Modeling and Verification of Probabilistic Systems

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

http://moves.rwth-aachen.de/teaching/ws-1516/movepl5/

December 15, 2015

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

http://moves.rwth-aachen.de/teaching/ws-1516/movep15/

CSL Syntax

Overview

© CSL Syntax

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Continuous Stochastic Logic

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Continuous Stochastic Logic

|
» CSL is a language for formally specifying properties over CTMCs.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Continuous Stochastic Logic

|
» CSL is a language for formally specifying properties over CTMCs.
> |t is a branching-time temporal logic based on CTL.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

CSL Syntax

Continuous Stochastic Logic

|
» CSL is a language for formally specifying properties over CTMCs.
> |t is a branching-time temporal logic based on CTL.

» Formula interpretation is Boolean, i.e., a state satisfies a formula or
not.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Continuous Stochastic Logic

v

CSL is a language for formally specifying properties over CTMCs.

v

It is a branching-time temporal logic based on CTL.

v

Formula interpretation is Boolean, i.e., a state satisfies a formula or
not.
Like in PCTL, the main operator is P;(y)
» where ¢ constrains the set of paths and J is a threshold on the
probability.
> it is the probabilistic counterpart of 3 and V path-quantifiers in CTL.

v

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Continuous Stochastic Logic

|
» CSL is a language for formally specifying properties over CTMCs.
» It is a branching-time temporal logic based on CTL.
» Formula interpretation is Boolean, i.e., a state satisfies a formula or
not.
» Like in PCTL, the main operator is P,(¢)

» where ¢ constrains the set of paths and J is a threshold on the
probability.
> it is the probabilistic counterpart of 3 and V path-quantifiers in CTL.

» The new features are a timed version of the next and until-operator.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Continuous Stochastic Logic

|
» CSL is a language for formally specifying properties over CTMCs.
» It is a branching-time temporal logic based on CTL.
» Formula interpretation is Boolean, i.e., a state satisfies a formula or
not.
» Like in PCTL, the main operator is P,(¢)
» where ¢ constrains the set of paths and J is a threshold on the
probability.
> it is the probabilistic counterpart of 3 and V path-quantifiers in CTL.
» The new features are a timed version of the next and until-operator.
» (! ® asserts that a transition to a ®-state can be made at time t € /.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Continuous Stochastic Logic

|
» CSL is a language for formally specifying properties over CTMCs.
» It is a branching-time temporal logic based on CTL.
» Formula interpretation is Boolean, i.e., a state satisfies a formula or
not.
» Like in PCTL, the main operator is P,(¢)
» where ¢ constrains the set of paths and J is a threshold on the
probability.
> it is the probabilistic counterpart of 3 and V path-quantifiers in CTL.
» The new features are a timed version of the next and until-operator.

» (! ® asserts that a transition to a ®-state can be made at time t € /.
» ® U’V asserts that a W-state can be reached via ®-states at time t € /.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

CTMCs — A transition system perspective

Continuous-time Markov chain

A CTMC C is a tuple (S, P, r, tinie, AP, L) with:

» S is a countable nonempty set of states

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 4/29

CTMCs — A transition system perspective

Continuous-time Markov chain

A CTMC C is a tuple (S, P, r, tinie, AP, L) with:
» S is a countable nonempty set of states
» P:SxS —[0,1], transition probability function s.t. >, P(s,s’) =1

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 4/29

CTMCs — A transition system perspective

Continuous-time Markov chain

A CTMC C is a tuple (S, P, r, tinie, AP, L) with:
» S is a countable nonempty set of states
» P:SxS —[0,1], transition probability function s.t. >, P(s,s’) =1

> r: S — Ry, rate assigning function

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 4/29

CSL Syntax

CTMCs — A transition system perspective

A CTMC C is a tuple (S, P, r, tinie, AP, L) with:
» S is a countable nonempty set of states
» P:SxS —[0,1], transition probability function s.t. >, P(s,s’) =1
> r: S — Ry, rate assigning function

> L - S — [0, 1], the initial distribution with >~ ¢;,(s) =1
seS

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 4/29

CTMCs — A transition system perspective

Continuous-time Markov chain

A CTMC C is a tuple (S, P, r, tinie, AP, L) with:
» S is a countable nonempty set of states
» P:SxS —[0,1], transition probability function s.t. >, P(s,s’) =1
> r: S — Ry, rate assigning function

> L - S — [0, 1], the initial distribution with >~ ¢;,(s) =1
seS

» AP is a set of atomic propositions.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 4/29

CTMCs — A transition system perspective

Continuous-time Markov chain

A CTMC C is a tuple (S, P, r, tinie, AP, L) with:
» S is a countable nonempty set of states
» P:SxS —[0,1], transition probability function s.t. >, P(s,s’) =1
> r: S — Ry, rate assigning function

Linit - S — [0, 1], the initial distribution with Y~ ¢, (s) =1
seS

v

» AP is a set of atomic propositions.

» L:S — 24P the labeling function, assigning to state s, the set L(s)
of atomic propositions that are valid in s.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 4/29

CTMCs — A transition system perspective

Continuous-time Markov chain

A CTMC C is a tuple (S, P, r, tinie, AP, L) with:
» S is a countable nonempty set of states

P : SxS — [0, 1], transition probability function s.t. >, P(s,s’) =1

r:S — Ry, rate assigning function

Linit - S — [0, 1], the initial distribution with Y~ ¢, (s) =1
seS

v

v

v

v

AP is a set of atomic propositions.

v

L : S — 24P the labeling function, assigning to state s, the set L(s)
of atomic propositions that are valid in s.

The average residence time in state s is %

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 4/29

CSL Syntax

CSL syntax [Baier, Katoen & Hermanns, 1999]

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

CSL Syntax

CSL syntax [Baier, Katoen & Hermanns, 1999]

Continuous Stochastic Logic: Syntax

CSL consists of state- and path-formulas.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

CSL Syntax

CSL syntax [Baier, Katoen & Hermanns, 1999]

Continuous Stochastic Logic: Syntax

CSL consists of state- and path-formulas.

» CSL state formulas over the set AP obey the grammar:
d = true ’ a ‘ b1 N Dy ‘ L ‘ P, ()

where a € AP, ¢ is a path formula and J C [0,1], J # D is a
non-empty interval.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

CSL Syntax

CSL syntax [Baier, Katoen & Hermanns, 1999]

Continuous Stochastic Logic: Syntax

CSL consists of state- and path-formulas.

» CSL state formulas over the set AP obey the grammar:
d = true ’ a ‘ b1 N Dy ‘ L ‘ P, ()

where a € AP, ¢ is a path formula and J C [0,1], J # D is a
non-empty interval.

» CSL path formulae are formed according to the following grammar:
o = O'o) o, U’ &,

where ®, ®;, and ®, are state formulae and / C R>q an interval.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

CSL Syntax

CSL syntax [Baier, Katoen & Hermanns, 1999]

Continuous Stochastic Logic: Syntax

CSL consists of state- and path-formulas.

» CSL state formulas over the set AP obey the grammar:
d = true ’ a ‘ b1 N Dy ‘ L ‘ P, ()

where a € AP, ¢ is a path formula and J C [0,1], J # D is a
non-empty interval.

» CSL path formulae are formed according to the following grammar:
o = O'o) o, U’ &,

where ®, ®;, and ®, are state formulae and / C R>q an interval.

Abbreviate P[005]((p) by P<05(()0) and P]Ol](‘ﬁ) by]P)>Q(g0)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

CSL Syntax

Continuous Stochastic Logic
-

» CSL state formulas over the set AP obey the grammar:
b = true ’ a ‘ b A Dy ‘ -o ‘ P, ()

where a € AP, ¢ is a path formula and J C [0,1], J # @.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

CSL Syntax

Continuous Stochastic Logic
-

CSL state formulas over the set AP obey the grammar:
¢ = true ’ a ‘ ®; A Dy ‘ - ‘ Py(p)

where a € AP, ¢ is a path formula and J C [0,1], J # @.

CSL path formulae are formed according to the following grammar:
o = 0Oo \ o, U’ o,
where ®, ®;1, and &, are state formulae and / C R an interval.

Intuitive semantics

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

CSL Syntax

Continuous Stochastic Logic
-

CSL state formulas over the set AP obey the grammar:
¢ = true ’ a ‘ ®; A Dy ‘ - ‘ Py(p)

where a € AP, ¢ is a path formula and J C [0,1], J # @.

CSL path formulae are formed according to the following grammar:
o = 0Oo \ o, U’ o,
where ®, ®;1, and &, are state formulae and / C R an interval.

Intuitive semantics

> Sptositi... & & U' W if W is reached at t € | and prior to t, ® holds.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

CSL Syntax

Continuous Stochastic Logic
-

CSL state formulas over the set AP obey the grammar:
¢ = true ’ a ‘ ®; A Dy ‘ - ‘ Py(p)

where a € AP, ¢ is a path formula and J C [0,1], J # @.

CSL path formulae are formed according to the following grammar:
o = 0Oo \ o, U’ o,
where ®, ®;1, and &, are state formulae and / C R an interval.

Intuitive semantics

> Sptositi... & & U' W if W is reached at t € | and prior to t, ® holds.
» s |=P,(y) if probability that paths starting in s fulfill ¢ lies in J.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

CSL Semantics

Overview

© CSL Semantics

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Derived operators

OP = trueUd

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Derived operators

OP = trueUd

Old = trueU'o

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Derived operators

OP = trueUd

Old = trueU'o

IED<p(D¢) = P>1,p(<>—|d>)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Derived operators

OP = trueUd

Old = trueU'o

IED<p(D¢) = P>1,p(<>—|d>)

P(p.o)(0'®) = Ppy_q1-p)(0'=)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

CSL Semantics

Paths in a CTMC

Timed paths

Paths in CTMC C are maximal (i.e., infinite) paths of alternating states
and time instants:

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

CSL Semantics

Paths in a CTMC

Timed paths

Paths in CTMC C are maximal (i.e., infinite) paths of alternating states
and time instants:

™ = Soi>S1L>52--'

such that s; € S and t; € Ryg.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

CSL Semantics

Paths in a CTMC

Paths in CTMC C are maximal (i.e., infinite) paths of alternating states
and time instants:

™ = Soi>S1L>52--'

such that s; € S and t; € Rog. Let Paths(C) be the set of paths in C and
Paths*(C) the set of finite prefixes thereof.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

CSL Semantics

Paths in a CTMC

Paths in CTMC C are maximal (i.e., infinite) paths of alternating states
and time instants:

T = Soi)—)51£—>52--'

such that s; € S and t; € Rog. Let Paths(C) be the set of paths in C and
Paths*(C) the set of finite prefixes thereof.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 9/29

CSL Semantics

Paths in a CTMC

Paths in CTMC C are maximal (i.e., infinite) paths of alternating states
and time instants:

T = Soi)—)51£—>52--'

such that s; € S and t; € Rog. Let Paths(C) be the set of paths in C and
Paths*(C) the set of finite prefixes thereof.

> Let 7[i] :=s; denote the (i+1)-st state along the timed path .

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 9/29

CSL Semantics

Paths in a CTMC

Paths in CTMC C are maximal (i.e., infinite) paths of alternating states
and time instants:

T = Soi)—)51£—>52--'

such that s; € S and t; € Rog. Let Paths(C) be the set of paths in C and
Paths*(C) the set of finite prefixes thereof.

> Let 7[i] :=s; denote the (i+1)-st state along the timed path .
> Let 7 (i) := t; the time spent in state s;.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 9/29

CSL Semantics

Paths in a CTMC

Paths in CTMC C are maximal (i.e., infinite) paths of alternating states
and time instants:

T = Soi)—)51£—>52--'

such that s; € S and t; € Rog. Let Paths(C) be the set of paths in C and
Paths*(C) the set of finite prefixes thereof.

> Let 7[i] :=s; denote the (i+1)-st state along the timed path .
> Let 7 (i) := t; the time spent in state s;.

> Let 7@t be the state occupied in 7 at time t € R>o,

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 9/29

CSL Semantics

Paths in a CTMC

Paths in CTMC C are maximal (i.e., infinite) paths of alternating states
and time instants:

T = Soi)—)51£—>52--'

such that s; € S and t; € Rog. Let Paths(C) be the set of paths in C and
Paths*(C) the set of finite prefixes thereof.

» Let 7[i] := s; denote the (i41)-st state along the timed path .
> Let 7 (i) := t; the time spent in state s;.

> Let m@t be the state occupied in 7 at time t € R>, i.e. 70t := 7[i]
where i is the smallest index such that }7;_,7(j) > t.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 9/29

CSL Semantics

Example properties
-]

» Transient probabilities to be in goal state at time point 4:

P> 0.02 (024 goal)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

CSL Semantics

Example properties
-]

» Transient probabilities to be in goal state at time point 4:

P> 0.02 (0:4 goal)

> With probability > 0.92, a goal state is reached legally:

P 0.92 (—illegal U goal)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

CSL Semantics

Example properties
-]

» Transient probabilities to be in goal state at time point 4:

P> 0.02 (0:4 goal)

> With probability > 0.92, a goal state is reached legally:

P 0.92 (—illegal U goal)

> ... in maximally 137 time units: P> o.92 (—| illegal US 137 goal)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

CSL Semantics

Example properties
-]

» Transient probabilities to be in goal state at time point 4:

P> 0.02 (0:4 goal)

> With probability > 0.92, a goal state is reached legally:

P 0.92 (—illegal U goal)

> ... in maximally 137 time units: P> o.92 (—| illegal US 137 goal)

> ... once there, remain there almost surely for the next 31 time units:

Ps g.02 (ﬁ illegal U <137 p_y (O3l goa/))

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

CSL semantics (1)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 11/29

CSL semantics (1)

C,s = @ if and only if state-formula ¢ holds in state s of CTMC C.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

CSL semantics (1)

C,s = @ if and only if state-formula ¢ holds in state s of CTMC C.

Satisfaction relation for state formulas

The satisfaction relation |= is defined for CSL state formulas by:

skEa iff ae L(s)
sE-¢ iff not (s | @)
sEPAV iff (sE®)and (s V)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 11/29

CSL semantics (1)

C,s = @ if and only if state-formula ¢ holds in state s of CTMC C.

Satisfaction relation for state formulas

The satisfaction relation |= is defined for CSL state formulas by:

skEa iff ae L(s)

sE-¢ iff not (s | @)

sE® AV iff (skE=®)and (s V)
sEP(p) iff PisEp)ed

where Pr(s = p) = Pr{m € Paths(s) | m E ¢ }.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 11/29

CSL Semantics

CSL semantics (1)

Notation
C,s = @ if and only if state-formula ¢ holds in state s of CTMC C.

Satisfaction relation for state formulas
The satisfaction relation |= is defined for CSL state formulas by:

skEa iff ae L(s)

sE-¢ iff not (s | @)

sEP AV iff (skE®)and (s=V)
sEP)p) iff PsE=yp)ed

where Pr(s = ¢) = Pr{m € Paths(s) | 7 = ¢ }.

This is as for PCTL, except that Pris the probability measures on cylinder
sets of timed paths in CTMC C.

Modeling and Verification of Probabilistic Systems

Joost-Pieter Katoen

CSL semantics (2)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 12/29

CSL semantics (2)

Satisfaction relation for path formulas
Let m = sptg sy t1 S ... be an infinite path in CTMC C.
The satisfaction relation = is defined for state formulas by:

TEQ® iff ssE®AtE

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems 12/29

CSL semantics (2)

Satisfaction relation for path formulas
Let m = sptg sy t1 S ... be an infinite path in CTMC C.
The satisfaction relation = is defined for state formulas by:

TEQ® iff ssE®AtE

oUW iff Jtel (V' €0, t). 70t = &) A 7@t = V)

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems 12/29

CSL semantics (2)

Satisfaction relation for path formulas
Let m = sptg sy t1 S» ... be an infinite path in CTMC C.

The satisfaction relation = is defined for state formulas by:

TEQ® iff ssE®AtE

rEOUV iff 3Jtel (V' €[0,t). 70t | ®) A 70t = V)

Standard next- and until-operators

» Xo = O with | = Rxp.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems 12/29

CSL semantics (2)

Satisfaction relation for path formulas
Let m = sptg sy t1 S» ... be an infinite path in CTMC C.

The satisfaction relation = is defined for state formulas by:

rEQ® iff ssEOAtE
rEOUV iff 3Jtel (V' €[0,t). 70t | ®) A 70t = V)

Standard next- and until-operators

» Xo = O with | = Rxp.
» UV & U' ¥ with | = Rs,.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems 12/29

Measurability

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 13/29

CSL Semantics

Measurability

CSL measurability

For any CSL path formula ¢ and state s of CTMC C,
the set { m € Paths(s) | 7 |= ¢ } is measurable.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 13/29

CSL Semantics

Measurability

CSL measurability

For any CSL path formula ¢ and state s of CTMC C,
the set { m € Paths(s) | 7 |= ¢ } is measurable.

Rather straightforward; left as an exercise.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 13/29

CSL Model Checking

Overview

© CSL Model Checking

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 14/29

CSL model checking

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

CSL model checking

CSL model checking problem

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

CSL model checking

CSL model checking problem

Input: a finite CTMC C = (S, P, r, ti, AP, L), state s € S, and
CSL state formula ¢

Output: yes, if s = ®; no, otherwise.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

CSL model checking

CSL model checking problem

Input: a finite CTMC C = (S, P, r, ti, AP, L), state s € S, and
CSL state formula ¢

Output: yes, if s = ®; no, otherwise.

Basic algorithm

In order to check whether s = ® do:

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

CSL model checking

CSL model checking problem

Input: a finite CTMC C = (S, P, r, ti, AP, L), state s € S, and
CSL state formula ¢

Output: yes, if s = ®; no, otherwise.

Basic algorithm

In order to check whether s = ® do:
1. Compute the satisfaction set Sat(®) ={se€ S|sE=o}.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

CSL model checking

CSL model checking problem

Input: a finite CTMC C = (S, P, r, ti, AP, L), state s € S, and
CSL state formula ¢

Output: yes, if s = ®; no, otherwise.

Basic algorithm

In order to check whether s = ® do:

1. Compute the satisfaction set Sat(®) ={se€ S|sE=o}.
2. This is done recursively by a bottom-up traversal of ®'s parse tree.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

CSL model checking

CSL model checking problem

Input: a finite CTMC C = (S, P, r, ti, AP, L), state s € S, and
CSL state formula ¢

Output: yes, if s = ®; no, otherwise.

Basic algorithm

In order to check whether s = ® do:

1. Compute the satisfaction set Sat(®) ={se€ S|sE=o}.
2. This is done recursively by a bottom-up traversal of ®'s parse tree.
» The nodes of the parse tree represent the subformulae of .

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

CSL model checking

CSL model checking problem

Input: a finite CTMC C = (S, P, r, ti, AP, L), state s € S, and
CSL state formula ¢

Output: yes, if s = ®; no, otherwise.

Basic algorithm

In order to check whether s = ® do:

1. Compute the satisfaction set Sat(®) ={s€ S|sE= o}
2. This is done recursively by a bottom-up traversal of ®'s parse tree.

» The nodes of the parse tree represent the subformulae of .
» For each node, i.e., for each subformula W of ®, determine Sat(V).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

CSL model checking

CSL model checking problem

Input: a finite CTMC C = (S, P, r, ti, AP, L), state s € S, and
CSL state formula ¢

Output: yes, if s = ®; no, otherwise.

Basic algorithm

In order to check whether s = ® do:

1. Compute the satisfaction set Sat(®) ={s€ S|sE= o}
2. This is done recursively by a bottom-up traversal of ®'s parse tree.

» The nodes of the parse tree represent the subformulae of .
» For each node, i.e., for each subformula W of ®, determine Sat(V).
» Determine Sat(W) as function of the satisfaction sets of its children:

e.g., Sat(V1 A W,) = Sat(W1) N Sat(W2) and Sat(—W¥) = S\ Sat(V).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

CSL model checking

CSL model checking problem

Input: a finite CTMC C = (S, P, r, ti, AP, L), state s € S, and
CSL state formula ¢

Output: yes, if s = ®; no, otherwise.

Basic algorithm

In order to check whether s = ® do:

1. Compute the satisfaction set Sat(®) ={s€ S|sE= o}
2. This is done recursively by a bottom-up traversal of ®'s parse tree.

» The nodes of the parse tree represent the subformulae of .
» For each node, i.e., for each subformula W of ®, determine Sat(V).
» Determine Sat(W) as function of the satisfaction sets of its children:

e.g., Sat(V1 A W,) = Sat(W1) N Sat(W2) and Sat(—W¥) = S\ Sat(V).
3. Check whether state s belongs to Sat(®).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Core model checking algorithm

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 16/29

Core model checking algorithm

Propositional formulas

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Core model checking algorithm

Propositional formulas

Sat(-) is defined by structural induction as follows:

Sat(true) = S

Sat(a) = {seS|aecl(s)}, forany ac AP
Sat(P A V) = Sat(P) N Sat(V)
Sat(—®) = S\ Sat(?).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 16/29

Core model checking algorithm

Propositional formulas

Sat(-) is defined by structural induction as follows:

Sat(true) S

Sat(a) = {seS|aecl(s)}, forany ac AP
Sat(P AWV) = Sat(®) N Sat(V)
Sat(—®) = S\ Sat(?).

Probabilistic operator P

In order to determine whether s € Sat(P,(y)), the probability Pr(s = ¢)
for the event specified by ¢ needs to be established.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 16/29

Core model checking algorithm

Propositional formulas

Sat(-) is defined by structural induction as follows:

Sat(true) S

Sat(a) = {seS|aecl(s)}, forany ac AP
Sat(P AWV) = Sat(®) N Sat(V)
Sat(—®) = S\ Sat(?).

Probabilistic operator P

In order to determine whether s € Sat(P,(y)), the probability Pr(s = ¢)
for the event specified by ¢ needs to be established. Then

Sat(P)(¢)) = {s€S|Prsl=¢) € J}.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 16/29

Core model checking algorithm

Propositional formulas

Sat(-) is defined by structural induction as follows:

Sat(true) S

Sat(a) = {seS|aecl(s)}, forany ac AP
Sat(P AWV) = Sat(®) N Sat(V)
Sat(—=®) = S\ Sat(®).

Probabilistic operator P

In order to determine whether s € Sat(P,(y)), the probability Pr(s = ¢)
for the event specified by ¢ needs to be established. Then

Sat(P)(¢)) = {s€S|Prsl=¢) € J}.

Let us consider the computation of Pr(s |= ¢) for all possible .

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 16/29

The next-step operator

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 17/29

The next-step operator

|
Recall that: s = P,(O'®) if and only if Pr(s = O'®) € J.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

The next-step operator

|
Recall that: s = P,(O'®) if and only if Pr(s = O'®) € J.

Lemma

Pr(s ': OI(D) — (e—r(s).infl o e—r(s)-supl) . Z P(S, Sl).

s'€Sat(P)

probability to leave s in interval /

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 17/29

CSL Model Checking

The next-step operator

|
Recall that: s = P,(O'®) if and only if Pr(s = O'®) € J.

Lemma

Pr(s ': OI(D) — (e—r(s).infl o e—r(s)-supl) . Z P(S, Sl).

s'€Sat(P)

probability to leave s in interval /

Algorithm

Considering the above equation for all states simultaneously yields:

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 17/29

CSL Model Checking

The next-step operator

|
Recall that: s = P,(O'®) if and only if Pr(s = O'®) € J.

Lemma

Pr(s ': OI(D) — (e—r(s).infl o e—r(s)-supl) . Z P(S, Sl).

s'€Sat(P)

probability to leave s in interval /

Algorithm

Considering the above equation for all states simultaneously yields:
(P(s EO®)),es = b/ -P

with b, is defined by b(s) = e="(s)inf/ _ g=r(s)sup/ if s ¢ Sat(d) and 0
otherwise, and b,T is the transposed variant of b;.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 17/29

CSL Model Checking

The next-step operator

|
Recall that: s = P,(O'®) if and only if Pr(s = O'®) € J.

Lemma

Pr(s ': OI(D) — (e—r(s).infl o e—r(s)-supl) . Z P(S, Sl).

s'€Sat(P)

probability to leave s in interval /

Algorithm

Considering the above equation for all states simultaneously yields:
(P(s EO®)),es = b/ -P

with b, is defined by b(s) = e="(s)inf/ _ g=r(s)sup/ if s ¢ Sat(d) and 0
otherwise, and b,T is the transposed variant of b;.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 17/29

Time-bounded until (1)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 18/29

Time-bounded until (1)

|
Recall that: s = P,(® USt W) if and only if Pr(s E ®UST W) € J.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Time-bounded until (1)

|
Recall that: s = P,(® USt W) if and only if Pr(s E ®UST W) € J.

Lemma

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 18/29

Time-bounded until (1)

|
Recall that: s = P,(® USt W) if and only if Pr(s E ®UST W) € J.

Lemma
Let S—y = Sat(V), S—o = S\ (Sat(P) U Sat(V)), and S; = S\ (S=o U 5-1).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 18/29

Time-bounded until (1)

|
Recall that: s = P,(® USt W) if and only if Pr(s E ®UST W) € J.

Lemma
Let S—y = Sat(V), S—o = S\ (Sat(®) U Sat(V)), and Sz = S\ (5-0 U 5-1). Then:
1 ifse S:l

- 0 if se S5
Pr(s E dUS' V) =

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 18/29

Time-bounded until (1)

|
Recall that: s = P,(® USt W) if and only if Pr(s E ®UST W) € J.

Lemma

Let 51 = Sat(V), S—o = S\ (Sat(®) U Sat(V)), and S = S\ (5-0 U S5_1). Then:

1 ifse S,
- 0 if s €S-
Pr(s = dUS W) = ‘
/ Z R(s,s')- e "O*.Ps’ = dUST W) dx otherwise
0 sres

This is a slight generalisation of the Volterra integral equation system for
timed reachability.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 18/29

Time-bounded until (2)

|
Let S_y = Sat(V), S—o = S\ (Sat(®) U Sat(¥)), and S, = S\ (S=o U S_1).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Time-bounded until (2)

__|
Let S—1 = Sat(V), S—o = S\ (Sat(®) U Sat(V)), and S = S\ (S=0 U S=1). Then:

1 if se Sy

) 0 if se€ S
Pr(s E ®dUS' V) =

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

CSL Model Checking

Time-bounded until (2)

Let S—1 = Sat(V), S—o = S\ (Sat(®) U Sat(V)), and S = S\ (5=0 U S=1). Then:

1 if s € Sy
< 0 if se€ S
Prs U™ V) = 't
/ Z R(s,s') - e "O.P(s' E dUS"™ W) dx otherwise
YO0 s

Phrased using CSL state formulas
Pr(s = dUSTY) =
—_————

timed reachability in C

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

CSL Model Checking

Time-bounded until (2)

Let 51 = Sat(V), S—o = S\ (Sat(®) U Sat(V)), and S = S\ (S5-0 U S_1). Then:
1

ifse S
. 0 if s €S-
Pr(s = dUS‘ W) = ‘
/ Z R(s,s') - e @ .PHs' E dUS"™ W) dx otherwise
0 sres

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

Time-bounded until (3)

Algorithm for checking Pr(s = U) € J

1. If t = 0o, then use approach for until (as in PCTL): solve a system of linear
equations.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Time-bounded until (3)

Algorithm for checking Pr(s = U) € J

1. If t = 0o, then use approach for until (as in PCTL): solve a system of linear
equations.

2. Determine recursively Sat(®) and Sat(W).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Time-bounded until (3)

Algorithm for checking Pr(s = U) € J

1. If t = 0o, then use approach for until (as in PCTL): solve a system of linear
equations.

2. Determine recursively Sat(®) and Sat(W).
3. Make all states in S\ Sat(®) and Sat(V) absorbing.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Time-bounded until (3)

Algorithm for checking Pr(s = U) € J

1. If t = 0o, then use approach for until (as in PCTL): solve a system of linear
equations.

2. Determine recursively Sat(®) and Sat(W).
3. Make all states in S\ Sat(®) and Sat(V) absorbing.

4. Uniformize the resulting CTMC with respect to its maximal rate.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Time-bounded until (3)

Algorithm for checking Pr(s = U) € J

1. If t = 0o, then use approach for until (as in PCTL): solve a system of linear
equations.

Determine recursively Sat(®) and Sat(V).
Make all states in S\ Sat(®) and Sat(V) absorbing.

Uniformize the resulting CTMC with respect to its maximal rate.

oA wN

Determine the transient probability at time t using s as initial distribution.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Time-bounded until (3)

Algorithm for checking Pr(s = U) € J

1. If t = 0o, then use approach for until (as in PCTL): solve a system of linear
equations.

Determine recursively Sat(®) and Sat(V).
Make all states in S\ Sat(®) and Sat(V) absorbing.
Uniformize the resulting CTMC with respect to its maximal rate.

Determine the transient probability at time t using s as initial distribution.

© g & W D

Return yes if transient probability of all W-states lies in J, and no otherwise.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Time-bounded until (3)

Algorithm for checking Pr(s = U) € J

1. If t = 0o, then use approach for until (as in PCTL): solve a system of linear
equations.

Determine recursively Sat(®) and Sat(V).
Make all states in S\ Sat(®) and Sat(V) absorbing.
Uniformize the resulting CTMC with respect to its maximal rate.

Determine the transient probability at time t using s as initial distribution.

© g & W D

Return yes if transient probability of all W-states lies in J, and no otherwise.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Time-bounded until (4)

Possible optimizations

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Time-bounded until (4)

Possible optimizations

1. Make all states in S\ Sat(3(P U V)) absorbing.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Time-bounded until (4)

Possible optimizations

1. Make all states in S\ Sat(3(P U V)) absorbing.
2. Make all states in Sat(V(® U V)) absorbing.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 21/29

Time-bounded until (4)

Possible optimizations

1. Make all states in S\ Sat(3(P U V)) absorbing.
2. Make all states in Sat(V(® U V)) absorbing.
3. Replace the labels of all states in S\ Sat(3(®WV)) by unique label zero.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 21/29

Time-bounded until (4)

Possible optimizations

Make all states in S\ Sat(3($ U V)) absorbing.
Make all states in Sat(V(® U V)) absorbing.
Replace the labels of all states in S\ Sat(3(PWV)) by unique label zero.

= Wy =

Replace the labels of all states in Sat(V($ U V)) by unique label one.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Time-bounded until (4)

Possible optimizations

Make all states in S\ Sat(3($ U V)) absorbing.

Make all states in Sat(V(® U V)) absorbing.

Replace the labels of all states in S\ Sat(3(PWV)) by unique label zero.
Replace the labels of all states in Sat(V($ U V)) by unique label one.

@ o> @ M =

Perform bisimulation minimization on all states.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Time-bounded until (4)

Possible optimizations

Make all states in S\ Sat(3($ U V)) absorbing.
Make all states in Sat(V(® U V)) absorbing.
Replace the labels of all states in S\ Sat(3(PWV)) by unique label zero.

= Wy =

Replace the labels of all states in Sat(V($ U V)) by unique label one.

5. Perform bisimulation minimization on all states.

The last step collapses all states in S\ Sat(3(® U V)) into a single state, and
does the same with all states in Sat(V($ U V)).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Preservation of CSL-formulas

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Preservation of CSL-formulas

Bisimulation and CSL-equivalence coincide

Let C be a finitely branching CTMC and s, t states in C. Then:

s~mt ifand only if s and t are CSL-equivalent.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Preservation of CSL-formulas

Bisimulation and CSL-equivalence coincide

Let C be a finitely branching CTMC and s, t states in C. Then:

s~mt ifand only if s and t are CSL-equivalent.

If for CSL-formula ® we have s = ® but t = ®, then it follows s %, t.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Preservation of CSL-formulas

Bisimulation and CSL-equivalence coincide

Let C be a finitely branching CTMC and s, t states in C. Then:

s~mt ifand only if s and t are CSL-equivalent.

If for CSL-formula ® we have s = ® but t = ®, then it follows s %, t. A
single CSL-formula suffices!

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Preservation of CSL-formulas

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

CSL Model Checking

Preservation of CSL-formulas

Weak bisimulation and CSL-without-next-equivalence coincide

Let C be a finitely branching CTMC and s, t states in C. Then:
s~mt ifand only if s and t are CSL-without-next-equivalent.

Here. CSL-without-next is the fragment of CSL where the next-operator
(O does not occur.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 23/29

CSL Model Checking

Preservation of CSL-formulas

Weak bisimulation and CSL-without-next-equivalence coincide

Let C be a finitely branching CTMC and s, t states in C. Then:
s~mt ifand only if s and t are CSL-without-next-equivalent.

Here. CSL-without-next is the fragment of CSL where the next-operator
(O does not occur.

If for CSL-without-next-formula ® we have s = ® but t [~ ®, then it
follows s %, t.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 23/29

Uniformization and CSL

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

CSL Model Checking

Uniformization and CSL

Uniformization and CSL

For any finite CTMC C with state space S, r > max{r(s) [s€ S} and ®
a CSL-without-next-formula:

Sat’(®) = Sat’ (®) where C' = unif(r,C).

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

CSL Model Checking

Uniformization and CSL

Uniformization and CSL

For any finite CTMC C with state space S, r > max{r(s) [s€ S} and ®
a CSL-without-next-formula:

Sat’(®) = Sat’ (®) where C' = unif(r,C).

Uniformization and CSL

For any uniformized CTMC: CSL-equivalence coincides with
CSL-without-next-equivalence.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

Complexity

Overview

@ Complexity

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Time complexity

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Time complexity

Let |®| be the size of ®, i.e., the number of logical and temporal operators in ®.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Time complexity

Let |®| be the size of ®, i.e., the number of logical and temporal operators in ®.

Time complexity of CSL model checking

For finite CTMC C and CSL state-formula ®, the CSL model-checking
problem can be solved in time

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 26/29

Time complexity

Let |®| be the size of ®, i.e., the number of logical and temporal operators in ®.

Time complexity of CSL model checking

For finite CTMC C and CSL state-formula ®, the CSL model-checking
problem can be solved in time

O(poly(size(C)) - tmax - |P])

where tmax = max{t | W UStW; occurs in ® } with and tpa, = 1 if
does not contain a time-bounded until-operator.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 26/29

Some practical verification times

verification time (in ms)

N —0
Workstation cluster (CTMO) | ——
—
| ——
. T L | o
10 . Fancdem gt TMC)-
Crowd ©TMC) |
— — romes
— —
o o—]
——— utex (DTMC)
10° =7 X
7
[A
|
102
i
tate space|si
10!
o Py) o o P
> > ° >)
5 = & & b

|
» command-line tool MRMC ran on a Pentium 4, 2.66 GHz, 1 GB RAM laptop.

» CSL formulas are time-bounded until-formulas.

Joost-Pieter Katoen

Overview

e Summary

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Summary

Summary

|
» CSL is a variant of PCTL with timed next and timed until.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Summary

|
» CSL is a variant of PCTL with timed next and timed until.
> Sets of paths fulfilling CSL path-formula ¢ are measurable.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 29/29

Summary

|
» CSL is a variant of PCTL with timed next and timed until.
> Sets of paths fulfilling CSL path-formula ¢ are measurable.

» CSL model checking is performed by a recursive descent over ®.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 29/29

Summary

|
» CSL is a variant of PCTL with timed next and timed until.
Sets of paths fulfilling CSL path-formula ¢ are measurable.

v

» CSL model checking is performed by a recursive descent over ®.

v

The timed next operator amounts to a single vector-matrix
multiplication.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 29/29

Summary

|
» CSL is a variant of PCTL with timed next and timed until.

v

Sets of paths fulfilling CSL path-formula ¢ are measurable.

» CSL model checking is performed by a recursive descent over ®.

» The timed next operator amounts to a single vector-matrix
multiplication.
» The time-bounded until-operator US? is solved by uniformization.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 29/29

Summary

|
» CSL is a variant of PCTL with timed next and timed until.
> Sets of paths fulfilling CSL path-formula ¢ are measurable.
» CSL model checking is performed by a recursive descent over ®.

» The timed next operator amounts to a single vector-matrix
multiplication.

» The time-bounded until-operator US? is solved by uniformization.

» The worst-case time complexity is polynomial in the size of the
CTMC and linear in the size of the formula.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

	CSL Syntax
	CSL Semantics
	CSL Model Checking
	Complexity
	Summary

