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Recall: continuous-time Markov chains

Overview

@ Recall: continuous-time Markov chains
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Negative exponential distribution

Density of exponential distribution

The density of an exponentially distributed r.v. Y with rate A € Ry is:

fy(x) = \-e™**  for x >0 and fy(x) = 0 otherwise
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Recall: continuous-time Markov chains

Negative exponential distribution

Density of exponential distribution

The density of an exponentially distributed r.v. Y with rate A € R-q is:
fy(x) = \-e™**  for x >0 and fy(x) = 0 otherwise

The cumulative distribution of r.v. Y with rate A € R+g is:

d
Fy(d) = /0 Ae M dx = [e™]|d = 1-e .
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Recall: continuous-time Markov chains

Negative exponential distribution

Density of exponential distribution

The density of an exponentially distributed r.v. Y with rate A € R-q is:
fy(x) = \-e™**  for x >0 and fy(x) = 0 otherwise

The cumulative distribution of r.v. Y with rate A € R+g is:
d
Fr(d) = [ he™ dx = [me ) = 1o,
0

The rate A € Ry uniquely determines an exponential distribution.
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Recall: continuous-time Markov chains

Negative exponential distribution

Density of exponential distribution

The density of an exponentially distributed r.v. Y with rate A € R-q is:
fy(x) = \-e™**  for x >0 and fy(x) = 0 otherwise
The cumulative distribution of r.v. Y with rate A € R+g is:

d
Fy(d) = /0 Ae M dx = [e™]|d = 1-e .

The rate A € Ry uniquely determines an exponential distribution.

Variance and expectation

Let r.v. Y be exponentially distributed with rate A\ € R-g. Then:
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Recall: continuous-time Markov chains

Negative exponential distribution

Density of exponential distribution

The density of an exponentially distributed r.v. Y with rate A € R-q is:
fy(x) = \-e™**  for x >0 and fy(x) = 0 otherwise

The cumulative distribution of r.v. Y with rate A € R+g is:
d
Fr(d) = [ he™ dx = [me ) = 1o,
0

The rate A € Ry uniquely determines an exponential distribution.

Variance and expectation

Let r.v. Y be exponentially distributed with rate A\ € R-g. Then:

> Expectation E[Y] = [°x-A-e™ ™ dx = }
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Recall: continuous-time Markov chains

Negative exponential distribution

Density of exponential distribution

The density of an exponentially distributed r.v. Y with rate A € R-q is:
fy(x) = \-e™**  for x >0 and fy(x) = 0 otherwise

The cumulative distribution of r.v. Y with rate A € R+g is:
d
Fr(d) = [ he™ dx = [me ) = 1o,
0

The rate A € Ry uniquely determines an exponential distribution.

Variance and expectation

Let r.v. Y be exponentially distributed with rate A\ € R-g. Then:
> Expectation E[Y] = [°x-A-e™ ™ dx = }
> Variance Var[Y] = [5°(x — E[X])?X-e ¥ dx = &
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Recall: continuous-time Markov chains

Continuous-time Markov chain

A CTMC is a tuple (S, P, r, Ly, AP, L) where
> (5,P, tinie, AP, L) is a DTMC, and
> r: S — Ry, the exit-rate function

Let R(s,s’) = P(s,s’) - r(s) be the transition rate of transition (s, s)
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Continuous-time Markov chain

A CTMC is a tuple (S, P, r, Ly, AP, L) where
> (5,P, tinie, AP, L) is a DTMC, and
> r: S — Ry, the exit-rate function

Let R(s,s’) = P(s,s’) - r(s) be the transition rate of transition (s, s)
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Recall: continuous-time Markov chains

Continuous-time Markov chain

A CTMC is a tuple (S, P, r, Ly, AP, L) where
> (5,P, tinie, AP, L) is a DTMC, and
> r: S — Ry, the exit-rate function

Let R(s,s’) = P(s,s’) - r(s) be the transition rate of transition (s, s)

Interpretation

» residence time in state s is exponentially distributed with rate r(s).

» phrased alternatively, the average residence time of state s is %
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CTMC semantics

Enabledness

The probability that transition s — s’ is enabled in [0, t] is 1 — e~ R(s:5)t,
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CTMC semantics

Enabledness

The probability that transition s — s’ is enabled in [0, t] is 1 — e~ R(s:5)t,

State-to-state timed transition probability

The probability to move from non-absorbing s to s’ in [0, t] is:

R(S' 5/) . (1 o e—r(s)~t> ]
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Recall: continuous-time Markov chains

CTMC semantics

Enabledness
—R(s;s)-t

The probability that transition s — s’ is enabled in [0, t] is 1 — e

State-to-state timed transition probability

The probability to move from non-absorbing s to s’ in [0, t] is:

R(s, s’ (st
%.(1_(3 ().

Residence time distribution

The probability to take some outgoing transition from s in [0, t] is:

t
/ r(s)-e "% dx = 1— e ")t
0
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Transient distribution

Overview

© Transient distribution
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Transient distribution of a CTMC
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Transient distribution of a CTMC

Transient state probability

Let X(t) denote the state of a CTMC at time t € R>g.
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Transient distribution

Transient distribution of a CTMC

Transient state probability
Let X(t) denote the state of a CTMC at time t € R>q. The probability to
be in state s at time t is defined by:

ps(t) = Pr{X(t)=s}

= > Pr{X(0)=5} Pr{X(t)=s|X(0)=5s"}

s'eS
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Transient distribution

Transient distribution of a CTMC

Transient state probability

Let X(t) denote the state of a CTMC at time t € R>g. The probability to
be in state s at time t is defined by:

ps(t) = Pr{X(t)=s}
— 3 PAX(0) =5} PHX(t) = s| X(0) =5}

s'eS

Theorem: transient distribution as linear differential equation

The transient probability vector p(t) = (ps,(t), ..., ps,(t)) satisfies:
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Transient distribution

Transient distribution of a CTMC

Transient state probability

Let X(t) denote the state of a CTMC at time t € R>g. The probability to
be in state s at time t is defined by:

ps(t) = Pr{X(t)=s}
— 3 PAX(0) =5} PHX(t) = s| X(0) =5}

s'eS

Theorem: transient distribution as linear differential equation

The transient probability vector p(t) = (ps,(t), ..., ps,(t)) satisfies:

p'(t) = p(t)-(R—r) given p(0)

where r is the diagonal matrix of vector r.
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Transient distribution theorem

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 8/32



Transient distribution

Transient distribution theorem

Theorem: transient distribution as linear differential equation

The transient probability vector p(t) = (ps,(t), ..., ps,(t)) satisfies:

p(t)-(R—r) given p(0)

where r is the diagonal matrix of vector r.
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Transient distribution

Transient distribution theorem

Theorem: transient distribution as linear differential equation

The transient probability vector p(t) = (ps,(t), ..., ps,(t)) satisfies:

p(t)-(R—r) given p(0)

where r is the diagonal matrix of vector r.

On the blackboard.
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Transient distribution

Computing transient probabilities

|
The transient probability vector p(t) = (ps,(t), ..., ps(t)) satisfies:

p'(t) = p(t) - (R—r) given p(0).
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Transient distribution

Computing transient probabilities

|
The transient probability vector p(t) = (ps, (1), ..., ps, (t)) satisfies:

p'(t) = p(t) - (R—r) given p(0).

|
Solution using standard knowledge yields: p(t) = p(0)-e(R-")-t.
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Computing transient probabilities

The transient probability vector p(t) = (ps,(t), ..., ps(t)) satisfies:
p'(t) = p(t) - (R—r) given p(0).

Solution using standard knowledge yields: p(t) = p(0)-e(R-")-t.

Computing a matrix exponential

First attempt: use Taylor-Maclaurin expansion.
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Computing transient probabilities

The transient probability vector p(t) = (ps, (1), ..., ps, (t)) satisfies:

p'(t) = p(t) - (R—r) given p(0).

Solution using standard knowledge yields: p(t) = p(0)-e(R-")-t.

Computing a matrix exponential

First attempt: use Taylor-Maclaurin expansion. This yields

p(t) = p(0)-eR=*
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Computing transient probabilities

The transient probability vector p(t) = (ps, (1), ..., ps, (t)) satisfies:

p'(t) = p(t) - (R—r) given p(0).

Solution using standard knowledge yields: p(t) = p(0)-e(R-")-t.

Computing a matrix exponential

First attempt: use Taylor-Maclaurin expansion. This yields
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Computing transient probabilities

The transient probability vector p(t) = (ps, (), .-, ps, (t)) satisfies:

p'(t) = p(t) - (R—r) given p(0).

Solution using standard knowledge yields: p(t) = p(0)-e(R-")-t.

Computing a matrix exponential

First attempt: use Taylor-Maclaurin expansion. This yields

But: numerical instability due to fill-in of (R—r)’ in presence of positive
and negative entries in the matrix R—r.
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Overview

© Uniformization
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Uniformization
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Uniformization
Let CTMC C = (S, P, r, 1, AP, L) with S finite.
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Uniformization
Let CTMC C = (S, P, r, 1, AP, L) with S finite.

Uniform CTMC
CTMC C is uniform if r(s) = r for all s € S for some r € R+o.
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Uniformization
Let CTMC C = (S, P, r, 1, AP, L) with S finite.

Uniform CTMC
CTMC C is uniform if r(s) = r for all s € S for some r € R+o.

Uniformization

[Gross and Miller, 1984]

Let r € R~ such that r > maxses r(s).
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Uniformization
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Uniformization
Let CTMC C = (S, P, r, 1, AP, L) with S finite.

Uniform CTMC
CTMC C is uniform if r(s) = r for all s € S for some r € R+o.

Uniformization

[Gross and Miller, 1984]

Let r € R~ such that r > maxses r(s). Then unif(r,C) is the tuple
(S,P, 7, tinie, AP, L) with 7(s) = r for all s € S
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Uniformization
Let CTMC C = (S, P, r, 1, AP, L) with S finite.

CTMC C is uniform if r(s) = r for all s € S for some r € R+o.

Uniformization [Gross and Miller, 1984]

Let r € R~ such that r > maxses r(s). Then unif(r,C) is the tuple
(S,P, 7, tinie, AP, L) with 7(s) = r for all s € S , and:

5(5,5’) — Lrs)-P(S, 5/) if s/ ?é s and ﬁ(S,S) = —P(S S) +1— @
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Uniformization
Let CTMC C = (S, P, r, 1, AP, L) with S finite.

Uniform CTMC

CTMC C is uniform if r(s) = r for all s € S for some r € R+o.

Uniformization [Gross and Miller, 1984]

Let r € R~ such that r > maxses r(s). Then unif(r,C) is the tuple
(S,P, 7, tinie, AP, L) with 7(s) = r for all s € S , and:

P(s,s') = L:)-P(s, s)ifs#s and P(s,s)= —2-P(s,s)+1— @

It follows that P is a stochastic matrix and unif(r,C) is a CTMC.
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Uniformization: example
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Uniformization

Uniformization: example

Let r € Ry such that r > maxses r(s). Then wnifir,C) = (S, P, 7, tini, AP, L)
with 7(s) = r for all s € S, and:

P(s,s') = Lrs)-P(s,s’) ifs'#s and P(s s)= rTS)-P(s,s) +1— @

r
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Uniformization: example

Let r € Ry such that r > maxses r(s). Then wnifir,C) = (S, P, 7, tini, AP, L)
with 7(s) = r for all s € S, and:

P(s,s") = L:).P(s,s’) ifs'#s and P(s s)= rTS)-P(s,s) +1— Lrs)

5 s 3 i
3 ! 6 1 4 1 = i 1
& e ° 3
i : %
CTMC C and its uniformized counterpart unif(6,C)
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Uniformization: intuition
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Uniformization: intuition

Let r € R such that r > maxscs r(s). Then unif(r,C) = (S, P, 7, tini, AP, L)
with 7(s) = r for all s € S, and:

P(s,s') = Lrs)-P(s,s’) ifs"#s and P(s,s)= ( ). P(s,s)+1— @
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Uniformization: intuition

Let r € R such that r > maxscs r(s). Then unif(r,C) = (S, P, 7, tini, AP, L)
with 7(s) = r for all s € S, and:

P(s,s') = Lrs)-P(s,s’) ifs"#s and P(s,s)= ( ). P(s,s)+1— @

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems



Uniformization: intuition

Let r € R-g such that r

> maxscs r(s). Then unif(r,C) = (S, P, 7, tini, AP, L)
with 7(s) = r for all s € S, and:
P(s,s") = Lrs)-P(s,s’) ifs"#s and P(s,s)= ( ). P(s,s)+1— @

> Fix all exit rates to (at least) the maximal exit rate r occurring in CTMC C
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Uniformization: intuition

Let r € R-g such that r

> maxscs r(s). Then unif(r,C) = (S, P, 7, tini, AP, L)
with 7(s) = r for all s € S, and:
P(s,s") = Lrs)-P(s,s’) ifs"#s and P(s,s)= ( ). P(s,s)+1— @

> Fix all exit rates to (at least) the maximal exit rate r occurring in CTMC C

» Thus, % is the shortest mean residence time in the CTMC C.
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Uniformization: intuition

Let r € R-g such that r

> maxscs r(s). Then unif(r,C) = (S, P, 7, tini, AP, L)
with 7(s) = r for all s € S, and:
P(s,s") = Lrs)-P(s,s’) ifs"#s and P(s,s)= ( ). P(s,s)+1— Q

> Fix all exit rates to (at least) the maximal exit rate r occurring in CTMC C

» Thus, % is the shortest mean residence time in the CTMC C.

» Then normalize the residence time of all states with respect to r as follows
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Uniformization: intuition

Let r € R such that r > maxscs r(s). Then unif(r,C) = (S, P, 7, tini, AP, L)
with 7(s) = r for all s € S, and:

P(s,s') = rirs)

.P(s,s’) if s"#s and ﬁ(S,s) = L:)'P(S,s) i r(rs)

> Fix all exit rates to (at least) the maximal exit rate r occurring in CTMC C.

» Thus, % is the shortest mean residence time in the CTMC C.
» Then normalize the residence time of all states with respect to r as follows:

1

1. replace an average residence time % by a shorter (or equal) one,
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Uniformization: intuition

Let r € R such that r > maxscs r(s). Then unif(r,C) = (S, P, 7, tini, AP, L)
with 7(s) = r for all s € S, and:

P(s,s') = rirs)

P(s, 5’) if s"#s and ﬁ(S,s) = L:)'P(S,s) i r(rs)

> Fix all exit rates to (at least) the maximal exit rate r occurring in CTMC C.

» Thus, % is the shortest mean residence time in the CTMC C.
» Then normalize the residence time of all states with respect to r as follows:

1

1. replace an average residence time % by a shorter (or equal) one,

2. decrease the transition probabilities by a factor Lrs) and
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Uniformization: intuition

Let r € R such that r > maxscs r(s). Then unif(r,C) = (S, P, 7, tini, AP, L)
with 7(s) = r for all s € S, and:

P(s,s') = rirs)

P(s, 5’) if s"#s and ﬁ(S,s) = L:)'P(S,s) i r(rs)

> Fix all exit rates to (at least) the maximal exit rate r occurring in CTMC C.

» Thus, % is the shortest mean residence time in the CTMC C.
» Then normalize the residence time of all states with respect to r as follows:

1

1. replace an average residence time % by a shorter (or equal) one,

2. decrease the transition probabilities by a factor r(s)

r

, and
3. increase the self-loop probability by a factor #ﬁz
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Uniformization: intuition

Let r € R such that r > maxscs r(s). Then unif(r,C) = (S, P, 7, tini, AP, L)
with 7(s) = r for all s € S, and:

P(s,s') = rirs)

P(s,s')if s’ #s and P(s,s)= L:)'P(S,s) i r(rs)

> Fix all exit rates to (at least) the maximal exit rate r occurring in CTMC C.

» Thus, % is the shortest mean residence time in the CTMC C.
» Then normalize the residence time of all states with respect to r as follows:

1

1. replace an average residence time % by a shorter (or equal) one,

2. decrease the transition probabilities by a factor rs)

r

3. increase the self-loop probability by a factor #ﬁz

That is, slow down state s whenever r(s) < r.

, and
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Strong and weak bisimulation

Overview

@ Strong and weak bisimulation
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Strong bisimulation on DTMCs
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Strong bisimulation on DTMCs

Probabilistic bisimulation [Larsen & Skou, 1989]
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Strong bisimulation on DTMCs

Probabilistic bisimulation [Larsen & Skou, 1989]

Let D = (S, P, tinir, AP, L) be a DTMC and R C S x S an equivalence.
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Strong bisimulation on DTMCs

Probabilistic bisimulation [Larsen & Skou, 1989]

Let D = (S, P, tinir, AP, L) be a DTMC and R C S x S an equivalence.
Then: R is a probabilistic bisimulation on S if for any (s, t) € R:
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Strong bisimulation on DTMCs

Probabilistic bisimulation [Larsen & Skou, 1989]

Let D = (S, P, tinir, AP, L) be a DTMC and R C S x S an equivalence.
Then: R is a probabilistic bisimulation on S if for any (s, t) € R:

1. L(s) = L(t), and
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Strong bisimulation on DTMCs

Probabilistic bisimulation [Larsen & Skou, 1989]

Let D = (S, P, tinir, AP, L) be a DTMC and R C S x S an equivalence.
Then: R is a probabilistic bisimulation on S if for any (s, t) € R:

1. L(s) = L(t), and
2. P(s, C) = P(t, C) for all equivalence classes C € S/R
where P(s, C) = > cc P(s, 5').
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Strong bisimulation on DTMCs

Probabilistic bisimulation [Larsen & Skou, 1989]

Let D = (S, P, tinir, AP, L) be a DTMC and R C S x S an equivalence.
Then: R is a probabilistic bisimulation on S if for any (s, t) € R:

1. L(s) = L(t), and
2. P(s, C) = P(t, C) for all equivalence classes C € S/R
where P(s, C) = > cc P(s, 5').

|
For states in R, the probability of moving by a single transition to some
equivalence class is equal.
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Strong bisimulation on DTMCs

Probabilistic bisimulation [Larsen & Skou, 1989]

Let D = (S, P, tinii, AP, L) be a DTMC and R C S x S an equivalence.
Then: R is a probabilistic bisimulation on S if for any (s, t) € R:

1. L(s) = L(t), and
2. P(s, C) = P(t, C) for all equivalence classes C € S/R
where P(s, C) = > cc P(s, 5').

|
For states in R, the probability of moving by a single transition to some
equivalence class is equal.

Probabilistic bisimilarity

Let D be a DTMC and s, t states in D.
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Strong bisimulation on DTMCs

Probabilistic bisimulation [Larsen & Skou, 1989]

Let D = (S, P, tinir, AP, L) be a DTMC and R C S x S an equivalence.
Then: R is a probabilistic bisimulation on S if for any (s, t) € R:

1. L(s) = L(t), and
2. P(s, C) = P(t, C) for all equivalence classes C € S/R
where P(s, C) = > cc P(s, 5').

|
For states in R, the probability of moving by a single transition to some
equivalence class is equal.

Probabilistic bisimilarity

Let D be a DTMC and s, t states in D. Then: s is probabilistically bisimilar to t,
denoted s ~,, t, if there exists a probabilistic bisimulation R with (s, t) € R.
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Strong bisimulation on CTMCs
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Strong bisimulation on CTMCs

Probabilistic bisimulation [Buchholz, 1994]
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Probabilistic bisimulation [Buchholz, 1994]

Let C = (S,P, r, Ly, AP, L) be a CTMC and R C S x S an equivalence.
Then: R is a probabilistic bisimulation on S if for any (s, t) € R:

1. L(s) = L(t), and
2. r(s) = r(t), and
3. P(s, C) = P(t, C) for all equivalence classes C € S/R

|
The last two conditions amount to R(s, C) = R(t, C) for all equivalence classes
CeS/R.

Probabilistic bisimilarity

Let C be a CTMC and s, t states in C. Then: s is probabilistically bisimilar to t,
denoted s ~, t, if there exists a probabilistic bisimulation R with (s, t) € R.
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Weak bisimulation on DTMCs

Weak probabilistic bisimulation

[Baier & Hermanns, 1996]
Let D = (S, P, tinit, AP, L) be a DTMC and R C S x S an equivalence.
Then: R is a weak probabilistic bisimulation on S if for any (s, t) € R:

1. L(s) = L(t), and

2. if P(s, [s]r) < 1 and P(t, [t]g) < 1,
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Let D = (S, P, tini, AP, L) be a DTMC and R C S x S an equivalence.

Then: R is a weak probabilistic bisimulation on S if for any (s, t) € R:
1. L(s) = L(t), and

2. if P(s,[s]r) < 1 and P(t, [t]g) < 1, then:

P(sC)  P(tC) -
T=P(s. ) 1-P(ode) o CE/RCFIR =R

3. s can reach a state outside [s]g iff t can reach a state outside [t]r.

For states in R, the conditional probability of moving by a single transition to

another equivalence class is equal. In addition, either all states in an equivalence
class C almost surely stay there, or have an option to escape from C.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems 17/32



Weak bisimulation on DTMCs

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 18/32



Strong and weak bisimulation

Weak bisimulation on DTMCs

Weak probabilistic bisimulation

[Baier & Hermanns, 1996]
Let D = (S, P, tini, AP, L) be a DTMC and R C S x S an equivalence.
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Weak bisimulation on DTMCs

Weak probabilistic bisimulation

[Baier & Hermanns, 1996]
Let D = (S, P, tinii, AP, L) be a DTMC and R C S x S an equivalence.

Then: R is a weak probabilistic bisimulation on S if for any (s, t) € R:
1. L(s) = L(t), and

2. if P(s,[s]r) < 1 and P(t, [t]g) < 1, then:

P(s,C)  P(t,C) . L
1-P(s,[s]g)  1-P(t[tlr) forall C € S/R, C # [s]r = [t]r-

3. s can reach a state outside [s]|g iff t can reach a state outside [t]g.

Probabilistic weak bisimilarity

Let D be a DTMC and s, t states in D. Then: s is probabilistically weak bisimilar
to t, denoted s =, t, if there exists a probabilistic weak bisimulation R with
(s, t) € R.
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The equivalence relation R with S/R = { {s1, 5, 53,53}, {u1, 2, u3} } is a
weak bisimulation.
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The equivalence relation R with S/R = { {s1, 5, 53,53}, {u1, 2, u3} } is a
weak bisimulation. This can be seen as follows. For C = { vy, up, u3 } and
s1, 52, sa with P(s;, [si]r) < 1 we have:
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Weak bisimulation on DTMC: example
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The equivalence relation R with S/R = { {s1, 5, 53,53}, {u1, 2, u3} } is a
weak bisimulation. This can be seen as follows. For C = { vy, up, u3 } and
s1, 52, sa with P(s;, [si]r) < 1 we have:

P(Sl, C)
1-— P(Sl, [51])
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The equivalence relation R with S/R = { {s1, 5, 53,53}, {u1, 2, u3} } is a
weak bisimulation. This can be seen as follows. For C = { vy, up, u3 } and
s1, 52, sa with P(s;, [si]r) < 1 we have:

P(s;, C) _ 1/8 1/4

1-P(s,[s1]) 1-5/8 1-1/4
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The equivalence relation R with S/R = { {s1, 5, 53,53}, {u1, 2, u3} } is a
weak bisimulation. This can be seen as follows. For C = { vy, up, u3 } and
s1, 52, sa with P(s;, [si]r) < 1 we have:

P(s1, C) _1/8 1/4 P(sy, C)

1-P(s;,[s1]) 1-5/8 1-1/4 1-P(s,[])
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The equivalence relation R with S/R = { {s1, 5, 53,53}, {u1, 2, u3} } is a
weak bisimulation. This can be seen as follows. For C = { vy, up, u3 } and
s1, 52, sa with P(s;, [si]r) < 1 we have:

P(s1, C) _1/8 1/4 P(s,C)  1/3

1-P(s;,[s1]) 1-5/8 1-1/4 1-P(s,[s]) 1

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 19/32



Weak bisimulation on DTMC: example

Y Y

1
g 1
51 Szj \53/ (54)

ééé

The equivalence relation R with S/R = { {s1, 5, 53,53}, {u1, 2, u3} } is a
weak bisimulation. This can be seen as follows. For C = { vy, up, u3 } and
s1, 52, sa with P(s;, [si]r) < 1 we have:

P(s1, C) _1/8 1/4 P(sy, C) 1/3 P(s4, C)

1-P(s,,[s1]) 1-5/8 1-1/4 1-P(sn[]) 1 1—P(ss[sa])
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The equivalence relation R with S/R = { {s1, 5, 53,53}, {u1, 2, u3} } is a
weak bisimulation. This can be seen as follows. For C = { vy, up, u3 } and
s1, 52, sa with P(s;, [si]r) < 1 we have:

P(s1, C) _1/8 1/4 P(sy, C) 1/3 P(s4, C)

1-P(s,,[s1]) 1-5/8 1-1/4 1-P(sn[]) 1 1—P(ss[sa])

Note that P(s3, [s3]g) = 1.
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The equivalence relation R with S/R = { {s1, 5, 53,53}, {u1, 2, u3} } is a
weak bisimulation. This can be seen as follows. For C = { vy, up, u3 } and
s1, 52, sa with P(s;, [si]r) < 1 we have:

P(s1, C) 1/8 1/4 P(sy, C) 1/3 P(s4, C)

1-P(s,,[s1]) 1-5/8 1-1/4 1-P(sn[]) 1 1—P(ss[sa])

Note that P(s3, [s3]gr) = 1. Since s3 can reach a state outside [s3] as s1, s, and
s, it follows that s; ~, s, ~p, 53 X Sa.
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Reachability condition

Consider the following DTMC:

OO OBk
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It is not difficult to establish s; ~ s,.
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Strong and weak bisimulation

Reachability condition

Consider the following DTMC:
O O O}

It is not difficult to establish s; & s,. Note: P(sy, [s1]gr) = 1, but P(s, [s2]r) < 1.
Both s; and s, can reach a state outside [s1]g = [s2]g. The reachability condition
is essential to establish s; &~ s, and cannot be dropped: otherwise s; and s, would
be weakly bisimilar to an equally labelled absorbing state.
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Weak bisimulation on CTMCs

Weak probabilistic bisimulation

[Bravetti, 2002]
Let C = (S,P,r, tin, AP, L) be a CTMC and R C S x S an equivalence.
Then: R is a weak probabilistic bisimulation on S if for any (s, t) € R:
1. L(s) = L(t), and

2. R(s,C) =R(t, C) for all C € S/R with C # [s]r = [t]r

Weak probabilistic bisimilarity

Let C be a CTMC and s, t states in C. Then: s is weak probabilistically bisimilar

to t, denoted s ~, t, if there exists a weak probabilistic bisimulation R with
(s.t) € R.
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A useful lemma

]
Let C be a CTMC and R an equivalence relation on S with (s, t) € R,
P(s, [s]r) < 1 and P(t, [t]g) < 1.
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A useful lemma
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Let C be a CTMC and R an equivalence relation on S with (s, t) € R,

P(s,[s]r) < 1 and P(t,[t]r) < 1. Then: the following two statements are
equivalent:
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A useful lemma

]
Let C be a CTMC and R an equivalence relation on S with (s, t) € R,
P(s,[s]r) < 1 and P(t,[t]r) < 1. Then: the following two statements are
equivalent:

1. forall C € S/R, C # [s]r = [t]r:

P(s,C)  P(t,C)
1—-P(s,[s]r) 1—P(t [t]r)

and R(s, S\ [s]gr) = R(t, S\ [t]r)
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]
Let C be a CTMC and R an equivalence relation on S with (s, t) € R,
P(s,[s]r) < 1 and P(t,[t]r) < 1. Then: the following two statements are
equivalent:

1. forall C € S/R, C # [s]r = [t]r:

P(s,C) _ P(tC)

T=P(s ) 1= im0 RE2 N =R e)

2. R(s,C) =R(t, C) for all C € S/R with C # [s]r = [t]r.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 22/32



A useful lemma

]
Let C be a CTMC and R an equivalence relation on S with (s, t) € R,
P(s,[s]r) < 1 and P(t,[t]r) < 1. Then: the following two statements are
equivalent:

1. forall C € S/R, C # [s]r = [t]r:

P(s,C) _ P(tC)

T=P(s ) 1= im0 RE2 N =R e)

2. R(s,C) =R(t, C) for all C € S/R with C # [s]r = [t]r.

Left as an exercise.
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Strong and weak bisimulation

Weak bisimulation on CTMCs: example

(3]

Equivalence relation R with S/R = { {s1, %, 53, %4, 55, S}, {u1, U2, U3, g, us} } is
a weak bisimulation on the CTMC depicted above.
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Equivalence relation R with S/R = { {s1, %, 53, %4, 55, S}, {u1, U2, U3, g, us} } is
a weak bisimulation on the CTMC depicted above. This can be seen as follows.
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Equivalence relation R with S/R = { {s1, %, 53, %4, 55, S}, {u1, U2, U3, g, us} } is
a weak bisimulation on the CTMC depicted above. This can be seen as follows.
For C = { u1, up, us, ug, us }, we have that all s-states enter C with rate 2.
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Weak bisimulation on CTMCs: example

Equivalence relation R with S/R = { {s1, %, 53, %4, 55, S}, {u1, U2, U3, g, us} } is
a weak bisimulation on the CTMC depicted above. This can be seen as follows.
For C = { u1, up, us, ug, us }, we have that all s-states enter C with rate 2. The
rates between the s-states are not relevant.
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Properties (without proof)

Strong and weak bisimulation in uniform CTMCs

For all uniform CTMCs C and states s, u in C, we have:

s~omu iff s=pu iff s ~p
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Properties (without proof)

Strong and weak bisimulation in uniform CTMCs

For all uniform CTMCs C and states s, u in C, we have:
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Strong and weak bisimulation in uniform CTMCs

For all uniform CTMCs C and states s, u in C, we have:

s~mu iff s u iff s ~p

|
For any CTMC C, we have: C ~p, unif(r,C) with r > maxses r(s).

Preservation of transient probabilities

For all CTMCs C with states s, u in C and t € R>g, we have:
s~mu implies p°(t) = p“(t)

where p*(0) = 15 and p“(0) = 1, where 15 is the characteristic function
for state s, i.e.,, 15(s’) =1 iff s =¢'.
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The transient probability vector p(t) = (ps,(t), ..., ps, (t)) satisfies:

p'(t) = p(t) - (R—r) given p(0).

Standard knowledge yields: p(t) = p(0)-e(R=")t.
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|
The transient probability vector p(t) = (ps,(t), ..., ps(t)) satisfies:

p'(t) = p(t) - (R—r) given p(0).

Standard knowledge yields: p(t) = p(0)-e(R=")t.
|
As uniformization preserves transient probabilities, we replace R—r by its
variant for the uniformized CTMC, i.e., R—F. We have:
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Computing transient probabilities
e

The transient probability vector p(t) = (ps, (), .-, ps, (t)) satisfies:
p'(t) = p(t) - (R—r) given p(0).

Standard knowledge yields: p(t) = p(0)~e(R*r)'t_

|
As uniformization preserves transient probabilities, we replace R—r by its
variant for the uniformized CTMC, i.e., R—r. We have:

R(s,s') = P(s,s")F(s) = P(s,s')-r
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|
The transient probability vector p(t) = (ps, (), .-, ps, (t)) satisfies:

p'(t) = p(t) - (R—r) given p(0).

Standard knowledge yields: p(t) = p(0)~e(R*r)'t_

|
As uniformization preserves transient probabilities, we replace R—r by its
variant for the uniformized CTMC, i.e., R—r. We have:

R(s,s') =P(s,s')F(s) =P(s,s')-r and F¥=1Ir.

Thus:
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Computing a matrix exponential

Exploit Taylor-Maclaurin expansion. This yields:

B(O)‘e—rt‘ertP
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Computing transient probabilities

Computing a matrix exponential

Exploit Taylor-Maclaurin expansion. This yields:

p(O)e e ® — popet. 3 )

i=0
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Computing transient probabilities

Computing a matrix exponential

Exploit Taylor-Maclaurin expansion. This yields:

o0 i 0 (r-t)i .
p(0)-e~"te"tP = p(0)-e Z = p(0)-Y e "t P
i=0 ! - =0 —_——
Poisson prob.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems



Computing transient probabilities

Computing transient probabilities

Computing a matrix exponential

Exploit Taylor-Maclaurin expansion. This yields:

o0 t) 00 (rt) —i
p(0)-e "t-e"tP = p(0)-e Z = p(0)- ) et P
i=0 ! - =0 —_——
Poisson prob.

As P is a stochastic matrix, computing the matrix exponential P'is
numerically stable.
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Poisson distribution

The Poisson distribution is a discrete probability distribution that expresses

the probability of a given number i of events occurring in a fixed interval
of time [0, t]
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Poisson distribution

The Poisson distribution is a discrete probability distribution that expresses
the probability of a given number i of events occurring in a fixed interval
of time [0, t] if these events occur with a known average rate r and
independently of the time since the last event.
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Intermezzo: Poisson distribution

Poisson distribution

The Poisson distribution is a discrete probability distribution that expresses
the probability of a given number i of events occurring in a fixed interval
of time [0, t] if these events occur with a known average rate r and
independently of the time since the last event. Formally, the pdf is:

f(i;rt) = e_r'tﬂ

il

where r is the mean of the Poisson distribution.
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Intermezzo: Poisson distribution

Poisson distribution

The Poisson distribution is a discrete probability distribution that expresses
the probability of a given number i of events occurring in a fixed interval
of time [0, t] if these events occur with a known average rate r and
independently of the time since the last event. Formally, the pdf is:

f(i;rt) = e"'t(r;_f)l

where r is the mean of the Poisson distribution.

The Poisson distribution can be derived as a limiting case to the binomial

distribution as the number of trials goes to infinity and the expected number of
successes remains fixed.
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3 P_01
OO LA

2
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Transient probabilities: example

OO S

2
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Transient probabilities: example

win O
Wl =
)

o Lol 3 ]

2
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Transient probabilities: example

3 01 3 = 01
P = = andP3:[2 1]
caoliticaH 3
2
Let initial distribution p(0) = (1,0), and time bound t=1.
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win O
Wl =
)

3 01 3 =
oo SRS HELS
2
Let initial distribution p(0) = (1,0), and time bound t=1. Then:

p(1)
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Transient probabilities: example

win O
Wl =
)

3 01 3 =
oo SRS HELS
2
Let initial distribution p(0) = (1,0), and time bound t=1. Then:

p(1) = p0) Y 2P
i=0 ’
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Transient probabilities: example

win O
Wl =
)

3 01 3 =
oo SRS HELS
2
Let initial distribution p(0) = (1,0), and time bound t=1. Then:

p(1) = p(0) Y 5P

W= =
—

wiv O

win O

W[ =

-
N
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Transient probabilities: example

win O
Wl =
)

3 01 3 =
oo SRS HELS
2
Let initial distribution p(0) = (1,0), and time bound t=1. Then:

p(1) = p(0) Y 5P

W= =
—

wiv O

+

—~~

__P—‘

(]

~

ml

w

N‘@
—
win O
W[ =
—
N

+

Q

(0.404043, 0.595957)
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Computing transient probabilities

» Summation can be truncated a priori for a given error bound ¢ > 0.
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Truncating the infinite sum

Computing transient probabilities

» Summation can be truncated a priori for a given error bound ¢ > 0.
» The error that is introduced by truncating at summand k. is:

[eS)
e
i=0

o0

i=ke+
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Truncating the infinite sum

Computing transient probabilities

» Summation can be truncated a priori for a given error bound ¢ > 0.
» The error that is introduced by truncating at summand k. is:

‘oo oo
i=0

Ze—rt(ri_i;)i.g(l-)_z ( ) E

i=0

i=ke+

» Strategy: choose k. minimal such that:
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Truncating the infinite sum

Computing transient probabilities

» Summation can be truncated a priori for a given error bound ¢ > 0.
» The error that is introduced by truncating at summand k. is:

o) ., rt,- . o)
‘Ze t(,-—n)‘e(')—z - )B )‘
=0 ‘ i=0 ! i=ko+
» Strategy: choose k. minimal such that:
i e—n:(rt)l
il
i:ks+1

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems



Truncating the infinite sum

Computing transient probabilities

» Summation can be truncated a priori for a given error bound ¢ > 0.
» The error that is introduced by truncating at summand k. is:

‘ Ze—rt%.g(i)_ie—n%.g(i) = ‘ Z e—rt%.g(,‘) ‘
o =0 i=ke+1

» Strategy: choose k. minimal such that:

oo oo &

)R ) S a()
D D DL P DL
I—k5+1 i=0 i=0
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Truncating the infinite sum

Computing transient probabilities

» Summation can be truncated a priori for a given error bound ¢ > 0.
» The error that is introduced by truncating at summand k. is:

‘ Z e_’t%-_(i)
i=ko+1

kE

Z e"tﬂg(i) — Z e_”%)l-g(i)

oo
; il ; il
0 i=0

» Strategy: choose k. minimal such that:

o oo i ks kE

—re(rt) e (rt)’ —n(rt) e (rt)’
Z € i Ze il _Ze i 1_26 il
i=key1 i=0 i=0 i=0
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Truncating the infinite sum

Computing transient probabilities

» Summation can be truncated a priori for a given error bound ¢ > 0.
» The error that is introduced by truncating at summand k. is:

‘ Z e_’t%-_(i)
i=ko+1

kE

Z e"tﬂg(i) — Z e_”%)l-g(i)

oo
; il ; il
0 i=0

» Strategy: choose k. minimal such that:

o oo i ks kE

—re(rt) e (rt)’ —n(rt) e (rt)’
Ze il —Ze il _Ze il _1_26 il S ¢
i=key1 i=0 i=0 i=0

> e ) — 1 due to the fact that e’ is a (Poisson) distribution

i=0 il il
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» Uniformization normalizes the exit rates of all states in a CTMC.
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Summary

» Bisimilar states are equally labelled and their cumulative rate to any
equivalence class coincides.

» Weak bisimilar states have equal conditional probabilities to move to
some equivalence class, and can either both leave their class or both
can't.

» Uniformization normalizes the exit rates of all states in a CTMC.
» Uniformization transforms a CTMC into a weak bisimilar one.

» Transient distribution are obtained by solving a system of linear
differential equations.

» These equations can be solved conveniently on the uniformized
CTMC.
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