
Modeling and Verification of Probabilistic Systems

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

http://moves.rwth-aachen.de/teaching/ws-1516/movep15/

December 2, 2015

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 1/36

http://moves.rwth-aachen.de/teaching/ws-1516/movep15/

Probabilistic Computation Tree Logic

I PCTL is a language for formally specifying properties over DTMCs.
I It can also be used to specify properties over MDPs.
I It is a branching-time temporal logic based on CTL.
I Formula interpretation is Boolean, i.e., a state satisfies a formula or

not.
I The main operator is PJ(ϕ)

I where ϕ constrains the set of paths and J is a threshold on the
probability.

I it is the probabilistic counterpart of ∃ and ∀ path-quantifiers in CTL.
I ranges over all possible resolutions of nondeterminism.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 2/36

Probabilistic Computation Tree Logic

I PCTL is a language for formally specifying properties over DTMCs.

I It can also be used to specify properties over MDPs.
I It is a branching-time temporal logic based on CTL.
I Formula interpretation is Boolean, i.e., a state satisfies a formula or

not.
I The main operator is PJ(ϕ)

I where ϕ constrains the set of paths and J is a threshold on the
probability.

I it is the probabilistic counterpart of ∃ and ∀ path-quantifiers in CTL.
I ranges over all possible resolutions of nondeterminism.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 2/36

Probabilistic Computation Tree Logic

I PCTL is a language for formally specifying properties over DTMCs.
I It can also be used to specify properties over MDPs.

I It is a branching-time temporal logic based on CTL.
I Formula interpretation is Boolean, i.e., a state satisfies a formula or

not.
I The main operator is PJ(ϕ)

I where ϕ constrains the set of paths and J is a threshold on the
probability.

I it is the probabilistic counterpart of ∃ and ∀ path-quantifiers in CTL.
I ranges over all possible resolutions of nondeterminism.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 2/36

Probabilistic Computation Tree Logic

I PCTL is a language for formally specifying properties over DTMCs.
I It can also be used to specify properties over MDPs.
I It is a branching-time temporal logic based on CTL.

I Formula interpretation is Boolean, i.e., a state satisfies a formula or
not.

I The main operator is PJ(ϕ)
I where ϕ constrains the set of paths and J is a threshold on the

probability.
I it is the probabilistic counterpart of ∃ and ∀ path-quantifiers in CTL.
I ranges over all possible resolutions of nondeterminism.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 2/36

Probabilistic Computation Tree Logic

I PCTL is a language for formally specifying properties over DTMCs.
I It can also be used to specify properties over MDPs.
I It is a branching-time temporal logic based on CTL.
I Formula interpretation is Boolean, i.e., a state satisfies a formula or

not.

I The main operator is PJ(ϕ)
I where ϕ constrains the set of paths and J is a threshold on the

probability.
I it is the probabilistic counterpart of ∃ and ∀ path-quantifiers in CTL.
I ranges over all possible resolutions of nondeterminism.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 2/36

Probabilistic Computation Tree Logic

I PCTL is a language for formally specifying properties over DTMCs.
I It can also be used to specify properties over MDPs.
I It is a branching-time temporal logic based on CTL.
I Formula interpretation is Boolean, i.e., a state satisfies a formula or

not.
I The main operator is PJ(ϕ)

I where ϕ constrains the set of paths and J is a threshold on the
probability.

I it is the probabilistic counterpart of ∃ and ∀ path-quantifiers in CTL.
I ranges over all possible resolutions of nondeterminism.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 2/36

Probabilistic Computation Tree Logic

I PCTL is a language for formally specifying properties over DTMCs.
I It can also be used to specify properties over MDPs.
I It is a branching-time temporal logic based on CTL.
I Formula interpretation is Boolean, i.e., a state satisfies a formula or

not.
I The main operator is PJ(ϕ)

I where ϕ constrains the set of paths and J is a threshold on the
probability.

I it is the probabilistic counterpart of ∃ and ∀ path-quantifiers in CTL.

I ranges over all possible resolutions of nondeterminism.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 2/36

Probabilistic Computation Tree Logic

I PCTL is a language for formally specifying properties over DTMCs.
I It can also be used to specify properties over MDPs.
I It is a branching-time temporal logic based on CTL.
I Formula interpretation is Boolean, i.e., a state satisfies a formula or

not.
I The main operator is PJ(ϕ)

I where ϕ constrains the set of paths and J is a threshold on the
probability.

I it is the probabilistic counterpart of ∃ and ∀ path-quantifiers in CTL.
I ranges over all possible resolutions of nondeterminism.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 2/36

PCTL syntax [Bianco & De Alfaro, 1995]

Probabilistic Computation Tree Logic: Syntax
PCTL consists of state- and path-formulas.

I PCTL state formulas over the set AP obey the grammar:

Φ ::= true
∣∣∣ a

∣∣∣ Φ1 ∧ Φ2
∣∣∣ ¬Φ

∣∣∣ PJ(ϕ)

where a ∈ AP, ϕ is a path formula and J ⊆ [0, 1], J 6= ∅ is a
non-empty interval.

I PCTL path formulae are formed according to the following grammar:

ϕ ::= ©Φ
∣∣∣ Φ1 UΦ2

∣∣∣ Φ1 U6n Φ2

where Φ, Φ1, and Φ2 are state formulae and n ∈ IN.
Abbreviate P[0,0.5](ϕ) by P60.5(ϕ) and P]0,1](ϕ) by P>0(ϕ).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 3/36

PCTL syntax [Bianco & De Alfaro, 1995]

Probabilistic Computation Tree Logic: Syntax
PCTL consists of state- and path-formulas.
I PCTL state formulas over the set AP obey the grammar:

Φ ::= true
∣∣∣ a

∣∣∣ Φ1 ∧ Φ2
∣∣∣ ¬Φ

∣∣∣ PJ(ϕ)

where a ∈ AP, ϕ is a path formula and J ⊆ [0, 1], J 6= ∅ is a
non-empty interval.

I PCTL path formulae are formed according to the following grammar:

ϕ ::= ©Φ
∣∣∣ Φ1 UΦ2

∣∣∣ Φ1 U6n Φ2

where Φ, Φ1, and Φ2 are state formulae and n ∈ IN.
Abbreviate P[0,0.5](ϕ) by P60.5(ϕ) and P]0,1](ϕ) by P>0(ϕ).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 3/36

PCTL syntax [Bianco & De Alfaro, 1995]

Probabilistic Computation Tree Logic: Syntax
PCTL consists of state- and path-formulas.
I PCTL state formulas over the set AP obey the grammar:

Φ ::= true
∣∣∣ a

∣∣∣ Φ1 ∧ Φ2
∣∣∣ ¬Φ

∣∣∣ PJ(ϕ)

where a ∈ AP, ϕ is a path formula and J ⊆ [0, 1], J 6= ∅ is a
non-empty interval.

I PCTL path formulae are formed according to the following grammar:

ϕ ::= ©Φ
∣∣∣ Φ1 UΦ2

∣∣∣ Φ1 U6n Φ2

where Φ, Φ1, and Φ2 are state formulae and n ∈ IN.

Abbreviate P[0,0.5](ϕ) by P60.5(ϕ) and P]0,1](ϕ) by P>0(ϕ).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 3/36

PCTL syntax [Bianco & De Alfaro, 1995]

Probabilistic Computation Tree Logic: Syntax
PCTL consists of state- and path-formulas.
I PCTL state formulas over the set AP obey the grammar:

Φ ::= true
∣∣∣ a

∣∣∣ Φ1 ∧ Φ2
∣∣∣ ¬Φ

∣∣∣ PJ(ϕ)

where a ∈ AP, ϕ is a path formula and J ⊆ [0, 1], J 6= ∅ is a
non-empty interval.

I PCTL path formulae are formed according to the following grammar:

ϕ ::= ©Φ
∣∣∣ Φ1 UΦ2

∣∣∣ Φ1 U6n Φ2

where Φ, Φ1, and Φ2 are state formulae and n ∈ IN.
Abbreviate P[0,0.5](ϕ) by P60.5(ϕ) and P]0,1](ϕ) by P>0(ϕ).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 3/36

Probabilistic Computation Tree Logic

I PCTL state formulas over the set AP obey the grammar:

Φ ::= true
∣∣∣ a

∣∣∣ Φ1 ∧ Φ2
∣∣∣ ¬Φ

∣∣∣ PJ(ϕ)

where a ∈ AP, ϕ is a path formula and J ⊆ [0, 1], J 6= ∅.
I PCTL path formulae are formed according to the following grammar:

ϕ ::= ©Φ
∣∣∣ Φ1 UΦ2

∣∣∣ Φ1 U6n Φ2 where n ∈ IN.

Intuitive semantics
I s0α0s1α1s2α2 . . . |= ΦU6n Ψ if Φ holds until Ψ holds within n steps

(where siαi+1 is a single step).
I s |= PJ(ϕ) if the probability under all policies that paths starting in s

fulfill ϕ lies in J .

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 4/36

Probabilistic Computation Tree Logic

I PCTL state formulas over the set AP obey the grammar:

Φ ::= true
∣∣∣ a

∣∣∣ Φ1 ∧ Φ2
∣∣∣ ¬Φ

∣∣∣ PJ(ϕ)

where a ∈ AP, ϕ is a path formula and J ⊆ [0, 1], J 6= ∅.
I PCTL path formulae are formed according to the following grammar:

ϕ ::= ©Φ
∣∣∣ Φ1 UΦ2

∣∣∣ Φ1 U6n Φ2 where n ∈ IN.

Intuitive semantics

I s0α0s1α1s2α2 . . . |= ΦU6n Ψ if Φ holds until Ψ holds within n steps
(where siαi+1 is a single step).

I s |= PJ(ϕ) if the probability under all policies that paths starting in s
fulfill ϕ lies in J .

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 4/36

Probabilistic Computation Tree Logic

I PCTL state formulas over the set AP obey the grammar:

Φ ::= true
∣∣∣ a

∣∣∣ Φ1 ∧ Φ2
∣∣∣ ¬Φ

∣∣∣ PJ(ϕ)

where a ∈ AP, ϕ is a path formula and J ⊆ [0, 1], J 6= ∅.
I PCTL path formulae are formed according to the following grammar:

ϕ ::= ©Φ
∣∣∣ Φ1 UΦ2

∣∣∣ Φ1 U6n Φ2 where n ∈ IN.

Intuitive semantics
I s0α0s1α1s2α2 . . . |= ΦU6n Ψ if Φ holds until Ψ holds within n steps

(where siαi+1 is a single step).

I s |= PJ(ϕ) if the probability under all policies that paths starting in s
fulfill ϕ lies in J .

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 4/36

Probabilistic Computation Tree Logic

I PCTL state formulas over the set AP obey the grammar:

Φ ::= true
∣∣∣ a

∣∣∣ Φ1 ∧ Φ2
∣∣∣ ¬Φ

∣∣∣ PJ(ϕ)

where a ∈ AP, ϕ is a path formula and J ⊆ [0, 1], J 6= ∅.
I PCTL path formulae are formed according to the following grammar:

ϕ ::= ©Φ
∣∣∣ Φ1 UΦ2

∣∣∣ Φ1 U6n Φ2 where n ∈ IN.

Intuitive semantics
I s0α0s1α1s2α2 . . . |= ΦU6n Ψ if Φ holds until Ψ holds within n steps

(where siαi+1 is a single step).
I s |= PJ(ϕ) if the probability under all policies that paths starting in s

fulfill ϕ lies in J .
Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 4/36

PCTL Semantics

Overview

1 PCTL Semantics

2 PCTL Model Checking

3 Complexity

4 Example: Dining Cryptographers Problem

5 Fairness

6 Summary

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 5/36

PCTL Semantics

Markov decision process (MDP)

Markov decision process
An MDPM is a tuple (S,Act,P, ιinit,AP, L) where
I S is a countable set of states with initial distribution ιinit : S → [0, 1]
I Act is a finite set of actions
I P : S × Act× S → [0, 1], transition probability function such that:

for all s ∈ S and α ∈ Act :
∑
s′∈S

P(s,α, s ′) ∈ { 0, 1 }

I AP is a set of atomic propositions and labeling L : S → 2AP.

Assumption: in each state at least one action is enabled.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 6/36

PCTL Semantics

Markov decision process (MDP)

Markov decision process
An MDPM is a tuple (S,Act,P, ιinit,AP, L) where
I S is a countable set of states with initial distribution ιinit : S → [0, 1]

I Act is a finite set of actions
I P : S × Act× S → [0, 1], transition probability function such that:

for all s ∈ S and α ∈ Act :
∑
s′∈S

P(s,α, s ′) ∈ { 0, 1 }

I AP is a set of atomic propositions and labeling L : S → 2AP.

Assumption: in each state at least one action is enabled.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 6/36

PCTL Semantics

Markov decision process (MDP)

Markov decision process
An MDPM is a tuple (S,Act,P, ιinit,AP, L) where
I S is a countable set of states with initial distribution ιinit : S → [0, 1]
I Act is a finite set of actions

I P : S × Act× S → [0, 1], transition probability function such that:

for all s ∈ S and α ∈ Act :
∑
s′∈S

P(s,α, s ′) ∈ { 0, 1 }

I AP is a set of atomic propositions and labeling L : S → 2AP.

Assumption: in each state at least one action is enabled.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 6/36

PCTL Semantics

Markov decision process (MDP)

Markov decision process
An MDPM is a tuple (S,Act,P, ιinit,AP, L) where
I S is a countable set of states with initial distribution ιinit : S → [0, 1]
I Act is a finite set of actions
I P : S × Act× S → [0, 1], transition probability function

such that:

for all s ∈ S and α ∈ Act :
∑
s′∈S

P(s,α, s ′) ∈ { 0, 1 }

I AP is a set of atomic propositions and labeling L : S → 2AP.

Assumption: in each state at least one action is enabled.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 6/36

PCTL Semantics

Markov decision process (MDP)

Markov decision process
An MDPM is a tuple (S,Act,P, ιinit,AP, L) where
I S is a countable set of states with initial distribution ιinit : S → [0, 1]
I Act is a finite set of actions
I P : S × Act× S → [0, 1], transition probability function such that:

for all s ∈ S and α ∈ Act :
∑
s′∈S

P(s,α, s ′) ∈ { 0, 1 }

I AP is a set of atomic propositions and labeling L : S → 2AP.

Assumption: in each state at least one action is enabled.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 6/36

PCTL Semantics

Markov decision process (MDP)

Markov decision process
An MDPM is a tuple (S,Act,P, ιinit,AP, L) where
I S is a countable set of states with initial distribution ιinit : S → [0, 1]
I Act is a finite set of actions
I P : S × Act× S → [0, 1], transition probability function such that:

for all s ∈ S and α ∈ Act :
∑
s′∈S

P(s,α, s ′) ∈ { 0, 1 }

I AP is a set of atomic propositions and labeling L : S → 2AP.

Assumption: in each state at least one action is enabled.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 6/36

PCTL Semantics

Markov decision process (MDP)

Markov decision process
An MDPM is a tuple (S,Act,P, ιinit,AP, L) where
I S is a countable set of states with initial distribution ιinit : S → [0, 1]
I Act is a finite set of actions
I P : S × Act× S → [0, 1], transition probability function such that:

for all s ∈ S and α ∈ Act :
∑
s′∈S

P(s,α, s ′) ∈ { 0, 1 }

I AP is a set of atomic propositions and labeling L : S → 2AP.

Assumption: in each state at least one action is enabled.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 6/36

PCTL Semantics

PCTL semantics (1)

Notation
M, s |= Φ if and only if state-formula Φ holds in state s of (possibly
infinite) MDPM. AsM is known from the context we simply write
s |= Φ.

Satisfaction relation for state formulas
The satisfaction relation |= is defined for PCTL state formulas by:

s |= a iff a ∈ L(s)
s |= ¬Φ iff not (s |= Φ)
s |= Φ ∧ Ψ iff (s |= Φ) and (s |= Ψ)
s |= PJ(ϕ) iff for all policies S onM.PrS(s |= ϕ) ∈ J

where PrS(s |= ϕ) = PrSs {π ∈ Paths(s) | π |= ϕ }.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 7/36

PCTL Semantics

PCTL semantics (1)
Notation
M, s |= Φ if and only if state-formula Φ holds in state s of (possibly
infinite) MDPM. AsM is known from the context we simply write
s |= Φ.

Satisfaction relation for state formulas
The satisfaction relation |= is defined for PCTL state formulas by:

s |= a iff a ∈ L(s)
s |= ¬Φ iff not (s |= Φ)
s |= Φ ∧ Ψ iff (s |= Φ) and (s |= Ψ)
s |= PJ(ϕ) iff for all policies S onM.PrS(s |= ϕ) ∈ J

where PrS(s |= ϕ) = PrSs {π ∈ Paths(s) | π |= ϕ }.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 7/36

PCTL Semantics

PCTL semantics (1)
Notation
M, s |= Φ if and only if state-formula Φ holds in state s of (possibly
infinite) MDPM. AsM is known from the context we simply write
s |= Φ.

Satisfaction relation for state formulas
The satisfaction relation |= is defined for PCTL state formulas by:

s |= a iff a ∈ L(s)
s |= ¬Φ iff not (s |= Φ)
s |= Φ ∧ Ψ iff (s |= Φ) and (s |= Ψ)

s |= PJ(ϕ) iff for all policies S onM.PrS(s |= ϕ) ∈ J

where PrS(s |= ϕ) = PrSs {π ∈ Paths(s) | π |= ϕ }.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 7/36

PCTL Semantics

PCTL semantics (1)
Notation
M, s |= Φ if and only if state-formula Φ holds in state s of (possibly
infinite) MDPM. AsM is known from the context we simply write
s |= Φ.

Satisfaction relation for state formulas
The satisfaction relation |= is defined for PCTL state formulas by:

s |= a iff a ∈ L(s)
s |= ¬Φ iff not (s |= Φ)
s |= Φ ∧ Ψ iff (s |= Φ) and (s |= Ψ)
s |= PJ(ϕ) iff for all policies S onM.PrS(s |= ϕ) ∈ J

where PrS(s |= ϕ) = PrSs {π ∈ Paths(s) | π |= ϕ }.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 7/36

PCTL Semantics

Semantics of P-operator

The probabilistic operator PJ(·) imposes probability bounds for all policies.
In particular, we have

s |= P6p(ϕ) iff Prmax(s |= ϕ) 6 p iff supS PrS(s |= ϕ) 6 p

and, dually,

s |= P>p(ϕ) iff Prmin(s |= ϕ) > p iff infS PrS(s |= ϕ) > p.

For finite MDPs we have:

Prmax(s |= ϕ) = maxSPrS(s |= ϕ) and Prmin(s |= ϕ) = minSPrS(s |= ϕ)

as for any finite MDP an fm-policy exists that maximises or minimises ϕ.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 8/36

PCTL Semantics

Semantics of P-operator

The probabilistic operator PJ(·) imposes probability bounds for all policies.

In particular, we have

s |= P6p(ϕ) iff Prmax(s |= ϕ) 6 p iff supS PrS(s |= ϕ) 6 p

and, dually,

s |= P>p(ϕ) iff Prmin(s |= ϕ) > p iff infS PrS(s |= ϕ) > p.

For finite MDPs we have:

Prmax(s |= ϕ) = maxSPrS(s |= ϕ) and Prmin(s |= ϕ) = minSPrS(s |= ϕ)

as for any finite MDP an fm-policy exists that maximises or minimises ϕ.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 8/36

PCTL Semantics

Semantics of P-operator

The probabilistic operator PJ(·) imposes probability bounds for all policies.
In particular, we have

s |= P6p(ϕ) iff Prmax(s |= ϕ) 6 p iff supS PrS(s |= ϕ) 6 p

and, dually,

s |= P>p(ϕ) iff Prmin(s |= ϕ) > p iff infS PrS(s |= ϕ) > p.

For finite MDPs we have:

Prmax(s |= ϕ) = maxSPrS(s |= ϕ) and Prmin(s |= ϕ) = minSPrS(s |= ϕ)

as for any finite MDP an fm-policy exists that maximises or minimises ϕ.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 8/36

PCTL Semantics

Semantics of P-operator

The probabilistic operator PJ(·) imposes probability bounds for all policies.
In particular, we have

s |= P6p(ϕ) iff Prmax(s |= ϕ) 6 p iff supS PrS(s |= ϕ) 6 p

and, dually,

s |= P>p(ϕ) iff Prmin(s |= ϕ) > p iff infS PrS(s |= ϕ) > p.

For finite MDPs we have:

Prmax(s |= ϕ) = maxSPrS(s |= ϕ) and Prmin(s |= ϕ) = minSPrS(s |= ϕ)

as for any finite MDP an fm-policy exists that maximises or minimises ϕ.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 8/36

PCTL Semantics

Semantics of P-operator

The probabilistic operator PJ(·) imposes probability bounds for all policies.
In particular, we have

s |= P6p(ϕ) iff Prmax(s |= ϕ) 6 p iff supS PrS(s |= ϕ) 6 p

and, dually,

s |= P>p(ϕ) iff Prmin(s |= ϕ) > p iff infS PrS(s |= ϕ) > p.

For finite MDPs we have:

Prmax(s |= ϕ) = maxSPrS(s |= ϕ)

and Prmin(s |= ϕ) = minSPrS(s |= ϕ)

as for any finite MDP an fm-policy exists that maximises or minimises ϕ.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 8/36

PCTL Semantics

Semantics of P-operator

The probabilistic operator PJ(·) imposes probability bounds for all policies.
In particular, we have

s |= P6p(ϕ) iff Prmax(s |= ϕ) 6 p iff supS PrS(s |= ϕ) 6 p

and, dually,

s |= P>p(ϕ) iff Prmin(s |= ϕ) > p iff infS PrS(s |= ϕ) > p.

For finite MDPs we have:

Prmax(s |= ϕ) = maxSPrS(s |= ϕ) and Prmin(s |= ϕ) = minSPrS(s |= ϕ)

as for any finite MDP an fm-policy exists that maximises or minimises ϕ.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 8/36

PCTL Semantics

PCTL semantics (2)

Satisfaction relation for path formulas
Let π = s0 α0 s1 α1 s2 α2 . . . be an infinite path in (possibly infinite) MDP
M. Recall that π[i] = si denotes the (i+1)-st state along π.
The satisfaction relation |= is defined for state formulas by:

π |=©Φ iff s1 |= Φ
π |= ΦUΨ iff ∃k > 0.(π[k] |= Ψ ∧ ∀0 6 i < k. π[i] |= Φ)
π |= ΦU6n Ψ iff ∃k > 0.(k 6 n ∧ π[k] |= Ψ∧

∀0 6 i < k. π[i] |= Φ)

There is indeed no difference with the PCTL semantics for DTMC paths.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 9/36

PCTL Semantics

PCTL semantics (2)

Satisfaction relation for path formulas
Let π = s0 α0 s1 α1 s2 α2 . . . be an infinite path in (possibly infinite) MDP
M. Recall that π[i] = si denotes the (i+1)-st state along π.

The satisfaction relation |= is defined for state formulas by:

π |=©Φ iff s1 |= Φ
π |= ΦUΨ iff ∃k > 0.(π[k] |= Ψ ∧ ∀0 6 i < k. π[i] |= Φ)
π |= ΦU6n Ψ iff ∃k > 0.(k 6 n ∧ π[k] |= Ψ∧

∀0 6 i < k. π[i] |= Φ)

There is indeed no difference with the PCTL semantics for DTMC paths.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 9/36

PCTL Semantics

PCTL semantics (2)

Satisfaction relation for path formulas
Let π = s0 α0 s1 α1 s2 α2 . . . be an infinite path in (possibly infinite) MDP
M. Recall that π[i] = si denotes the (i+1)-st state along π.
The satisfaction relation |= is defined for state formulas by:

π |=©Φ iff s1 |= Φ

π |= ΦUΨ iff ∃k > 0.(π[k] |= Ψ ∧ ∀0 6 i < k. π[i] |= Φ)
π |= ΦU6n Ψ iff ∃k > 0.(k 6 n ∧ π[k] |= Ψ∧

∀0 6 i < k. π[i] |= Φ)

There is indeed no difference with the PCTL semantics for DTMC paths.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 9/36

PCTL Semantics

PCTL semantics (2)

Satisfaction relation for path formulas
Let π = s0 α0 s1 α1 s2 α2 . . . be an infinite path in (possibly infinite) MDP
M. Recall that π[i] = si denotes the (i+1)-st state along π.
The satisfaction relation |= is defined for state formulas by:

π |=©Φ iff s1 |= Φ
π |= ΦUΨ iff ∃k > 0.(π[k] |= Ψ ∧ ∀0 6 i < k. π[i] |= Φ)

π |= ΦU6n Ψ iff ∃k > 0.(k 6 n ∧ π[k] |= Ψ∧
∀0 6 i < k. π[i] |= Φ)

There is indeed no difference with the PCTL semantics for DTMC paths.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 9/36

PCTL Semantics

PCTL semantics (2)

Satisfaction relation for path formulas
Let π = s0 α0 s1 α1 s2 α2 . . . be an infinite path in (possibly infinite) MDP
M. Recall that π[i] = si denotes the (i+1)-st state along π.
The satisfaction relation |= is defined for state formulas by:

π |=©Φ iff s1 |= Φ
π |= ΦUΨ iff ∃k > 0.(π[k] |= Ψ ∧ ∀0 6 i < k. π[i] |= Φ)
π |= ΦU6n Ψ iff ∃k > 0.(k 6 n ∧ π[k] |= Ψ∧

∀0 6 i < k. π[i] |= Φ)

There is indeed no difference with the PCTL semantics for DTMC paths.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 9/36

PCTL Semantics

Equivalence of PCTL formulas

PCTL equivalence
Φ ≡MDP Ψ if and only if for all MDPsM, it holds: SatM(Φ) = SatM(Ψ).
Φ ≡MC Ψ if and only if for all DTMCs D, it holds: SatD(Φ) = SatD(Ψ).

Since any DTMC is an MDP, it follows: Φ ≡MDP Ψ implies Φ ≡MC Ψ.
The converse, however, does not hold. For instance, for p < 1, we have
P6p(ϕ) ≡MC ¬P>p(ϕ). But, P6p(ϕ) 6≡MDP ¬P>p(ϕ).

s |= P6p(ϕ) iff PrS(s |= ϕ) 6 p for all policies S, but
s |= ¬P>p(ϕ) iff not s |= P>p(ϕ)

iff not
(

PrS(s |= ϕ) > p for all policies S
)

iff PrS(s |= ϕ) 6 p for some policy S.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 10/36

PCTL Semantics

Equivalence of PCTL formulas

PCTL equivalence
Φ ≡MDP Ψ if and only if for all MDPsM, it holds: SatM(Φ) = SatM(Ψ).
Φ ≡MC Ψ if and only if for all DTMCs D, it holds: SatD(Φ) = SatD(Ψ).

Since any DTMC is an MDP, it follows: Φ ≡MDP Ψ implies Φ ≡MC Ψ.
The converse, however, does not hold. For instance, for p < 1, we have
P6p(ϕ) ≡MC ¬P>p(ϕ). But, P6p(ϕ) 6≡MDP ¬P>p(ϕ).

s |= P6p(ϕ) iff PrS(s |= ϕ) 6 p for all policies S, but
s |= ¬P>p(ϕ) iff not s |= P>p(ϕ)

iff not
(

PrS(s |= ϕ) > p for all policies S
)

iff PrS(s |= ϕ) 6 p for some policy S.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 10/36

PCTL Semantics

Equivalence of PCTL formulas

PCTL equivalence
Φ ≡MDP Ψ if and only if for all MDPsM, it holds: SatM(Φ) = SatM(Ψ).
Φ ≡MC Ψ if and only if for all DTMCs D, it holds: SatD(Φ) = SatD(Ψ).

Since any DTMC is an MDP, it follows: Φ ≡MDP Ψ implies Φ ≡MC Ψ.

The converse, however, does not hold. For instance, for p < 1, we have
P6p(ϕ) ≡MC ¬P>p(ϕ). But, P6p(ϕ) 6≡MDP ¬P>p(ϕ).

s |= P6p(ϕ) iff PrS(s |= ϕ) 6 p for all policies S, but
s |= ¬P>p(ϕ) iff not s |= P>p(ϕ)

iff not
(

PrS(s |= ϕ) > p for all policies S
)

iff PrS(s |= ϕ) 6 p for some policy S.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 10/36

PCTL Semantics

Equivalence of PCTL formulas

PCTL equivalence
Φ ≡MDP Ψ if and only if for all MDPsM, it holds: SatM(Φ) = SatM(Ψ).
Φ ≡MC Ψ if and only if for all DTMCs D, it holds: SatD(Φ) = SatD(Ψ).

Since any DTMC is an MDP, it follows: Φ ≡MDP Ψ implies Φ ≡MC Ψ.
The converse, however, does not hold.

For instance, for p < 1, we have
P6p(ϕ) ≡MC ¬P>p(ϕ). But, P6p(ϕ) 6≡MDP ¬P>p(ϕ).

s |= P6p(ϕ) iff PrS(s |= ϕ) 6 p for all policies S, but
s |= ¬P>p(ϕ) iff not s |= P>p(ϕ)

iff not
(

PrS(s |= ϕ) > p for all policies S
)

iff PrS(s |= ϕ) 6 p for some policy S.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 10/36

PCTL Semantics

Equivalence of PCTL formulas

PCTL equivalence
Φ ≡MDP Ψ if and only if for all MDPsM, it holds: SatM(Φ) = SatM(Ψ).
Φ ≡MC Ψ if and only if for all DTMCs D, it holds: SatD(Φ) = SatD(Ψ).

Since any DTMC is an MDP, it follows: Φ ≡MDP Ψ implies Φ ≡MC Ψ.
The converse, however, does not hold. For instance, for p < 1, we have
P6p(ϕ) ≡MC ¬P>p(ϕ).

But, P6p(ϕ) 6≡MDP ¬P>p(ϕ).

s |= P6p(ϕ) iff PrS(s |= ϕ) 6 p for all policies S, but
s |= ¬P>p(ϕ) iff not s |= P>p(ϕ)

iff not
(

PrS(s |= ϕ) > p for all policies S
)

iff PrS(s |= ϕ) 6 p for some policy S.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 10/36

PCTL Semantics

Equivalence of PCTL formulas

PCTL equivalence
Φ ≡MDP Ψ if and only if for all MDPsM, it holds: SatM(Φ) = SatM(Ψ).
Φ ≡MC Ψ if and only if for all DTMCs D, it holds: SatD(Φ) = SatD(Ψ).

Since any DTMC is an MDP, it follows: Φ ≡MDP Ψ implies Φ ≡MC Ψ.
The converse, however, does not hold. For instance, for p < 1, we have
P6p(ϕ) ≡MC ¬P>p(ϕ). But, P6p(ϕ) 6≡MDP ¬P>p(ϕ).

s |= P6p(ϕ) iff PrS(s |= ϕ) 6 p for all policies S, but
s |= ¬P>p(ϕ) iff not s |= P>p(ϕ)

iff not
(

PrS(s |= ϕ) > p for all policies S
)

iff PrS(s |= ϕ) 6 p for some policy S.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 10/36

PCTL Semantics

Equivalence of PCTL formulas

PCTL equivalence
Φ ≡MDP Ψ if and only if for all MDPsM, it holds: SatM(Φ) = SatM(Ψ).
Φ ≡MC Ψ if and only if for all DTMCs D, it holds: SatD(Φ) = SatD(Ψ).

Since any DTMC is an MDP, it follows: Φ ≡MDP Ψ implies Φ ≡MC Ψ.
The converse, however, does not hold. For instance, for p < 1, we have
P6p(ϕ) ≡MC ¬P>p(ϕ). But, P6p(ϕ) 6≡MDP ¬P>p(ϕ).

s |= P6p(ϕ) iff PrS(s |= ϕ) 6 p for all policies S, but

s |= ¬P>p(ϕ) iff not s |= P>p(ϕ)

iff not
(

PrS(s |= ϕ) > p for all policies S
)

iff PrS(s |= ϕ) 6 p for some policy S.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 10/36

PCTL Semantics

Equivalence of PCTL formulas

PCTL equivalence
Φ ≡MDP Ψ if and only if for all MDPsM, it holds: SatM(Φ) = SatM(Ψ).
Φ ≡MC Ψ if and only if for all DTMCs D, it holds: SatD(Φ) = SatD(Ψ).

Since any DTMC is an MDP, it follows: Φ ≡MDP Ψ implies Φ ≡MC Ψ.
The converse, however, does not hold. For instance, for p < 1, we have
P6p(ϕ) ≡MC ¬P>p(ϕ). But, P6p(ϕ) 6≡MDP ¬P>p(ϕ).

s |= P6p(ϕ) iff PrS(s |= ϕ) 6 p for all policies S, but
s |= ¬P>p(ϕ) iff not s |= P>p(ϕ)

iff not
(

PrS(s |= ϕ) > p for all policies S
)

iff PrS(s |= ϕ) 6 p for some policy S.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 10/36

PCTL Semantics

Equivalence of PCTL formulas

PCTL equivalence
Φ ≡MDP Ψ if and only if for all MDPsM, it holds: SatM(Φ) = SatM(Ψ).
Φ ≡MC Ψ if and only if for all DTMCs D, it holds: SatD(Φ) = SatD(Ψ).

Since any DTMC is an MDP, it follows: Φ ≡MDP Ψ implies Φ ≡MC Ψ.
The converse, however, does not hold. For instance, for p < 1, we have
P6p(ϕ) ≡MC ¬P>p(ϕ). But, P6p(ϕ) 6≡MDP ¬P>p(ϕ).

s |= P6p(ϕ) iff PrS(s |= ϕ) 6 p for all policies S, but
s |= ¬P>p(ϕ) iff not s |= P>p(ϕ)

iff not
(

PrS(s |= ϕ) > p for all policies S
)

iff PrS(s |= ϕ) 6 p for some policy S.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 10/36

PCTL Semantics

Equivalence of PCTL formulas

PCTL equivalence
Φ ≡MDP Ψ if and only if for all MDPsM, it holds: SatM(Φ) = SatM(Ψ).
Φ ≡MC Ψ if and only if for all DTMCs D, it holds: SatD(Φ) = SatD(Ψ).

Since any DTMC is an MDP, it follows: Φ ≡MDP Ψ implies Φ ≡MC Ψ.
The converse, however, does not hold. For instance, for p < 1, we have
P6p(ϕ) ≡MC ¬P>p(ϕ). But, P6p(ϕ) 6≡MDP ¬P>p(ϕ).

s |= P6p(ϕ) iff PrS(s |= ϕ) 6 p for all policies S, but
s |= ¬P>p(ϕ) iff not s |= P>p(ϕ)

iff not
(

PrS(s |= ϕ) > p for all policies S
)

iff PrS(s |= ϕ) 6 p for some policy S.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 10/36

PCTL Model Checking

Overview

1 PCTL Semantics

2 PCTL Model Checking

3 Complexity

4 Example: Dining Cryptographers Problem

5 Fairness

6 Summary

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 11/36

PCTL Model Checking

PCTL model checking

PCTL model checking problem

Input: a finite MDPM = (S,Act,P, ιinit,AP, L), state s ∈ S, and
PCTL state formula Φ

Output: yes, if s |= Φ; no, otherwise.

Basic algorithm
In order to check whether s |= Φ do:
1. Compute the satisfaction set Sat(Φ) = { s ∈ S | s |= Φ }.
2. This is done recursively by a bottom-up traversal of Φ’s parse tree.

I The nodes of the parse tree represent the subformulae of Φ.
I For each node, i.e., for each subformula Ψ of Φ, determine Sat(Ψ).
I Determine Sat(Ψ) as function of the satisfaction sets of its children:

e.g., Sat(Ψ1 ∧Ψ2) = Sat(Ψ1) ∩ Sat(Ψ2) and Sat(¬Ψ) = S \ Sat(Ψ).

3. Check whether state s belongs to Sat(Φ).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 12/36

PCTL Model Checking

PCTL model checking
PCTL model checking problem

Input: a finite MDPM = (S,Act,P, ιinit,AP, L), state s ∈ S, and
PCTL state formula Φ

Output: yes, if s |= Φ; no, otherwise.

Basic algorithm
In order to check whether s |= Φ do:
1. Compute the satisfaction set Sat(Φ) = { s ∈ S | s |= Φ }.
2. This is done recursively by a bottom-up traversal of Φ’s parse tree.

I The nodes of the parse tree represent the subformulae of Φ.
I For each node, i.e., for each subformula Ψ of Φ, determine Sat(Ψ).
I Determine Sat(Ψ) as function of the satisfaction sets of its children:

e.g., Sat(Ψ1 ∧Ψ2) = Sat(Ψ1) ∩ Sat(Ψ2) and Sat(¬Ψ) = S \ Sat(Ψ).

3. Check whether state s belongs to Sat(Φ).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 12/36

PCTL Model Checking

PCTL model checking
PCTL model checking problem

Input: a finite MDPM = (S,Act,P, ιinit,AP, L), state s ∈ S, and
PCTL state formula Φ

Output: yes, if s |= Φ; no, otherwise.

Basic algorithm
In order to check whether s |= Φ do:
1. Compute the satisfaction set Sat(Φ) = { s ∈ S | s |= Φ }.
2. This is done recursively by a bottom-up traversal of Φ’s parse tree.

I The nodes of the parse tree represent the subformulae of Φ.
I For each node, i.e., for each subformula Ψ of Φ, determine Sat(Ψ).
I Determine Sat(Ψ) as function of the satisfaction sets of its children:

e.g., Sat(Ψ1 ∧Ψ2) = Sat(Ψ1) ∩ Sat(Ψ2) and Sat(¬Ψ) = S \ Sat(Ψ).

3. Check whether state s belongs to Sat(Φ).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 12/36

PCTL Model Checking

PCTL model checking
PCTL model checking problem

Input: a finite MDPM = (S,Act,P, ιinit,AP, L), state s ∈ S, and
PCTL state formula Φ

Output: yes, if s |= Φ; no, otherwise.

Basic algorithm
In order to check whether s |= Φ do:

1. Compute the satisfaction set Sat(Φ) = { s ∈ S | s |= Φ }.
2. This is done recursively by a bottom-up traversal of Φ’s parse tree.

I The nodes of the parse tree represent the subformulae of Φ.
I For each node, i.e., for each subformula Ψ of Φ, determine Sat(Ψ).
I Determine Sat(Ψ) as function of the satisfaction sets of its children:

e.g., Sat(Ψ1 ∧Ψ2) = Sat(Ψ1) ∩ Sat(Ψ2) and Sat(¬Ψ) = S \ Sat(Ψ).

3. Check whether state s belongs to Sat(Φ).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 12/36

PCTL Model Checking

PCTL model checking
PCTL model checking problem

Input: a finite MDPM = (S,Act,P, ιinit,AP, L), state s ∈ S, and
PCTL state formula Φ

Output: yes, if s |= Φ; no, otherwise.

Basic algorithm
In order to check whether s |= Φ do:
1. Compute the satisfaction set Sat(Φ) = { s ∈ S | s |= Φ }.

2. This is done recursively by a bottom-up traversal of Φ’s parse tree.
I The nodes of the parse tree represent the subformulae of Φ.
I For each node, i.e., for each subformula Ψ of Φ, determine Sat(Ψ).
I Determine Sat(Ψ) as function of the satisfaction sets of its children:

e.g., Sat(Ψ1 ∧Ψ2) = Sat(Ψ1) ∩ Sat(Ψ2) and Sat(¬Ψ) = S \ Sat(Ψ).

3. Check whether state s belongs to Sat(Φ).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 12/36

PCTL Model Checking

PCTL model checking
PCTL model checking problem

Input: a finite MDPM = (S,Act,P, ιinit,AP, L), state s ∈ S, and
PCTL state formula Φ

Output: yes, if s |= Φ; no, otherwise.

Basic algorithm
In order to check whether s |= Φ do:
1. Compute the satisfaction set Sat(Φ) = { s ∈ S | s |= Φ }.
2. This is done recursively by a bottom-up traversal of Φ’s parse tree.

I The nodes of the parse tree represent the subformulae of Φ.
I For each node, i.e., for each subformula Ψ of Φ, determine Sat(Ψ).
I Determine Sat(Ψ) as function of the satisfaction sets of its children:

e.g., Sat(Ψ1 ∧Ψ2) = Sat(Ψ1) ∩ Sat(Ψ2) and Sat(¬Ψ) = S \ Sat(Ψ).

3. Check whether state s belongs to Sat(Φ).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 12/36

PCTL Model Checking

PCTL model checking
PCTL model checking problem

Input: a finite MDPM = (S,Act,P, ιinit,AP, L), state s ∈ S, and
PCTL state formula Φ

Output: yes, if s |= Φ; no, otherwise.

Basic algorithm
In order to check whether s |= Φ do:
1. Compute the satisfaction set Sat(Φ) = { s ∈ S | s |= Φ }.
2. This is done recursively by a bottom-up traversal of Φ’s parse tree.

I The nodes of the parse tree represent the subformulae of Φ.

I For each node, i.e., for each subformula Ψ of Φ, determine Sat(Ψ).
I Determine Sat(Ψ) as function of the satisfaction sets of its children:

e.g., Sat(Ψ1 ∧Ψ2) = Sat(Ψ1) ∩ Sat(Ψ2) and Sat(¬Ψ) = S \ Sat(Ψ).

3. Check whether state s belongs to Sat(Φ).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 12/36

PCTL Model Checking

PCTL model checking
PCTL model checking problem

Input: a finite MDPM = (S,Act,P, ιinit,AP, L), state s ∈ S, and
PCTL state formula Φ

Output: yes, if s |= Φ; no, otherwise.

Basic algorithm
In order to check whether s |= Φ do:
1. Compute the satisfaction set Sat(Φ) = { s ∈ S | s |= Φ }.
2. This is done recursively by a bottom-up traversal of Φ’s parse tree.

I The nodes of the parse tree represent the subformulae of Φ.
I For each node, i.e., for each subformula Ψ of Φ, determine Sat(Ψ).

I Determine Sat(Ψ) as function of the satisfaction sets of its children:
e.g., Sat(Ψ1 ∧Ψ2) = Sat(Ψ1) ∩ Sat(Ψ2) and Sat(¬Ψ) = S \ Sat(Ψ).

3. Check whether state s belongs to Sat(Φ).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 12/36

PCTL Model Checking

PCTL model checking
PCTL model checking problem

Input: a finite MDPM = (S,Act,P, ιinit,AP, L), state s ∈ S, and
PCTL state formula Φ

Output: yes, if s |= Φ; no, otherwise.

Basic algorithm
In order to check whether s |= Φ do:
1. Compute the satisfaction set Sat(Φ) = { s ∈ S | s |= Φ }.
2. This is done recursively by a bottom-up traversal of Φ’s parse tree.

I The nodes of the parse tree represent the subformulae of Φ.
I For each node, i.e., for each subformula Ψ of Φ, determine Sat(Ψ).
I Determine Sat(Ψ) as function of the satisfaction sets of its children:

e.g., Sat(Ψ1 ∧Ψ2) = Sat(Ψ1) ∩ Sat(Ψ2) and Sat(¬Ψ) = S \ Sat(Ψ).

3. Check whether state s belongs to Sat(Φ).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 12/36

PCTL Model Checking

PCTL model checking
PCTL model checking problem

Input: a finite MDPM = (S,Act,P, ιinit,AP, L), state s ∈ S, and
PCTL state formula Φ

Output: yes, if s |= Φ; no, otherwise.

Basic algorithm
In order to check whether s |= Φ do:
1. Compute the satisfaction set Sat(Φ) = { s ∈ S | s |= Φ }.
2. This is done recursively by a bottom-up traversal of Φ’s parse tree.

I The nodes of the parse tree represent the subformulae of Φ.
I For each node, i.e., for each subformula Ψ of Φ, determine Sat(Ψ).
I Determine Sat(Ψ) as function of the satisfaction sets of its children:

e.g., Sat(Ψ1 ∧Ψ2) = Sat(Ψ1) ∩ Sat(Ψ2) and Sat(¬Ψ) = S \ Sat(Ψ).

3. Check whether state s belongs to Sat(Φ).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 12/36

PCTL Model Checking

Core model checking algorithm

Propositional formulas
Sat(·) is defined by structural induction as for PCTL on DTMCs.

Probabilistic operator P

In order to determine whether s ∈ Sat(P6p(ϕ)), the probability
Prmax(s |= ϕ) needs to be established. Then

Sat(P6p(ϕ)) =
{
s ∈ S | Prmax(s |= ϕ) 6 p

}
.

The same holds for strict upper bounds < p.
Similarly, lower bounds amount to determining Prmin(s |= ϕ), e.g.,

Sat(P>p(ϕ)) =
{
s ∈ S | Prmin(s |= ϕ) > p

}
.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 13/36

PCTL Model Checking

Core model checking algorithm

Propositional formulas

Sat(·) is defined by structural induction as for PCTL on DTMCs.

Probabilistic operator P

In order to determine whether s ∈ Sat(P6p(ϕ)), the probability
Prmax(s |= ϕ) needs to be established. Then

Sat(P6p(ϕ)) =
{
s ∈ S | Prmax(s |= ϕ) 6 p

}
.

The same holds for strict upper bounds < p.
Similarly, lower bounds amount to determining Prmin(s |= ϕ), e.g.,

Sat(P>p(ϕ)) =
{
s ∈ S | Prmin(s |= ϕ) > p

}
.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 13/36

PCTL Model Checking

Core model checking algorithm

Propositional formulas
Sat(·) is defined by structural induction as for PCTL on DTMCs.

Probabilistic operator P

In order to determine whether s ∈ Sat(P6p(ϕ)), the probability
Prmax(s |= ϕ) needs to be established. Then

Sat(P6p(ϕ)) =
{
s ∈ S | Prmax(s |= ϕ) 6 p

}
.

The same holds for strict upper bounds < p.
Similarly, lower bounds amount to determining Prmin(s |= ϕ), e.g.,

Sat(P>p(ϕ)) =
{
s ∈ S | Prmin(s |= ϕ) > p

}
.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 13/36

PCTL Model Checking

Core model checking algorithm

Propositional formulas
Sat(·) is defined by structural induction as for PCTL on DTMCs.

Probabilistic operator P

In order to determine whether s ∈ Sat(P6p(ϕ)), the probability
Prmax(s |= ϕ) needs to be established. Then

Sat(P6p(ϕ)) =
{
s ∈ S | Prmax(s |= ϕ) 6 p

}
.

The same holds for strict upper bounds < p.
Similarly, lower bounds amount to determining Prmin(s |= ϕ), e.g.,

Sat(P>p(ϕ)) =
{
s ∈ S | Prmin(s |= ϕ) > p

}
.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 13/36

PCTL Model Checking

Core model checking algorithm

Propositional formulas
Sat(·) is defined by structural induction as for PCTL on DTMCs.

Probabilistic operator P

In order to determine whether s ∈ Sat(P6p(ϕ)), the probability
Prmax(s |= ϕ) needs to be established.

Then

Sat(P6p(ϕ)) =
{
s ∈ S | Prmax(s |= ϕ) 6 p

}
.

The same holds for strict upper bounds < p.
Similarly, lower bounds amount to determining Prmin(s |= ϕ), e.g.,

Sat(P>p(ϕ)) =
{
s ∈ S | Prmin(s |= ϕ) > p

}
.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 13/36

PCTL Model Checking

Core model checking algorithm

Propositional formulas
Sat(·) is defined by structural induction as for PCTL on DTMCs.

Probabilistic operator P

In order to determine whether s ∈ Sat(P6p(ϕ)), the probability
Prmax(s |= ϕ) needs to be established. Then

Sat(P6p(ϕ)) =
{
s ∈ S | Prmax(s |= ϕ) 6 p

}
.

The same holds for strict upper bounds < p.
Similarly, lower bounds amount to determining Prmin(s |= ϕ), e.g.,

Sat(P>p(ϕ)) =
{
s ∈ S | Prmin(s |= ϕ) > p

}
.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 13/36

PCTL Model Checking

Core model checking algorithm

Propositional formulas
Sat(·) is defined by structural induction as for PCTL on DTMCs.

Probabilistic operator P

In order to determine whether s ∈ Sat(P6p(ϕ)), the probability
Prmax(s |= ϕ) needs to be established. Then

Sat(P6p(ϕ)) =
{
s ∈ S | Prmax(s |= ϕ) 6 p

}
.

The same holds for strict upper bounds < p.

Similarly, lower bounds amount to determining Prmin(s |= ϕ), e.g.,

Sat(P>p(ϕ)) =
{
s ∈ S | Prmin(s |= ϕ) > p

}
.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 13/36

PCTL Model Checking

Core model checking algorithm

Propositional formulas
Sat(·) is defined by structural induction as for PCTL on DTMCs.

Probabilistic operator P

In order to determine whether s ∈ Sat(P6p(ϕ)), the probability
Prmax(s |= ϕ) needs to be established. Then

Sat(P6p(ϕ)) =
{
s ∈ S | Prmax(s |= ϕ) 6 p

}
.

The same holds for strict upper bounds < p.
Similarly, lower bounds amount to determining Prmin(s |= ϕ), e.g.,

Sat(P>p(ϕ)) =
{
s ∈ S | Prmin(s |= ϕ) > p

}
.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 13/36

PCTL Model Checking

The next-step operator

Recall that: s |= P6p(©Φ) if and only if Prmax(s |=©Φ)6 p.

Lemma
Prmax(s |=©Φ) = max

{ ∑
t ∈ Sat(Φ)

P(s,α, t) | α ∈ Act(s)
}
.

Algorithm
Determine xs = Prmax(s |=©Φ) and return Sat(P6p(©Φ)) = { s ∈ S | xs6 p }.

The case for minimal probabilities is similar and omitted here.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 14/36

PCTL Model Checking

The next-step operator

Recall that: s |= P6p(©Φ) if and only if Prmax(s |=©Φ)6 p.

Lemma
Prmax(s |=©Φ) = max

{ ∑
t ∈ Sat(Φ)

P(s,α, t) | α ∈ Act(s)
}
.

Algorithm
Determine xs = Prmax(s |=©Φ) and return Sat(P6p(©Φ)) = { s ∈ S | xs6 p }.

The case for minimal probabilities is similar and omitted here.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 14/36

PCTL Model Checking

The next-step operator

Recall that: s |= P6p(©Φ) if and only if Prmax(s |=©Φ)6 p.

Lemma
Prmax(s |=©Φ) = max

{ ∑
t ∈ Sat(Φ)

P(s,α, t) | α ∈ Act(s)
}
.

Algorithm
Determine xs = Prmax(s |=©Φ) and return Sat(P6p(©Φ)) = { s ∈ S | xs6 p }.

The case for minimal probabilities is similar and omitted here.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 14/36

PCTL Model Checking

The next-step operator

Recall that: s |= P6p(©Φ) if and only if Prmax(s |=©Φ)6 p.

Lemma
Prmax(s |=©Φ) = max

{ ∑
t ∈ Sat(Φ)

P(s,α, t) | α ∈ Act(s)
}
.

Algorithm
Determine xs = Prmax(s |=©Φ) and return Sat(P6p(©Φ)) = { s ∈ S | xs6 p }.

The case for minimal probabilities is similar and omitted here.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 14/36

PCTL Model Checking

The next-step operator

Recall that: s |= P6p(©Φ) if and only if Prmax(s |=©Φ)6 p.

Lemma
Prmax(s |=©Φ) = max

{ ∑
t ∈ Sat(Φ)

P(s,α, t) | α ∈ Act(s)
}
.

Algorithm
Determine xs = Prmax(s |=©Φ) and return Sat(P6p(©Φ)) = { s ∈ S | xs6 p }.

The case for minimal probabilities is similar and omitted here.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 14/36

PCTL Model Checking

Example
Consider MDP:

and PCTL-formula:

P> 1
2

(© heads)

1. Sat(heads) = { s2 }
2. xs1 = Prmin(s1 |=© heads) = min(0, 0.5) = 0
3. Applying that to all states yields:

(
Prmin(s |=©Φ)

)
s∈S

=


0 1 0 0
0.7 0.3 0 0
0 0 0.5 0.5
0 0 1 0
0 0 0 1

 ·
 0

0
1
0

 =


0
0
0.5
1
0


4. Thus: Sat(P>0.5(© heads)) = { s2 }.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 15/36

PCTL Model Checking

Example
Consider MDP:

and PCTL-formula:

P> 1
2

(© heads)

1. Sat(heads) = { s2 }
2. xs1 = Prmin(s1 |=© heads) = min(0, 0.5) = 0
3. Applying that to all states yields:

(
Prmin(s |=©Φ)

)
s∈S

=


0 1 0 0
0.7 0.3 0 0
0 0 0.5 0.5
0 0 1 0
0 0 0 1

 ·
 0

0
1
0

 =


0
0
0.5
1
0


4. Thus: Sat(P>0.5(© heads)) = { s2 }.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 15/36

PCTL Model Checking

Example
Consider MDP:

and PCTL-formula:

P> 1
2

(© heads)

1. Sat(heads) = { s2 }

2. xs1 = Prmin(s1 |=© heads) = min(0, 0.5) = 0
3. Applying that to all states yields:

(
Prmin(s |=©Φ)

)
s∈S

=


0 1 0 0
0.7 0.3 0 0
0 0 0.5 0.5
0 0 1 0
0 0 0 1

 ·
 0

0
1
0

 =


0
0
0.5
1
0


4. Thus: Sat(P>0.5(© heads)) = { s2 }.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 15/36

PCTL Model Checking

Example
Consider MDP:

and PCTL-formula:

P> 1
2

(© heads)

1. Sat(heads) = { s2 }
2. xs1 = Prmin(s1 |=© heads) = min(0, 0.5) = 0

3. Applying that to all states yields:

(
Prmin(s |=©Φ)

)
s∈S

=


0 1 0 0
0.7 0.3 0 0
0 0 0.5 0.5
0 0 1 0
0 0 0 1

 ·
 0

0
1
0

 =


0
0
0.5
1
0


4. Thus: Sat(P>0.5(© heads)) = { s2 }.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 15/36

PCTL Model Checking

Example
Consider MDP:

and PCTL-formula:

P> 1
2

(© heads)

1. Sat(heads) = { s2 }
2. xs1 = Prmin(s1 |=© heads) = min(0, 0.5) = 0
3. Applying that to all states yields:

(
Prmin(s |=©Φ)

)
s∈S

=


0 1 0 0
0.7 0.3 0 0
0 0 0.5 0.5
0 0 1 0
0 0 0 1

 ·
 0

0
1
0

 =


0
0
0.5
1
0


4. Thus: Sat(P>0.5(© heads)) = { s2 }.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 15/36

PCTL Model Checking

Example
Consider MDP:

and PCTL-formula:

P> 1
2

(© heads)

1. Sat(heads) = { s2 }
2. xs1 = Prmin(s1 |=© heads) = min(0, 0.5) = 0
3. Applying that to all states yields:

(
Prmin(s |=©Φ)

)
s∈S

=


0 1 0 0
0.7 0.3 0 0
0 0 0.5 0.5
0 0 1 0
0 0 0 1

 ·
 0

0
1
0

 =


0
0
0.5
1
0


4. Thus: Sat(P>0.5(© heads)) = { s2 }.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 15/36

PCTL Model Checking

Example
Consider MDP:

and PCTL-formula:

P> 1
2

(© heads)

1. Sat(heads) = { s2 }
2. xs1 = Prmin(s1 |=© heads) = min(0, 0.5) = 0
3. Applying that to all states yields:

(
Prmin(s |=©Φ)

)
s∈S

=


0 1 0 0
0.7 0.3 0 0
0 0 0.5 0.5
0 0 1 0
0 0 0 1



·

 0
0
1
0

 =


0
0
0.5
1
0


4. Thus: Sat(P>0.5(© heads)) = { s2 }.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 15/36

PCTL Model Checking

Example
Consider MDP:

and PCTL-formula:

P> 1
2

(© heads)

1. Sat(heads) = { s2 }
2. xs1 = Prmin(s1 |=© heads) = min(0, 0.5) = 0
3. Applying that to all states yields:

(
Prmin(s |=©Φ)

)
s∈S

=


0 1 0 0
0.7 0.3 0 0
0 0 0.5 0.5
0 0 1 0
0 0 0 1

 ·
 0

0
1
0



=


0
0
0.5
1
0


4. Thus: Sat(P>0.5(© heads)) = { s2 }.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 15/36

PCTL Model Checking

Example
Consider MDP:

and PCTL-formula:

P> 1
2

(© heads)

1. Sat(heads) = { s2 }
2. xs1 = Prmin(s1 |=© heads) = min(0, 0.5) = 0
3. Applying that to all states yields:

(
Prmin(s |=©Φ)

)
s∈S

=


0 1 0 0
0.7 0.3 0 0
0 0 0.5 0.5
0 0 1 0
0 0 0 1

 ·
 0

0
1
0

 =


0
0
0.5
1
0



4. Thus: Sat(P>0.5(© heads)) = { s2 }.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 15/36

PCTL Model Checking

Example
Consider MDP:

and PCTL-formula:

P> 1
2

(© heads)

1. Sat(heads) = { s2 }
2. xs1 = Prmin(s1 |=© heads) = min(0, 0.5) = 0
3. Applying that to all states yields:

(
Prmin(s |=©Φ)

)
s∈S

=


0 1 0 0
0.7 0.3 0 0
0 0 0.5 0.5
0 0 1 0
0 0 0 1

 ·
 0

0
1
0

 =


0
0
0.5
1
0


4. Thus: Sat(P>0.5(© heads)) = { s2 }.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 15/36

PCTL Model Checking

Bounded until (1)

Recall that: s |= P>p(ΦU6n Ψ) if and only if Prmin(s |= ΦU6n Ψ)> p.

Lemma
Let S=1 = Sat(Ψ), S=0 = S \ (Sat(Φ) ∪ Sat(Ψ)), and S? = S \ (S=0 ∪ S=1).
Then: Prmin(s |= ΦU6n Ψ) equals

1 if s ∈ S=1
0 if s ∈ S=0
0 if s ∈ S? ∧ n=0
min
{∑

s′∈S
P(s,α, s ′) · Prmin(s ′ |= ΦU6n−1 Ψ) | α ∈ Act(s)

}
otherwise

The case for maximal probabilities is analogous.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 16/36

PCTL Model Checking

Bounded until (1)

Recall that: s |= P>p(ΦU6n Ψ) if and only if Prmin(s |= ΦU6n Ψ)> p.

Lemma
Let S=1 = Sat(Ψ), S=0 = S \ (Sat(Φ) ∪ Sat(Ψ)), and S? = S \ (S=0 ∪ S=1).
Then: Prmin(s |= ΦU6n Ψ) equals

1 if s ∈ S=1
0 if s ∈ S=0
0 if s ∈ S? ∧ n=0
min
{∑

s′∈S
P(s,α, s ′) · Prmin(s ′ |= ΦU6n−1 Ψ) | α ∈ Act(s)

}
otherwise

The case for maximal probabilities is analogous.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 16/36

PCTL Model Checking

Bounded until (1)

Recall that: s |= P>p(ΦU6n Ψ) if and only if Prmin(s |= ΦU6n Ψ)> p.

Lemma

Let S=1 = Sat(Ψ), S=0 = S \ (Sat(Φ) ∪ Sat(Ψ)), and S? = S \ (S=0 ∪ S=1).
Then: Prmin(s |= ΦU6n Ψ) equals

1 if s ∈ S=1
0 if s ∈ S=0
0 if s ∈ S? ∧ n=0
min
{∑

s′∈S
P(s,α, s ′) · Prmin(s ′ |= ΦU6n−1 Ψ) | α ∈ Act(s)

}
otherwise

The case for maximal probabilities is analogous.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 16/36

PCTL Model Checking

Bounded until (1)

Recall that: s |= P>p(ΦU6n Ψ) if and only if Prmin(s |= ΦU6n Ψ)> p.

Lemma
Let S=1 = Sat(Ψ), S=0 = S \ (Sat(Φ) ∪ Sat(Ψ)), and S? = S \ (S=0 ∪ S=1).

Then: Prmin(s |= ΦU6n Ψ) equals
1 if s ∈ S=1
0 if s ∈ S=0
0 if s ∈ S? ∧ n=0
min
{∑

s′∈S
P(s,α, s ′) · Prmin(s ′ |= ΦU6n−1 Ψ) | α ∈ Act(s)

}
otherwise

The case for maximal probabilities is analogous.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 16/36

PCTL Model Checking

Bounded until (1)

Recall that: s |= P>p(ΦU6n Ψ) if and only if Prmin(s |= ΦU6n Ψ)> p.

Lemma
Let S=1 = Sat(Ψ), S=0 = S \ (Sat(Φ) ∪ Sat(Ψ)), and S? = S \ (S=0 ∪ S=1).
Then: Prmin(s |= ΦU6n Ψ) equals

1 if s ∈ S=1
0 if s ∈ S=0

0 if s ∈ S? ∧ n=0
min
{∑

s′∈S
P(s,α, s ′) · Prmin(s ′ |= ΦU6n−1 Ψ) | α ∈ Act(s)

}
otherwise

The case for maximal probabilities is analogous.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 16/36

PCTL Model Checking

Bounded until (1)

Recall that: s |= P>p(ΦU6n Ψ) if and only if Prmin(s |= ΦU6n Ψ)> p.

Lemma
Let S=1 = Sat(Ψ), S=0 = S \ (Sat(Φ) ∪ Sat(Ψ)), and S? = S \ (S=0 ∪ S=1).
Then: Prmin(s |= ΦU6n Ψ) equals

1 if s ∈ S=1
0 if s ∈ S=0
0 if s ∈ S? ∧ n=0
min
{∑

s′∈S
P(s,α, s ′) · Prmin(s ′ |= ΦU6n−1 Ψ) | α ∈ Act(s)

}
otherwise

The case for maximal probabilities is analogous.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 16/36

PCTL Model Checking

Bounded until (1)

Recall that: s |= P>p(ΦU6n Ψ) if and only if Prmin(s |= ΦU6n Ψ)> p.

Lemma
Let S=1 = Sat(Ψ), S=0 = S \ (Sat(Φ) ∪ Sat(Ψ)), and S? = S \ (S=0 ∪ S=1).
Then: Prmin(s |= ΦU6n Ψ) equals

1 if s ∈ S=1
0 if s ∈ S=0
0 if s ∈ S? ∧ n=0
min
{∑

s′∈S
P(s,α, s ′) · Prmin(s ′ |= ΦU6n−1 Ψ) | α ∈ Act(s)

}
otherwise

The case for maximal probabilities is analogous.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 16/36

PCTL Model Checking

Bounded until (2)
Lemma
Let S=1 = Sat(Ψ), S=0 = S \ (Sat(Φ) ∪ Sat(Ψ)), and S? = S \ (S=0 ∪ S=1).
Then: Prmin(s |= ΦU6n Ψ) equals

1 if s ∈ S=1
0 if s ∈ S=0

0 if s ∈ S? ∧ n=0
min
{∑

s′∈S

P(s,α, s ′) · Prmin(s ′ |= ΦU6n−1 Ψ) | α ∈ Act(s)
}

otherwise

Algorithm

1. Let PΦ,Ψ be the probability matrix ofM[S=0 ∪ S=1]1.
2. Then

(
Prmin(s |= ΦU60 Ψ)

)
s∈S = bΨ

3. And
(
Prmin(s |= ΦU6i+1 Ψ)

)
s∈S = PΦ,Ψ ·

(
Prmin(s |= ΦU6i Ψ)

)
s∈S .

4. This requires n matrix-vector multiplications and n minimum
operators.

1That is, make the states in S=0 and those in S=1 absorbing.
Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 17/36

PCTL Model Checking

Bounded until (2)
Lemma
Let S=1 = Sat(Ψ), S=0 = S \ (Sat(Φ) ∪ Sat(Ψ)), and S? = S \ (S=0 ∪ S=1).
Then: Prmin(s |= ΦU6n Ψ) equals

1 if s ∈ S=1
0 if s ∈ S=0
0 if s ∈ S? ∧ n=0
min
{∑

s′∈S

P(s,α, s ′) · Prmin(s ′ |= ΦU6n−1 Ψ) | α ∈ Act(s)
}

otherwise

Algorithm

1. Let PΦ,Ψ be the probability matrix ofM[S=0 ∪ S=1]1.
2. Then

(
Prmin(s |= ΦU60 Ψ)

)
s∈S = bΨ

3. And
(
Prmin(s |= ΦU6i+1 Ψ)

)
s∈S = PΦ,Ψ ·

(
Prmin(s |= ΦU6i Ψ)

)
s∈S .

4. This requires n matrix-vector multiplications and n minimum
operators.

1That is, make the states in S=0 and those in S=1 absorbing.
Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 17/36

PCTL Model Checking

Bounded until (2)
Lemma
Let S=1 = Sat(Ψ), S=0 = S \ (Sat(Φ) ∪ Sat(Ψ)), and S? = S \ (S=0 ∪ S=1).
Then: Prmin(s |= ΦU6n Ψ) equals

1 if s ∈ S=1
0 if s ∈ S=0
0 if s ∈ S? ∧ n=0
min
{∑

s′∈S

P(s,α, s ′) · Prmin(s ′ |= ΦU6n−1 Ψ) | α ∈ Act(s)
}

otherwise

Algorithm

1. Let PΦ,Ψ be the probability matrix ofM[S=0 ∪ S=1]1.
2. Then

(
Prmin(s |= ΦU60 Ψ)

)
s∈S = bΨ

3. And
(
Prmin(s |= ΦU6i+1 Ψ)

)
s∈S = PΦ,Ψ ·

(
Prmin(s |= ΦU6i Ψ)

)
s∈S .

4. This requires n matrix-vector multiplications and n minimum
operators.

1That is, make the states in S=0 and those in S=1 absorbing.
Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 17/36

PCTL Model Checking

Bounded until (2)
Lemma
Let S=1 = Sat(Ψ), S=0 = S \ (Sat(Φ) ∪ Sat(Ψ)), and S? = S \ (S=0 ∪ S=1).
Then: Prmin(s |= ΦU6n Ψ) equals

1 if s ∈ S=1
0 if s ∈ S=0
0 if s ∈ S? ∧ n=0
min
{∑

s′∈S

P(s,α, s ′) · Prmin(s ′ |= ΦU6n−1 Ψ) | α ∈ Act(s)
}

otherwise

Algorithm

1. Let PΦ,Ψ be the probability matrix ofM[S=0 ∪ S=1]1.

2. Then
(
Prmin(s |= ΦU60 Ψ)

)
s∈S = bΨ

3. And
(
Prmin(s |= ΦU6i+1 Ψ)

)
s∈S = PΦ,Ψ ·

(
Prmin(s |= ΦU6i Ψ)

)
s∈S .

4. This requires n matrix-vector multiplications and n minimum
operators.

1That is, make the states in S=0 and those in S=1 absorbing.
Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 17/36

PCTL Model Checking

Bounded until (2)
Lemma
Let S=1 = Sat(Ψ), S=0 = S \ (Sat(Φ) ∪ Sat(Ψ)), and S? = S \ (S=0 ∪ S=1).
Then: Prmin(s |= ΦU6n Ψ) equals

1 if s ∈ S=1
0 if s ∈ S=0
0 if s ∈ S? ∧ n=0
min
{∑

s′∈S

P(s,α, s ′) · Prmin(s ′ |= ΦU6n−1 Ψ) | α ∈ Act(s)
}

otherwise

Algorithm

1. Let PΦ,Ψ be the probability matrix ofM[S=0 ∪ S=1]1.
2. Then

(
Prmin(s |= ΦU60 Ψ)

)
s∈S = bΨ

3. And
(
Prmin(s |= ΦU6i+1 Ψ)

)
s∈S = PΦ,Ψ ·

(
Prmin(s |= ΦU6i Ψ)

)
s∈S .

4. This requires n matrix-vector multiplications and n minimum
operators.

1That is, make the states in S=0 and those in S=1 absorbing.
Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 17/36

PCTL Model Checking

Bounded until (2)
Lemma
Let S=1 = Sat(Ψ), S=0 = S \ (Sat(Φ) ∪ Sat(Ψ)), and S? = S \ (S=0 ∪ S=1).
Then: Prmin(s |= ΦU6n Ψ) equals

1 if s ∈ S=1
0 if s ∈ S=0
0 if s ∈ S? ∧ n=0
min
{∑

s′∈S

P(s,α, s ′) · Prmin(s ′ |= ΦU6n−1 Ψ) | α ∈ Act(s)
}

otherwise

Algorithm

1. Let PΦ,Ψ be the probability matrix ofM[S=0 ∪ S=1]1.
2. Then

(
Prmin(s |= ΦU60 Ψ)

)
s∈S = bΨ

3. And
(
Prmin(s |= ΦU6i+1 Ψ)

)
s∈S = PΦ,Ψ ·

(
Prmin(s |= ΦU6i Ψ)

)
s∈S .

4. This requires n matrix-vector multiplications and n minimum
operators.

1That is, make the states in S=0 and those in S=1 absorbing.
Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 17/36

PCTL Model Checking

Bounded until (2)
Lemma
Let S=1 = Sat(Ψ), S=0 = S \ (Sat(Φ) ∪ Sat(Ψ)), and S? = S \ (S=0 ∪ S=1).
Then: Prmin(s |= ΦU6n Ψ) equals

1 if s ∈ S=1
0 if s ∈ S=0
0 if s ∈ S? ∧ n=0
min
{∑

s′∈S

P(s,α, s ′) · Prmin(s ′ |= ΦU6n−1 Ψ) | α ∈ Act(s)
}

otherwise

Algorithm

1. Let PΦ,Ψ be the probability matrix ofM[S=0 ∪ S=1]1.
2. Then

(
Prmin(s |= ΦU60 Ψ)

)
s∈S = bΨ

3. And
(
Prmin(s |= ΦU6i+1 Ψ)

)
s∈S = PΦ,Ψ ·

(
Prmin(s |= ΦU6i Ψ)

)
s∈S .

4. This requires n matrix-vector multiplications and n minimum
operators.

1That is, make the states in S=0 and those in S=1 absorbing.
Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 17/36

PCTL Model Checking

Example

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 18/36

PCTL Model Checking

Until

Recall that: s |= P>p(ΦUΨ) if and only if Prmin(s |= ΦUΨ)> p.

Algorithm

1. Determine S=1 = Sat(P=1(ΦUΨ)) by a graph analysis.

2. Determine S=0 = Sat(P=0(ΦUΨ)) by a graph analysis.

3. Then solve a linear program (or use value iteration) over all remaining states.

Importance of pre-computation

1. Determining S=0 ensures unique solution of linear program.

2. Determining S=1 reduces the number of variables in the linear program.

3. Gives exact results for the states in S=1 and S=0 (i.e., no round-off).

4. For qualitative properties, no further computation is needed.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 19/36

PCTL Model Checking

Until

Recall that: s |= P>p(ΦUΨ) if and only if Prmin(s |= ΦUΨ)> p.

Algorithm

1. Determine S=1 = Sat(P=1(ΦUΨ)) by a graph analysis.

2. Determine S=0 = Sat(P=0(ΦUΨ)) by a graph analysis.

3. Then solve a linear program (or use value iteration) over all remaining states.

Importance of pre-computation

1. Determining S=0 ensures unique solution of linear program.

2. Determining S=1 reduces the number of variables in the linear program.

3. Gives exact results for the states in S=1 and S=0 (i.e., no round-off).

4. For qualitative properties, no further computation is needed.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 19/36

PCTL Model Checking

Until

Recall that: s |= P>p(ΦUΨ) if and only if Prmin(s |= ΦUΨ)> p.

Algorithm

1. Determine S=1 = Sat(P=1(ΦUΨ)) by a graph analysis.

2. Determine S=0 = Sat(P=0(ΦUΨ)) by a graph analysis.

3. Then solve a linear program (or use value iteration) over all remaining states.

Importance of pre-computation

1. Determining S=0 ensures unique solution of linear program.

2. Determining S=1 reduces the number of variables in the linear program.

3. Gives exact results for the states in S=1 and S=0 (i.e., no round-off).

4. For qualitative properties, no further computation is needed.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 19/36

PCTL Model Checking

Until

Recall that: s |= P>p(ΦUΨ) if and only if Prmin(s |= ΦUΨ)> p.

Algorithm

1. Determine S=1 = Sat(P=1(ΦUΨ)) by a graph analysis.

2. Determine S=0 = Sat(P=0(ΦUΨ)) by a graph analysis.

3. Then solve a linear program (or use value iteration) over all remaining states.

Importance of pre-computation

1. Determining S=0 ensures unique solution of linear program.

2. Determining S=1 reduces the number of variables in the linear program.

3. Gives exact results for the states in S=1 and S=0 (i.e., no round-off).

4. For qualitative properties, no further computation is needed.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 19/36

PCTL Model Checking

Until

Recall that: s |= P>p(ΦUΨ) if and only if Prmin(s |= ΦUΨ)> p.

Algorithm

1. Determine S=1 = Sat(P=1(ΦUΨ)) by a graph analysis.

2. Determine S=0 = Sat(P=0(ΦUΨ)) by a graph analysis.

3. Then solve a linear program (or use value iteration) over all remaining states.

Importance of pre-computation

1. Determining S=0 ensures unique solution of linear program.

2. Determining S=1 reduces the number of variables in the linear program.

3. Gives exact results for the states in S=1 and S=0 (i.e., no round-off).

4. For qualitative properties, no further computation is needed.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 19/36

PCTL Model Checking

Until

Recall that: s |= P>p(ΦUΨ) if and only if Prmin(s |= ΦUΨ)> p.

Algorithm

1. Determine S=1 = Sat(P=1(ΦUΨ)) by a graph analysis.

2. Determine S=0 = Sat(P=0(ΦUΨ)) by a graph analysis.

3. Then solve a linear program (or use value iteration) over all remaining states.

Importance of pre-computation

1. Determining S=0 ensures unique solution of linear program.

2. Determining S=1 reduces the number of variables in the linear program.

3. Gives exact results for the states in S=1 and S=0 (i.e., no round-off).

4. For qualitative properties, no further computation is needed.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 19/36

PCTL Model Checking

Until

Recall that: s |= P>p(ΦUΨ) if and only if Prmin(s |= ΦUΨ)> p.

Algorithm

1. Determine S=1 = Sat(P=1(ΦUΨ)) by a graph analysis.

2. Determine S=0 = Sat(P=0(ΦUΨ)) by a graph analysis.

3. Then solve a linear program (or use value iteration) over all remaining states.

Importance of pre-computation

1. Determining S=0 ensures unique solution of linear program.

2. Determining S=1 reduces the number of variables in the linear program.

3. Gives exact results for the states in S=1 and S=0 (i.e., no round-off).

4. For qualitative properties, no further computation is needed.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 19/36

PCTL Model Checking

Until

Recall that: s |= P>p(ΦUΨ) if and only if Prmin(s |= ΦUΨ)> p.

Algorithm

1. Determine S=1 = Sat(P=1(ΦUΨ)) by a graph analysis.

2. Determine S=0 = Sat(P=0(ΦUΨ)) by a graph analysis.

3. Then solve a linear program (or use value iteration) over all remaining states.

Importance of pre-computation

1. Determining S=0 ensures unique solution of linear program.

2. Determining S=1 reduces the number of variables in the linear program.

3. Gives exact results for the states in S=1 and S=0 (i.e., no round-off).

4. For qualitative properties, no further computation is needed.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 19/36

PCTL Model Checking

Until

Recall that: s |= P>p(ΦUΨ) if and only if Prmin(s |= ΦUΨ)> p.

Algorithm

1. Determine S=1 = Sat(P=1(ΦUΨ)) by a graph analysis.

2. Determine S=0 = Sat(P=0(ΦUΨ)) by a graph analysis.

3. Then solve a linear program (or use value iteration) over all remaining states.

Importance of pre-computation

1. Determining S=0 ensures unique solution of linear program.

2. Determining S=1 reduces the number of variables in the linear program.

3. Gives exact results for the states in S=1 and S=0 (i.e., no round-off).

4. For qualitative properties, no further computation is needed.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 19/36

PCTL Model Checking

Until

Recall that: s |= P>p(ΦUΨ) if and only if Prmin(s |= ΦUΨ)> p.

Algorithm

1. Determine S=1 = Sat(P=1(ΦUΨ)) by a graph analysis.

2. Determine S=0 = Sat(P=0(ΦUΨ)) by a graph analysis.

3. Then solve a linear program (or use value iteration) over all remaining states.

Importance of pre-computation

1. Determining S=0 ensures unique solution of linear program.

2. Determining S=1 reduces the number of variables in the linear program.

3. Gives exact results for the states in S=1 and S=0 (i.e., no round-off).

4. For qualitative properties, no further computation is needed.
Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 19/36

PCTL Model Checking

Precomputations

Qualitative reachability

1. Determine all states for which probability is zero
1.1 minimum: { s ∈ S | Prmin(s |= ΦUΨ) = 0 }
1.2 maximum: { s ∈ S | Prmax(s |= ΦUΨ) = 0 }

2. Determine all states for which probability is one
2.1 minimum: { s ∈ S | Prmin(s |= ΦUΨ) = 1 }
2.2 maximum: { s ∈ S | Prmax(s |= ΦUΨ) = 1 }

3. Then solve a linear program (or use value iteration) over all remaining states.

The first case has been treated in the previous lecture (for ♦G).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 20/36

PCTL Model Checking

Precomputations

Qualitative reachability

1. Determine all states for which probability is zero
1.1 minimum: { s ∈ S | Prmin(s |= ΦUΨ) = 0 }
1.2 maximum: { s ∈ S | Prmax(s |= ΦUΨ) = 0 }

2. Determine all states for which probability is one
2.1 minimum: { s ∈ S | Prmin(s |= ΦUΨ) = 1 }
2.2 maximum: { s ∈ S | Prmax(s |= ΦUΨ) = 1 }

3. Then solve a linear program (or use value iteration) over all remaining states.

The first case has been treated in the previous lecture (for ♦G).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 20/36

PCTL Model Checking

Qualitative reachability

I Goal is to compute { s ∈ S | Prmax(s |= ♦G) = 1 }
I First make all states in G absorbing, i.e., P(s,αs , s) = 1
I Iteratively remove state t for which Prmax(t |= ♦G) < 1

Sketch of algorithm

1. Let U0 = S \ Sat(∃♦G); this can be done by a graph analysis
2. Remove all actions α from state u for which Post(s,α) ∩ U0 6= ∅
3. If after removal of actions Act(u) = ∅, then remove state u
4. Repeat this procedure for all states, yielding the new MDPM′

5. As this may yield new states from which G is unreachable, repeat the
above steps until all states can reach G

This procedure is quadratic in the size of the MDP.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 21/36

PCTL Model Checking

Qualitative reachability
I Goal is to compute { s ∈ S | Prmax(s |= ♦G) = 1 }
I First make all states in G absorbing, i.e., P(s,αs , s) = 1
I Iteratively remove state t for which Prmax(t |= ♦G) < 1

Sketch of algorithm

1. Let U0 = S \ Sat(∃♦G); this can be done by a graph analysis
2. Remove all actions α from state u for which Post(s,α) ∩ U0 6= ∅
3. If after removal of actions Act(u) = ∅, then remove state u
4. Repeat this procedure for all states, yielding the new MDPM′

5. As this may yield new states from which G is unreachable, repeat the
above steps until all states can reach G

This procedure is quadratic in the size of the MDP.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 21/36

PCTL Model Checking

Qualitative reachability
I Goal is to compute { s ∈ S | Prmax(s |= ♦G) = 1 }
I First make all states in G absorbing, i.e., P(s,αs , s) = 1
I Iteratively remove state t for which Prmax(t |= ♦G) < 1

Sketch of algorithm

1. Let U0 = S \ Sat(∃♦G); this can be done by a graph analysis

2. Remove all actions α from state u for which Post(s,α) ∩ U0 6= ∅
3. If after removal of actions Act(u) = ∅, then remove state u
4. Repeat this procedure for all states, yielding the new MDPM′

5. As this may yield new states from which G is unreachable, repeat the
above steps until all states can reach G

This procedure is quadratic in the size of the MDP.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 21/36

PCTL Model Checking

Qualitative reachability
I Goal is to compute { s ∈ S | Prmax(s |= ♦G) = 1 }
I First make all states in G absorbing, i.e., P(s,αs , s) = 1
I Iteratively remove state t for which Prmax(t |= ♦G) < 1

Sketch of algorithm

1. Let U0 = S \ Sat(∃♦G); this can be done by a graph analysis
2. Remove all actions α from state u for which Post(s,α) ∩ U0 6= ∅

3. If after removal of actions Act(u) = ∅, then remove state u
4. Repeat this procedure for all states, yielding the new MDPM′

5. As this may yield new states from which G is unreachable, repeat the
above steps until all states can reach G

This procedure is quadratic in the size of the MDP.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 21/36

PCTL Model Checking

Qualitative reachability
I Goal is to compute { s ∈ S | Prmax(s |= ♦G) = 1 }
I First make all states in G absorbing, i.e., P(s,αs , s) = 1
I Iteratively remove state t for which Prmax(t |= ♦G) < 1

Sketch of algorithm

1. Let U0 = S \ Sat(∃♦G); this can be done by a graph analysis
2. Remove all actions α from state u for which Post(s,α) ∩ U0 6= ∅
3. If after removal of actions Act(u) = ∅, then remove state u

4. Repeat this procedure for all states, yielding the new MDPM′

5. As this may yield new states from which G is unreachable, repeat the
above steps until all states can reach G

This procedure is quadratic in the size of the MDP.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 21/36

PCTL Model Checking

Qualitative reachability
I Goal is to compute { s ∈ S | Prmax(s |= ♦G) = 1 }
I First make all states in G absorbing, i.e., P(s,αs , s) = 1
I Iteratively remove state t for which Prmax(t |= ♦G) < 1

Sketch of algorithm

1. Let U0 = S \ Sat(∃♦G); this can be done by a graph analysis
2. Remove all actions α from state u for which Post(s,α) ∩ U0 6= ∅
3. If after removal of actions Act(u) = ∅, then remove state u
4. Repeat this procedure for all states, yielding the new MDPM′

5. As this may yield new states from which G is unreachable, repeat the
above steps until all states can reach G

This procedure is quadratic in the size of the MDP.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 21/36

PCTL Model Checking

Qualitative reachability
I Goal is to compute { s ∈ S | Prmax(s |= ♦G) = 1 }
I First make all states in G absorbing, i.e., P(s,αs , s) = 1
I Iteratively remove state t for which Prmax(t |= ♦G) < 1

Sketch of algorithm

1. Let U0 = S \ Sat(∃♦G); this can be done by a graph analysis
2. Remove all actions α from state u for which Post(s,α) ∩ U0 6= ∅
3. If after removal of actions Act(u) = ∅, then remove state u
4. Repeat this procedure for all states, yielding the new MDPM′

5. As this may yield new states from which G is unreachable, repeat the
above steps until all states can reach G

This procedure is quadratic in the size of the MDP.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 21/36

PCTL Model Checking

Qualitative reachability
I Goal is to compute { s ∈ S | Prmax(s |= ♦G) = 1 }
I First make all states in G absorbing, i.e., P(s,αs , s) = 1
I Iteratively remove state t for which Prmax(t |= ♦G) < 1

Sketch of algorithm

1. Let U0 = S \ Sat(∃♦G); this can be done by a graph analysis
2. Remove all actions α from state u for which Post(s,α) ∩ U0 6= ∅
3. If after removal of actions Act(u) = ∅, then remove state u
4. Repeat this procedure for all states, yielding the new MDPM′

5. As this may yield new states from which G is unreachable, repeat the
above steps until all states can reach G

This procedure is quadratic in the size of the MDP.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 21/36

PCTL Model Checking

Algorithm

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 22/36

Complexity

Overview

1 PCTL Semantics

2 PCTL Model Checking

3 Complexity

4 Example: Dining Cryptographers Problem

5 Fairness

6 Summary

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 23/36

Complexity

Time complexity

Let |Φ| be the size of Φ, i.e., the number of logical and temporal operators in Φ.

Time complexity of PCTL model checking of MDPs
For finite MDPM and PCTL state-formula Φ, the PCTL model-checking
problem can be solved in time

O
(

poly(size(M)) · nmax · |Φ|
)

where nmax = max{ n | Ψ1 U6n Ψ2 occurs in Φ } with max∅ = 1.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 24/36

Complexity

Time complexity

Let |Φ| be the size of Φ, i.e., the number of logical and temporal operators in Φ.

Time complexity of PCTL model checking of MDPs
For finite MDPM and PCTL state-formula Φ, the PCTL model-checking
problem can be solved in time

O
(

poly(size(M)) · nmax · |Φ|
)

where nmax = max{ n | Ψ1 U6n Ψ2 occurs in Φ } with max∅ = 1.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 24/36

Complexity

Time complexity

Let |Φ| be the size of Φ, i.e., the number of logical and temporal operators in Φ.

Time complexity of PCTL model checking of MDPs
For finite MDPM and PCTL state-formula Φ, the PCTL model-checking
problem can be solved in time

O
(

poly(size(M)) · nmax · |Φ|
)

where nmax = max{ n | Ψ1 U6n Ψ2 occurs in Φ } with max∅ = 1.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 24/36

Complexity

Time complexity

Let |Φ| be the size of Φ, i.e., the number of logical and temporal operators in Φ.

Time complexity of PCTL model checking of MDPs
For finite MDPM and PCTL state-formula Φ, the PCTL model-checking
problem can be solved in time

O
(

poly(size(M)) · nmax · |Φ|
)

where nmax = max{ n | Ψ1 U6n Ψ2 occurs in Φ } with max∅ = 1.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 24/36

Example: Dining Cryptographers Problem

Overview

1 PCTL Semantics

2 PCTL Model Checking

3 Complexity

4 Example: Dining Cryptographers Problem

5 Fairness

6 Summary

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 25/36

Example: Dining Cryptographers Problem

Dining cryptographers problem [Chaum, 1988]

Problem statement

I Three cryptographers gather around a table for dinner.
I The waiter informs them that the meal has been paid by someone,

who could be one of the cryptographers or their master.
I The cryptographers respect each other’s right to make an anonymous

payment, but want to find out whether the master paid or not.

Is it possible to obtain this information without revealing the identity of
the cryptographer that paid?

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 26/36

Example: Dining Cryptographers Problem

Dining cryptographers problem [Chaum, 1988]

Problem statement
I Three cryptographers gather around a table for dinner.

I The waiter informs them that the meal has been paid by someone,
who could be one of the cryptographers or their master.

I The cryptographers respect each other’s right to make an anonymous
payment, but want to find out whether the master paid or not.

Is it possible to obtain this information without revealing the identity of
the cryptographer that paid?

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 26/36

Example: Dining Cryptographers Problem

Dining cryptographers problem [Chaum, 1988]

Problem statement
I Three cryptographers gather around a table for dinner.
I The waiter informs them that the meal has been paid by someone,

who could be one of the cryptographers or their master.

I The cryptographers respect each other’s right to make an anonymous
payment, but want to find out whether the master paid or not.

Is it possible to obtain this information without revealing the identity of
the cryptographer that paid?

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 26/36

Example: Dining Cryptographers Problem

Dining cryptographers problem [Chaum, 1988]

Problem statement
I Three cryptographers gather around a table for dinner.
I The waiter informs them that the meal has been paid by someone,

who could be one of the cryptographers or their master.
I The cryptographers respect each other’s right to make an anonymous

payment, but want to find out whether the master paid or not.

Is it possible to obtain this information without revealing the identity of
the cryptographer that paid?

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 26/36

Example: Dining Cryptographers Problem

Dining cryptographers problem [Chaum, 1988]

Problem statement
I Three cryptographers gather around a table for dinner.
I The waiter informs them that the meal has been paid by someone,

who could be one of the cryptographers or their master.
I The cryptographers respect each other’s right to make an anonymous

payment, but want to find out whether the master paid or not.

Is it possible to obtain this information without revealing the identity of
the cryptographer that paid?

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 26/36

Example: Dining Cryptographers Problem

Dining cryptographers problem

Dining cryptographer’s protocol

1. Each cryptographer flips an unbiased coin and only informs the
cryptographer on the right of the outcome.

2. Each cryptographer states whether the two coins that it can see—the
one it flipped and the one the left-hand neighbour flipped—are the
same (agree) or different (disagree).

Caveat: if a cryptographer actually paid for the dinner, then it instead
states the opposite (disagree if the coins are the same and agree if the
coins are different).

Claim
An odd number of agrees indicates that the master paid, while an even
number indicates that a cryptographer paid.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 27/36

Example: Dining Cryptographers Problem

Dining cryptographers problem

Dining cryptographer’s protocol

1. Each cryptographer flips an unbiased coin and only informs the
cryptographer on the right of the outcome.

2. Each cryptographer states whether the two coins that it can see—the
one it flipped and the one the left-hand neighbour flipped—are the
same (agree) or different (disagree).

Caveat: if a cryptographer actually paid for the dinner, then it instead
states the opposite (disagree if the coins are the same and agree if the
coins are different).

Claim
An odd number of agrees indicates that the master paid, while an even
number indicates that a cryptographer paid.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 27/36

Example: Dining Cryptographers Problem

Dining cryptographers problem

Dining cryptographer’s protocol

1. Each cryptographer flips an unbiased coin and only informs the
cryptographer on the right of the outcome.

2. Each cryptographer states whether the two coins that it can see—the
one it flipped and the one the left-hand neighbour flipped—are the
same (agree) or different (disagree).

Caveat: if a cryptographer actually paid for the dinner, then it instead
states the opposite (disagree if the coins are the same and agree if the
coins are different).

Claim
An odd number of agrees indicates that the master paid, while an even
number indicates that a cryptographer paid.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 27/36

Example: Dining Cryptographers Problem

Dining cryptographers problem

Dining cryptographer’s protocol

1. Each cryptographer flips an unbiased coin and only informs the
cryptographer on the right of the outcome.

2. Each cryptographer states whether the two coins that it can see—the
one it flipped and the one the left-hand neighbour flipped—are the
same (agree) or different (disagree).

Caveat: if a cryptographer actually paid for the dinner, then it instead
states the opposite (disagree if the coins are the same and agree if the
coins are different).

Claim
An odd number of agrees indicates that the master paid, while an even
number indicates that a cryptographer paid.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 27/36

Example: Dining Cryptographers Problem

Dining cryptographers problem

Example scenario in which master paid (left) or cryptographer A paid
(right) and provides a misleading vote.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 28/36

Example: Dining Cryptographers Problem

Dining cryptographers problem
Dining cryptographer’s protocol

1. Each cryptographer flips an unbiased coin and only informs the cryptographer on
the right of the outcome.

2. Each cryptographer states whether the two coins that it can see—the one it
flipped and the one the left-hand neighbour flipped—are the same (agree) or
different (disagree).

Caveat: if a cryptographer actually paid for the dinner, then it instead states the
opposite (disagree if the coins are the same and agree if the coins are different).

Generalisation
The dining cryptographer’s protocol can be generalised to any number N of
cryptographers. Then:
I if N is odd, then an odd number of agrees indicates that the master paid

while an even number indicates that a cryptographer paid.
I if N is even, then an even number of agrees indicates that the master paid

while an odd number indicates that a cryptographer paid.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 29/36

Example: Dining Cryptographers Problem

Dining cryptographers problem
Dining cryptographer’s protocol

1. Each cryptographer flips an unbiased coin and only informs the cryptographer on
the right of the outcome.

2. Each cryptographer states whether the two coins that it can see—the one it
flipped and the one the left-hand neighbour flipped—are the same (agree) or
different (disagree).

Caveat: if a cryptographer actually paid for the dinner, then it instead states the
opposite (disagree if the coins are the same and agree if the coins are different).

Generalisation
The dining cryptographer’s protocol can be generalised to any number N of
cryptographers.

Then:
I if N is odd, then an odd number of agrees indicates that the master paid

while an even number indicates that a cryptographer paid.
I if N is even, then an even number of agrees indicates that the master paid

while an odd number indicates that a cryptographer paid.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 29/36

Example: Dining Cryptographers Problem

Dining cryptographers problem
Dining cryptographer’s protocol

1. Each cryptographer flips an unbiased coin and only informs the cryptographer on
the right of the outcome.

2. Each cryptographer states whether the two coins that it can see—the one it
flipped and the one the left-hand neighbour flipped—are the same (agree) or
different (disagree).

Caveat: if a cryptographer actually paid for the dinner, then it instead states the
opposite (disagree if the coins are the same and agree if the coins are different).

Generalisation
The dining cryptographer’s protocol can be generalised to any number N of
cryptographers. Then:
I if N is odd, then an odd number of agrees indicates that the master paid

while an even number indicates that a cryptographer paid.

I if N is even, then an even number of agrees indicates that the master paid
while an odd number indicates that a cryptographer paid.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 29/36

Example: Dining Cryptographers Problem

Dining cryptographers problem
Dining cryptographer’s protocol

1. Each cryptographer flips an unbiased coin and only informs the cryptographer on
the right of the outcome.

2. Each cryptographer states whether the two coins that it can see—the one it
flipped and the one the left-hand neighbour flipped—are the same (agree) or
different (disagree).

Caveat: if a cryptographer actually paid for the dinner, then it instead states the
opposite (disagree if the coins are the same and agree if the coins are different).

Generalisation
The dining cryptographer’s protocol can be generalised to any number N of
cryptographers. Then:
I if N is odd, then an odd number of agrees indicates that the master paid

while an even number indicates that a cryptographer paid.
I if N is even, then an even number of agrees indicates that the master paid

while an odd number indicates that a cryptographer paid.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 29/36

Example: Dining Cryptographers Problem

MDP generation times

The number of states and transitions in the MDP representing the model
for the dining cryptographers problem with N cryptographers.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 30/36

Example: Dining Cryptographers Problem

MDP generation times

The number of states and transitions in the MDP representing the model
for the dining cryptographers problem with N cryptographers.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 30/36

Example: Dining Cryptographers Problem

Checking correctness

pay ⇒ P=1 (♦(done ∧ par = N%2)) ∧ ¬pay ⇒ P=1 (♦(done ∧ par 6= N%2)).
That is: if the master paid, the parity of the number of agrees matches the parity
of N and, if a cryptographer paid, it does not.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 31/36

Example: Dining Cryptographers Problem

Checking correctness

pay ⇒ P=1 (♦(done ∧ par = N%2)) ∧ ¬pay ⇒ P=1 (♦(done ∧ par 6= N%2)).

That is: if the master paid, the parity of the number of agrees matches the parity
of N and, if a cryptographer paid, it does not.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 31/36

Example: Dining Cryptographers Problem

Checking correctness

pay ⇒ P=1 (♦(done ∧ par = N%2)) ∧ ¬pay ⇒ P=1 (♦(done ∧ par 6= N%2)).
That is: if the master paid, the parity of the number of agrees matches the parity
of N and, if a cryptographer paid, it does not.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 31/36

Example: Dining Cryptographers Problem

Checking anonymity

To verify anonymity – when a cryptographer pays then no cryptographer can tell
who has paid – we check that any possible combination of agree and disagree has
the same likelihood no matter which of the cryptographers pays. This needs to be
checked for all 2N possible outcomes. Above the results are listed for one possible
outcome.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 32/36

Example: Dining Cryptographers Problem

Checking anonymity

To verify anonymity – when a cryptographer pays then no cryptographer can tell
who has paid – we check that any possible combination of agree and disagree has
the same likelihood no matter which of the cryptographers pays.

This needs to be
checked for all 2N possible outcomes. Above the results are listed for one possible
outcome.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 32/36

Example: Dining Cryptographers Problem

Checking anonymity

To verify anonymity – when a cryptographer pays then no cryptographer can tell
who has paid – we check that any possible combination of agree and disagree has
the same likelihood no matter which of the cryptographers pays. This needs to be
checked for all 2N possible outcomes.

Above the results are listed for one possible
outcome.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 32/36

Example: Dining Cryptographers Problem

Checking anonymity

To verify anonymity – when a cryptographer pays then no cryptographer can tell
who has paid – we check that any possible combination of agree and disagree has
the same likelihood no matter which of the cryptographers pays. This needs to be
checked for all 2N possible outcomes. Above the results are listed for one possible
outcome.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 32/36

Fairness

Overview

1 PCTL Semantics

2 PCTL Model Checking

3 Complexity

4 Example: Dining Cryptographers Problem

5 Fairness

6 Summary

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 33/36

Fairness

Fairness

I A policy S is fair if for every state s, the probability under S of all
fair paths from s is one

I A fairness assumption is realizable in MDPM if there is some fair
policy forM

I Realizable fairness assumptions are irrelevant for maximal reachability
probabilities (i.e., safety)

I They are relevant for minimal reachability probabilities (i.e., liveness)

I Computing minimal reachability probabilities under strongly fair
policies is reducible to computing maximal reachability probabilities

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 34/36

Fairness

Fairness

I A policy S is fair if for every state s, the probability under S of all
fair paths from s is one

I A fairness assumption is realizable in MDPM if there is some fair
policy forM

I Realizable fairness assumptions are irrelevant for maximal reachability
probabilities (i.e., safety)

I They are relevant for minimal reachability probabilities (i.e., liveness)

I Computing minimal reachability probabilities under strongly fair
policies is reducible to computing maximal reachability probabilities

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 34/36

Fairness

Fairness

I A policy S is fair if for every state s, the probability under S of all
fair paths from s is one

I A fairness assumption is realizable in MDPM if there is some fair
policy forM

I Realizable fairness assumptions are irrelevant for maximal reachability
probabilities (i.e., safety)

I They are relevant for minimal reachability probabilities (i.e., liveness)

I Computing minimal reachability probabilities under strongly fair
policies is reducible to computing maximal reachability probabilities

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 34/36

Fairness

Fairness

I A policy S is fair if for every state s, the probability under S of all
fair paths from s is one

I A fairness assumption is realizable in MDPM if there is some fair
policy forM

I Realizable fairness assumptions are irrelevant for maximal reachability
probabilities (i.e., safety)

I They are relevant for minimal reachability probabilities (i.e., liveness)

I Computing minimal reachability probabilities under strongly fair
policies is reducible to computing maximal reachability probabilities

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 34/36

Fairness

Fairness

I A policy S is fair if for every state s, the probability under S of all
fair paths from s is one

I A fairness assumption is realizable in MDPM if there is some fair
policy forM

I Realizable fairness assumptions are irrelevant for maximal reachability
probabilities (i.e., safety)

I They are relevant for minimal reachability probabilities (i.e., liveness)

I Computing minimal reachability probabilities under strongly fair
policies is reducible to computing maximal reachability probabilities

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 34/36

Summary

Overview

1 PCTL Semantics

2 PCTL Model Checking

3 Complexity

4 Example: Dining Cryptographers Problem

5 Fairness

6 Summary

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 35/36

Summary

Summary

I PCTL is a variant of CTL with operator Φ = PJ(ϕ).
I PCTL model checking is performed by a recursive descent over Φ.
I Checking whether s |= P>p(ϕ) amounts to determine Prmin(s |= ϕ).
I Checking whether s |= P<p(ϕ) amounts to determine Prmax(s |= ϕ).
I The next operator amounts to a single matrix-vector multiplication

and a max/min.
I The bounded-until operator U6n amounts to n matrix-vector

multiplications + n minimums (or maximums).
I The until-operator amounts to solving a linear inequation system.
I The worst-case time complexity is polynomial in the size of the MDP

and linear in the size of the formula.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 36/36

Summary

Summary

I PCTL is a variant of CTL with operator Φ = PJ(ϕ).

I PCTL model checking is performed by a recursive descent over Φ.
I Checking whether s |= P>p(ϕ) amounts to determine Prmin(s |= ϕ).
I Checking whether s |= P<p(ϕ) amounts to determine Prmax(s |= ϕ).
I The next operator amounts to a single matrix-vector multiplication

and a max/min.
I The bounded-until operator U6n amounts to n matrix-vector

multiplications + n minimums (or maximums).
I The until-operator amounts to solving a linear inequation system.
I The worst-case time complexity is polynomial in the size of the MDP

and linear in the size of the formula.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 36/36

Summary

Summary

I PCTL is a variant of CTL with operator Φ = PJ(ϕ).
I PCTL model checking is performed by a recursive descent over Φ.

I Checking whether s |= P>p(ϕ) amounts to determine Prmin(s |= ϕ).
I Checking whether s |= P<p(ϕ) amounts to determine Prmax(s |= ϕ).
I The next operator amounts to a single matrix-vector multiplication

and a max/min.
I The bounded-until operator U6n amounts to n matrix-vector

multiplications + n minimums (or maximums).
I The until-operator amounts to solving a linear inequation system.
I The worst-case time complexity is polynomial in the size of the MDP

and linear in the size of the formula.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 36/36

Summary

Summary

I PCTL is a variant of CTL with operator Φ = PJ(ϕ).
I PCTL model checking is performed by a recursive descent over Φ.
I Checking whether s |= P>p(ϕ) amounts to determine Prmin(s |= ϕ).

I Checking whether s |= P<p(ϕ) amounts to determine Prmax(s |= ϕ).
I The next operator amounts to a single matrix-vector multiplication

and a max/min.
I The bounded-until operator U6n amounts to n matrix-vector

multiplications + n minimums (or maximums).
I The until-operator amounts to solving a linear inequation system.
I The worst-case time complexity is polynomial in the size of the MDP

and linear in the size of the formula.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 36/36

Summary

Summary

I PCTL is a variant of CTL with operator Φ = PJ(ϕ).
I PCTL model checking is performed by a recursive descent over Φ.
I Checking whether s |= P>p(ϕ) amounts to determine Prmin(s |= ϕ).
I Checking whether s |= P<p(ϕ) amounts to determine Prmax(s |= ϕ).

I The next operator amounts to a single matrix-vector multiplication
and a max/min.

I The bounded-until operator U6n amounts to n matrix-vector
multiplications + n minimums (or maximums).

I The until-operator amounts to solving a linear inequation system.
I The worst-case time complexity is polynomial in the size of the MDP

and linear in the size of the formula.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 36/36

Summary

Summary

I PCTL is a variant of CTL with operator Φ = PJ(ϕ).
I PCTL model checking is performed by a recursive descent over Φ.
I Checking whether s |= P>p(ϕ) amounts to determine Prmin(s |= ϕ).
I Checking whether s |= P<p(ϕ) amounts to determine Prmax(s |= ϕ).
I The next operator amounts to a single matrix-vector multiplication

and a max/min.

I The bounded-until operator U6n amounts to n matrix-vector
multiplications + n minimums (or maximums).

I The until-operator amounts to solving a linear inequation system.
I The worst-case time complexity is polynomial in the size of the MDP

and linear in the size of the formula.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 36/36

Summary

Summary

I PCTL is a variant of CTL with operator Φ = PJ(ϕ).
I PCTL model checking is performed by a recursive descent over Φ.
I Checking whether s |= P>p(ϕ) amounts to determine Prmin(s |= ϕ).
I Checking whether s |= P<p(ϕ) amounts to determine Prmax(s |= ϕ).
I The next operator amounts to a single matrix-vector multiplication

and a max/min.
I The bounded-until operator U6n amounts to n matrix-vector

multiplications + n minimums (or maximums).

I The until-operator amounts to solving a linear inequation system.
I The worst-case time complexity is polynomial in the size of the MDP

and linear in the size of the formula.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 36/36

Summary

Summary

I PCTL is a variant of CTL with operator Φ = PJ(ϕ).
I PCTL model checking is performed by a recursive descent over Φ.
I Checking whether s |= P>p(ϕ) amounts to determine Prmin(s |= ϕ).
I Checking whether s |= P<p(ϕ) amounts to determine Prmax(s |= ϕ).
I The next operator amounts to a single matrix-vector multiplication

and a max/min.
I The bounded-until operator U6n amounts to n matrix-vector

multiplications + n minimums (or maximums).
I The until-operator amounts to solving a linear inequation system.

I The worst-case time complexity is polynomial in the size of the MDP
and linear in the size of the formula.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 36/36

Summary

Summary

I PCTL is a variant of CTL with operator Φ = PJ(ϕ).
I PCTL model checking is performed by a recursive descent over Φ.
I Checking whether s |= P>p(ϕ) amounts to determine Prmin(s |= ϕ).
I Checking whether s |= P<p(ϕ) amounts to determine Prmax(s |= ϕ).
I The next operator amounts to a single matrix-vector multiplication

and a max/min.
I The bounded-until operator U6n amounts to n matrix-vector

multiplications + n minimums (or maximums).
I The until-operator amounts to solving a linear inequation system.
I The worst-case time complexity is polynomial in the size of the MDP

and linear in the size of the formula.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 36/36

	PCTL Semantics
	PCTL Model Checking
	Complexity
	Example: Dining Cryptographers Problem
	Fairness
	Summary

