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CSL Syntax

Continuous Stochastic Logic

I CSL is a language for formally specifying properties over CTMCs.
I It is a branching-time temporal logic based on CTL.
I Formula interpretation is Boolean, i.e., a state satisfies a formula or

not.
I Like in PCTL, the main operator is PJ(ϕ)

I where ϕ constrains the set of paths and J is a threshold on the
probability.

I it is the probabilistic counterpart of ∃ and ∀ path-quantifiers in CTL.
I The new features are a timed version of the next and until-operator.

I ©I Φ asserts that a transition to a Φ-state can be made at time t ∈ I.
I ΦUIΨ asserts that a Ψ-state can be reached via Φ-states at time t ∈ I.
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CSL Syntax

CTMCs — A transition system perspective

Continuous-time Markov chain
A CTMC C is a tuple (S,P, r , ιinit,AP, L) with:
I S is a countable nonempty set of states

I P : S×S → [0, 1], transition probability function s.t.
∑

s′ P(s, s ′) = 1
I r : S → R>0, rate assigning function
I ιinit : S → [0, 1], the initial distribution with

∑
s∈S

ιinit(s) = 1

I AP is a set of atomic propositions.
I L : S → 2AP, the labeling function, assigning to state s, the set L(s)

of atomic propositions that are valid in s.

Residence time
The average residence time in state s is 1

r(s) .
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CSL Syntax

CSL syntax [Baier, Katoen & Hermanns, 1999]

Continuous Stochastic Logic: Syntax
CSL consists of state- and path-formulas.
I CSL state formulas over the set AP obey the grammar:

Φ ::= true
∣∣∣ a

∣∣∣ Φ1 ∧ Φ2
∣∣∣ ¬Φ

∣∣∣ PJ(ϕ)

where a ∈ AP, ϕ is a path formula and J ⊆ [0, 1], J 6= ∅ is a
non-empty interval.

I CSL path formulae are formed according to the following grammar:

ϕ ::= ©I Φ
∣∣∣ Φ1 UI Φ2

where Φ, Φ1, and Φ2 are state formulae and I ⊆ R>0 an interval.
Abbreviate P[0,0.5](ϕ) by P60.5(ϕ) and P]0,1](ϕ) by P>0(ϕ).
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Continuous Stochastic Logic
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I s0t0s1t1 . . . |= ΦUI Ψ if Ψ is reached at t ∈ I and prior to t, Φ holds.
I s |= PJ(ϕ) if probability that paths starting in s fulfill ϕ lies in J .

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 6/29



CSL Syntax

Continuous Stochastic Logic

I CSL state formulas over the set AP obey the grammar:

Φ ::= true
∣∣∣ a

∣∣∣ Φ1 ∧ Φ2
∣∣∣ ¬Φ

∣∣∣ PJ(ϕ)

where a ∈ AP, ϕ is a path formula and J ⊆ [0, 1], J 6= ∅.
I CSL path formulae are formed according to the following grammar:

ϕ ::= ©I Φ
∣∣∣ Φ1 UI Φ2

where Φ, Φ1, and Φ2 are state formulae and I ⊆ R>0 an interval.

Intuitive semantics

I s0t0s1t1 . . . |= ΦUI Ψ if Ψ is reached at t ∈ I and prior to t, Φ holds.
I s |= PJ(ϕ) if probability that paths starting in s fulfill ϕ lies in J .

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 6/29



CSL Syntax

Continuous Stochastic Logic

I CSL state formulas over the set AP obey the grammar:

Φ ::= true
∣∣∣ a

∣∣∣ Φ1 ∧ Φ2
∣∣∣ ¬Φ

∣∣∣ PJ(ϕ)

where a ∈ AP, ϕ is a path formula and J ⊆ [0, 1], J 6= ∅.
I CSL path formulae are formed according to the following grammar:

ϕ ::= ©I Φ
∣∣∣ Φ1 UI Φ2

where Φ, Φ1, and Φ2 are state formulae and I ⊆ R>0 an interval.

Intuitive semantics
I s0t0s1t1 . . . |= ΦUI Ψ if Ψ is reached at t ∈ I and prior to t, Φ holds.

I s |= PJ(ϕ) if probability that paths starting in s fulfill ϕ lies in J .

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 6/29



CSL Syntax

Continuous Stochastic Logic

I CSL state formulas over the set AP obey the grammar:

Φ ::= true
∣∣∣ a

∣∣∣ Φ1 ∧ Φ2
∣∣∣ ¬Φ

∣∣∣ PJ(ϕ)

where a ∈ AP, ϕ is a path formula and J ⊆ [0, 1], J 6= ∅.
I CSL path formulae are formed according to the following grammar:

ϕ ::= ©I Φ
∣∣∣ Φ1 UI Φ2

where Φ, Φ1, and Φ2 are state formulae and I ⊆ R>0 an interval.

Intuitive semantics
I s0t0s1t1 . . . |= ΦUI Ψ if Ψ is reached at t ∈ I and prior to t, Φ holds.
I s |= PJ(ϕ) if probability that paths starting in s fulfill ϕ lies in J .

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 6/29



CSL Semantics

Overview

1 CSL Syntax

2 CSL Semantics

3 CSL Model Checking

4 Complexity

5 Summary

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 7/29



CSL Semantics

Derived operators

♦Φ = trueUΦ

♦IΦ = trueU IΦ

P6p(�Φ) = P>1−p(♦¬Φ)

P(p,q)(�IΦ) = P[1−q,1−p](♦I¬Φ)
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CSL Semantics

Paths in a CTMC

Timed paths
Paths in CTMC C are maximal (i.e., infinite) paths of alternating states
and time instants:

π = s0 t0−−→ s1 t1−−→ s2 · · ·

such that si ∈ S and ti ∈ R>0. Let Paths(C) be the set of paths in C and
Paths∗(C) the set of finite prefixes thereof.

Notations
I Let π[i ] := si denote the (i+1)-st state along the timed path π.
I Let π〈i〉 := ti the time spent in state si .
I Let π@t be the state occupied in π at time t ∈ R>0, i.e. π@t := π[i ]

where i is the smallest index such that
∑i

j=0 π〈j〉 > t.
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CSL Semantics

Example properties

I Transient probabilities to be in goal state at time point 4:

P> 0.92
(
♦=4 goal

)

I With probability > 0.92, a goal state is reached legally:

P> 0.92 (¬ illegal U goal)

I . . . in maximally 137 time units: P> 0.92
(
¬ illegal U6 137 goal

)
I . . . once there, remain there almost surely for the next 31 time units:

P> 0.92
(
¬ illegal U6 137 P=1(�[0,31] goal)

)
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CSL Semantics

CSL semantics (1)

Notation
C, s |= Φ if and only if state-formula Φ holds in state s of CTMC C.

Satisfaction relation for state formulas
The satisfaction relation |= is defined for CSL state formulas by:

s |= a iff a ∈ L(s)
s |= ¬Φ iff not (s |= Φ)
s |= Φ ∧ Ψ iff (s |= Φ) and (s |= Ψ)
s |= PJ (ϕ) iff Pr(s |= ϕ) ∈ J

where Pr(s |= ϕ) = Prs{π ∈ Paths(s) | π |= ϕ }.

This is as for PCTL, except that Pr is the probability measures on cylinder
sets of timed paths in CTMC C.
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CSL Semantics

CSL semantics (2)

Satisfaction relation for path formulas
Let π = s0 t0 s1 t1 s2 . . . be an infinite path in CTMC C.
The satisfaction relation |= is defined for state formulas by:

π |=©I Φ iff s1 |= Φ ∧ t0 ∈ I

π |= ΦUI Ψ iff ∃t ∈ I. ((∀t ′ ∈ [0, t). π@t ′ |= Φ) ∧ π@t |= Ψ)

Standard next- and until-operators

I XΦ ≡ ©I Φ with I = R>0.
I ΦUΨ ≡ ΦUI Ψ with I = R>0.
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CSL Semantics

Measurability

CSL measurability
For any CSL path formula ϕ and state s of CTMC C,
the set {π ∈ Paths(s) | π |= ϕ } is measurable.

Proof:
Rather straightforward; left as an exercise.
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CSL Model Checking

Overview
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CSL Model Checking

CSL model checking

CSL model checking problem

Input: a finite CTMC C = (S,P, r , ιinit,AP, L), state s ∈ S, and
CSL state formula Φ

Output: yes, if s |= Φ; no, otherwise.

Basic algorithm
In order to check whether s |= Φ do:
1. Compute the satisfaction set Sat(Φ) = { s ∈ S | s |= Φ }.
2. This is done recursively by a bottom-up traversal of Φ’s parse tree.

I The nodes of the parse tree represent the subformulae of Φ.
I For each node, i.e., for each subformula Ψ of Φ, determine Sat(Ψ).
I Determine Sat(Ψ) as function of the satisfaction sets of its children:

e.g., Sat(Ψ1 ∧Ψ2) = Sat(Ψ1) ∩ Sat(Ψ2) and Sat(¬Ψ) = S \ Sat(Ψ).

3. Check whether state s belongs to Sat(Φ).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 15/29



CSL Model Checking

CSL model checking
CSL model checking problem

Input: a finite CTMC C = (S,P, r , ιinit,AP, L), state s ∈ S, and
CSL state formula Φ

Output: yes, if s |= Φ; no, otherwise.

Basic algorithm
In order to check whether s |= Φ do:
1. Compute the satisfaction set Sat(Φ) = { s ∈ S | s |= Φ }.
2. This is done recursively by a bottom-up traversal of Φ’s parse tree.

I The nodes of the parse tree represent the subformulae of Φ.
I For each node, i.e., for each subformula Ψ of Φ, determine Sat(Ψ).
I Determine Sat(Ψ) as function of the satisfaction sets of its children:

e.g., Sat(Ψ1 ∧Ψ2) = Sat(Ψ1) ∩ Sat(Ψ2) and Sat(¬Ψ) = S \ Sat(Ψ).

3. Check whether state s belongs to Sat(Φ).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 15/29



CSL Model Checking

CSL model checking
CSL model checking problem

Input: a finite CTMC C = (S,P, r , ιinit,AP, L), state s ∈ S, and
CSL state formula Φ

Output: yes, if s |= Φ; no, otherwise.

Basic algorithm
In order to check whether s |= Φ do:
1. Compute the satisfaction set Sat(Φ) = { s ∈ S | s |= Φ }.
2. This is done recursively by a bottom-up traversal of Φ’s parse tree.

I The nodes of the parse tree represent the subformulae of Φ.
I For each node, i.e., for each subformula Ψ of Φ, determine Sat(Ψ).
I Determine Sat(Ψ) as function of the satisfaction sets of its children:

e.g., Sat(Ψ1 ∧Ψ2) = Sat(Ψ1) ∩ Sat(Ψ2) and Sat(¬Ψ) = S \ Sat(Ψ).

3. Check whether state s belongs to Sat(Φ).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 15/29



CSL Model Checking

CSL model checking
CSL model checking problem

Input: a finite CTMC C = (S,P, r , ιinit,AP, L), state s ∈ S, and
CSL state formula Φ

Output: yes, if s |= Φ; no, otherwise.

Basic algorithm
In order to check whether s |= Φ do:

1. Compute the satisfaction set Sat(Φ) = { s ∈ S | s |= Φ }.
2. This is done recursively by a bottom-up traversal of Φ’s parse tree.

I The nodes of the parse tree represent the subformulae of Φ.
I For each node, i.e., for each subformula Ψ of Φ, determine Sat(Ψ).
I Determine Sat(Ψ) as function of the satisfaction sets of its children:

e.g., Sat(Ψ1 ∧Ψ2) = Sat(Ψ1) ∩ Sat(Ψ2) and Sat(¬Ψ) = S \ Sat(Ψ).

3. Check whether state s belongs to Sat(Φ).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 15/29



CSL Model Checking

CSL model checking
CSL model checking problem

Input: a finite CTMC C = (S,P, r , ιinit,AP, L), state s ∈ S, and
CSL state formula Φ

Output: yes, if s |= Φ; no, otherwise.

Basic algorithm
In order to check whether s |= Φ do:
1. Compute the satisfaction set Sat(Φ) = { s ∈ S | s |= Φ }.

2. This is done recursively by a bottom-up traversal of Φ’s parse tree.
I The nodes of the parse tree represent the subformulae of Φ.
I For each node, i.e., for each subformula Ψ of Φ, determine Sat(Ψ).
I Determine Sat(Ψ) as function of the satisfaction sets of its children:

e.g., Sat(Ψ1 ∧Ψ2) = Sat(Ψ1) ∩ Sat(Ψ2) and Sat(¬Ψ) = S \ Sat(Ψ).

3. Check whether state s belongs to Sat(Φ).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 15/29



CSL Model Checking

CSL model checking
CSL model checking problem

Input: a finite CTMC C = (S,P, r , ιinit,AP, L), state s ∈ S, and
CSL state formula Φ

Output: yes, if s |= Φ; no, otherwise.

Basic algorithm
In order to check whether s |= Φ do:
1. Compute the satisfaction set Sat(Φ) = { s ∈ S | s |= Φ }.
2. This is done recursively by a bottom-up traversal of Φ’s parse tree.

I The nodes of the parse tree represent the subformulae of Φ.
I For each node, i.e., for each subformula Ψ of Φ, determine Sat(Ψ).
I Determine Sat(Ψ) as function of the satisfaction sets of its children:

e.g., Sat(Ψ1 ∧Ψ2) = Sat(Ψ1) ∩ Sat(Ψ2) and Sat(¬Ψ) = S \ Sat(Ψ).

3. Check whether state s belongs to Sat(Φ).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 15/29



CSL Model Checking

CSL model checking
CSL model checking problem

Input: a finite CTMC C = (S,P, r , ιinit,AP, L), state s ∈ S, and
CSL state formula Φ

Output: yes, if s |= Φ; no, otherwise.

Basic algorithm
In order to check whether s |= Φ do:
1. Compute the satisfaction set Sat(Φ) = { s ∈ S | s |= Φ }.
2. This is done recursively by a bottom-up traversal of Φ’s parse tree.

I The nodes of the parse tree represent the subformulae of Φ.

I For each node, i.e., for each subformula Ψ of Φ, determine Sat(Ψ).
I Determine Sat(Ψ) as function of the satisfaction sets of its children:

e.g., Sat(Ψ1 ∧Ψ2) = Sat(Ψ1) ∩ Sat(Ψ2) and Sat(¬Ψ) = S \ Sat(Ψ).

3. Check whether state s belongs to Sat(Φ).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 15/29



CSL Model Checking

CSL model checking
CSL model checking problem

Input: a finite CTMC C = (S,P, r , ιinit,AP, L), state s ∈ S, and
CSL state formula Φ

Output: yes, if s |= Φ; no, otherwise.

Basic algorithm
In order to check whether s |= Φ do:
1. Compute the satisfaction set Sat(Φ) = { s ∈ S | s |= Φ }.
2. This is done recursively by a bottom-up traversal of Φ’s parse tree.

I The nodes of the parse tree represent the subformulae of Φ.
I For each node, i.e., for each subformula Ψ of Φ, determine Sat(Ψ).

I Determine Sat(Ψ) as function of the satisfaction sets of its children:
e.g., Sat(Ψ1 ∧Ψ2) = Sat(Ψ1) ∩ Sat(Ψ2) and Sat(¬Ψ) = S \ Sat(Ψ).

3. Check whether state s belongs to Sat(Φ).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 15/29



CSL Model Checking

CSL model checking
CSL model checking problem

Input: a finite CTMC C = (S,P, r , ιinit,AP, L), state s ∈ S, and
CSL state formula Φ

Output: yes, if s |= Φ; no, otherwise.

Basic algorithm
In order to check whether s |= Φ do:
1. Compute the satisfaction set Sat(Φ) = { s ∈ S | s |= Φ }.
2. This is done recursively by a bottom-up traversal of Φ’s parse tree.

I The nodes of the parse tree represent the subformulae of Φ.
I For each node, i.e., for each subformula Ψ of Φ, determine Sat(Ψ).
I Determine Sat(Ψ) as function of the satisfaction sets of its children:

e.g., Sat(Ψ1 ∧Ψ2) = Sat(Ψ1) ∩ Sat(Ψ2) and Sat(¬Ψ) = S \ Sat(Ψ).

3. Check whether state s belongs to Sat(Φ).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 15/29



CSL Model Checking

CSL model checking
CSL model checking problem

Input: a finite CTMC C = (S,P, r , ιinit,AP, L), state s ∈ S, and
CSL state formula Φ

Output: yes, if s |= Φ; no, otherwise.

Basic algorithm
In order to check whether s |= Φ do:
1. Compute the satisfaction set Sat(Φ) = { s ∈ S | s |= Φ }.
2. This is done recursively by a bottom-up traversal of Φ’s parse tree.

I The nodes of the parse tree represent the subformulae of Φ.
I For each node, i.e., for each subformula Ψ of Φ, determine Sat(Ψ).
I Determine Sat(Ψ) as function of the satisfaction sets of its children:

e.g., Sat(Ψ1 ∧Ψ2) = Sat(Ψ1) ∩ Sat(Ψ2) and Sat(¬Ψ) = S \ Sat(Ψ).

3. Check whether state s belongs to Sat(Φ).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 15/29



CSL Model Checking

Core model checking algorithm

Propositional formulas
Sat(·) is defined by structural induction as follows:

Sat(true) = S
Sat(a) = { s ∈ S | a ∈ L(s) }, for any a ∈ AP

Sat(Φ ∧Ψ) = Sat(Φ) ∩ Sat(Ψ)
Sat(¬Φ) = S \ Sat(Φ).

Probabilistic operator P
In order to determine whether s ∈ Sat(PJ(ϕ)), the probability Pr(s |= ϕ)
for the event specified by ϕ needs to be established. Then

Sat(PJ(ϕ)) =
{
s ∈ S | Pr(s |= ϕ) ∈ J

}
.

Let us consider the computation of Pr(s |= ϕ) for all possible ϕ.
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CSL Model Checking

The next-step operator

Recall that: s |= PJ(©IΦ) if and only if Pr(s |=©IΦ) ∈ J .

Lemma
Pr(s |=©IΦ) =

(
e−r(s)· inf I − e−r(s)· sup I

)
︸ ︷︷ ︸

probability to leave s in interval I

·
∑

s′∈Sat(Φ)
P(s, s ′).

Algorithm
Considering the above equation for all states simultaneously yields:(

Pr(s |=©Φ)
)

s∈S = bT
I · P

with bI is defined by bI(s) = e−r(s)· inf I − e−r(s)· sup I if s ∈ Sat(Φ) and 0
otherwise, and bT

I is the transposed variant of bI .
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CSL Model Checking

Time-bounded until (1)

Recall that: s |= PJ(ΦU6t Ψ) if and only if Pr(s |= ΦU6t Ψ) ∈ J .

Lemma
Let S=1 = Sat(Ψ), S=0 = S \ (Sat(Φ) ∪ Sat(Ψ)), and S? = S \ (S=0 ∪ S=1). Then:

Pr(s |= Φ U6t Ψ) =


1 if s ∈ S=1
0 if s ∈ S=0∫ t

0

∑
s′∈S

R(s, s ′) · e−r(s)·x ·Pr(s ′ |= Φ U6t−x Ψ) dx otherwise

This is a slight generalisation of the Volterra integral equation system for
timed reachability.
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CSL Model Checking

Time-bounded until (2)

Let S=1 = Sat(Ψ), S=0 = S \ (Sat(Φ) ∪ Sat(Ψ)), and S? = S \ (S=0 ∪ S=1).

Then:

Pr(s |= Φ U6t Ψ) =


1 if s ∈ S=1
0 if s ∈ S=0∫ t

0

∑
s′∈S

R(s, s ′) · e−r(s)·x ·Pr(s ′ |= Φ U6t−x Ψ) dx otherwise
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0

∑
s′∈S

R(s, s ′) · e−r(s)·x ·Pr(s ′ |= Φ U6t−x Ψ) dx otherwise

Recall lemma from the previous lecture
Pr(s |= F U6t G)︸ ︷︷ ︸

timed reachability in C

= Pr(s |= ♦=tG)︸ ︷︷ ︸
in C[F ∪ G]

= p(t) with p(0) = 1s︸ ︷︷ ︸
transient prob. in C[F ∪ G]

.
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CSL Model Checking

Time-bounded until (3)

Algorithm for checking Pr(s |= ΦU6t Ψ) ∈ J

1. If t =∞, then use approach for until (as in PCTL): solve a system of linear
equations.

2. Determine recursively Sat(Φ) and Sat(Ψ).

3. Make all states in S \ Sat(Φ) and Sat(Ψ) absorbing.

4. Uniformize the resulting CTMC with respect to its maximal rate.

5. Determine the transient probability at time t using s as initial distribution.

6. Return yes if transient probability of all Ψ-states lies in J , and no otherwise.
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CSL Model Checking

Time-bounded until (4)

Possible optimizations

1. Make all states in S \ Sat(∃(ΦUΨ)) absorbing.

2. Make all states in Sat(∀(ΦUΨ)) absorbing.

3. Replace the labels of all states in S \ Sat(∃(ΦΨ)) by unique label zero.

4. Replace the labels of all states in Sat(∀(ΦUΨ)) by unique label one.

5. Perform bisimulation minimization on all states.

The last step collapses all states in S \ Sat(∃(ΦUΨ)) into a single state, and
does the same with all states in Sat(∀(ΦUΨ)).
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CSL Model Checking

Preservation of CSL-formulas

Bisimulation and CSL-equivalence coincide
Let C be a finitely branching CTMC and s, t states in C. Then:

s ∼m t if and only if s and t are CSL-equivalent.

Remarks
If for CSL-formula Φ we have s |= Φ but t 6|= Φ, then it follows s 6∼m t. A
single CSL-formula suffices!
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CSL Model Checking

Preservation of CSL-formulas

Weak bisimulation and CSL-without-next-equivalence coincide
Let C be a finitely branching CTMC and s, t states in C. Then:

s ≈m t if and only if s and t are CSL-without-next-equivalent.

Here. CSL-without-next is the fragment of CSL where the next-operator
© does not occur.

Remarks
If for CSL-without-next-formula Φ we have s |= Φ but t 6|= Φ, then it
follows s 6≈m t.
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CSL Model Checking

Uniformization and CSL

Uniformization and CSL
For any finite CTMC C with state space S, r > max{ r(s) | s ∈ S } and Φ
a CSL-without-next-formula:

SatC(Φ) = SatC′(Φ) where C′ = unif(r , C).

Uniformization and CSL
For any uniformized CTMC: CSL-equivalence coincides with
CSL-without-next-equivalence.
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Complexity

Time complexity

Let |Φ| be the size of Φ, i.e., the number of logical and temporal operators in Φ.

Time complexity of CSL model checking
For finite CTMC C and CSL state-formula Φ, the CSL model-checking
problem can be solved in time

O
(

poly(size(C)) · tmax · |Φ|
)

where tmax = max{ t | Ψ1 U6tΨ2 occurs in Φ } with and tmax = 1 if Φ
does not contain a time-bounded until-operator.
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Complexity

Some practical verification times
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Crowds protocol (DTMC)

Randomised mutex (DTMC)

Workstation cluster (CTMC)

Tandem queue (CTMC)

verication time (in ms)

state space size

I command-line tool MRMC ran on a Pentium 4, 2.66 GHz, 1 GB RAM laptop.
I CSL formulas are time-bounded until-formulas.
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Summary

Summary

I CSL is a variant of PCTL with timed next and timed until.
I Sets of paths fulfilling CSL path-formula ϕ are measurable.
I CSL model checking is performed by a recursive descent over Φ.
I The timed next operator amounts to a single vector-matrix

multiplication.
I The time-bounded until-operator U6t is solved by uniformization.
I The worst-case time complexity is polynomial in the size of the

CTMC and linear in the size of the formula.
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