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Negative exponential distribution

Time in discrete-time Markov chains
The advance of time in DTMCs

I Time in a DTMC proceeds in discrete steps
I Two possible interpretations:

1. accurate model of (discrete) time units
I e.g., clock ticks in model of an embedded device

2. time-abstract
I no information assumed about the time transitions take

I State residence time is geometrically distributed

Continuous-time Markov chains
I dense model of time
I transitions can occur at any (real-valued) time instant
I state residence time is (negative) exponentially distributed
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Negative exponential distribution

Continuous random variables

I X is a random variable (r.v., for short)
I on a sample space with probability measure Pr
I assume the set of possible values that X may take is dense

I X is continuously distributed if there exists a function f (x) such that:

Fx (d) = Pr{X 6 d} =
∫ d

−∞
f (x) dx for each real number d

where f satisfies: f (x) > 0 for all x and
∫ ∞
−∞

f (x) dx = 1

I FX (d) is the (cumulative) probability distribution function
I f (x) is the probability density function
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Negative exponential distribution

Negative exponential distribution

Density of exponential distribution
The density of an exponentially distributed r.v. Y with rate λ ∈ R>0 is:

fY (x) = λ·e−λ·x for x > 0 and fY (x) = 0 otherwise

The cumulative distribution of r.v. Y with rate λ ∈ R>0 is:

FY (d) =
∫ d

0
λ·e−λ·x dx = [−e−λ·x ]d0 = 1− e−λ·d .

The rate λ ∈ R>0 uniquely determines an exponential distribution.

Variance and expectation
Let r.v. Y be exponentially distributed with rate λ ∈ R>0. Then:
I Expectation E [Y ] =

∫∞
0 x ·λ·e−λ·x dx = 1

λ

I Variance Var[Y ] =
∫∞
0 (x − E [X ])2λ·e−λ·x dx = 1

λ2
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Negative exponential distribution

Exponential pdf and cdf

probability density function cumulative distribution function

The higher λ, the faster the cdf approaches 1.
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Negative exponential distribution

Why exponential distributions?

I Are adequate for many real-life phenomena
I the time until a radioactive particle decays
I the time between successive car accidents
I inter-arrival times of jobs, telephone calls in a fixed interval

I Are the continuous counterpart of the geometric distribution

I Heavily used in physics, performance, and reliability analysis

I Can approximate general distributions arbitrarily closely

I Yield a maximal entropy if only the mean is known
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Negative exponential distribution

Memoryless property
Theorem

1. For any exponentially distributed random variable X :

Pr{X > t + d | X > t} = Pr{X > d} for any t, d ∈ R>0.

2. Any cdf which is memoryless is a negative exponential one.

Proof:
Proof of 1. : Let λ be the rate of X ’s distribution. Then we derive:

Pr{X > t + d | X > t} = Pr{X > t+d ∩ X > t}
Pr{X > t} = Pr{X > t+d}

Pr{X > t}

= e−λ·(t+d)

e−λ·t = e−λ·d = Pr{X > d}.

Proof of 2. : By contraposition, using the total law of probability.
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Negative exponential distribution

Property 1: Closure under minimum

Minimum closure theorem
For independent, exponentially distributed random variables X and Y with
rates λ,µ ∈ R>0, the r.v. min(X ,Y ) is exponentially distributed with rate
λ+µ, i.e.,:

Pr{min(X ,Y ) 6 t} = 1− e−(λ+µ)·t for all t ∈ R>0.

Proof:
On the blackboard.
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Negative exponential distribution

Proof

Let λ (µ) be the rate of X ’s (Y ’s) distribution.

Then we derive:

Pr{min(X ,Y ) 6 t} = PrX ,Y {(x , y) ∈ R2
>0 | min(x , y) 6 t}

=
∫ ∞
0

(∫ ∞
0

Imin(x ,y)6t(x , y) · λe−λx · µe−µy dy
)

dx

=
∫ t

0

∫ ∞
x

λe−λx · µe−µy dy dx +
∫ t

0

∫ ∞
y

λe−λx · µe−µy dx dy

=
∫ t

0
λe−λx · e−µx dx +

∫ t

0
e−λy · µe−µy dy

=
∫ t

0
λe−(λ+µ)x dx +

∫ t

0
µe−(λ+µ)y dy

=
∫ t

0
(λ+µ) · e−(λ+µ)z dz = 1− e−(λ+µ)t
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Negative exponential distribution

Property 1: Closure under minimum

Minimum closure theorem for several exponentially distributed r.v.’s
For independent, exponentially distributed random variables X1,X2, . . . ,Xn
with rates λ1,λ2, . . . ,λn ∈ R>0 the r.v. min(X1,X2, . . . ,Xn) is
exponentially distributed with rate

∑
0<i6n λi , i.e.,:

Pr{min(X1,X2, . . . ,Xn) 6 t} = 1− e−
∑

0<i6n λi ·t for all t ∈ R>0.

Proof:
Generalization of the proof for the case of two exponential distributions.
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Negative exponential distribution

Property 2: Winning the race with two competitors

The minimum of two exponential distributions
For independent, exponentially distributed random variables X and Y with
rates λ,µ ∈ R>0, it holds:

Pr{X 6 Y } = λ

λ+µ.

Proof:
On the blackboard.
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Negative exponential distribution

Proof

Let λ (µ) be the rate of X ’s (Y ’s) distribution.

Then we derive:

Pr{X 6 Y } = PrX ,Y {(x , y) ∈ R2
>0 | x 6 y}

=
∫ ∞
0

µe−µy
(∫ y

0
λe−λx dx

)
dy

=
∫ ∞
0

µe−µy (1− e−λy) dy

= 1−
∫ ∞
0

µe−µy ·e−λy dy = 1−
∫ ∞
0

µe−(µ+λ)y dy

= 1− µ

µ+λ ·
∫ ∞
0

(µ+λ)e−(µ+λ)y dy︸ ︷︷ ︸
=1

= 1− µ

µ+λ = λ

µ+λ
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Negative exponential distribution

Property 2: Winning the race with many
competitors

The minimum of several exponentially distributed r.v.’s
For independent, exponentially distributed random variables X1,X2, . . . ,Xn
with rates λ1,λ2, . . . ,λn ∈ R>0 it holds:

Pr{Xi = min(X1, . . . ,Xn)} = λi∑n
j=1 λj

.

Proof:
Generalization of the proof for the case of two exponential distributions.
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Continuous-time Markov chains

Overview

1 Negative exponential distribution

2 Continuous-time Markov chains

3 Summary
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Continuous-time Markov chains

Continuous-time Markov chains

I Continuous-time Markov chains
I labeled transition systems augmented with rates
I discrete state space
I continuous time steps
I delays exponentially distributed

I Suited to modelling
I reliability models
I control systems
I queueing networks
I biological pathways
I chemical reactions
I . . .
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Continuous-time Markov chains

Continuous-time Markov chain

Continuous-time Markov chain
A CTMC is a tuple (S,P, r , ιinit,AP, L) where
I (S,P, ιinit,AP, L) is a DTMC, and
I r : S → R>0, the exit-rate function

Interpretation

I residence time in state s is exponentially distributed with rate r(s).
I phrased alternatively, the average residence time of state s is 1

r(s) .
I thus, the higher the rate r(s), the shorter the average residence time

in s.
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Continuous-time Markov chains

Example

r(s) = 25, r(t) = 4, r(u) = 2 and r(v) = 100
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Continuous-time Markov chains

Example: a classical perspective

r(s) = 25, r(t) = 4, r(u) = 2 and r(v) = 100
The transition rate R(s, s ′) = P(s, s ′)·r(s)

We use (S,P, r , ιinit,AP, L) and (S,R, ιinit,AP, L) interchangeably.
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Continuous-time Markov chains

CTMC semantics by example
CTMC semantics

I Transition s → s ′ := r.v. Xs,s′ with rate R(s, s ′)
I Probability to go from state s0 to, say, state s2 is:

Pr{Xs0,s2 6 Xs0,s1 ∩ Xs0,s2 6 Xs0,s3}
=

R(s0, s2)
R(s0, s1) + R(s0, s2) + R(s0, s3) = R(s0, s2)

r(s0)

I Probability of staying at most t time in s0 is:

Pr{min(Xs0,s1 ,Xs0,s2 ,Xs0,s3) 6 t}
=

1− e−(R(s0,s1)+R(s0,s2)+R(s0,s3))·t = 1− e−r(s0)·t
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Continuous-time Markov chains

Simple CTMC example

Modelling a queue of jobs
I initially the queue is empty
I jobs arrive with rate 3/2 (i. e., mean inter-arrival time is 2/3)
I jobs are served with rate 3 (i. e., mean service time is 1/3)
I maximum size of the queue is 3
I state space S = {si | 0 6 i 6 3} where si indicates i jobs in queue.

s0start s1 s2 s3
{empty} {full}3/2 3/2

3

3/2

3 3
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Continuous-time Markov chains

CTMC semantics

Enabledness
The probability that transition s → s ′ is enabled in [0, t] is 1− e−R(s,s′)·t .

State-to-state timed transition probability
The probability to move from non-absorbing s to s ′ in [0, t] is:

R(s, s ′)
r(s) ·

(
1− e−r(s)·t

)
.

Residence time distribution
The probability to take some outgoing transition from s in [0, t] is:∫ t

0
r(s)·e−r(s)·x dx = 1− e−r(s)·t
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Continuous-time Markov chains

CTMC semantics

State-to-state timed transition probability
The probability to move from non-absorbing s to s ′ in [0, t] is:

R(s, s ′)
r(s) ·

(
1− e−r(s)·t

)
.

Proof:
On the blackboard.
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Continuous-time Markov chains

CTMC semantics

Residence time distribution
The probability to take some outgoing transition from s in [0, t] is:∫ t
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Continuous-time Markov chains
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Continuous-time Markov chains

Enzyme-catalysed substrate conversion

Source: wikipedia (June 2011)
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Continuous-time Markov chains

Stochastic chemical kinetics

I Types of reaction described by stochiometric equations:
E + S

k1


k2

ES k3−−→E + P

I N different types of molecules that randomly collide
where state X (t) = (x1, . . . , xN) with xi = # molecules of sort i

I Reaction probability within infinitesimal interval [t, t+∆):

αm(~x) ·∆ = Pr{reaction m in [t, t+∆) | X (t) = ~x} where

αm(~x) = km · # possible combinations of reactant molecules in ~x

I This process is a continuous-time Markov chain.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 26/30



Continuous-time Markov chains

Stochastic chemical kinetics

I Types of reaction described by stochiometric equations:
E + S

k1


k2

ES k3−−→E + P

I N different types of molecules that randomly collide
where state X (t) = (x1, . . . , xN) with xi = # molecules of sort i

I Reaction probability within infinitesimal interval [t, t+∆):

αm(~x) ·∆ = Pr{reaction m in [t, t+∆) | X (t) = ~x} where

αm(~x) = km · # possible combinations of reactant molecules in ~x

I This process is a continuous-time Markov chain.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 26/30



Continuous-time Markov chains

Stochastic chemical kinetics

I Types of reaction described by stochiometric equations:
E + S

k1


k2

ES k3−−→E + P

I N different types of molecules that randomly collide
where state X (t) = (x1, . . . , xN) with xi = # molecules of sort i

I Reaction probability within infinitesimal interval [t, t+∆):

αm(~x) ·∆ = Pr{reaction m in [t, t+∆) | X (t) = ~x} where

αm(~x) = km · # possible combinations of reactant molecules in ~x

I This process is a continuous-time Markov chain.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 26/30



Continuous-time Markov chains

Stochastic chemical kinetics

I Types of reaction described by stochiometric equations:
E + S

k1


k2

ES k3−−→E + P

I N different types of molecules that randomly collide
where state X (t) = (x1, . . . , xN) with xi = # molecules of sort i

I Reaction probability within infinitesimal interval [t, t+∆):

αm(~x) ·∆ = Pr{reaction m in [t, t+∆) | X (t) = ~x} where

αm(~x) = km · # possible combinations of reactant molecules in ~x

I This process is a continuous-time Markov chain.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 26/30



Continuous-time Markov chains

Enzyme-catalyzed substrate conversion as a CTMC
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Continuous-time Markov chains

CTMCs are omnipresent!

I Markovian queueing networks (Kleinrock 1975)

I Stochastic Petri nets (Molloy 1977)

I Stochastic activity networks (Meyer & Sanders 1985)

I Stochastic process algebra (Herzog et al., Hillston 1993)

I Probabilistic input/output automata (Smolka et al. 1994)

I Calculi for biological systems (Priami et al., Cardelli 2002)

CTMCs are one of the most prominent models in performance analysis
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Summary

Summary

Main points

I Exponential distributions are closed under minimum.
I The probability to win a race amongst several exponential

distributions only depends on their rates.
I A CTMC is a DTMC where state residence times are exponentially

distributed.
I CTMC semantics distinguishes between enabledness and taking a

transition.
I CTMCs are frequently used as semantical model for high-level

formalisms.
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