Modeling and Verification of Probabilistic Systems

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group
http://moves.rwth-aachen.de/teaching/ws-1516/movep15/
December 9, 2015

Overview

(1) Recall: continuous-time Markov chains

(2) Transient distribution

(3) Uniformization

4 Strong and weak bisimulation
(5) Computing transient probabilities
(6) Summary

Negative exponential distribution

Negative exponential distribution

Density of exponential distribution
The density of an exponentially distributed r.v. Y with rate $\lambda \in \mathbb{R}_{>0}$ is:

$$
f_{Y}(x)=\lambda \cdot e^{-\lambda \cdot x} \quad \text { for } x>0 \quad \text { and } f_{Y}(x)=0 \text { otherwise }
$$

Negative exponential distribution

Density of exponential distribution
The density of an exponentially distributed r.v. Y with rate $\lambda \in \mathbb{R}_{>0}$ is:

$$
f_{Y}(x)=\lambda \cdot e^{-\lambda \cdot x} \quad \text { for } x>0 \quad \text { and } f_{Y}(x)=0 \text { otherwise }
$$

The cumulative distribution of r.v. Y with rate $\lambda \in \mathbb{R}_{>0}$ is:

$$
F_{Y}(d)=\int_{0}^{d} \lambda \cdot e^{-\lambda \cdot x} d x=\left[-e^{-\lambda \cdot x}\right]_{0}^{d}=1-e^{-\lambda \cdot d}
$$

Negative exponential distribution

Density of exponential distribution

The density of an exponentially distributed r.v. Y with rate $\lambda \in \mathbb{R}_{>0}$ is:

$$
f_{Y}(x)=\lambda \cdot e^{-\lambda \cdot x} \quad \text { for } x>0 \quad \text { and } f_{Y}(x)=0 \text { otherwise }
$$

The cumulative distribution of r.v. Y with rate $\lambda \in \mathbb{R}_{>0}$ is:

$$
F_{Y}(d)=\int_{0}^{d} \lambda \cdot e^{-\lambda \cdot x} d x=\left[-e^{-\lambda \cdot x}\right]_{0}^{d}=1-e^{-\lambda \cdot d} .
$$

The rate $\lambda \in \mathbb{R}_{>0}$ uniquely determines an exponential distribution.

Negative exponential distribution

Density of exponential distribution

The density of an exponentially distributed r.v. Y with rate $\lambda \in \mathbb{R}_{>0}$ is:

$$
f_{Y}(x)=\lambda \cdot e^{-\lambda \cdot x} \quad \text { for } x>0 \quad \text { and } f_{Y}(x)=0 \text { otherwise }
$$

The cumulative distribution of r.v. Y with rate $\lambda \in \mathbb{R}_{>0}$ is:

$$
F_{Y}(d)=\int_{0}^{d} \lambda \cdot e^{-\lambda \cdot x} d x=\left[-e^{-\lambda \cdot x}\right]_{0}^{d}=1-e^{-\lambda \cdot d}
$$

The rate $\lambda \in \mathbb{R}_{>0}$ uniquely determines an exponential distribution.

Variance and expectation

Let r.v. Y be exponentially distributed with rate $\lambda \in \mathbb{R}_{>0}$. Then:

Negative exponential distribution

Density of exponential distribution

The density of an exponentially distributed r.v. Y with rate $\lambda \in \mathbb{R}_{>0}$ is:

$$
f_{Y}(x)=\lambda \cdot e^{-\lambda \cdot x} \quad \text { for } x>0 \quad \text { and } f_{Y}(x)=0 \text { otherwise }
$$

The cumulative distribution of r.v. Y with rate $\lambda \in \mathbb{R}_{>0}$ is:

$$
F_{Y}(d)=\int_{0}^{d} \lambda \cdot e^{-\lambda \cdot x} d x=\left[-e^{-\lambda \cdot x}\right]_{0}^{d}=1-e^{-\lambda \cdot d} .
$$

The rate $\lambda \in \mathbb{R}_{>0}$ uniquely determines an exponential distribution.

Variance and expectation

Let r.v. Y be exponentially distributed with rate $\lambda \in \mathbb{R}_{>0}$. Then:

- Expectation $E[Y]=\int_{0}^{\infty} x \cdot \lambda \cdot e^{-\lambda \cdot x} d x=\frac{1}{\lambda}$

Negative exponential distribution

Density of exponential distribution

The density of an exponentially distributed r.v. Y with rate $\lambda \in \mathbb{R}_{>0}$ is:

$$
f_{Y}(x)=\lambda \cdot e^{-\lambda \cdot x} \quad \text { for } x>0 \quad \text { and } f_{Y}(x)=0 \text { otherwise }
$$

The cumulative distribution of r.v. Y with rate $\lambda \in \mathbb{R}_{>0}$ is:

$$
F_{Y}(d)=\int_{0}^{d} \lambda \cdot e^{-\lambda \cdot x} d x=\left[-e^{-\lambda \cdot x}\right]_{0}^{d}=1-e^{-\lambda \cdot d}
$$

The rate $\lambda \in \mathbb{R}_{>0}$ uniquely determines an exponential distribution.

Variance and expectation

Let r.v. Y be exponentially distributed with rate $\lambda \in \mathbb{R}_{>0}$. Then:

- Expectation $E[Y]=\int_{0}^{\infty} x \cdot \lambda \cdot e^{-\lambda \cdot x} d x=\frac{1}{\lambda}$
- Variance $\operatorname{Var}[Y]=\int_{0}^{\infty}(x-E[X])^{2} \lambda \cdot e^{-\lambda \cdot x} d x=\frac{1}{\lambda^{2}}$

Continuous-time Markov chain

Continuous-time Markov chain

A CTMC is a tuple $\left(S, \mathbf{P}, r, \iota_{\text {init }}, A P, L\right)$ where

- $\left(S, \mathbf{P}, \iota_{\text {init }}, A P, L\right)$ is a DTMC, and
- $r: S \rightarrow \mathbb{R}_{>0}$, the exit-rate function

Let $\mathbf{R}\left(s, s^{\prime}\right)=\mathbf{P}\left(s, s^{\prime}\right) \cdot r(s)$ be the transition rate of transition $\left(s, s^{\prime}\right)$

Continuous-time Markov chain

Continuous-time Markov chain

A CTMC is a tuple $\left(S, \mathbf{P}, r, \iota_{\text {init }}, A P, L\right)$ where

- $\left(S, \mathbf{P}, \iota_{\text {init }}, A P, L\right)$ is a DTMC, and
- $r: S \rightarrow \mathbb{R}_{>0}$, the exit-rate function

Let $\mathbf{R}\left(s, s^{\prime}\right)=\mathbf{P}\left(s, s^{\prime}\right) \cdot r(s)$ be the transition rate of transition $\left(s, s^{\prime}\right)$

Interpretation

Continuous-time Markov chain

Continuous-time Markov chain

A CTMC is a tuple $\left(S, \mathbf{P}, r, \iota_{\text {init }}, A P, L\right)$ where

- $\left(S, \mathbf{P}, \iota_{\text {init }}, A P, L\right)$ is a DTMC, and
- $r: S \rightarrow \mathbb{R}_{>0}$, the exit-rate function

Let $\mathbf{R}\left(s, s^{\prime}\right)=\mathbf{P}\left(s, s^{\prime}\right) \cdot r(s)$ be the transition rate of transition $\left(s, s^{\prime}\right)$

Interpretation

- residence time in state s is exponentially distributed with rate $r(s)$.
- phrased alternatively, the average residence time of state s is $\frac{1}{r(s)}$.

CTMC semantics

CTMC semantics

Enabledness

The probability that transition $s \rightarrow s^{\prime}$ is enabled in $[0, t]$ is $1-e^{-R\left(s, s^{\prime}\right) \cdot t}$.

CTMC semantics

Enabledness

The probability that transition $s \rightarrow s^{\prime}$ is enabled in $[0, t]$ is $1-e^{-\mathbf{R}\left(s, s^{\prime}\right) \cdot t}$.

State-to-state timed transition probability

The probability to move from non-absorbing s to s^{\prime} in $[0, t]$ is:

$$
\frac{\mathbf{R}\left(s, s^{\prime}\right)}{r(s)} \cdot\left(1-e^{-r(s) \cdot t}\right)
$$

CTMC semantics

Enabledness

The probability that transition $s \rightarrow s^{\prime}$ is enabled in $[0, t]$ is $1-e^{-\mathbf{R}\left(s, s^{\prime}\right) \cdot t}$.

State-to-state timed transition probability

The probability to move from non-absorbing s to s^{\prime} in $[0, t]$ is:

$$
\frac{\mathbf{R}\left(s, s^{\prime}\right)}{r(s)} \cdot\left(1-e^{-r(s) \cdot t}\right) .
$$

Residence time distribution

The probability to take some outgoing transition from s in $[0, t]$ is:

$$
\int_{0}^{t} r(s) \cdot e^{-r(s) \cdot x} d x=1-e^{-r(s) \cdot t}
$$

Overview

(1) Recall: continuous-time Markov chains
(2) Transient distribution
(3) Uniformization

4 Strong and weak bisimulation
(5) Computing transient probabilities
(6) Summary

Transient distribution of a CTMC

Transient distribution of a CTMC

Transient state probability

Let $X(t)$ denote the state of a CTMC at time $t \in \mathbb{R}_{\geqslant 0}$.

Transient distribution of a CTMC

Transient state probability

Let $X(t)$ denote the state of a CTMC at time $t \in \mathbb{R}_{\geqslant 0}$. The probability to be in state s at time t is defined by:

$$
\begin{aligned}
p_{s}(t) & =\operatorname{Pr}\{X(t)=s\} \\
& =\sum_{s^{\prime} \in S} \operatorname{Pr}\left\{X(0)=s^{\prime}\right\} \cdot \operatorname{Pr}\left\{X(t)=s \mid X(0)=s^{\prime}\right\}
\end{aligned}
$$

Transient distribution of a CTMC

Transient state probability

Let $X(t)$ denote the state of a CTMC at time $t \in \mathbb{R}_{\geqslant 0}$. The probability to be in state s at time t is defined by:

$$
\begin{aligned}
p_{s}(t) & =\operatorname{Pr}\{X(t)=s\} \\
& =\sum_{s^{\prime} \in S} \operatorname{Pr}\left\{X(0)=s^{\prime}\right\} \cdot \operatorname{Pr}\left\{X(t)=s \mid X(0)=s^{\prime}\right\}
\end{aligned}
$$

Theorem: transient distribution as linear differential equation
The transient probability vector $\underline{p}(t)=\left(p_{s_{1}}(t), \ldots, p_{s_{k}}(t)\right)$ satisfies:

Transient distribution of a CTMC

Transient state probability

Let $X(t)$ denote the state of a CTMC at time $t \in \mathbb{R}_{\geqslant 0}$. The probability to be in state s at time t is defined by:

$$
\begin{aligned}
p_{s}(t) & =\operatorname{Pr}\{X(t)=s\} \\
& =\sum_{s^{\prime} \in S} \operatorname{Pr}\left\{X(0)=s^{\prime}\right\} \cdot \operatorname{Pr}\left\{X(t)=s \mid X(0)=s^{\prime}\right\}
\end{aligned}
$$

Theorem: transient distribution as linear differential equation
The transient probability vector $\underline{p}(t)=\left(p_{s_{1}}(t), \ldots, p_{s_{k}}(t)\right)$ satisfies:

$$
\underline{p}^{\prime}(t)=\underline{p}(t) \cdot(\mathbf{R}-\mathbf{r}) \quad \text { given } \quad \underline{p}(0)
$$

where \mathbf{r} is the diagonal matrix of vector \underline{r}.

Transient distribution theorem

Transient distribution theorem

Theorem: transient distribution as linear differential equation

The transient probability vector $\underline{p}(t)=\left(p_{s_{1}}(t), \ldots, p_{s_{k}}(t)\right)$ satisfies:

$$
\underline{p}^{\prime}(t)=\underline{p}(t) \cdot(\mathbf{R}-\mathbf{r}) \quad \text { given } \quad \underline{p}(0)
$$

where \mathbf{r} is the diagonal matrix of vector \underline{r}.

Transient distribution theorem

Theorem: transient distribution as linear differential equation

The transient probability vector $\underline{p}(t)=\left(p_{s_{1}}(t), \ldots, p_{s_{k}}(t)\right)$ satisfies:

$$
\underline{p}^{\prime}(t)=\underline{p}(t) \cdot(\mathbf{R}-\mathbf{r}) \quad \text { given } \quad \underline{p}(0)
$$

where \mathbf{r} is the diagonal matrix of vector \underline{r}.

Proof:

On the blackboard.

Computing transient probabilities

The transient probability vector $\underline{p}(t)=\left(p_{s_{1}}(t), \ldots, p_{s_{k}}(t)\right)$ satisfies:

$$
\underline{p}^{\prime}(t)=\underline{p}(t) \cdot(\mathbf{R}-\mathbf{r}) \quad \text { given } \quad \underline{p}(0) .
$$

Computing transient probabilities

The transient probability vector $\underline{p}(t)=\left(p_{s_{1}}(t), \ldots, p_{s_{k}}(t)\right)$ satisfies:

$$
\underline{p}^{\prime}(t)=\underline{p}(t) \cdot(\mathbf{R}-\mathbf{r}) \quad \text { given } \quad \underline{p}(0) .
$$

Solution using standard knowledge yields: $\underline{p}(t)=\underline{p}(0) \cdot e^{(\mathbf{R}-\mathbf{r}) \cdot t}$.

Computing transient probabilities

The transient probability vector $\underline{p}(t)=\left(p_{s_{1}}(t), \ldots, p_{s_{k}}(t)\right)$ satisfies:

$$
\underline{p}^{\prime}(t)=\underline{p}(t) \cdot(\mathbf{R}-\mathbf{r}) \quad \text { given } \quad \underline{p}(0) .
$$

Solution using standard knowledge yields: $\underline{p}(t)=\underline{p}(0) \cdot e^{(\mathbf{R}-\mathbf{r}) \cdot t}$.

Computing a matrix exponential

First attempt: use Taylor-Maclaurin expansion.

Computing transient probabilities

The transient probability vector $\underline{p}(t)=\left(p_{s_{1}}(t), \ldots, p_{s_{k}}(t)\right)$ satisfies:

$$
\underline{p}^{\prime}(t)=\underline{p}(t) \cdot(\mathbf{R}-\mathbf{r}) \quad \text { given } \quad \underline{p}(0) .
$$

Solution using standard knowledge yields: $\underline{p}(t)=\underline{p}(0) \cdot e^{(\mathbf{R}-\mathbf{r}) \cdot t}$.

Computing a matrix exponential

First attempt: use Taylor-Maclaurin expansion. This yields

$$
\underline{p}(t)=\underline{p}(0) \cdot e^{(\mathbf{R}-\mathbf{r}) \cdot t}
$$

Computing transient probabilities

The transient probability vector $\underline{p}(t)=\left(p_{s_{1}}(t), \ldots, p_{s_{k}}(t)\right)$ satisfies:

$$
\underline{p}^{\prime}(t)=\underline{p}(t) \cdot(\mathbf{R}-\mathbf{r}) \quad \text { given } \quad \underline{p}(0) .
$$

Solution using standard knowledge yields: $\underline{p}(t)=\underline{p}(0) \cdot e^{(\mathbf{R}-\mathbf{r}) \cdot t}$.

Computing a matrix exponential

First attempt: use Taylor-Maclaurin expansion. This yields

$$
\underline{p}(t)=\underline{p}(0) \cdot e^{(\mathbf{R}-\mathbf{r}) \cdot t}=\underline{p}(0) \cdot \sum_{i=0}^{\infty} \frac{((\mathbf{R}-\mathbf{r}) \cdot t)^{i}}{i!}
$$

Computing transient probabilities

The transient probability vector $\underline{p}(t)=\left(p_{s_{1}}(t), \ldots, p_{s_{k}}(t)\right)$ satisfies:

$$
\underline{p}^{\prime}(t)=\underline{p}(t) \cdot(\mathbf{R}-\mathbf{r}) \quad \text { given } \quad \underline{p}(0) .
$$

Solution using standard knowledge yields: $\underline{p}(t)=\underline{p}(0) \cdot e^{(\mathbf{R}-\mathbf{r}) \cdot t}$.

Computing a matrix exponential

First attempt: use Taylor-Maclaurin expansion. This yields

$$
\underline{p}(t)=\underline{p}(0) \cdot e^{(\mathbf{R}-\mathbf{r}) \cdot t}=\underline{p}(0) \cdot \sum_{i=0}^{\infty} \frac{((\mathbf{R}-\mathbf{r}) \cdot t)^{i}}{i!}
$$

But: numerical instability due to fill-in of $(\mathbf{R}-\mathbf{r})^{i}$ in presence of positive and negative entries in the matrix $\mathbf{R}-\mathbf{r}$.

Overview

(1) Recall: continuous-time Markov chains
(2) Transient distribution
(3) Uniformization

4 Strong and weak bisimulation
(5) Computing transient probabilities
(6) Summary

Uniformization

Uniformization

Let $\operatorname{CTMC} \mathcal{C}=\left(S, \mathbf{P}, r, \iota_{\text {init }}, A P, L\right)$ with S finite.

Uniformization

Let $\operatorname{CTMC} \mathcal{C}=\left(S, \mathbf{P}, r, \iota_{\text {init }}, A P, L\right)$ with S finite.

Uniform CTMC

CTMC \mathcal{C} is uniform if $r(s)=r$ for all $s \in S$ for some $r \in \mathbb{R}_{>0}$.

Uniformization

Let $\operatorname{CTMC} \mathcal{C}=\left(S, \mathbf{P}, r, \iota_{\text {init }}, A P, L\right)$ with S finite.

Uniform CTMC

CTMC \mathcal{C} is uniform if $r(s)=r$ for all $s \in S$ for some $r \in \mathbb{R}_{>0}$.

Uniformization

[Gross and Miller, 1984]
Let $r \in \mathbb{R}_{>0}$ such that $r \geqslant \max _{s \in S} r(s)$.

Uniformization

Let $\operatorname{CTMC} \mathcal{C}=\left(S, \mathbf{P}, r, \iota_{\text {init }}, A P, L\right)$ with S finite.

Uniform CTMC

CTMC \mathcal{C} is uniform if $r(s)=r$ for all $s \in S$ for some $r \in \mathbb{R}_{>0}$.

Uniformization

[Gross and Miller, 1984]
Let $r \in \mathbb{R}_{>0}$ such that $r \geqslant$ max $_{s \in S} r(s)$. Then unif($\left.r, \mathcal{C}\right)$ is the tuple $\left(S, \overline{\mathbf{P}}, \bar{r}, \iota_{\text {init }}, A P, L\right)$

Uniformization

Let $\operatorname{CTMC} \mathcal{C}=\left(S, \mathbf{P}, r, \iota_{\text {init }}, A P, L\right)$ with S finite.

Uniform CTMC

CTMC \mathcal{C} is uniform if $r(s)=r$ for all $s \in S$ for some $r \in \mathbb{R}_{>0}$.

Uniformization

[Gross and Miller, 1984]
Let $r \in \mathbb{R}_{>0}$ such that $r \geqslant \max _{s \in S} r(s)$. Then unif($\left.r, \mathcal{C}\right)$ is the tuple $\left(S, \overline{\mathbf{P}}, \bar{r}, \iota_{\text {init }}, A P, L\right)$ with $\bar{r}(s)=r$ for all $s \in S$

Uniformization

Let $\operatorname{CTMC} \mathcal{C}=\left(S, \mathbf{P}, r, \iota_{\text {init }}, A P, L\right)$ with S finite.

Uniform CTMC

CTMC \mathcal{C} is uniform if $r(s)=r$ for all $s \in S$ for some $r \in \mathbb{R}_{>0}$.

Uniformization

[Gross and Miller, 1984]
Let $r \in \mathbb{R}_{>0}$ such that $r \geqslant \max _{s \in S} r(s)$. Then unif($\left.r, \mathcal{C}\right)$ is the tuple $\left(S, \overline{\mathbf{P}}, \bar{r}, \iota_{\text {init }}, A P, L\right)$ with $\bar{r}(s)=r$ for all $s \in S$, and:
$\overline{\mathbf{P}}\left(s, s^{\prime}\right)=\frac{r(s)}{r} \cdot \mathbf{P}\left(s, s^{\prime}\right)$ if $s^{\prime} \neq s \quad$ and $\quad \overline{\mathbf{P}}(s, s)=\frac{r(s)}{r} \cdot \mathbf{P}(s, s)+1-\frac{r(s)}{r}$.

Uniformization

Let $\operatorname{CTMC} \mathcal{C}=\left(S, \mathbf{P}, r, \iota_{\text {init }}, A P, L\right)$ with S finite.

Uniform CTMC

CTMC \mathcal{C} is uniform if $r(s)=r$ for all $s \in S$ for some $r \in \mathbb{R}_{>0}$.

Uniformization

[Gross and Miller, 1984]
Let $r \in \mathbb{R}_{>0}$ such that $r \geqslant \max _{s \in S} r(s)$. Then unif($\left.r, \mathcal{C}\right)$ is the tuple $\left(S, \overline{\mathbf{P}}, \bar{r}, \iota_{\text {init }}, A P, L\right)$ with $\bar{r}(s)=r$ for all $s \in S$, and:
$\overline{\mathbf{P}}\left(s, s^{\prime}\right)=\frac{r(s)}{r} \cdot \mathbf{P}\left(s, s^{\prime}\right)$ if $s^{\prime} \neq s \quad$ and $\quad \overline{\mathbf{P}}(s, s)=\frac{r(s)}{r} \cdot \mathbf{P}(s, s)+1-\frac{r(s)}{r}$.

It follows that $\overline{\mathbf{P}}$ is a stochastic matrix and $\operatorname{unif}(r, \mathcal{C})$ is a CTMC.

Uniformization: example

Uniformization: example

Uniformization

Let $r \in \mathbb{R}_{>0}$ such that $r \geqslant \max _{s \in S} r(s)$. Then unif($\left.r, \mathcal{C}\right)=\left(S, \overline{\mathbf{P}}, \bar{r}, \iota_{\text {init }}, A P, L\right)$ with $\bar{r}(s)=r$ for all $s \in S$, and:

$$
\overline{\mathbf{P}}\left(s, s^{\prime}\right)=\frac{r(s)}{r} \cdot \mathbf{P}\left(s, s^{\prime}\right) \text { if } s^{\prime} \neq s \quad \text { and } \quad \overline{\mathbf{P}}(s, s)=\frac{r(s)}{r} \cdot \mathbf{P}(s, s)+1-\frac{r(s)}{r} .
$$

Uniformization: example

Uniformization

Let $r \in \mathbb{R}_{>0}$ such that $r \geqslant \max _{s \in S} r(s)$. Then unif $(r, \mathcal{C})=\left(S, \overline{\mathbf{P}}, \bar{r}, \iota_{\text {init }}, A P, L\right)$ with $\bar{r}(s)=r$ for all $s \in S$, and:

$$
\overline{\mathbf{P}}\left(s, s^{\prime}\right)=\frac{r(s)}{r} \cdot \mathbf{P}\left(s, s^{\prime}\right) \text { if } s^{\prime} \neq s \quad \text { and } \quad \overline{\mathbf{P}}(s, s)=\frac{r(s)}{r} \cdot \mathbf{P}(s, s)+1-\frac{r(s)}{r} .
$$

CTMC \mathcal{C} and its uniformized counterpart unif($6, \mathcal{C}$)

Uniformization: intuition

Uniformization: intuition

Uniformization

Let $r \in \mathbb{R}_{>0}$ such that $r \geqslant \max _{s \in S} r(s)$. Then unif $(r, \mathcal{C})=\left(S, \overline{\mathbf{P}}, \bar{r}, \iota_{\mathrm{init}}, A P, L\right)$ with $\bar{r}(s)=r$ for all $s \in S$, and:

$$
\overline{\mathbf{P}}\left(s, s^{\prime}\right)=\frac{r(s)}{r} \cdot \mathbf{P}\left(s, s^{\prime}\right) \text { if } s^{\prime} \neq s \quad \text { and } \quad \overline{\mathbf{P}}(s, s)=\frac{r(s)}{r} \cdot \mathbf{P}(s, s)+1-\frac{r(s)}{r}
$$

Uniformization: intuition

Uniformization

Let $r \in \mathbb{R}_{>0}$ such that $r \geqslant \max _{s \in S} r(s)$. Then unif $(r, \mathcal{C})=\left(S, \overline{\mathbf{P}}, \bar{r}, \iota_{\text {init }}, A P, L\right)$ with $\bar{r}(s)=r$ for all $s \in S$, and:

$$
\overline{\mathbf{P}}\left(s, s^{\prime}\right)=\frac{r(s)}{r} \cdot \mathbf{P}\left(s, s^{\prime}\right) \text { if } s^{\prime} \neq s \quad \text { and } \quad \overline{\mathbf{P}}(s, s)=\frac{r(s)}{r} \cdot \mathbf{P}(s, s)+1-\frac{r(s)}{r} .
$$

Intuition

Uniformization: intuition

Uniformization

Let $r \in \mathbb{R}_{>0}$ such that $r \geqslant$ max $_{s \in S} r(s)$. Then unif $(r, \mathcal{C})=\left(S, \overline{\mathbf{P}}, \bar{r}, \iota_{\text {init }}, A P, L\right)$ with $\bar{r}(s)=r$ for all $s \in S$, and:

$$
\overline{\mathbf{P}}\left(s, s^{\prime}\right)=\frac{r(s)}{r} \cdot \mathbf{P}\left(s, s^{\prime}\right) \text { if } s^{\prime} \neq s \quad \text { and } \quad \overline{\mathbf{P}}(s, s)=\frac{r(s)}{r} \cdot \mathbf{P}(s, s)+1-\frac{r(s)}{r} .
$$

Intuition

- Fix all exit rates to (at least) the maximal exit rate r occurring in CTMC \mathcal{C}.

Uniformization: intuition

Uniformization

Let $r \in \mathbb{R}_{>0}$ such that $r \geqslant$ max $_{s \in S} r(s)$. Then unif $(r, \mathcal{C})=\left(S, \overline{\mathbf{P}}, \bar{r}, \iota_{\text {init }}, A P, L\right)$ with $\bar{r}(s)=r$ for all $s \in S$, and:

$$
\overline{\mathbf{P}}\left(s, s^{\prime}\right)=\frac{r(s)}{r} \cdot \mathbf{P}\left(s, s^{\prime}\right) \text { if } s^{\prime} \neq s \quad \text { and } \quad \overline{\mathbf{P}}(s, s)=\frac{r(s)}{r} \cdot \mathbf{P}(s, s)+1-\frac{r(s)}{r} .
$$

Intuition

- Fix all exit rates to (at least) the maximal exit rate r occurring in CTMC \mathcal{C}.
- Thus, $\frac{1}{r}$ is the shortest mean residence time in the CTMC \mathcal{C}.

Uniformization: intuition

Uniformization

Let $r \in \mathbb{R}_{>0}$ such that $r \geqslant$ max $_{s \in S} r(s)$. Then unif $(r, \mathcal{C})=\left(S, \overline{\mathbf{P}}, \bar{r}, \iota_{\text {init }}, A P, L\right)$ with $\bar{r}(s)=r$ for all $s \in S$, and:

$$
\overline{\mathbf{P}}\left(s, s^{\prime}\right)=\frac{r(s)}{r} \cdot \mathbf{P}\left(s, s^{\prime}\right) \text { if } s^{\prime} \neq s \quad \text { and } \quad \overline{\mathbf{P}}(s, s)=\frac{r(s)}{r} \cdot \mathbf{P}(s, s)+1-\frac{r(s)}{r} .
$$

Intuition

- Fix all exit rates to (at least) the maximal exit rate r occurring in CTMC \mathcal{C}.
- Thus, $\frac{1}{r}$ is the shortest mean residence time in the CTMC \mathcal{C}.
- Then normalize the residence time of all states with respect to r as follows:

Uniformization: intuition

Uniformization

Let $r \in \mathbb{R}_{>0}$ such that $r \geqslant$ max $_{s \in S} r(s)$. Then unif $(r, \mathcal{C})=\left(S, \overline{\mathbf{P}}, \bar{r}, \iota_{\text {init }}, A P, L\right)$ with $\bar{r}(s)=r$ for all $s \in S$, and:

$$
\overline{\mathbf{P}}\left(s, s^{\prime}\right)=\frac{r(s)}{r} \cdot \mathbf{P}\left(s, s^{\prime}\right) \text { if } s^{\prime} \neq s \quad \text { and } \quad \overline{\mathbf{P}}(s, s)=\frac{r(s)}{r} \cdot \mathbf{P}(s, s)+1-\frac{r(s)}{r} .
$$

Intuition

- Fix all exit rates to (at least) the maximal exit rate r occurring in CTMC \mathcal{C}.
- Thus, $\frac{1}{r}$ is the shortest mean residence time in the CTMC \mathcal{C}.
- Then normalize the residence time of all states with respect to r as follows:

1. replace an average residence time $\frac{1}{r(s)}$ by a shorter (or equal) one, $\frac{1}{r}$

Uniformization: intuition

Uniformization

Let $r \in \mathbb{R}_{>0}$ such that $r \geqslant$ max $_{s \in S} r(s)$. Then unif $(r, \mathcal{C})=\left(S, \overline{\mathbf{P}}, \bar{r}, \iota_{\text {init }}, A P, L\right)$ with $\bar{r}(s)=r$ for all $s \in S$, and:

$$
\overline{\mathbf{P}}\left(s, s^{\prime}\right)=\frac{r(s)}{r} \cdot \mathbf{P}\left(s, s^{\prime}\right) \text { if } s^{\prime} \neq s \quad \text { and } \quad \overline{\mathbf{P}}(s, s)=\frac{r(s)}{r} \cdot \mathbf{P}(s, s)+1-\frac{r(s)}{r} .
$$

Intuition

- Fix all exit rates to (at least) the maximal exit rate r occurring in CTMC \mathcal{C}.
- Thus, $\frac{1}{r}$ is the shortest mean residence time in the CTMC \mathcal{C}.
- Then normalize the residence time of all states with respect to r as follows:

1. replace an average residence time $\frac{1}{r(s)}$ by a shorter (or equal) one, $\frac{1}{r}$
2. decrease the transition probabilities by a factor $\frac{r(s)}{r}$, and

Uniformization: intuition

Uniformization

Let $r \in \mathbb{R}_{>0}$ such that $r \geqslant \max _{s \in S} r(s)$. Then unif $(r, \mathcal{C})=\left(S, \overline{\mathbf{P}}, \bar{r}, \iota_{\text {init }}, A P, L\right)$ with $\bar{r}(s)=r$ for all $s \in S$, and:

$$
\overline{\mathbf{P}}\left(s, s^{\prime}\right)=\frac{r(s)}{r} \cdot \mathbf{P}\left(s, s^{\prime}\right) \text { if } s^{\prime} \neq s \quad \text { and } \quad \overline{\mathbf{P}}(s, s)=\frac{r(s)}{r} \cdot \mathbf{P}(s, s)+1-\frac{r(s)}{r} .
$$

Intuition

- Fix all exit rates to (at least) the maximal exit rate r occurring in CTMC \mathcal{C}.
- Thus, $\frac{1}{r}$ is the shortest mean residence time in the CTMC \mathcal{C}.
- Then normalize the residence time of all states with respect to r as follows:

1. replace an average residence time $\frac{1}{r(s)}$ by a shorter (or equal) one, $\frac{1}{r}$
2. decrease the transition probabilities by a factor $\frac{r(s)}{r}$, and
3. increase the self-loop probability by a factor $\frac{r-r(s)}{r}$

Uniformization: intuition

Uniformization

Let $r \in \mathbb{R}_{>0}$ such that $r \geqslant \max _{s \in S} r(s)$. Then unif $(r, \mathcal{C})=\left(S, \overline{\mathbf{P}}, \bar{r}, \iota_{\text {init }}, A P, L\right)$ with $\bar{r}(s)=r$ for all $s \in S$, and:

$$
\overline{\mathbf{P}}\left(s, s^{\prime}\right)=\frac{r(s)}{r} \cdot \mathbf{P}\left(s, s^{\prime}\right) \text { if } s^{\prime} \neq s \quad \text { and } \quad \overline{\mathbf{P}}(s, s)=\frac{r(s)}{r} \cdot \mathbf{P}(s, s)+1-\frac{r(s)}{r} .
$$

Intuition

- Fix all exit rates to (at least) the maximal exit rate r occurring in CTMC \mathcal{C}.
- Thus, $\frac{1}{r}$ is the shortest mean residence time in the CTMC \mathcal{C}.
- Then normalize the residence time of all states with respect to r as follows:

1. replace an average residence time $\frac{1}{r(s)}$ by a shorter (or equal) one, $\frac{1}{r}$
2. decrease the transition probabilities by a factor $\frac{r(s)}{r}$, and
3. increase the self-loop probability by a factor $\frac{r-r(s)}{r}$

That is, slow down state s whenever $r(s)<r$.

Overview

(1) Recall: continuous-time Markov chains
(2) Transient distribution
(3) Uniformization

4 Strong and weak bisimulation
(5) Computing transient probabilities
(6) Summary

Strong bisimulation on DTMCs

Strong bisimulation on DTMCs

Probabilistic bisimulation
[Larsen \& Skou, 1989]

Strong bisimulation on DTMCs

Let $\mathcal{D}=\left(S, \mathbf{P}, \iota_{\text {init }}, A P, L\right)$ be a DTMC and $R \subseteq S \times S$ an equivalence.

Strong bisimulation on DTMCs

Probabilistic bisimulation
 [Larsen \& Skou, 1989]

Let $\mathcal{D}=\left(S, \mathbf{P}, \iota_{\text {init }}, A P, L\right)$ be a DTMC and $R \subseteq S \times S$ an equivalence. Then: R is a probabilistic bisimulation on S if for any $(s, t) \in R$:

Strong bisimulation on DTMCs

Probabilistic bisimulation
 [Larsen \& Skou, 1989]

Let $\mathcal{D}=\left(S, \mathbf{P}, \iota_{\text {init }}, A P, L\right)$ be a DTMC and $R \subseteq S \times S$ an equivalence. Then: R is a probabilistic bisimulation on S if for any $(s, t) \in R$:

1. $L(s)=L(t)$, and

Strong bisimulation on DTMCs

Probabilistic bisimulation
 [Larsen \& Skou, 1989]

Let $\mathcal{D}=\left(S, \mathbf{P}, \iota_{\text {init }}, A P, L\right)$ be a DTMC and $R \subseteq S \times S$ an equivalence. Then: R is a probabilistic bisimulation on S if for any $(s, t) \in R$:

1. $L(s)=L(t)$, and
2. $\mathbf{P}(s, C)=\mathbf{P}(t, C)$ for all equivalence classes $C \in S / R$ where $\mathbf{P}(s, C)=\sum_{s^{\prime} \in C} \mathbf{P}\left(s, s^{\prime}\right)$.

Strong bisimulation on DTMCs

Probabilistic bisimulation

[Larsen \& Skou, 1989]
Let $\mathcal{D}=\left(S, \mathbf{P}, \iota_{\text {init }}, A P, L\right)$ be a DTMC and $R \subseteq S \times S$ an equivalence. Then: R is a probabilistic bisimulation on S if for any $(s, t) \in R$:

1. $L(s)=L(t)$, and
2. $\mathbf{P}(s, C)=\mathbf{P}(t, C)$ for all equivalence classes $C \in S / R$ where $\mathbf{P}(s, C)=\sum_{s^{\prime} \in C} \mathbf{P}\left(s, s^{\prime}\right)$.

For states in R, the probability of moving by a single transition to some equivalence class is equal.

Strong bisimulation on DTMCs

Probabilistic bisimulation

[Larsen \& Skou, 1989]
Let $\mathcal{D}=\left(S, \mathbf{P}, \iota_{\text {init }}, A P, L\right)$ be a DTMC and $R \subseteq S \times S$ an equivalence. Then: R is a probabilistic bisimulation on S if for any $(s, t) \in R$:

1. $L(s)=L(t)$, and
2. $\mathbf{P}(s, C)=\mathbf{P}(t, C)$ for all equivalence classes $C \in S / R$ where $\mathbf{P}(s, C)=\sum_{s^{\prime} \in C} \mathbf{P}\left(s, s^{\prime}\right)$.

For states in R, the probability of moving by a single transition to some equivalence class is equal.

Probabilistic bisimilarity

Let \mathcal{D} be a DTMC and s, t states in \mathcal{D}.

Strong bisimulation on DTMCs

Probabilistic bisimulation

[Larsen \& Skou, 1989]
Let $\mathcal{D}=\left(S, \mathbf{P}, \iota_{\text {init }}, A P, L\right)$ be a DTMC and $R \subseteq S \times S$ an equivalence. Then: R is a probabilistic bisimulation on S if for any $(s, t) \in R$:

1. $L(s)=L(t)$, and
2. $\mathbf{P}(s, C)=\mathbf{P}(t, C)$ for all equivalence classes $C \in S / R$ where $\mathbf{P}(s, C)=\sum_{s^{\prime} \in C} \mathbf{P}\left(s, s^{\prime}\right)$.

For states in R, the probability of moving by a single transition to some equivalence class is equal.

Probabilistic bisimilarity

Let \mathcal{D} be a DTMC and s, t states in \mathcal{D}. Then: s is probabilistically bisimilar to t, denoted $s \sim_{p} t$, if there exists a probabilistic bisimulation R with $(s, t) \in R$.

Strong bisimulation on CTMCs

Strong bisimulation on CTMCs

Strong bisimulation on CTMCs

Probabilistic bisimulation

[Buchholz, 1994]
Let $\mathcal{C}=\left(S, \mathbf{P}, r, \iota_{\text {init }}, A P, L\right)$ be a CTMC and $R \subseteq S \times S$ an equivalence.

Strong bisimulation on CTMCs

Probabilistic bisimulation

[Buchholz, 1994]
Let $\mathcal{C}=\left(S, \mathbf{P}, r, \iota_{\text {init }}, A P, L\right)$ be a CTMC and $R \subseteq S \times S$ an equivalence. Then: R is a probabilistic bisimulation on S if for any $(s, t) \in R$:

Strong bisimulation on CTMCs

Probabilistic bisimulation

[Buchholz, 1994]
Let $\mathcal{C}=\left(S, \mathbf{P}, r, \iota_{\text {init }}, A P, L\right)$ be a CTMC and $R \subseteq S \times S$ an equivalence. Then: R is a probabilistic bisimulation on S if for any $(s, t) \in R$:

1. $L(s)=L(t)$, and

Strong bisimulation on CTMCs

Probabilistic bisimulation

[Buchholz, 1994]
Let $\mathcal{C}=\left(S, \mathbf{P}, r, \iota_{\text {init }}, A P, L\right)$ be a CTMC and $R \subseteq S \times S$ an equivalence. Then: R is a probabilistic bisimulation on S if for any $(s, t) \in R$:

1. $L(s)=L(t)$, and
2. $r(s)=r(t)$, and

Strong bisimulation on CTMCs

Probabilistic bisimulation

[Buchholz, 1994]
Let $\mathcal{C}=\left(S, \mathbf{P}, r, \iota_{\text {init }}, A P, L\right)$ be a CTMC and $R \subseteq S \times S$ an equivalence. Then: R is a probabilistic bisimulation on S if for any $(s, t) \in R$:

1. $L(s)=L(t)$, and
2. $r(s)=r(t)$, and
3. $\mathbf{P}(s, C)=\mathbf{P}(t, C)$ for all equivalence classes $C \in S / R$

Strong bisimulation on CTMCs

Probabilistic bisimulation

Let $\mathcal{C}=\left(S, \mathbf{P}, r, \iota_{\text {init }}, A P, L\right)$ be a CTMC and $R \subseteq S \times S$ an equivalence. Then: R is a probabilistic bisimulation on S if for any $(s, t) \in R$:

1. $L(s)=L(t)$, and
2. $r(s)=r(t)$, and
3. $\mathbf{P}(s, C)=\mathbf{P}(t, C)$ for all equivalence classes $C \in S / R$

The last two conditions amount to $\mathbf{R}(s, C)=\mathbf{R}(t, C)$ for all equivalence classes $C \in S / R$.

Strong bisimulation on CTMCs

Probabilistic bisimulation

Let $\mathcal{C}=\left(S, \mathbf{P}, r, \iota_{\text {init }}, A P, L\right)$ be a CTMC and $R \subseteq S \times S$ an equivalence. Then: R is a probabilistic bisimulation on S if for any $(s, t) \in R$:

1. $L(s)=L(t)$, and
2. $r(s)=r(t)$, and
3. $\mathbf{P}(s, C)=\mathbf{P}(t, C)$ for all equivalence classes $C \in S / R$

The last two conditions amount to $\mathbf{R}(s, C)=\mathbf{R}(t, C)$ for all equivalence classes $C \in S / R$.

Probabilistic bisimilarity

Let \mathcal{C} be a CTMC and s, t states in \mathcal{C}.

Strong bisimulation on CTMCs

Probabilistic bisimulation

Let $\mathcal{C}=\left(S, \mathbf{P}, r, \iota_{\text {init }}, A P, L\right)$ be a CTMC and $R \subseteq S \times S$ an equivalence. Then: R is a probabilistic bisimulation on S if for any $(s, t) \in R$:

1. $L(s)=L(t)$, and
2. $r(s)=r(t)$, and
3. $\mathbf{P}(s, C)=\mathbf{P}(t, C)$ for all equivalence classes $C \in S / R$

The last two conditions amount to $\mathbf{R}(s, C)=\mathbf{R}(t, C)$ for all equivalence classes $C \in S / R$.

Probabilistic bisimilarity

Let \mathcal{C} be a CTMC and s, t states in \mathcal{C}. Then: s is probabilistically bisimilar to t, denoted $s \sim_{m} t$, if there exists a probabilistic bisimulation R with $(s, t) \in R$.

Weak bisimulation on DTMCs

Weak bisimulation on DTMCs

Weak probabilistic bisimulation
[Baier \& Hermanns, 1996]

Weak bisimulation on DTMCs

Weak probabilistic bisimulation [Baier \& Hermanns, 1996]
Let $\mathcal{D}=\left(S, \mathbf{P}, \iota_{\text {init }}, A P, L\right)$ be a DTMC and $R \subseteq S \times S$ an equivalence.

Weak bisimulation on DTMCs

Weak probabilistic bisimulation [Baier \& Hermanns, 1996]
Let $\mathcal{D}=\left(S, \mathbf{P}, \iota_{\text {init }}, A P, L\right)$ be a DTMC and $R \subseteq S \times S$ an equivalence. Then: R is a weak probabilistic bisimulation on S if for any $(s, t) \in R$:

Weak bisimulation on DTMCs

Weak probabilistic bisimulation
 [Baier \& Hermanns, 1996]

Let $\mathcal{D}=\left(S, \mathbf{P}, \iota_{\text {init }}, A P, L\right)$ be a DTMC and $R \subseteq S \times S$ an equivalence. Then: R is a weak probabilistic bisimulation on S if for any $(s, t) \in R$:

1. $L(s)=L(t)$, and

Weak bisimulation on DTMCs

Weak probabilistic bisimulation
 [Baier \& Hermanns, 1996]

Let $\mathcal{D}=\left(S, \mathbf{P}, \iota_{\text {init }}, A P, L\right)$ be a DTMC and $R \subseteq S \times S$ an equivalence. Then: R is a weak probabilistic bisimulation on S if for any $(s, t) \in R$:

1. $L(s)=L(t)$, and
2. if $\mathbf{P}\left(s,[s]_{R}\right)<1$ and $\mathbf{P}\left(t,[t]_{R}\right)<1$,

Weak bisimulation on DTMCs

Weak probabilistic bisimulation
[Baier \& Hermanns, 1996]
Let $\mathcal{D}=\left(S, \mathbf{P}, \iota_{\text {init }}, A P, L\right)$ be a DTMC and $R \subseteq S \times S$ an equivalence. Then: R is a weak probabilistic bisimulation on S if for any $(s, t) \in R$:

1. $L(s)=L(t)$, and
2. if $\mathbf{P}\left(s,[s]_{R}\right)<1$ and $\mathbf{P}\left(t,[t]_{R}\right)<1$, then:

$$
\frac{\mathbf{P}(s, C)}{1-\mathbf{P}\left(s,[s]_{R}\right)}=\frac{\mathbf{P}(t, C)}{1-\mathbf{P}\left(t,[t]_{R}\right)} \quad \text { for all } C \in S / R, C \neq[s]_{R}=[t]_{R}
$$

Weak bisimulation on DTMCs

Weak probabilistic bisimulation

[Baier \& Hermanns, 1996]
Let $\mathcal{D}=\left(S, \mathbf{P}, \iota_{\text {init }}, A P, L\right)$ be a DTMC and $R \subseteq S \times S$ an equivalence. Then: R is a weak probabilistic bisimulation on S if for any $(s, t) \in R$:

1. $L(s)=L(t)$, and
2. if $\mathbf{P}\left(s,[s]_{R}\right)<1$ and $\mathbf{P}\left(t,[t]_{R}\right)<1$, then:

$$
\frac{\mathbf{P}(s, C)}{1-\mathbf{P}\left(s,[s]_{R}\right)}=\frac{\mathbf{P}(t, C)}{1-\mathbf{P}\left(t,[t]_{R}\right)} \quad \text { for all } C \in S / R, C \neq[s]_{R}=[t]_{R}
$$

3. s can reach a state outside $[s]_{R}$ iff t can reach a state outside $[t]_{R}$.

Weak bisimulation on DTMCs

Weak probabilistic bisimulation

[Baier \& Hermanns, 1996]
Let $\mathcal{D}=\left(S, \mathbf{P}, \iota_{\text {init }}, A P, L\right)$ be a DTMC and $R \subseteq S \times S$ an equivalence. Then: R is a weak probabilistic bisimulation on S if for any $(s, t) \in R$:

1. $L(s)=L(t)$, and
2. if $\mathbf{P}\left(s,[s]_{R}\right)<1$ and $\mathbf{P}\left(t,[t]_{R}\right)<1$, then:

$$
\frac{\mathbf{P}(s, C)}{1-\mathbf{P}\left(s,[s]_{R}\right)}=\frac{\mathbf{P}(t, C)}{1-\mathbf{P}\left(t,[t]_{R}\right)} \quad \text { for all } C \in S / R, C \neq[s]_{R}=[t]_{R}
$$

3. s can reach a state outside $[s]_{R}$ iff t can reach a state outside $[t]_{R}$.

For states in R, the conditional probability of moving by a single transition to another equivalence class is equal.

Weak bisimulation on DTMCs

Weak probabilistic bisimulation
[Baier \& Hermanns, 1996]
Let $\mathcal{D}=\left(S, \mathbf{P}, \iota_{\text {init }}, A P, L\right)$ be a DTMC and $R \subseteq S \times S$ an equivalence. Then: R is a weak probabilistic bisimulation on S if for any $(s, t) \in R$:

1. $L(s)=L(t)$, and
2. if $\mathbf{P}\left(s,[s]_{R}\right)<1$ and $\mathbf{P}\left(t,[t]_{R}\right)<1$, then:

$$
\frac{\mathbf{P}(s, C)}{1-\mathbf{P}\left(s,[s]_{R}\right)}=\frac{\mathbf{P}(t, C)}{1-\mathbf{P}\left(t,[t]_{R}\right)} \quad \text { for all } C \in S / R, C \neq[s]_{R}=[t]_{R}
$$

3. s can reach a state outside $[s]_{R}$ iff t can reach a state outside $[t]_{R}$.

For states in R, the conditional probability of moving by a single transition to another equivalence class is equal. In addition, either all states in an equivalence class C almost surely stay there, or have an option to escape from C.

Weak bisimulation on DTMCs

Weak bisimulation on DTMCs

Weak probabilistic bisimulation
[Baier \& Hermanns, 1996]
Let $\mathcal{D}=\left(S, \mathbf{P}, \iota_{\text {init }}, A P, L\right)$ be a DTMC and $R \subseteq S \times S$ an equivalence. Then: R is a weak probabilistic bisimulation on S if for any $(s, t) \in R$:

1. $L(s)=L(t)$, and
2. if $\mathbf{P}\left(s,[s]_{R}\right)<1$ and $\mathbf{P}\left(t,[t]_{R}\right)<1$, then:

$$
\frac{\mathbf{P}(s, C)}{1-\mathbf{P}\left(s,[s]_{R}\right)}=\frac{\mathbf{P}(t, C)}{1-\mathbf{P}\left(t,[t]_{R}\right)} \quad \text { for all } C \in S / R, C \neq[s]_{R}=[t]_{R}
$$

3. s can reach a state outside $[s]_{R}$ iff t can reach a state outside $[t]_{R}$.

Weak bisimulation on DTMCs

Weak probabilistic bisimulation
[Baier \& Hermanns, 1996]
Let $\mathcal{D}=\left(S, \mathbf{P}, \iota_{\text {init }}, A P, L\right)$ be a DTMC and $R \subseteq S \times S$ an equivalence. Then: R is a weak probabilistic bisimulation on S if for any $(s, t) \in R$:

1. $L(s)=L(t)$, and
2. if $\mathbf{P}\left(s,[s]_{R}\right)<1$ and $\mathbf{P}\left(t,[t]_{R}\right)<1$, then:

$$
\frac{\mathbf{P}(s, C)}{1-\mathbf{P}\left(s,[s]_{R}\right)}=\frac{\mathbf{P}(t, C)}{1-\mathbf{P}\left(t,[t]_{R}\right)} \quad \text { for all } C \in S / R, C \neq[s]_{R}=[t]_{R} .
$$

3. s can reach a state outside $[s]_{R}$ iff t can reach a state outside $[t]_{R}$.

Probabilistic weak bisimilarity

Let \mathcal{D} be a DTMC and s, t states in \mathcal{D}.

Weak bisimulation on DTMCs

Let $\mathcal{D}=\left(S, \mathrm{P}, \iota_{\mathrm{init}}, A P, L\right)$ be a DTMC and $R \subseteq S \times S$ an equivalence. Then: R is a weak probabilistic bisimulation on S if for any $(s, t) \in R$:

1. $L(s)=L(t)$, and
2. if $\mathbf{P}\left(s,[s]_{R}\right)<1$ and $\mathbf{P}\left(t,[t]_{R}\right)<1$, then:

$$
\frac{\mathbf{P}(s, C)}{1-\mathbf{P}\left(s,[s]_{R}\right)}=\frac{\mathbf{P}(t, C)}{1-\mathbf{P}\left(t,[t]_{R}\right)} \quad \text { for all } C \in S / R, C \neq[s]_{R}=[t]_{R} .
$$

3. s can reach a state outside $[s]_{R}$ iff t can reach a state outside $[t]_{R}$.

Probabilistic weak bisimilarity

Let \mathcal{D} be a DTMC and s, t states in \mathcal{D}. Then: s is probabilistically weak bisimilar to t, denoted $s \approx_{p} t$, if there exists a probabilistic weak bisimulation R with $(s, t) \in R$.

Weak bisimulation on DTMC: example

Weak bisimulation on DTMC: example

The equivalence relation R with $S / R=\left\{\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\},\left\{u_{1}, u_{2}, u_{3}\right\}\right\}$ is a weak bisimulation.

Weak bisimulation on DTMC: example

The equivalence relation R with $S / R=\left\{\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\},\left\{u_{1}, u_{2}, u_{3}\right\}\right\}$ is a weak bisimulation. This can be seen as follows. For $C=\left\{u_{1}, u_{2}, u_{3}\right\}$ and s_{1}, s_{2}, s_{4} with $\mathbf{P}\left(s_{i},\left[s_{i}\right]_{R}\right)<1$ we have:

Weak bisimulation on DTMC: example

The equivalence relation R with $S / R=\left\{\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\},\left\{u_{1}, u_{2}, u_{3}\right\}\right\}$ is a weak bisimulation. This can be seen as follows. For $C=\left\{u_{1}, u_{2}, u_{3}\right\}$ and s_{1}, s_{2}, s_{4} with $\mathbf{P}\left(s_{i},\left[s_{i}\right]_{R}\right)<1$ we have:
$\frac{\mathbf{P}\left(s_{1}, C\right)}{1-\mathbf{P}\left(s_{1},\left[s_{1}\right]\right)}$

Weak bisimulation on DTMC: example

The equivalence relation R with $S / R=\left\{\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\},\left\{u_{1}, u_{2}, u_{3}\right\}\right\}$ is a weak bisimulation. This can be seen as follows. For $C=\left\{u_{1}, u_{2}, u_{3}\right\}$ and s_{1}, s_{2}, s_{4} with $\mathbf{P}\left(s_{i},\left[s_{i}\right]_{R}\right)<1$ we have:
$\frac{\mathbf{P}\left(s_{1}, C\right)}{1-\mathbf{P}\left(s_{1},\left[s_{1}\right]\right)}=\frac{1 / 8}{1-5 / 8}=\frac{1 / 4}{1-1 / 4}$

Weak bisimulation on DTMC: example

The equivalence relation R with $S / R=\left\{\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\},\left\{u_{1}, u_{2}, u_{3}\right\}\right\}$ is a weak bisimulation. This can be seen as follows. For $C=\left\{u_{1}, u_{2}, u_{3}\right\}$ and s_{1}, s_{2}, s_{4} with $\mathbf{P}\left(s_{i},\left[s_{i}\right]_{R}\right)<1$ we have:

$$
\frac{\mathbf{P}\left(s_{1}, C\right)}{1-\mathbf{P}\left(s_{1},\left[s_{1}\right]\right)}=\frac{1 / 8}{1-5 / 8}=\frac{1 / 4}{1-1 / 4}=\frac{\mathbf{P}\left(s_{2}, C\right)}{1-\mathbf{P}\left(s_{2},\left[s_{2}\right]\right)}
$$

Weak bisimulation on DTMC: example

The equivalence relation R with $S / R=\left\{\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\},\left\{u_{1}, u_{2}, u_{3}\right\}\right\}$ is a weak bisimulation. This can be seen as follows. For $C=\left\{u_{1}, u_{2}, u_{3}\right\}$ and s_{1}, s_{2}, s_{4} with $\mathbf{P}\left(s_{i},\left[s_{i}\right]_{R}\right)<1$ we have:
$\frac{\mathbf{P}\left(s_{1}, C\right)}{1-\mathbf{P}\left(s_{1},\left[s_{1}\right]\right)}=\frac{1 / 8}{1-5 / 8}=\frac{1 / 4}{1-1 / 4}=\frac{\mathbf{P}\left(s_{2}, C\right)}{1-\mathbf{P}\left(s_{2},\left[s_{2}\right]\right)}=\frac{1 / 3}{1}$

Weak bisimulation on DTMC: example

The equivalence relation R with $S / R=\left\{\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\},\left\{u_{1}, u_{2}, u_{3}\right\}\right\}$ is a weak bisimulation. This can be seen as follows. For $C=\left\{u_{1}, u_{2}, u_{3}\right\}$ and s_{1}, s_{2}, s_{4} with $\mathbf{P}\left(s_{i},\left[s_{i}\right]_{R}\right)<1$ we have:

$$
\frac{\mathbf{P}\left(s_{1}, C\right)}{1-\mathbf{P}\left(s_{1},\left[s_{1}\right]\right)}=\frac{1 / 8}{1-5 / 8}=\frac{1 / 4}{1-1 / 4}=\frac{\mathbf{P}\left(s_{2}, C\right)}{1-\mathbf{P}\left(s_{2},\left[s_{2}\right]\right)}=\frac{1 / 3}{1}=\frac{\mathbf{P}\left(s_{4}, C\right)}{1-\mathbf{P}\left(s_{4},\left[s_{4}\right]\right)} .
$$

Weak bisimulation on DTMC: example

The equivalence relation R with $S / R=\left\{\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\},\left\{u_{1}, u_{2}, u_{3}\right\}\right\}$ is a weak bisimulation. This can be seen as follows. For $C=\left\{u_{1}, u_{2}, u_{3}\right\}$ and s_{1}, s_{2}, s_{4} with $\mathbf{P}\left(s_{i},\left[s_{i}\right]_{R}\right)<1$ we have:

$$
\frac{\mathbf{P}\left(s_{1}, C\right)}{1-\mathbf{P}\left(s_{1},\left[s_{1}\right]\right)}=\frac{1 / 8}{1-5 / 8}=\frac{1 / 4}{1-1 / 4}=\frac{\mathbf{P}\left(s_{2}, C\right)}{1-\mathbf{P}\left(s_{2},\left[s_{2}\right]\right)}=\frac{1 / 3}{1}=\frac{\mathbf{P}\left(s_{4}, C\right)}{1-\mathbf{P}\left(s_{4},\left[s_{4}\right]\right)} .
$$

Note that $\mathbf{P}\left(s_{3},\left[s_{3}\right]_{R}\right)=1$.

Weak bisimulation on DTMC: example

The equivalence relation R with $S / R=\left\{\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\},\left\{u_{1}, u_{2}, u_{3}\right\}\right\}$ is a weak bisimulation. This can be seen as follows. For $C=\left\{u_{1}, u_{2}, u_{3}\right\}$ and s_{1}, s_{2}, s_{4} with $\mathbf{P}\left(s_{i},\left[s_{i}\right]_{R}\right)<1$ we have:

$$
\frac{\mathbf{P}\left(s_{1}, C\right)}{1-\mathbf{P}\left(s_{1},\left[s_{1}\right]\right)}=\frac{1 / 8}{1-5 / 8}=\frac{1 / 4}{1-1 / 4}=\frac{\mathbf{P}\left(s_{2}, C\right)}{1-\mathbf{P}\left(s_{2},\left[s_{2}\right]\right)}=\frac{1 / 3}{1}=\frac{\mathbf{P}\left(s_{4}, C\right)}{1-\mathbf{P}\left(s_{4},\left[s_{4}\right]\right)} .
$$

Note that $\mathbf{P}\left(s_{3},\left[s_{3}\right]_{R}\right)=1$. Since s_{3} can reach a state outside $\left[s_{3}\right]$ as s_{1}, s_{2} and s_{4}, it follows that $s_{1} \approx_{p} s_{2} \approx_{p} s_{3} \approx_{p} s_{4}$.

Reachability condition

Reachability condition

Remark

Consider the following DTMC:

Reachability condition

Remark

Consider the following DTMC:

It is not difficult to establish $s_{1} \approx s_{2}$.

Reachability condition

Remark

Consider the following DTMC:

It is not difficult to establish $s_{1} \approx s_{2}$. Note: $\mathbf{P}\left(s_{1},\left[s_{1}\right]_{R}\right)=1$, but $\mathbf{P}\left(s_{2},\left[s_{2}\right]_{R}\right)<1$.

Reachability condition

Remark

Consider the following DTMC:

It is not difficult to establish $s_{1} \approx s_{2}$. Note: $\mathbf{P}\left(s_{1},\left[s_{1}\right]_{R}\right)=1$, but $\mathbf{P}\left(s_{2},\left[s_{2}\right]_{R}\right)<1$. Both s_{1} and s_{2} can reach a state outside $\left[s_{1}\right]_{R}=\left[s_{2}\right]_{R}$.

Reachability condition

Remark

Consider the following DTMC:

It is not difficult to establish $s_{1} \approx s_{2}$. Note: $\mathbf{P}\left(s_{1},\left[s_{1}\right]_{R}\right)=1$, but $\mathbf{P}\left(s_{2},\left[s_{2}\right]_{R}\right)<1$. Both s_{1} and s_{2} can reach a state outside $\left[s_{1}\right]_{R}=\left[s_{2}\right]_{R}$. The reachability condition is essential to establish $s_{1} \approx s_{2}$ and cannot be dropped: otherwise s_{1} and s_{2} would be weakly bisimilar to an equally labelled absorbing state.

Weak bisimulation on CTMCs

Weak bisimulation on CTMCs

Weak probabilistic bisimulation

Weak bisimulation on CTMCs

Weak probabilistic bisimulation

Let $\mathcal{C}=\left(S, \mathbf{P}, r, \iota_{\text {init }}, A P, L\right)$ be a CTMC and $R \subseteq S \times S$ an equivalence.

Weak bisimulation on CTMCs

Weak probabilistic bisimulation

Let $\mathcal{C}=\left(S, \mathbf{P}, r, \iota_{\text {init }}, A P, L\right)$ be a CTMC and $R \subseteq S \times S$ an equivalence. Then: R is a weak probabilistic bisimulation on S if for any $(s, t) \in R$:

Weak bisimulation on CTMCs

Weak probabilistic bisimulation

Let $\mathcal{C}=\left(S, \mathbf{P}, r, \iota_{\text {init }}, A P, L\right)$ be a CTMC and $R \subseteq S \times S$ an equivalence. Then: R is a weak probabilistic bisimulation on S if for any $(s, t) \in R$:

1. $L(s)=L(t)$, and

Weak bisimulation on CTMCs

Weak probabilistic bisimulation

Let $\mathcal{C}=\left(S, \mathbf{P}, r, \iota_{\text {init }}, A P, L\right)$ be a CTMC and $R \subseteq S \times S$ an equivalence. Then: R is a weak probabilistic bisimulation on S if for any $(s, t) \in R$:

1. $L(s)=L(t)$, and
2. $\mathbf{R}(s, C)=\mathbf{R}(t, C)$ for all $C \in S / R$ with $C \neq[s]_{R}=[t]_{R}$

Weak bisimulation on CTMCs

Weak probabilistic bisimulation
[Bravetti, 2002]
Let $\mathcal{C}=\left(S, \mathbf{P}, r, \iota_{\text {init }}, A P, L\right)$ be a CTMC and $R \subseteq S \times S$ an equivalence. Then: R is a weak probabilistic bisimulation on S if for any $(s, t) \in R$:

1. $L(s)=L(t)$, and
2. $\mathbf{R}(s, C)=\mathbf{R}(t, C)$ for all $C \in S / R$ with $C \neq[s]_{R}=[t]_{R}$

Weak probabilistic bisimilarity

Let \mathcal{C} be a CTMC and s, t states in \mathcal{C}.

Weak bisimulation on CTMCs

Weak probabilistic bisimulation

Let $\mathcal{C}=\left(S, \mathbf{P}, r, \iota_{\text {init }}, A P, L\right)$ be a CTMC and $R \subseteq S \times S$ an equivalence. Then: R is a weak probabilistic bisimulation on S if for any $(s, t) \in R$:

1. $L(s)=L(t)$, and
2. $\mathbf{R}(s, C)=\mathbf{R}(t, C)$ for all $C \in S / R$ with $C \neq[s]_{R}=[t]_{R}$

Weak probabilistic bisimilarity

Let \mathcal{C} be a CTMC and s, t states in \mathcal{C}. Then: s is weak probabilistically bisimilar to t, denoted $s \approx_{m} t$, if there exists a weak probabilistic bisimulation R with $(s, t) \in R$.

A useful lemma

Let \mathcal{C} be a CTMC and R an equivalence relation on S with $(s, t) \in R$, $\mathbf{P}\left(s,[s]_{R}\right)<1$ and $\mathbf{P}\left(t,[t]_{R}\right)<1$.

A useful lemma

Let \mathcal{C} be a CTMC and R an equivalence relation on S with $(s, t) \in R$, $\mathbf{P}\left(s,[s]_{R}\right)<1$ and $\mathbf{P}\left(t,[t]_{R}\right)<1$. Then: the following two statements are equivalent:

A useful lemma

Let \mathcal{C} be a CTMC and R an equivalence relation on S with $(s, t) \in R$, $\mathbf{P}\left(s,[s]_{R}\right)<1$ and $\mathbf{P}\left(t,[t]_{R}\right)<1$. Then: the following two statements are equivalent:

1. for all $C \in S / R, C \neq[s]_{R}=[t]_{R}$:

$$
\frac{\mathbf{P}(s, C)}{1-\mathbf{P}\left(s,[s]_{R}\right)}=\frac{\mathbf{P}(t, C)}{1-\mathbf{P}\left(t,[t]_{R}\right)} \quad \text { and } \quad \mathbf{R}\left(s, S \backslash[s]_{R}\right)=\mathbf{R}\left(t, S \backslash[t]_{R}\right)
$$

A useful lemma

Let \mathcal{C} be a CTMC and R an equivalence relation on S with $(s, t) \in R$, $\mathbf{P}\left(s,[s]_{R}\right)<1$ and $\mathbf{P}\left(t,[t]_{R}\right)<1$. Then: the following two statements are equivalent:

1. for all $C \in S / R, C \neq[s]_{R}=[t]_{R}$:

$$
\frac{\mathbf{P}(s, C)}{1-\mathbf{P}\left(s,[s]_{R}\right)}=\frac{\mathbf{P}(t, C)}{1-\mathbf{P}\left(t,[t]_{R}\right)} \quad \text { and } \quad \mathbf{R}\left(s, S \backslash[s]_{R}\right)=\mathbf{R}\left(t, S \backslash[t]_{R}\right)
$$

2. $\mathbf{R}(s, C)=\mathbf{R}(t, C)$ for all $C \in S / R$ with $C \neq[s]_{R}=[t]_{R}$.

A useful lemma

Let \mathcal{C} be a CTMC and R an equivalence relation on S with $(s, t) \in R$, $\mathbf{P}\left(s,[s]_{R}\right)<1$ and $\mathbf{P}\left(t,[t]_{R}\right)<1$. Then: the following two statements are equivalent:

1. for all $C \in S / R, C \neq[s]_{R}=[t]_{R}$:

$$
\frac{\mathbf{P}(s, C)}{1-\mathbf{P}\left(s,[s]_{R}\right)}=\frac{\mathbf{P}(t, C)}{1-\mathbf{P}\left(t,[t]_{R}\right)} \quad \text { and } \quad \mathbf{R}\left(s, S \backslash[s]_{R}\right)=\mathbf{R}\left(t, S \backslash[t]_{R}\right)
$$

2. $\mathbf{R}(s, C)=\mathbf{R}(t, C)$ for all $C \in S / R$ with $C \neq[s]_{R}=[t]_{R}$.

Proof:

Left as an exercise.

Weak bisimulation on CTMCs: example

Weak bisimulation on CTMCs: example

Weak bisimulation on CTMCs: example

Equivalence relation R with $S / R=\left\{\left\{s_{1}, s_{2}, s_{3}, s_{4}, s_{5}, s_{6}\right\},\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}\right\}$ is a weak bisimulation on the CTMC depicted above.

Weak bisimulation on CTMCs: example

Equivalence relation R with $S / R=\left\{\left\{s_{1}, s_{2}, s_{3}, s_{4}, s_{5}, s_{6}\right\},\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}\right\}$ is a weak bisimulation on the CTMC depicted above. This can be seen as follows.

Weak bisimulation on CTMCs: example

Equivalence relation R with $S / R=\left\{\left\{s_{1}, s_{2}, s_{3}, s_{4}, s_{5}, s_{6}\right\},\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}\right\}$ is a weak bisimulation on the CTMC depicted above. This can be seen as follows. For $C=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$, we have that all s-states enter C with rate 2 .

Weak bisimulation on CTMCs: example

Equivalence relation R with $S / R=\left\{\left\{s_{1}, s_{2}, s_{3}, s_{4}, s_{5}, s_{6}\right\},\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}\right\}$ is a weak bisimulation on the CTMC depicted above. This can be seen as follows. For $C=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$, we have that all s-states enter C with rate 2 . The rates between the s-states are not relevant.

Properties (without proof)

Properties (without proof)

Strong and weak bisimulation in uniform CTMCs
For all uniform CTMCs \mathcal{C} and states s, u in \mathcal{C}, we have:

$$
s \sim_{m} u \text { iff } s \approx_{m} u \text { iff } s \sim_{p} u
$$

Properties (without proof)

Strong and weak bisimulation in uniform CTMCs
For all uniform CTMCs \mathcal{C} and states s, u in \mathcal{C}, we have:

$$
s \sim_{m} u \text { iff } s \approx_{m} u \text { iff } s \sim_{p} u
$$

For any CTMC \mathcal{C}, we have: $\mathcal{C} \approx_{m}$ unif($\left.r, \mathcal{C}\right)$ with $r \geqslant \max _{s \in S} r(s)$.

Properties (without proof)

Strong and weak bisimulation in uniform CTMCs

For all uniform CTMCs \mathcal{C} and states s, u in \mathcal{C}, we have:

$$
s \sim_{m} u \quad \text { iff } \quad s \approx_{m} u \quad \text { iff } \quad s \sim_{p} u
$$

For any CTMC \mathcal{C}, we have: $\mathcal{C} \approx_{m}$ unif($\left.r, \mathcal{C}\right)$ with $r \geqslant \max _{s \in S} r(s)$.

Preservation of transient probabilities

Properties (without proof)

Strong and weak bisimulation in uniform CTMCs

For all uniform CTMCs \mathcal{C} and states s, u in \mathcal{C}, we have:

$$
s \sim_{m} u \quad \text { iff } \quad s \approx_{m} u \quad \text { iff } \quad s \sim_{p} u
$$

For any CTMC \mathcal{C}, we have: $\mathcal{C} \approx_{m} \operatorname{unif}(r, \mathcal{C})$ with $r \geqslant \max _{s \in S} r(s)$.

Preservation of transient probabilities

For all CTMCs \mathcal{C} with states s, u in \mathcal{C} and $t \in \mathbb{R}_{\geqslant 0}$, we have:

$$
s \approx_{m} u \text { implies } \underline{p}^{s}(t)=\underline{p}^{u}(t)
$$

where $\underline{p}^{s}(0)=\mathbf{1}_{s}$ and $\underline{p}^{u}(0)=\mathbf{1}_{u}$ where $\mathbf{1}_{s}$ is the characteristic function for state s, i.e., $\mathbf{1}_{s}\left(s^{\prime}\right)=1$ iff $s=s^{\prime}$.

Overview

(1) Recall: continuous-time Markov chains
(2) Transient distribution
(3) Uniformization

4 Strong and weak bisimulation
(5) Computing transient probabilities
(6) Summary

Computing transient probabilities

Computing transient probabilities

The transient probability vector $\underline{p}(t)=\left(p_{s_{1}}(t), \ldots, p_{s_{k}}(t)\right)$ satisfies:

$$
\underline{p}^{\prime}(t)=\underline{p}(t) \cdot(\mathbf{R}-\mathbf{r}) \quad \text { given } \quad \underline{p}(0) .
$$

Standard knowledge yields: $\underline{p}(t)=\underline{p}(0) \cdot e^{(\mathrm{R}-\mathrm{r}) \cdot t}$.

Computing transient probabilities

The transient probability vector $\underline{p}(t)=\left(p_{s_{1}}(t), \ldots, p_{s_{k}}(t)\right)$ satisfies:

$$
\underline{p}^{\prime}(t)=\underline{p}(t) \cdot(\mathbf{R}-\mathbf{r}) \quad \text { given } \quad \underline{p}(0) .
$$

Standard knowledge yields: $\underline{p}(t)=\underline{p}(0) \cdot e^{(\mathbf{R}-\mathbf{r}) \cdot t}$.

As uniformization preserves transient probabilities, we replace $\mathbf{R}-\mathbf{r}$ by its variant for the uniformized CTMC, i.e., $\overline{\mathbf{R}}-\overline{\mathbf{r}}$.

Computing transient probabilities

The transient probability vector $\underline{p}(t)=\left(p_{s_{1}}(t), \ldots, p_{s_{k}}(t)\right)$ satisfies:

$$
\underline{p}^{\prime}(t)=\underline{p}(t) \cdot(\mathbf{R}-\mathbf{r}) \quad \text { given } \quad \underline{p}(0) .
$$

Standard knowledge yields: $\underline{p}(t)=\underline{p}(0) \cdot e^{(\mathbf{R}-\mathbf{r}) \cdot t}$.

As uniformization preserves transient probabilities, we replace $\mathbf{R}-\mathbf{r}$ by its variant for the uniformized CTMC, i.e., $\overline{\mathbf{R}}-\overline{\mathbf{r}}$. We have:

$$
\overline{\mathbf{R}}\left(s, s^{\prime}\right)
$$

Computing transient probabilities

The transient probability vector $\underline{p}(t)=\left(p_{s_{1}}(t), \ldots, p_{s_{k}}(t)\right)$ satisfies:

$$
\underline{p}^{\prime}(t)=\underline{p}(t) \cdot(\mathbf{R}-\mathbf{r}) \quad \text { given } \quad \underline{p}(0) .
$$

Standard knowledge yields: $\underline{p}(t)=\underline{p}(0) \cdot e^{(\mathbf{R}-\mathbf{r}) \cdot t}$.

As uniformization preserves transient probabilities, we replace $\mathbf{R}-\mathbf{r}$ by its variant for the uniformized CTMC, i.e., $\overline{\mathbf{R}}-\overline{\mathbf{r}}$. We have:

$$
\overline{\mathbf{R}}\left(s, s^{\prime}\right)=\overline{\mathbf{P}}\left(s, s^{\prime}\right) \cdot \bar{r}(s)
$$

Computing transient probabilities

The transient probability vector $\underline{p}(t)=\left(p_{s_{1}}(t), \ldots, p_{s_{k}}(t)\right)$ satisfies:

$$
\underline{p}^{\prime}(t)=\underline{p}(t) \cdot(\mathbf{R}-\mathbf{r}) \quad \text { given } \quad \underline{p}(0) .
$$

Standard knowledge yields: $\underline{p}(t)=\underline{p}(0) \cdot e^{(\mathbf{R}-\mathbf{r}) \cdot t}$.

As uniformization preserves transient probabilities, we replace $\mathbf{R}-\mathbf{r}$ by its variant for the uniformized CTMC, i.e., $\overline{\mathbf{R}}-\overline{\mathbf{r}}$. We have:

$$
\overline{\mathbf{R}}\left(s, s^{\prime}\right)=\overline{\mathbf{P}}\left(s, s^{\prime}\right) \cdot \bar{r}(s)=\overline{\mathbf{P}}\left(s, s^{\prime}\right) \cdot r
$$

Computing transient probabilities

The transient probability vector $\underline{p}(t)=\left(p_{s_{1}}(t), \ldots, p_{s_{k}}(t)\right)$ satisfies:

$$
\underline{p}^{\prime}(t)=\underline{p}(t) \cdot(\mathbf{R}-\mathbf{r}) \quad \text { given } \quad \underline{p}(0) .
$$

Standard knowledge yields: $\underline{p}(t)=\underline{p}(0) \cdot e^{(\mathbf{R}-\mathbf{r}) \cdot t}$.

As uniformization preserves transient probabilities, we replace $\mathbf{R}-\mathbf{r}$ by its variant for the uniformized CTMC, i.e., $\overline{\mathbf{R}}-\overline{\mathbf{r}}$. We have:

$$
\overline{\mathbf{R}}\left(s, s^{\prime}\right)=\overline{\mathbf{P}}\left(s, s^{\prime}\right) \cdot \bar{r}(s)=\overline{\mathbf{P}}\left(s, s^{\prime}\right) \cdot r \quad \text { and } \quad \overline{\mathbf{r}}=\mathbf{I} \cdot r .
$$

Thus:

Computing transient probabilities

The transient probability vector $\underline{p}(t)=\left(p_{s_{1}}(t), \ldots, p_{s_{k}}(t)\right)$ satisfies:

$$
\underline{p}^{\prime}(t)=\underline{p}(t) \cdot(\mathbf{R}-\mathbf{r}) \quad \text { given } \quad \underline{p}(0) .
$$

Standard knowledge yields: $\underline{p}(t)=\underline{p}(0) \cdot e^{(\mathbf{R}-\mathbf{r}) \cdot t}$.

As uniformization preserves transient probabilities, we replace $\mathbf{R}-\mathbf{r}$ by its variant for the uniformized CTMC, i.e., $\overline{\mathbf{R}}-\overline{\mathbf{r}}$. We have:

$$
\overline{\mathbf{R}}\left(s, s^{\prime}\right)=\overline{\mathbf{P}}\left(s, s^{\prime}\right) \cdot \bar{r}(s)=\overline{\mathbf{P}}\left(s, s^{\prime}\right) \cdot r \quad \text { and } \quad \overline{\mathbf{r}}=\mathbf{I} \cdot r .
$$

Thus:

$$
\underline{p}(0) \cdot e^{(\overline{\mathbf{R}}-\overline{\mathbf{r}}) \cdot t}
$$

Computing transient probabilities

The transient probability vector $\underline{p}(t)=\left(p_{s_{1}}(t), \ldots, p_{s_{k}}(t)\right)$ satisfies:

$$
\underline{p}^{\prime}(t)=\underline{p}(t) \cdot(\mathbf{R}-\mathbf{r}) \quad \text { given } \quad \underline{p}(0) .
$$

Standard knowledge yields: $\underline{p}(t)=\underline{p}(0) \cdot e^{(\mathbf{R}-\mathbf{r}) \cdot t}$.

As uniformization preserves transient probabilities, we replace $\mathbf{R}-\mathbf{r}$ by its variant for the uniformized CTMC, i.e., $\overline{\mathbf{R}}-\overline{\mathbf{r}}$. We have:

$$
\overline{\mathbf{R}}\left(s, s^{\prime}\right)=\overline{\mathbf{P}}\left(s, s^{\prime}\right) \cdot \bar{r}(s)=\overline{\mathbf{P}}\left(s, s^{\prime}\right) \cdot r \quad \text { and } \quad \overline{\mathbf{r}}=\mathbf{I} \cdot r .
$$

Thus:

$$
\underline{p}(0) \cdot e^{(\overline{\mathbf{R}}-\overline{\mathbf{r}}) \cdot t}=\underline{p}(0) \cdot e^{(\overline{\mathbf{P}} \cdot r-\mathbf{I} \cdot r) \cdot t}
$$

Computing transient probabilities

The transient probability vector $\underline{p}(t)=\left(p_{s_{1}}(t), \ldots, p_{s_{k}}(t)\right)$ satisfies:

$$
\underline{p}^{\prime}(t)=\underline{p}(t) \cdot(\mathbf{R}-\mathbf{r}) \quad \text { given } \quad \underline{p}(0) .
$$

Standard knowledge yields: $\underline{p}(t)=\underline{p}(0) \cdot e^{(\mathbf{R}-\mathbf{r}) \cdot t}$.

As uniformization preserves transient probabilities, we replace $\mathbf{R}-\mathbf{r}$ by its variant for the uniformized CTMC, i.e., $\overline{\mathbf{R}}-\overline{\mathbf{r}}$. We have:

$$
\overline{\mathbf{R}}\left(s, s^{\prime}\right)=\overline{\mathbf{P}}\left(s, s^{\prime}\right) \cdot \bar{r}(s)=\overline{\mathbf{P}}\left(s, s^{\prime}\right) \cdot r \quad \text { and } \quad \overline{\mathbf{r}}=\mathbf{I} \cdot r .
$$

Thus:

$$
\underline{p}(0) \cdot e^{(\overline{\mathbf{R}}-\overline{\mathbf{r}}) \cdot t}=\underline{p}(0) \cdot e^{(\overline{\mathbf{P}} \cdot r-\mathbf{I} \cdot r) \cdot t}=\underline{p}(0) \cdot e^{(\overline{\mathbf{P}}-\mathbf{I}) \cdot r \cdot t}
$$

Computing transient probabilities

The transient probability vector $\underline{p}(t)=\left(p_{s_{1}}(t), \ldots, p_{s_{k}}(t)\right)$ satisfies:

$$
\underline{p}^{\prime}(t)=\underline{p}(t) \cdot(\mathbf{R}-\mathbf{r}) \quad \text { given } \quad \underline{p}(0) .
$$

Standard knowledge yields: $\underline{p}(t)=\underline{p}(0) \cdot e^{(\mathbf{R}-\mathbf{r}) \cdot t}$.

As uniformization preserves transient probabilities, we replace $\mathbf{R}-\mathbf{r}$ by its variant for the uniformized CTMC, i.e., $\overline{\mathbf{R}}-\overline{\mathbf{r}}$. We have:

$$
\overline{\mathbf{R}}\left(s, s^{\prime}\right)=\overline{\mathbf{P}}\left(s, s^{\prime}\right) \cdot \bar{r}(s)=\overline{\mathbf{P}}\left(s, s^{\prime}\right) \cdot r \quad \text { and } \quad \overline{\mathbf{r}}=\mathbf{I} \cdot r .
$$

Thus:

$$
\underline{p}(0) \cdot e^{(\overline{\mathbf{R}}-\overline{\mathbf{r}}) \cdot t}=\underline{p}(0) \cdot e^{(\overline{\mathbf{P}} \cdot r-\mathbf{l} \cdot r) \cdot t}=\underline{p}(0) \cdot e^{(\overline{\mathbf{P}}-\mathbf{I}) \cdot r \cdot t}=\underline{p}(0) \cdot e^{-r t} \cdot e^{r \cdot t \cdot \overline{\mathbf{P}}} .
$$

Computing transient probabilities

$$
\underline{p}(t)=\underline{p}(0) \cdot e^{(\overline{\mathbf{R}}-\overline{\mathbf{r}}) \cdot t}=\underline{p}(0) \cdot e^{(\overline{\mathbf{P}} \cdot r-\mathbf{I} \cdot r) \cdot t}=\underline{p}(0) \cdot e^{(\overline{\mathbf{P}}-\mathbf{I}) \cdot r \cdot t}=\underline{p}(0) \cdot e^{-r t} \cdot e^{r \cdot t \cdot \overline{\mathbf{P}}} .
$$

Computing transient probabilities

$$
\underline{p}(t)=\underline{p}(0) \cdot e^{(\overline{\mathbf{R}}-\overline{\mathbf{r}}) \cdot t}=\underline{p}(0) \cdot e^{(\overline{\mathbf{P}} \cdot r-\mathbf{I} \cdot r) \cdot t}=\underline{p}(0) \cdot e^{(\overline{\mathbf{P}}-\mathbf{I}) \cdot r \cdot t}=\underline{p}(0) \cdot e^{-r t} \cdot e^{r \cdot t \cdot \overline{\mathbf{P}}}
$$

Computing a matrix exponential

Computing transient probabilities

$$
\underline{p}(t)=\underline{p}(0) \cdot e^{(\overline{\mathbf{R}}-\overline{\mathbf{r}}) \cdot t}=\underline{p}(0) \cdot e^{(\overline{\mathbf{P}} \cdot r-\mathbf{I} \cdot r) \cdot t}=\underline{p}(0) \cdot e^{(\overline{\mathbf{P}}-\mathbf{I}) \cdot r \cdot t}=\underline{p}(0) \cdot e^{-r t} \cdot e^{r \cdot t \cdot \overline{\mathbf{P}}} .
$$

Computing a matrix exponential

Exploit Taylor-Maclaurin expansion.

Computing transient probabilities

$$
\underline{p}(t)=\underline{p}(0) \cdot e^{(\overline{\mathbf{R}}-\overline{\mathbf{r}}) \cdot t}=\underline{p}(0) \cdot e^{(\overline{\mathbf{P}} \cdot r-\mathbf{I} \cdot r) \cdot t}=\underline{p}(0) \cdot e^{(\overline{\mathbf{P}}-\mathbf{I}) \cdot r \cdot t}=\underline{p}(0) \cdot e^{-r t} \cdot e^{r \cdot t \cdot \overline{\mathbf{P}}} .
$$

Computing a matrix exponential

Exploit Taylor-Maclaurin expansion. This yields:
$\underline{p}(0) \cdot e^{-r t} \cdot e^{r \cdot t \cdot \overline{\mathbf{P}}}$

Computing transient probabilities

$$
\underline{p}(t)=\underline{p}(0) \cdot e^{(\overline{\mathbf{R}}-\overline{\mathbf{r}}) \cdot t}=\underline{p}(0) \cdot e^{(\overline{\mathbf{P}} \cdot r-\mathbf{I} \cdot r) \cdot t}=\underline{p}(0) \cdot e^{(\overline{\mathbf{P}}-\mathbf{I}) \cdot r \cdot t}=\underline{p}(0) \cdot e^{-r t} \cdot e^{r \cdot t \cdot \overline{\mathbf{P}}} .
$$

Computing a matrix exponential

Exploit Taylor-Maclaurin expansion. This yields:

$$
\underline{p}(0) \cdot e^{-r t} \cdot e^{r \cdot t \cdot \overline{\mathbf{P}}}=\underline{p}(0) \cdot e^{-r t} \cdot \sum_{i=0}^{\infty} \frac{(r \cdot t)^{i}}{i!} \cdot \overline{\mathbf{P}}^{i}
$$

Computing transient probabilities

$$
\underline{p}(t)=\underline{p}(0) \cdot e^{(\overline{\mathbf{R}}-\bar{r}) \cdot t}=\underline{p}(0) \cdot e^{(\overline{\mathbf{P}} \cdot r-\mathbf{I} \cdot r) \cdot t}=\underline{p}(0) \cdot e^{(\overline{\mathbf{P}}-\mathbf{I}) \cdot r \cdot t}=\underline{p}(0) \cdot e^{-r t} \cdot e^{r \cdot t \cdot \overline{\mathbf{P}}} .
$$

Computing a matrix exponential

Exploit Taylor-Maclaurin expansion. This yields:
$\underline{p}(0) \cdot e^{-r t} \cdot e^{r \cdot t \cdot \overline{\mathbf{P}}}=\underline{p}(0) \cdot e^{-r t} \cdot \sum_{i=0}^{\infty} \frac{(r \cdot t)^{i}}{i!} \cdot \overline{\mathbf{P}}^{i}=\underline{p}(0) \cdot \sum_{i=0}^{\infty} \underbrace{e^{-r \cdot t} \frac{(r \cdot t)^{i}}{i!}}_{\text {Poisson prob }} \cdot \overline{\mathbf{P}}^{i}$

Computing transient probabilities

$\underline{p}(t)=\underline{p}(0) \cdot e^{(\overline{\mathbf{R}}-\overline{\mathbf{r}}) \cdot t}=\underline{p}(0) \cdot e^{(\overline{\mathbf{P}} \cdot r-\mathbf{I} \cdot r) \cdot t}=\underline{p}(0) \cdot e^{(\overline{\mathbf{P}}-\mathbf{I}) \cdot r \cdot t}=\underline{p}(0) \cdot e^{-r t} \cdot e^{r \cdot t \cdot \overline{\mathbf{P}}}$.

Computing a matrix exponential

Exploit Taylor-Maclaurin expansion. This yields:

$$
\underline{p}(0) \cdot e^{-r t} \cdot e^{r \cdot t \cdot \overline{\mathbf{P}}}=\underline{p}(0) \cdot e^{-r t} \cdot \sum_{i=0}^{\infty} \frac{(r \cdot t)^{i}}{i!} \cdot \overline{\mathbf{P}}^{i}=\underline{p}(0) \cdot \sum_{i=0}^{\infty} \underbrace{e^{-r \cdot t} \frac{(r \cdot t)^{i}}{i!}}_{\text {Poisson prob. }} \cdot \overline{\mathbf{P}}^{i}
$$

As $\overline{\mathbf{P}}$ is a stochastic matrix, computing the matrix exponential $\overline{\mathbf{P}}^{i}$ is numerically stable.

Intermezzo: Poisson distribution

Intermezzo: Poisson distribution

Poisson distribution

The Poisson distribution is a discrete probability distribution that expresses the probability of a given number i of events occurring in a fixed interval of time $[0, t]$

Intermezzo: Poisson distribution

Poisson distribution

The Poisson distribution is a discrete probability distribution that expresses the probability of a given number i of events occurring in a fixed interval of time $[0, t]$ if these events occur with a known average rate r and independently of the time since the last event.

Intermezzo: Poisson distribution

Poisson distribution

The Poisson distribution is a discrete probability distribution that expresses the probability of a given number i of events occurring in a fixed interval of time $[0, t]$ if these events occur with a known average rate r and independently of the time since the last event. Formally, the pdf is:

$$
f(i ; r \cdot t)=e^{-r \cdot t} \frac{(r \cdot t)^{i}}{i!}
$$

where r is the mean of the Poisson distribution.

Intermezzo: Poisson distribution

Poisson distribution

The Poisson distribution is a discrete probability distribution that expresses the probability of a given number i of events occurring in a fixed interval of time $[0, t]$ if these events occur with a known average rate r and independently of the time since the last event. Formally, the pdf is:

$$
f(i ; r \cdot t)=e^{-r \cdot t} \frac{(r \cdot t)^{i}}{i!}
$$

where r is the mean of the Poisson distribution.

Remark

The Poisson distribution can be derived as a limiting case to the binomial distribution as the number of trials goes to infinity and the expected number of successes remains fixed.

Transient probabilities: example

Transient probabilities: example

Transient probabilities: example

Transient probabilities: example

$$
\mathbf{P}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \underline{r}=\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

Transient probabilities: example

Transient probabilities: example

Transient probabilities: example

Let initial distribution $\underline{p}(0)=(1,0)$, and time bound $t=1$. Then:
$p(1)$

Transient probabilities: example

Let initial distribution $\underline{p}(0)=(1,0)$, and time bound $t=1$. Then:

$$
\underline{p}(1)=\underline{p}(0) \cdot \sum_{i=0}^{\infty} e^{-3} \frac{3^{i}}{i!} \cdot \overline{\mathbf{P}}^{i}
$$

Transient probabilities: example

Let initial distribution $\underline{p}(0)=(1,0)$, and time bound $t=1$. Then:

$$
\begin{aligned}
\underline{p}(1)= & \underline{p}(0) \cdot \sum_{i=0}^{\infty} e^{-3} \frac{3^{i}}{i!} \cdot \overline{\mathbf{P}}^{i} \\
= & (1,0) \cdot e^{-3} \frac{1}{0!} \cdot\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]+(1,0) \cdot e^{-3} \frac{3}{1!} \cdot\left[\begin{array}{cc}
0 & 1 \\
\frac{2}{3} & \frac{1}{3}
\end{array}\right] \\
& +(1,0) \cdot e^{-3} \frac{9}{2!} \cdot\left[\begin{array}{ll}
0 & 1 \\
\frac{2}{3} & \frac{1}{3}
\end{array}\right]^{2}+\ldots \ldots
\end{aligned}
$$

Transient probabilities: example

Let initial distribution $\underline{p}(0)=(1,0)$, and time bound $t=1$. Then:

$$
\begin{aligned}
\underline{p}(1)= & \underline{p}(0) \cdot \sum_{i=0}^{\infty} e^{-3} \frac{3^{i}}{i!} \cdot \overline{\mathbf{P}}^{i} \\
= & (1,0) \cdot e^{-3} \frac{1}{0!} \cdot\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]+(1,0) \cdot e^{-3} \frac{3}{1!} \cdot\left[\begin{array}{cc}
0 & 1 \\
\frac{2}{3} & \frac{1}{3}
\end{array}\right] \\
& +(1,0) \cdot e^{-3} \frac{9}{2!} \cdot\left[\begin{array}{ll}
0 & 1 \\
\frac{2}{3} & \frac{1}{3}
\end{array}\right]^{2}+\ldots \ldots \\
\approx & (0.404043,0.595957)
\end{aligned}
$$

Truncating the infinite sum

Truncating the infinite sum

Computing transient probabilities

$$
\underline{p}(t)=\underline{p}(0) \cdot \sum_{i=0}^{\infty} e^{-r \cdot t} \frac{(r \cdot t)^{i}}{i!} \cdot \overline{\mathbf{P}}^{i}
$$

Truncating the infinite sum

Computing transient probabilities

$$
\underline{p}(t)=\underline{p}(0) \cdot \sum_{i=0}^{\infty} e^{-r \cdot t} \frac{(r \cdot t)^{i}}{i!} \cdot \overline{\mathbf{P}}^{i}
$$

- Summation can be truncated a priori for a given error bound $\varepsilon>0$.

Truncating the infinite sum

Computing transient probabilities

$$
\underline{p}(t)=\underline{p}(0) \cdot \sum_{i=0}^{\infty} e^{-r \cdot t} \frac{(r \cdot t)^{i}}{i!} \cdot \overline{\mathbf{P}}^{i}
$$

- Summation can be truncated a priori for a given error bound $\varepsilon>0$.
- The error that is introduced by truncating at summand k_{ε} is:

$$
\left\|\sum_{i=0}^{\infty} e^{-r t} \frac{(r t)^{i}}{i!} \cdot \underline{p}(i)-\sum_{i=0}^{k_{\varepsilon}} e^{-r t} \frac{(r t)^{i}}{i!} \cdot \underline{p}(i)\right\|=\left\|\sum_{i=k_{\varepsilon}+1}^{\infty} e^{-r t} \frac{(r t)^{i}}{i!} \cdot \underline{p}(i)\right\|
$$

Truncating the infinite sum

Computing transient probabilities

$$
\underline{p}(t)=\underline{p}(0) \cdot \sum_{i=0}^{\infty} e^{-r \cdot t} \frac{(r \cdot t)^{i}}{i!} \cdot \overline{\mathbf{P}}^{i}
$$

- Summation can be truncated a priori for a given error bound $\varepsilon>0$.
- The error that is introduced by truncating at summand k_{ε} is:

$$
\left\|\sum_{i=0}^{\infty} e^{-r t} \frac{(r t)^{i}}{i!} \cdot \underline{p}(i)-\sum_{i=0}^{k_{\varepsilon}} e^{-r t} \frac{(r t)^{i}}{i!} \cdot \underline{p}(i)\right\|=\left\|\sum_{i=k_{\varepsilon}+1}^{\infty} e^{-r t} \frac{(r t)^{i}}{i!} \cdot \underline{p}(i)\right\|
$$

- Strategy: choose k_{ε} minimal such that:

Truncating the infinite sum

Computing transient probabilities

$$
\underline{p}(t)=\underline{p}(0) \cdot \sum_{i=0}^{\infty} e^{-r \cdot t} \frac{(r \cdot t)^{i}}{i!} \cdot \overline{\mathbf{P}}^{i}
$$

- Summation can be truncated a priori for a given error bound $\varepsilon>0$.
- The error that is introduced by truncating at summand k_{ε} is:

$$
\left\|\sum_{i=0}^{\infty} e^{-r t} \frac{(r t)^{i}}{i!} \cdot \underline{p}(i)-\sum_{i=0}^{k_{\varepsilon}} e^{-r t} \frac{(r t)^{i}}{i!} \cdot \underline{p}(i)\right\|=\left\|\sum_{i=k_{\varepsilon}+1}^{\infty} e^{-r t} \frac{(r t)^{i}}{i!} \cdot \underline{p}(i)\right\|
$$

- Strategy: choose k_{ε} minimal such that:

$$
\sum_{i=k_{\varepsilon+1}}^{\infty} e^{-r t} \frac{(r t)^{i}}{i!}
$$

Truncating the infinite sum

Computing transient probabilities

$$
\underline{p}(t)=\underline{p}(0) \cdot \sum_{i=0}^{\infty} e^{-r \cdot t} \frac{(r \cdot t)^{i}}{i!} \cdot \overline{\mathbf{P}}^{i}
$$

- Summation can be truncated a priori for a given error bound $\varepsilon>0$.
- The error that is introduced by truncating at summand k_{ε} is:

$$
\left\|\sum_{i=0}^{\infty} e^{-r t} \frac{(r t)^{i}}{i!} \cdot \underline{p}(i)-\sum_{i=0}^{k_{\varepsilon}} e^{-r t} \frac{(r t)^{i}}{i!} \cdot \underline{p}(i)\right\|=\left\|\sum_{i=k_{\varepsilon}+1}^{\infty} e^{-r t} \frac{(r t)^{i}}{i!} \cdot \underline{p}(i)\right\|
$$

- Strategy: choose k_{ε} minimal such that:

$$
\sum_{i=k_{\varepsilon+1}}^{\infty} e^{-r t} \frac{(r t)^{i}}{i!}=\sum_{i=0}^{\infty} e^{-r t} \frac{(r t)^{i}}{i!}-\sum_{i=0}^{k_{\varepsilon}} e^{-r t} \frac{(r t)^{i}}{i!}
$$

Truncating the infinite sum

Computing transient probabilities

$$
\underline{p}(t)=\underline{p}(0) \cdot \sum_{i=0}^{\infty} e^{-r \cdot t} \frac{(r \cdot t)^{i}}{i!} \cdot \overline{\mathbf{P}}^{i}
$$

- Summation can be truncated a priori for a given error bound $\varepsilon>0$.
- The error that is introduced by truncating at summand k_{ε} is:

$$
\left\|\sum_{i=0}^{\infty} e^{-r t} \frac{(r t)^{i}}{i!} \cdot \underline{p}(i)-\sum_{i=0}^{k_{\varepsilon}} e^{-r t} \frac{(r t)^{i}}{i!} \cdot \underline{p}(i)\right\|=\left\|\sum_{i=k_{\varepsilon}+1}^{\infty} e^{-r t} \frac{(r t)^{i}}{i!} \cdot \underline{p}(i)\right\|
$$

- Strategy: choose k_{ε} minimal such that:

$$
\sum_{i=k_{\varepsilon+1}}^{\infty} e^{-r t} \frac{(r t)^{i}}{i!}=\sum_{i=0}^{\infty} e^{-r t} \frac{(r t)^{i}}{i!}-\sum_{i=0}^{k_{\varepsilon}} e^{-r t} \frac{(r t)^{i}}{i!}=1-\sum_{i=0}^{k_{\varepsilon}} e^{-r t} \frac{(r t)^{i}}{i!}
$$

Truncating the infinite sum

Computing transient probabilities

$$
\underline{p}(t)=\underline{p}(0) \cdot \sum_{i=0}^{\infty} e^{-r \cdot t} \frac{(r \cdot t)^{i}}{i!} \cdot \overline{\mathbf{P}}^{i}
$$

- Summation can be truncated a priori for a given error bound $\varepsilon>0$.
- The error that is introduced by truncating at summand k_{ε} is:

$$
\left\|\sum_{i=0}^{\infty} e^{-r t} \frac{(r t)^{i}}{i!} \cdot \underline{p}(i)-\sum_{i=0}^{k_{\varepsilon}} e^{-r t} \frac{(r t)^{i}}{i!} \cdot \underline{p}(i)\right\|=\left\|\sum_{i=k_{\varepsilon}+1}^{\infty} e^{-r t} \frac{(r t)^{i}}{i!} \cdot \underline{p}(i)\right\|
$$

- Strategy: choose k_{ε} minimal such that:

$$
\sum_{i=k_{\varepsilon+1}}^{\infty} e^{-r t} \frac{(r t)^{i}}{i!}=\sum_{i=0}^{\infty} e^{-r t} \frac{(r t)^{i}}{i!}-\sum_{i=0}^{k_{\varepsilon}} e^{-r t} \frac{(r t)^{i}}{i!}=1-\sum_{i=0}^{k_{\varepsilon}} e^{-r t} \frac{(r t)^{i}}{i!} \leqslant \varepsilon
$$

$$
\sum_{i=0}^{\infty} e^{-r t} \frac{(r t)^{i}}{i!}=1 \text { due to the fact that } e^{-r t} \frac{(r t)^{i}}{i!} \text { is a (Poisson) distribution }
$$

Overview

(1) Recall: continuous-time Markov chains
(2) Transient distribution
(3) Uniformization

4 Strong and weak bisimulation
(5) Computing transient probabilities
(6) Summary

Summary

Main points

Summary

Main points

- Bisimilar states are equally labelled and their cumulative rate to any equivalence class coincides.

Summary

Main points

- Bisimilar states are equally labelled and their cumulative rate to any equivalence class coincides.
- Weak bisimilar states have equal conditional probabilities to move to some equivalence class, and can either both leave their class or both can't.

Summary

Main points

- Bisimilar states are equally labelled and their cumulative rate to any equivalence class coincides.
- Weak bisimilar states have equal conditional probabilities to move to some equivalence class, and can either both leave their class or both can't.
- Uniformization normalizes the exit rates of all states in a CTMC.

Summary

Main points

- Bisimilar states are equally labelled and their cumulative rate to any equivalence class coincides.
- Weak bisimilar states have equal conditional probabilities to move to some equivalence class, and can either both leave their class or both can't.
- Uniformization normalizes the exit rates of all states in a CTMC.
- Uniformization transforms a CTMC into a weak bisimilar one.

Summary

Main points

- Bisimilar states are equally labelled and their cumulative rate to any equivalence class coincides.
- Weak bisimilar states have equal conditional probabilities to move to some equivalence class, and can either both leave their class or both can't.
- Uniformization normalizes the exit rates of all states in a CTMC.
- Uniformization transforms a CTMC into a weak bisimilar one.
- Transient distribution are obtained by solving a system of linear differential equations.

Summary

Main points

- Bisimilar states are equally labelled and their cumulative rate to any equivalence class coincides.
- Weak bisimilar states have equal conditional probabilities to move to some equivalence class, and can either both leave their class or both can't.
- Uniformization normalizes the exit rates of all states in a CTMC.
- Uniformization transforms a CTMC into a weak bisimilar one.
- Transient distribution are obtained by solving a system of linear differential equations.
- These equations can be solved conveniently on the uniformized CTMC.

