMC
Timed paths
Paths in CTMC C are maximal (i.e., infinite) paths of alternating states
and time instants:

π = s0 t0−−→ s1 t1−−→ s2 · · ·

such that si ∈ S and ti ∈ R>0. Let Paths(C) be the set of paths in C and
Paths∗(C) the set of finite prefixes thereof.

Time instant ti is the amount of time spent in state si .

Notations
I Let π[i ] := si denote the (i+1)-st state along the timed path π.
I Let π〈i〉 := ti the time spent in state si .
I Let π@t be the state occupied in π at time t ∈ R>0, i.e. π@t := π[i ]

where i is the smallest index such that
∑i

j=0 π〈j〉 > t.
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Probability measure on CTMC paths

Paths and probabilities

To reason quantitatively about the behavior of a CTMC, we need to define
a probability space over its paths.

Intuition
For a given state s in CTMC C:
I Sample space := set of all interval-timed paths s0 I0 . . . Ik−1 sk with

s = s0

I Events := sets of interval-timed paths starting in s

I Basic events := cylinder sets

I Cylinder set of finite interval-timed paths := set of all infinite timed
paths with a prefix in the finite interval-timed path
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Probability measure on CTMC paths

Probability measure on CTMCs

Cylinder set
Let s0, . . ., sk ∈ S with P(si , si+1) > 0 for 0 6 i < k and I0, . . ., Ik−1 non-empty
intervals in R>0 with rational bounds. The cylinder set of s0 I0 s1 I1 . . . Ik−1 sk is
defined by:

Cyl(s0, I0, . . ., Ik−1, sk) =
{
π ∈ Paths(C) | ∀0 6 i 6 k. π[i ] = si

and i < k ⇒ π〈i〉 ∈ Ii
}

The cylinder set spanned by s0, I0, . . ., Ik−1, sk thus consists of all infinite timed
paths that have a prefix π̂ that lies in s0, I0, . . ., Ik−1, sk . Cylinder sets serve as
basic events of the smallest σ-algebra on Paths(C).

σ-algebra of a CTMC
The σ-algebra associated with CTMC C is the smallest σ-algebra F(Paths(s0))
that contains all cylinder sets Cyl(s0, I0, . . ., Ik−1, sk) where s0 . . . sk is a path in
the state graph of C (starting in s0) and I0, . . ., Ik−1 range over all sequences of
non-empty intervals in R>0.
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π ∈ Paths(C) | ∀0 6 i 6 k. π[i ] = si and i < k ⇒ π〈i〉 ∈ Ii
}

Probability measure
Pr is the unique probability measure on the σ-algebra F(Paths(s0)) defined
by induction on k as follows: Pr(Cyl(s0)) = ιinit(s0) and for k > 0:

Pr
(
Cyl(s0, I0, . . ., Ik−1, sk)

)
= Pr

(
Cyl(s0, I0, . . ., Ik−2, sk−1)

)
·∫

Ik−1

R(sk−1, sk)·e−r(sk−1)τ dτ.

Solving the integral
Pr
(
Cyl(s0, I0, . . ., Ik−2, sk−1)

)
· P(sk−1, sk)·

(
e−r(sk−1)· inf Ik−1 − e−r(sk−1)· sup Ik−1

)
.
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Probability measure on CTMC paths

Zeno theorem

Zeno path
Path s0 t0−−→ s1 t1−−→ s2 t2−−→ s3 . . . . . . is called Zeno 1 if

∑
i ti converges.

Intuition
In case

∑
i ti does not diverge, the timed path represents an“unrealistic”

computation where infinitely many transitions are taken in a finite amount of
time. Example:

s0 1−→ s1
1
2−−→ s2

1
4−−→ s3 . . . si

1
2i−−→ si+1 . . .

In real-time systems, such executions are typically excluded from the analysis.
Thanks to the following theorem, Zeno paths do not harm for CTMCs.

Zeno theorem
For all states s in any CTMC, Pr{π ∈ Paths(s) | π is Zeno } = 0.

1Zeno of Elea (490–430 BC), philosopher, famed for his paradoxes.
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Probability measure on CTMC paths

Proof of Zeno theorem

Zeno theorem
For all states s in any CTMC, Pr{π ∈ Paths(s) | π is Zeno } = 0.

Proof:
On the blackboard.
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Reachability probabilities

Overview

1 Recall: continuous-time Markov chains

2 Probability measure on CTMC paths

3 Reachability probabilities
Untimed reachability
Timed reachability
Reduction to transient analysis
Bisimulation and timed reachability

4 Summary

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 12/29



Reachability probabilities

Reachability events
Let CTMC C with (possibly infinite) state space S.

(Simple) reachability

Eventually reach a state in G ⊆ S. Formally:

♦G = {π ∈ Paths(C) | ∃i ∈ N. π[i ] ∈ G }

Invariance, i.e., always stay in state in G :

�G = {π ∈ Paths(C) | ∀i ∈ N. π[i ] ∈ G } = ♦G .

Constrained reachability
Or “reach-avoid” properties where states in F ⊆ S are forbidden:

F UG = {π ∈ Paths(C) | ∃i ∈ N. π[i ] ∈ G ∧ ∀j < i . π[j] 6∈ F }
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Reachability probabilities

Measurability

Measurability theorem
Events ♦G , �G , F UG , �♦G and ♦�G are measurable on any CTMC.

Proof:
Consider ♦G . ♦G is the union of all cylinders Cyl(s0, [0,∞), . . ., [0,∞), sn) where
s0, . . . , sn−1 6∈ G and sn ∈ G . As the set of state sequences s0 . . . sn is countable,
♦G is a countable union of cylinders. Thus ♦G is measurable. The proof for
�♦G goes along similar lines, using the proof principle for DTMCs.
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Reachability probabilities

Reachability probabilities in finite CTMCs
Problem statement
Let C be a CTMC with finite state space S, s ∈ S and G ⊆ S.

Aim: determine Pr(s |= ♦G) = Prs(♦G) = Prs{π ∈ Paths(s) | π |= ♦G }
where Prs is the probability measure in C with single initial state s.

Characterisation of reachability probabilities

I Let variable xs = Pr(s |= ♦G) for any state s
I if G is not reachable from s, then xs = 0
I if s ∈ G then xs = 1

I For any state s ∈ Pre∗(G) \ G :

xs =
∑

t∈S\G
P(s, t) · xt

︸ ︷︷ ︸
reach G via t ∈ S \ G

+
∑
u∈G

P(s, u)︸ ︷︷ ︸
reach G in one step
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Reachability probabilities

Verifying CTMCs

Verifying untimed properties

So, computing reachability probabilities is exactly the same as for DTMCs.
The same holds for constrained reachability, persistence and repeated
reachability. In fact, all PCTL and LTL formulas can be checked on the
embedded DTMC (S,P, ιinit,AP, L) using the techniques described before
in these lecture slides.

Justification:
As the above temporal logic formulas or events do not refer to elapsed
time, it is not surprising that they can be checked on the embedded
DTMC.
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Reachability probabilities

Timed reachability events

Let CTMC C with (possibly infinite) state space S.

(Simple) timed reachability

Eventually reach a state in G ⊆ S in the interval I. Formally:

♦I G = {π ∈ Paths(C) | ∃t ∈ I. π@t ∈ G }

Invariance, i.e., always stay in state in G in the interval I:

�I G = {π ∈ Paths(C) | ∀t ∈ I. π@t ∈ G } = ♦I G .

Constrained timed reachability
Or “reach-avoid” properties where states in F ⊆ S are forbidden:

F UI G = {π ∈ Paths(C) | ∃t ∈ I. π@t ∈ G ∧ ∀d < t. π@d 6∈ F }
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Reachability probabilities

Measurability

Measurability theorem
Events ♦I G , �I G , and F UI G are measurable on any CTMC.

Proof (sketch):

Consider ♦I G where I = [0, t]. ♦6tG is the union of Cyl(s0, I0, . . ., In−1, sn) with
s0, . . . , sn−1 6∈ G , sn ∈ G , and sup(I0) + . . . sup(In−1)6 t. The set of state
sequences s0 . . . sn is countable and the set of rational bounded intervals
I0, . . . , In−1 is countable. Thus ♦6tG is a countable union of cylinders, and thus
is measurable. The proof for the remaining case F UI G is similar and left as an
exercise.
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Reachability probabilities

Timed reachability probabilities in finite CTMCs
Problem statement
Let C be a CTMC with finite state space S, s ∈ S, t ∈ R>0 and G ⊆ S.

Aim: Pr(s |= ♦6t G) = Prs(♦6t G) = Prs{π ∈ Paths(s) | π |= ♦6t G }

where Prs is the probability measure in C with single initial state s.

Characterisation of timed reachability probabilities

I Let function xs(t) = Pr(s |= ♦6t G) for any state s
I if G is not reachable from s, then xs(t) = 0 for all t
I if s ∈ G then xs(t) = 1 for all t

I For any state s ∈ Pre∗(G) \ G :

xs(t) =
∫ t

0

∑
s′∈S

R(s, s ′) · e−r(s)·x︸ ︷︷ ︸
probability to move to

state s ′ at time x

· xs′(t−x)︸ ︷︷ ︸
prob. to fulfill
♦6t−x G from s ′

dx
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Reachability probabilities

Timed reachability probabilities: example

On the blackboard.
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Reachability probabilities

Reachability

Reachability probabilities in finite DTMCs and CTMCs
Can be obtained by solving a system of linear equations for which many
efficient techniques exists.

Timed reachability probabilities in finite CTMCs
Can be obtained by solving a system of Volterra integral equations. This is
in general a non-trivial issue, inefficient, and has several pitfalls such as
numerical stability.

Solution
Reduce the problem of computing Pr(s |= ♦6t G) to an alternative
problem for which well-known efficient techniques exist: computing
transient probabilities (see previous lecture).
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Reachability probabilities

Timed reachability probabilities = transient probabilities

Aim

Compute Pr(s |= ♦6tG) in CTMC C. Observe that once a path π reaches
G within t time, then the remaining behaviour along π is not important.
This suggests to make all states in G absorbing.

Let CTMC C = (S,P, r , ιinit,AP, L) and G ⊆ S. The CTMC C[G ] = (S,PG ,
r , ιinit,AP, L) with PG(s, t) = P(s, t) if s /∈ G and PG(s, s) = 1 if s ∈ G .

All outgoing transitions of s ∈ G are replaced by a single self-loop at s.

Lemma
Pr(s |= ♦6tG)︸ ︷︷ ︸

timed reachability in C

= Pr(s |= ♦=tG)︸ ︷︷ ︸
timed reachability in C[G]

=
∑
s′∈G

ps′(t) with p(0) = 1s︸ ︷︷ ︸
transient prob. in C[G]
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Reachability probabilities

Example
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Reachability probabilities

Constrained timed reachability probabilities
Problem statement
Let C be a CTMC with finite state space S, s ∈ S, t ∈ R>0 and G ,F ⊆ S.

Aim: Pr(s |= F U6t G) = Prs(F U6t G) = Prs{π ∈ Paths(s) | π |= F U6t G }.

Characterisation of timed reachability probabilities

I Let function xs(t) = Pr(s |= F U6t G) for any state s
I if G is not reachable from s via F , then xs(t) = 0 for all t
I if s ∈ G then xs(t) = 1 for all t

I For any state s ∈ Pre∗(G) \ (F ∪ G):

xs(t) =
∫ t

0

∑
s′∈S

R(s, s ′) · e−r(s)·x︸ ︷︷ ︸
probability to move to

state s ′ at time x

· xs′(t−x)︸ ︷︷ ︸
prob. to fulfill

F U6t−x G from s ′

dx
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Reachability probabilities

Constrained timed reachability = transient probabilities

Aim

Compute Pr(s |= F U6t G) in CTMC C. Observe (as before) that once a
path π reaches G within time t via F , then the remaining behaviour along
π is not important. Now also observe that once s ∈ F \ G is reached
within time t, then the remaining behaviour along π is not important.
This suggests to make all states in G and F \ G absorbing.

Lemma
Pr(s |= F U6t G)︸ ︷︷ ︸

timed reachability in C

= Pr(s |= ♦=tG)︸ ︷︷ ︸
timed reachability

in C[F ∪ G]

=
∑
s′∈G

ps′(t) with p(0) = 1s︸ ︷︷ ︸
transient prob. in C[F ∪ G]

.
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Reachability probabilities

Strong and weak bisimulation

Bisimulation preserves timed reachability events

Let C be a CTMC with state space S, s, u ∈ S, t ∈ R>0 and G ,F ⊆ S.
Then:
1. s ∼m u implies Pr(s |= F U6t G) = Pr(u |= F U6t G)
2. s ≈m u implies Pr(s |= F U6t G) = Pr(u |= F U6t G)

provided F and G are closed under ∼m and ≈m, respectively.

Proof:
Left as an exercise.
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Reachability probabilities

Example
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Summary

Summary

Main points

I Cylinder sets in a CTMC are paths that share interval-timed path
prefixes.

I Reachability, persistence and repeated reachability can be checked as
on DTMCs.

I Timed reachability probabilities can be characterised as Volterra
integral equation system.

I Computing timed reachability probabilities can be reduced to
transient probabilities.

I Weak and strong bisimulation preserve timed reachability probabilities.
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