Modeling and Verification of Probabilistic Systems

Joost-Pieter Katoen

Lehrstuhl für Informatik 2 Software Modeling and Verification Group

http://moves.rwth-aachen.de/teaching/ws-1516/movep15/

November 25, 2015

Overview

Policies

- Positional policies
- Finite-memory policies

Reachability probabilities

- Mathematical characterisation
- Value iteration
- Linear programming
- Policy iteration

Summary

Markov decision processes

In MDPs, both nondeterministic and probabilistic choices coexist.

- In MDPs, both nondeterministic and probabilistic choices coexist.
- MDPs are transition systems in which in any state a nondeterministic choice between probability distributions exists.

- ▶ In MDPs, both nondeterministic and probabilistic choices coexist.
- MDPs are transition systems in which in any state a nondeterministic choice between probability distributions exists.
- Once a probability distribution has been chosen nondeterministically, the next state is selected probabilistically—as in DTMCs.

- ► In MDPs, both nondeterministic and probabilistic choices coexist.
- MDPs are transition systems in which in any state a nondeterministic choice between probability distributions exists.
- Once a probability distribution has been chosen nondeterministically, the next state is selected probabilistically—as in DTMCs.
- Any MC is thus an MDP in which in any state the probability distribution is uniquely determined.

- ► In MDPs, both nondeterministic and probabilistic choices coexist.
- MDPs are transition systems in which in any state a nondeterministic choice between probability distributions exists.
- Once a probability distribution has been chosen nondeterministically, the next state is selected probabilistically—as in DTMCs.
- Any MC is thus an MDP in which in any state the probability distribution is uniquely determined.

Markov decision process

An MDP \mathcal{M} is a tuple (S, Act, P, ι_{init} , AP, L) where

• S is a countable set of states with initial distribution $\iota_{\text{init}}:S
ightarrow$ [0, 1]

Markov decision process

An MDP \mathcal{M} is a tuple (S, Act, P, ι_{init} , AP, L) where

- S is a countable set of states with initial distribution $\iota_{\mathrm{init}}:S
 ightarrow$ [0, 1]
- Act is a finite set of actions

Markov decision process

An MDP \mathcal{M} is a tuple (S, Act, P, ι_{init} , AP, L) where

- S is a countable set of states with initial distribution $\iota_{\mathrm{init}}:S
 ightarrow$ [0,1]
- Act is a finite set of actions
- ▶ $\mathbf{P}: S \times Act \times S \rightarrow [0, 1]$, transition probability function

Markov decision process

An MDP \mathcal{M} is a tuple (S, Act, P, ι_{init} , AP, L) where

- S is a countable set of states with initial distribution $\iota_{\mathrm{init}}:S
 ightarrow$ [0, 1]
- Act is a finite set of actions
- ▶ $\mathbf{P}: S \times Act \times S \rightarrow [0, 1]$, transition probability function such that:

for all
$$s \in S$$
 and $lpha \in Act : \sum_{s' \in S} \mathsf{P}(s, lpha, s') \in \set{0, 1}$

Markov decision process

An MDP \mathcal{M} is a tuple (S, Act, P, ι_{init} , AP, L) where

- S is a countable set of states with initial distribution $\iota_{\mathrm{init}}:S
 ightarrow$ [0,1]
- Act is a finite set of actions
- ▶ $\mathbf{P}: S \times Act \times S \rightarrow [0, 1]$, transition probability function such that:

for all
$$s \in S$$
 and $lpha \in Act : \sum_{s' \in S} \mathsf{P}(s, lpha, s') \in \set{0, 1}$

• AP is a set of atomic propositions and labeling $L: S \to 2^{AP}$.

Markov decision process

An MDP \mathcal{M} is a tuple (S, Act, P, ι_{init} , AP, L) where

- S is a countable set of states with initial distribution $\iota_{\mathrm{init}}:S
 ightarrow$ [0,1]
- Act is a finite set of actions
- ▶ $\mathbf{P}: S \times Act \times S \rightarrow [0, 1]$, transition probability function such that:

for all
$$s \in S$$
 and $lpha \in Act : \sum_{s' \in S} \mathsf{P}(s, lpha, s') \in \set{0, 1}$

• AP is a set of atomic propositions and labeling $L: S \to 2^{AP}$.

Markov decision process

An MDP \mathcal{M} is a tuple (*S*, *Act*, **P**, ι_{init} , *AP*, *L*) where

- ▶ S, ι_{init} : S → [0, 1], AP and L are as before, i.e., as for DTMCs, and
- Act is a finite set of actions

▶ $P: S \times Act \times S \rightarrow [0, 1]$, transition probability function such that:

for all
$$s \in S$$
 and $\alpha \in Act : \sum_{s' \in S} \mathsf{P}(s, \alpha, s') \in \{0, 1\}$

Markov decision process

An MDP \mathcal{M} is a tuple (*S*, *Act*, **P**, ι_{init} , *AP*, *L*) where

- ▶ *S*, ι_{init} : *S* → [0, 1], *AP* and *L* are as before, i.e., as for DTMCs, and
- Act is a finite set of actions
- ▶ $\mathbf{P}: S \times Act \times S \rightarrow [0, 1]$, transition probability function such that:

for all
$$s \in S$$
 and $\alpha \in Act : \sum_{s' \in S} \mathsf{P}(s, \alpha, s') \in \{0, 1\}$

Enabled actions

Let $Act(s) = \{ \alpha \in Act \mid \exists s' \in S. \mathbf{P}(s, \alpha, s') > 0 \}$ be the set of enabled actions in state s.

Markov decision process

An MDP \mathcal{M} is a tuple (*S*, *Act*, **P**, ι_{init} , *AP*, *L*) where

- ▶ *S*, ι_{init} : *S* → [0, 1], *AP* and *L* are as before, i.e., as for DTMCs, and
- Act is a finite set of actions
- ▶ $\mathbf{P}: S \times Act \times S \rightarrow [0, 1]$, transition probability function such that:

for all
$$s \in S$$
 and $\alpha \in Act : \sum_{s' \in S} \mathsf{P}(s, \alpha, s') \in \set{0, 1}$

Enabled actions

Let $Act(s) = \{ \alpha \in Act \mid \exists s' \in S. \mathbf{P}(s, \alpha, s') > 0 \}$ be the set of enabled actions in state s. We require $Act(s) \neq \emptyset$ for any state s.

Overview

2 Policies

- Positional policies
- Finite-memory policies

Reachability probabilities

- Mathematical characterisation
- Value iteration
- Linear programming
- Policy iteration

Summary

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems 7/50

Let $\mathcal{M} = (S, Act, \mathbf{P}, \iota_{init}, AP, L)$ be an MDP. A policy for \mathcal{M} is a function $\mathfrak{S} : S^+ \to Act$

Policies

Policy

Let $\mathcal{M} = (S, Act, \mathbf{P}, \iota_{\text{init}}, AP, L)$ be an MDP. A policy for \mathcal{M} is a function $\mathfrak{S} : S^+ \to Act$ such that $\mathfrak{S}(s_0 s_1 \dots s_n) \in Act(s_n)$ for all $s_0 s_1 \dots s_n \in S^+$.

Policies

Policy

Let $\mathcal{M} = (S, Act, \mathbf{P}, \iota_{init}, AP, L)$ be an MDP. A policy for \mathcal{M} is a function $\mathfrak{S} : S^+ \to Act$ such that $\mathfrak{S}(s_0 s_1 \dots s_n) \in Act(s_n)$ for all $s_0 s_1 \dots s_n \in S^+$. The path

Policies

$$\pi = s_0 \xrightarrow{\alpha_1} s_1 \xrightarrow{\alpha_2} s_2 \xrightarrow{\alpha_3} \dots$$

is called a \mathfrak{S} -path if $\alpha_i = \mathfrak{S}(s_0 \dots s_{i-1})$ for all i > 0.

DTMC of an MDP induced by a policy

DTMC of an MDP induced by a policy

Let $\mathcal{M} = (S, Act, \mathbf{P}, \iota_{init}, AP, L)$ be an MDP and \mathfrak{S} a policy on \mathcal{M} . The DTMC induced by \mathfrak{S} , denoted $\mathcal{M}_{\mathfrak{S}}$, is given by

 $\mathcal{M}_{\mathfrak{S}} = (S^+, \mathbf{P}_{\mathfrak{S}}, \iota_{\text{init}}, AP, L')$

DTMC of an MDP induced by a policy

Let $\mathcal{M} = (S, Act, \mathbf{P}, \iota_{init}, AP, L)$ be an MDP and \mathfrak{S} a policy on \mathcal{M} . The DTMC induced by \mathfrak{S} , denoted $\mathcal{M}_{\mathfrak{S}}$, is given by

$$\mathcal{M}_{\mathfrak{S}} \;=\; (S^+, \mathbf{P}_{\mathfrak{S}}, \iota_{ ext{init}}, AP, L')$$

where for
$$\sigma = s_0 s_1 \dots s_n$$
: $\mathbf{P}_{\mathfrak{S}}(\sigma, \sigma s_{n+1}) = \mathbf{P}(s_n, \mathfrak{S}(\sigma), s_{n+1})$

DTMC of an MDP induced by a policy

Let $\mathcal{M} = (S, Act, \mathbf{P}, \iota_{init}, AP, L)$ be an MDP and \mathfrak{S} a policy on \mathcal{M} . The DTMC induced by \mathfrak{S} , denoted $\mathcal{M}_{\mathfrak{S}}$, is given by

$$\mathcal{M}_{\mathfrak{S}} \;=\; (S^+, \mathbf{P}_{\mathfrak{S}}, \iota_{ ext{init}}, AP, L')$$

where for
$$\sigma = s_0 s_1 \dots s_n$$
: $\mathbf{P}_{\mathfrak{S}}(\sigma, \sigma s_{n+1}) = \mathbf{P}(s_n, \mathfrak{S}(\sigma), s_{n+1})$ and $L'(\sigma) = L(s_n)$.

DTMC of an MDP induced by a policy

Let $\mathcal{M} = (S, Act, \mathbf{P}, \iota_{init}, AP, L)$ be an MDP and \mathfrak{S} a policy on \mathcal{M} . The DTMC induced by \mathfrak{S} , denoted $\mathcal{M}_{\mathfrak{S}}$, is given by

$$\mathcal{M}_{\mathfrak{S}} \;=\; (S^+, \mathbf{P}_{\mathfrak{S}}, \iota_{\mathrm{init}}, AP, L')$$

where for
$$\sigma = s_0 s_1 \dots s_n$$
: $\mathbf{P}_{\mathfrak{S}}(\sigma, \sigma s_{n+1}) = \mathbf{P}(s_n, \mathfrak{S}(\sigma), s_{n+1})$ and $L'(\sigma) = L(s_n)$.

 $\mathcal{M}_{\mathfrak{S}}$ is infinite, even if the MDP \mathcal{M} is finite.

DTMC of an MDP induced by a policy

Let $\mathcal{M} = (S, Act, \mathbf{P}, \iota_{init}, AP, L)$ be an MDP and \mathfrak{S} a policy on \mathcal{M} . The DTMC induced by \mathfrak{S} , denoted $\mathcal{M}_{\mathfrak{S}}$, is given by

$$\mathcal{M}_{\mathfrak{S}} = (S^+, \mathbf{P}_{\mathfrak{S}}, \iota_{\text{init}}, AP, L')$$

where for
$$\sigma = s_0 s_1 \dots s_n$$
: $\mathbf{P}_{\mathfrak{S}}(\sigma, \sigma s_{n+1}) = \mathbf{P}(s_n, \mathfrak{S}(\sigma), s_{n+1})$ and $L'(\sigma) = L(s_n)$.

 $\mathcal{M}_{\mathfrak{S}}$ is infinite, even if the MDP \mathcal{M} is finite. Since policy \mathfrak{S} might select different actions for finite paths that end in the same state *s*, a policy as defined above is also referred to as *history-dependent*.

Probability measure on MDP

Let $Pr_{\mathfrak{S}}^{\mathcal{M}}$, or simply $Pr^{\mathfrak{S}}$, denote the probability measure $Pr^{\mathcal{M}_{\mathfrak{S}}}$ associated with the DTMC $\mathcal{M}_{\mathfrak{S}}$.

Probability measure on MDP

Let $Pr_{\mathfrak{S}}^{\mathcal{M}}$, or simply $Pr^{\mathfrak{S}}$, denote the probability measure $Pr^{\mathcal{M}_{\mathfrak{S}}}$ associated with the DTMC $\mathcal{M}_{\mathfrak{S}}$.

This measure is the basis for associating probabilities with events in the MDP $\mathcal{M}.$

Probability measure on MDP

Let $Pr_{\mathfrak{S}}^{\mathcal{M}}$, or simply $Pr^{\mathfrak{S}}$, denote the probability measure $Pr^{\mathcal{M}_{\mathfrak{S}}}$ associated with the DTMC $\mathcal{M}_{\mathfrak{S}}$.

This measure is the basis for associating probabilities with events in the MDP \mathcal{M} . Let, e.g., $P \subseteq (2^{AP})^{\omega}$ be an ω -regular property.

Probability measure on MDP

Let $Pr_{\mathfrak{S}}^{\mathcal{M}}$, or simply $Pr^{\mathfrak{S}}$, denote the probability measure $Pr^{\mathcal{M}_{\mathfrak{S}}}$ associated with the DTMC $\mathcal{M}_{\mathfrak{S}}$.

This measure is the basis for associating probabilities with events in the MDP \mathcal{M} . Let, e.g., $P \subseteq (2^{AP})^{\omega}$ be an ω -regular property. Then $Pr^{\mathfrak{S}}(P)$ is defined as:

$$Pr^{\mathfrak{S}}(P) = Pr^{\mathcal{M}_{\mathfrak{S}}}(P) = Pr_{\mathcal{M}_{\mathfrak{S}}} \{ \pi \in Paths(\mathcal{M}_{\mathfrak{S}}) \mid trace(\pi) \in P \}.$$
Positional policy

Let \mathcal{M} be an MDP with state space S. Policy \mathfrak{S} on \mathcal{M} is *positional* (or: *memoryless*) iff for each sequence $s_0 s_1 \ldots s_n$ and $t_0 t_1 \ldots t_m \in S^+$ with $s_n = t_m$:

$$\mathfrak{S}(s_0 s_1 \ldots s_n) = \mathfrak{S}(t_0 t_1 \ldots t_m).$$

Positional policy

Let \mathcal{M} be an MDP with state space S. Policy \mathfrak{S} on \mathcal{M} is *positional* (or: *memoryless*) iff for each sequence $s_0 s_1 \ldots s_n$ and $t_0 t_1 \ldots t_m \in S^+$ with $s_n = t_m$:

$$\mathfrak{S}(s_0 s_1 \ldots s_n) = \mathfrak{S}(t_0 t_1 \ldots t_m).$$

In this case, \mathfrak{S} can be viewed as a function $\mathfrak{S}: S \to Act$.

Positional policy

Let \mathcal{M} be an MDP with state space S. Policy \mathfrak{S} on \mathcal{M} is *positional* (or: *memoryless*) iff for each sequence $s_0 s_1 \ldots s_n$ and $t_0 t_1 \ldots t_m \in S^+$ with $s_n = t_m$:

$$\mathfrak{S}(s_0 s_1 \ldots s_n) = \mathfrak{S}(t_0 t_1 \ldots t_m).$$

In this case, \mathfrak{S} can be viewed as a function $\mathfrak{S}: S \to Act$.

Policy \mathfrak{S} is positional if it always selects the same action in a given state.

Positional policy

Let \mathcal{M} be an MDP with state space S. Policy \mathfrak{S} on \mathcal{M} is *positional* (or: *memoryless*) iff for each sequence $s_0 s_1 \ldots s_n$ and $t_0 t_1 \ldots t_m \in S^+$ with $s_n = t_m$:

$$\mathfrak{S}(s_0 s_1 \ldots s_n) = \mathfrak{S}(t_0 t_1 \ldots t_m).$$

In this case, \mathfrak{S} can be viewed as a function $\mathfrak{S}: S \to Act$.

Policy \mathfrak{S} is positional if it always selects the same action in a given state. This choice is independent of what has happened in the history, i.e., which path led to the current state.

- Finite-memory policies (shortly: fm-policies) are a generalisation of positional policies.
- The behavior of an fm-policy is described by a deterministic finite automaton (DFA).
- ► The selection of the action to be performed in the MDP *M* depends on the current state of *M* (as before) and the current state (called *mode*) of the policy, i.e., the DFA.

Finite-memory policy

Let \mathcal{M} be an MDP with state space S and action set Act.

A *finite-memory policy* \mathfrak{S} for \mathcal{M} is a tuple $\mathfrak{S} = (Q, act, \Delta, start)$ with:

- Q is a finite set of modes,
- $\Delta: Q \times S \rightarrow Q$ is the transition function,

Finite-memory policy

Let \mathcal{M} be an MDP with state space S and action set Act.

A *finite-memory policy* \mathfrak{S} for \mathcal{M} is a tuple $\mathfrak{S} = (Q, act, \Delta, start)$ with:

- Q is a finite set of modes,
- $\Delta: Q \times S \rightarrow Q$ is the transition function,
- act: Q × S → Act is a function that selects an action act(q, s) ∈ Act(s) for any mode q ∈ Q and state s ∈ S of M,

Finite-memory policy

Let \mathcal{M} be an MDP with state space S and action set Act.

- A *finite-memory policy* \mathfrak{S} for \mathcal{M} is a tuple $\mathfrak{S} = (Q, act, \Delta, start)$ with:
 - Q is a finite set of modes,
 - $\Delta: Q \times S \rightarrow Q$ is the transition function,
 - act: Q × S → Act is a function that selects an action act(q, s) ∈ Act(s) for any mode q ∈ Q and state s ∈ S of M,
 - *start* : $S \rightarrow Q$ is a function that selects a starting mode for state $s \in S$.

The behavior of an MDP \mathcal{M} under fm-policy $\mathfrak{S} = (Q, act, \Delta, start)$ is:

Initially, a starting state s₀ is randomly determined according to the initial distribution l_{init}, i.e., l_{init}(s₀) > 0.

- Initially, a starting state s₀ is randomly determined according to the initial distribution ι_{init}, i.e., ι_{init}(s₀) > 0.
- The fm-policy \mathfrak{S} initializes its DFA to the mode $q_0 = start(s_0) \in Q$.

- Initially, a starting state s₀ is randomly determined according to the initial distribution ι_{init}, i.e., ι_{init}(s₀) > 0.
- The fm-policy \mathfrak{S} initializes its DFA to the mode $q_0 = start(s_0) \in Q$.
- If M is in state s and the current mode of G is q, then the decision of G, i.e., the selected action, is α = act(q, s) ∈ Act(s).

- Initially, a starting state s₀ is randomly determined according to the initial distribution ℓ_{init}, i.e., ℓ_{init}(s₀) > 0.
- The fm-policy \mathfrak{S} initializes its DFA to the mode $q_0 = start(s_0) \in Q$.
- If M is in state s and the current mode of G is q, then the decision of G, i.e., the selected action, is α = act(q, s) ∈ Act(s).
- The policy changes to mode Δ(q, s), while M performs the selected action α and randomly moves to the next state according to the distribution P(s, α, ·).

Relation fm-policy to definition policy

Relation fm-policy to definition policy

An fm-policy $\mathfrak{S} = (Q, act, \Delta, start)$ is identified with policy, $\mathfrak{S}' : Paths^* \to Act$ which is defined as follows.

Relation fm-policy to definition policy

An fm-policy $\mathfrak{S} = (Q, act, \Delta, start)$ is identified with policy, $\mathfrak{S}' : Paths^* \to Act$ which is defined as follows.

1. For the starting state s_0 , let $\mathfrak{S}'(s_0) = act(start(s_0), s_0)$.

Relation fm-policy to definition policy

An fm-policy $\mathfrak{S} = (Q, act, \Delta, start)$ is identified with policy, $\mathfrak{S}' : Paths^* \to Act$ which is defined as follows.

- 1. For the starting state s_0 , let $\mathfrak{S}'(s_0) = act(start(s_0), s_0)$.
- 2. For path fragment $\hat{\pi} = s_0 s_1 \dots s_n$ let

$$\mathfrak{S}'(\widehat{\pi}) = act(q_n, s_n)$$

where $q_0 = start(s_0)$ and $q_{i+1} = \Delta(q_i, s_i)$ for $0 \leq i \leq n$.

Relation fm-policy to definition policy

An fm-policy $\mathfrak{S} = (Q, act, \Delta, start)$ is identified with policy, $\mathfrak{S}' : Paths^* \to Act$ which is defined as follows.

- 1. For the starting state s_0 , let $\mathfrak{S}'(s_0) = act(start(s_0), s_0)$.
- 2. For path fragment $\hat{\pi} = s_0 s_1 \dots s_n$ let

$$\mathfrak{S}'(\widehat{\pi}) = act(q_n, s_n)$$

where $q_0 = start(s_0)$ and $q_{i+1} = \Delta(q_i, s_i)$ for $0 \leq i \leq n$.

Positional policies can be considered as fm-policies with just a single mode.

Positional policies are insufficient for ω -regular properties

Positional policies are insufficient for ω -regular properties

Consider the MDP:

Positional policies are insufficient for ω -regular properties

Consider the MDP:

Positional policy \mathfrak{S}_{α} always chooses α in state s_0

Positional policies are insufficient for ω -regular properties

Consider the MDP:

Positional policy \mathfrak{S}_{α} always chooses α in state s_0 Positional policy \mathfrak{S}_{β} always chooses β in state s_0 .

Positional policies are insufficient for ω -regular properties

Consider the MDP:

Positional policy \mathfrak{S}_{α} always chooses α in state s_0 Positional policy \mathfrak{S}_{β} always chooses β in state s_0 . Then:

$$Pr_{\mathfrak{S}_{\alpha}}(s_{0}\models\Diamond a\wedge\Diamond b) = Pr_{\mathfrak{S}_{\beta}}(s_{0}\models\Diamond a\wedge\Diamond b) = 0.$$

Positional policies are insufficient for ω -regular properties

Consider the MDP:

Positional policy \mathfrak{S}_{α} always chooses α in state s_0 Positional policy \mathfrak{S}_{β} always chooses β in state s_0 . Then:

$$Pr_{\mathfrak{S}_{\alpha}}(s_{0}\models\Diamond a\wedge\Diamond b) = Pr_{\mathfrak{S}_{\beta}}(s_{0}\models\Diamond a\wedge\Diamond b) = 0.$$

Now consider fm-policy $\mathfrak{S}_{\alpha\beta}$ which alternates between selecting α and β .

Positional policies are insufficient for ω -regular properties

Consider the MDP:

Positional policy \mathfrak{S}_{α} always chooses α in state s_0 Positional policy \mathfrak{S}_{β} always chooses β in state s_0 . Then:

$$Pr_{\mathfrak{S}_{\alpha}}(s_{0}\models\Diamond a\wedge\Diamond b) = Pr_{\mathfrak{S}_{\beta}}(s_{0}\models\Diamond a\wedge\Diamond b) = 0.$$

Now consider fm-policy $\mathfrak{S}_{\alpha\beta}$ which alternates between selecting α and β . Then: $Pr_{\mathfrak{S}_{\alpha\beta}}(s_0 \models \Diamond a \land \Diamond b) = 1$.

Positional policies are insufficient for ω -regular properties

Consider the MDP:

Positional policy \mathfrak{S}_{α} always chooses α in state s_0 Positional policy \mathfrak{S}_{β} always chooses β in state s_0 . Then:

$$Pr_{\mathfrak{S}_{\alpha}}(s_{0} \models \Diamond a \land \Diamond b) = Pr_{\mathfrak{S}_{\beta}}(s_{0} \models \Diamond a \land \Diamond b) = 0.$$

Now consider fm-policy $\mathfrak{S}_{\alpha\beta}$ which alternates between selecting α and β . Then: $Pr_{\mathfrak{S}_{\alpha\beta}}(s_0 \models \Diamond a \land \Diamond b) = 1$.

Thus, the class of positional policies is insufficiently powerful to characterise minimal (or maximal) probabilities for ω -regular properties.

Other kinds of policies

- Counting policies that base their decision on the number of visits to a state, or the length of the history (i.e., number of visits to all states)
- ▶ Partial-observation policies that base their decision on the trace $L(s_0) \ldots L(s_n)$ of the history $s_0 \ldots s_n$.
- ► Randomised policies. This is applicable to all (deterministic) policies. For instance, a randomised positional policy S : S → Dist(Act), where Dist(X) is the set of probability distributions on X, such that S(s)(α) > 0 iff α ∈ Act(s). Similar can be done for fm-policies and history-dependent policies etc..
- There is a strict hierarchy of policies, showing their expressiveness (black board).

Overview

2 Policies

- Positional policies
- Finite-memory policies

3 Reachability probabilities

- Mathematical characterisation
- Value iteration
- Linear programming
- Policy iteration

4 Summary

Reachability probabilities

Reachability probabilities

Let \mathcal{M} be an MDP with state space S and \mathfrak{S} be a policy on \mathcal{M} . The reachability probability of $G \subseteq S$ from state $s \in S$ under policy \mathfrak{S} is:

$$\mathit{Pr}^{\mathfrak{S}}(s\models\Diamond \mathsf{G})\ =\ \mathit{Pr}^{\mathcal{M}_{\mathfrak{S}}}_{s}\{\,\pi\in\mathit{Paths}(s)\,|\,\pi\models\Diamond \mathsf{G}\,\}$$

Reachability probabilities

Let \mathcal{M} be an MDP with state space S and \mathfrak{S} be a policy on \mathcal{M} . The reachability probability of $G \subseteq S$ from state $s \in S$ under policy \mathfrak{S} is:

$$Pr^{\mathfrak{S}}(s \models \Diamond G) = Pr^{\mathcal{M}_{\mathfrak{S}}}_{s} \{ \pi \in Paths(s) \mid \pi \models \Diamond G \}$$

Maximal and minimal reachability probabilities

The minimal reachability probability of $G \subseteq S$ from $s \in S$ is:

$$Pr^{\min}(s \models \Diamond G) = \inf_{\mathfrak{S}} Pr^{\mathfrak{S}}(s \models \Diamond G)$$

Reachability probabilities

Let \mathcal{M} be an MDP with state space S and \mathfrak{S} be a policy on \mathcal{M} . The reachability probability of $G \subseteq S$ from state $s \in S$ under policy \mathfrak{S} is:

$$Pr^{\mathfrak{S}}(s \models \Diamond G) = Pr^{\mathcal{M}_{\mathfrak{S}}}_{s} \{ \pi \in Paths(s) \mid \pi \models \Diamond G \}$$

Maximal and minimal reachability probabilities

The minimal reachability probability of $G \subseteq S$ from $s \in S$ is:

$$Pr^{\min}(s \models \Diamond G) = \inf_{\mathfrak{S}} Pr^{\mathfrak{S}}(s \models \Diamond G)$$

In a similar way, the maximal reachability probability of $G \subseteq S$ is:

$$Pr^{\max}(s \models \Diamond G) = \sup_{\mathfrak{S}} Pr^{\mathfrak{S}}(s \models \Diamond G).$$

where policy \mathfrak{S} ranges over all, infinitely (countably) many, policies.

Joost-Pieter Katoen

Examples
Maximal reachability probabilities

MInimal guarantees for safety properties

Reasoning about the maximal probabilities for $\Diamond G$ is needed, e.g., for showing that $Pr^{\mathfrak{S}}(s \models \Diamond G) \leq \varepsilon$ for all policies \mathfrak{S} and some small upper bound $0 < \varepsilon \leq 1$.

Maximal reachability probabilities

MInimal guarantees for safety properties

Reasoning about the maximal probabilities for $\Diamond G$ is needed, e.g., for showing that $Pr^{\mathfrak{S}}(s \models \Diamond G) \leq \varepsilon$ for all policies \mathfrak{S} and some small upper bound $0 < \varepsilon \leq 1$. Then:

$$Pr^{\mathfrak{S}}(s \models \Box \neg G) \ge 1 - \varepsilon$$
 for all policies \mathfrak{S} .

Maximal reachability probabilities

MInimal guarantees for safety properties

Reasoning about the maximal probabilities for $\Diamond G$ is needed, e.g., for showing that $Pr^{\mathfrak{S}}(s \models \Diamond G) \leq \varepsilon$ for all policies \mathfrak{S} and some small upper bound $0 < \varepsilon \leq 1$. Then:

$$Pr^{\mathfrak{S}}(s \models \Box \neg G) \ge 1 - \varepsilon$$
 for all policies \mathfrak{S} .

The task to compute $Pr^{\max}(s \models \Diamond G)$ can thus be understood as showing that a safety property (namely $\Box \neg G$) holds with sufficiently large probability, viz. $1 - \varepsilon$, regardless of the resolution of nondeterminism.

 1 Richard Bellman, an american mathematician (1920–1984), also known from the Bellman-Form shortest path algorithm.

Equation system for max-reach probabilities

Let \mathcal{M} be a finite MDP with state space $S, s \in S$ and $G \subseteq S$.

 $^{^{1}}$ Richard Bellman, an american mathematician (1920–1984), also known from the Bellman-Form shortest path algorithm.

Equation system for max-reach probabilities

Let \mathcal{M} be a finite MDP with state space S, $s \in S$ and $G \subseteq S$. The vector $(x_s)_{s \in S}$ with $x_s = Pr^{\max}(s \models \Diamond G)$ yields the unique solution of the following equation system:

• If $s \in G$, then $x_s = 1$.

¹Richard Bellman, an american mathematician (1920–1984), also known from the Bellman-Form shortest path algorithm.

Equation system for max-reach probabilities

Let \mathcal{M} be a finite MDP with state space S, $s \in S$ and $G \subseteq S$. The vector $(x_s)_{s \in S}$ with $x_s = Pr^{\max}(s \models \Diamond G)$ yields the unique solution of the following equation system:

• If $s \in G$, then $x_s = 1$.

• If
$$s \not\models \exists \Diamond G$$
, then $x_s = 0$.

¹Richard Bellman, an american mathematician (1920–1984), also known from the Bellman-Form shortest path algorithm.

Equation system for max-reach probabilities

Let \mathcal{M} be a finite MDP with state space S, $s \in S$ and $G \subseteq S$. The vector $(x_s)_{s \in S}$ with $x_s = Pr^{\max}(s \models \Diamond G)$ yields the unique solution of the following equation system:

- If $s \in G$, then $x_s = 1$.
- If $s \not\models \exists \Diamond G$, then $x_s = 0$.
- If $s \models \exists \Diamond G$ and $s \notin G$, then

$$x_s = \max \left\{ \sum_{t \in S} \mathbf{P}(s, \alpha, t) \cdot x_t \mid \alpha \in Act(s) \right\}$$

 $^{^1 \}rm Richard$ Bellman, an american mathematician (1920–1984), also known from the Bellman-Form shortest path algorithm.

Equation system for max-reach probabilities

Let \mathcal{M} be a finite MDP with state space S, $s \in S$ and $G \subseteq S$. The vector $(x_s)_{s \in S}$ with $x_s = Pr^{\max}(s \models \Diamond G)$ yields the unique solution of the following equation system:

• If $s \in G$, then $x_s = 1$.

• If
$$s \not\models \exists \Diamond G$$
, then $x_s = 0$.

• If $s \models \exists \Diamond G$ and $s \notin G$, then

$$x_s = \max \left\{ \sum_{t \in S} \mathbf{P}(s, \alpha, t) \cdot x_t \mid \alpha \in Act(s) \right\}$$

This is a Bellman¹ equation as used in dynamic programming.

 $^1 \rm Richard$ Bellman, an american mathematician (1920–1984), also known from the Bellman-Form shortest path algorithm.

Reachability probabilities

Example

Example

equation system for reachability objective $\diamond \{ u \}$ is:

$$x_u = 1$$
 and $x_v = 0$

 $x_s = \max\{\frac{1}{2}x_s + \frac{1}{4}x_u + \frac{1}{4}x_v, \frac{1}{2}x_u + \frac{1}{2}x_t\} \text{ and } x_t = \frac{1}{2}x_s + \frac{1}{2}x_v$

Reachability probabilities

Value iteration

The previous theorem suggests to calculate the values

$$x_s = Pr^{\max}(s \models \Diamond G)$$

by successive approximation.

The previous theorem suggests to calculate the values

$$x_s = Pr^{\max}(s \models \Diamond G)$$

by successive approximation.

For the states $s \models \exists \Diamond G$ and $s \notin G$, we have $x_s = \lim_{n \to \infty} x_s^{(n)}$

The previous theorem suggests to calculate the values

$$x_s = Pr^{\max}(s \models \Diamond G)$$

by successive approximation.

For the states $s \models \exists \Diamond G$ and $s \notin G$, we have $x_s = \lim_{n \to \infty} x_s^{(n)}$ where

$$x_s^{(0)} = 0$$
 and $x_s^{(n+1)} = \max \Big\{ \sum_{t \in S} \mathbf{P}(s, \alpha, t) \cdot x_t^{(n)} \mid \alpha \in Act(s) \Big\}.$

The previous theorem suggests to calculate the values

$$x_s = Pr^{\max}(s \models \Diamond G)$$

by successive approximation.

For the states $s \models \exists \Diamond G$ and $s \notin G$, we have $x_s = \lim_{n \to \infty} x_s^{(n)}$ where

$$x_s^{(0)} = 0$$
 and $x_s^{(n+1)} = \max \Big\{ \sum_{t \in S} \mathbf{P}(s, \alpha, t) \cdot x_t^{(n)} \mid \alpha \in Act(s) \Big\}.$

Note that $x_s^{(0)} \leqslant x_s^{(1)} \leqslant x_s^{(2)} \leqslant \dots$

The previous theorem suggests to calculate the values

$$x_s = Pr^{\max}(s \models \Diamond G)$$

by successive approximation.

For the states $s \models \exists \Diamond G$ and $s \notin G$, we have $x_s = \lim_{n \to \infty} x_s^{(n)}$ where

$$x_s^{(0)} = 0$$
 and $x_s^{(n+1)} = \max \Big\{ \sum_{t \in S} \mathbf{P}(s, \alpha, t) \cdot x_t^{(n)} \mid \alpha \in Act(s) \Big\}.$

Note that $x_s^{(0)} \leq x_s^{(1)} \leq x_s^{(2)} \leq \dots$ Thus, the values $Pr^{\max}(s \models \Diamond G)$ can be approximated by successively computing the vectors

$$(x_s^{(0)}), (x_s^{(1)}), (x_s^{(2)}), \ldots,$$

until $\max_{s \in S} |x_s^{(n+1)} - x_s^{(n)}|$ is below a certain (typically very small) threshold.

Reachability probabilities

Positional policies suffice for reach probabilities

Positional policies suffice for reach probabilities

Existence of optimal positional policies

Let \mathcal{M} be a finite MDP with state space S, and $G \subseteq S$. There exists a positional policy \mathfrak{S} such that for any $s \in S$ it holds:

$$Pr^{\mathfrak{S}}(s \models \Diamond G) = Pr^{\max}(s \models \Diamond G).$$

Positional policies suffice for reach probabilities

Existence of optimal positional policies

Let \mathcal{M} be a finite MDP with state space S, and $G \subseteq S$. There exists a positional policy \mathfrak{S} such that for any $s \in S$ it holds:

$$Pr^{\mathfrak{S}}(s \models \Diamond G) = Pr^{\max}(s \models \Diamond G).$$

Proof:

On the blackboard.

Equation system for min-reach probabilities

Let \mathcal{M} be a finite MDP with state space S, $s \in S$ and $G \subseteq S$.

Equation system for min-reach probabilities

Let \mathcal{M} be a finite MDP with state space S, $s \in S$ and $G \subseteq S$. The vector $(x_s)_{s \in S}$ with $x_s = Pr^{\min}(s \models \Diamond G)$ yields the unique solution of the following equation system:

▶ If $s \in G$, then $x_s = 1$.

Equation system for min-reach probabilities

Let \mathcal{M} be a finite MDP with state space S, $s \in S$ and $G \subseteq S$. The vector $(x_s)_{s \in S}$ with $x_s = Pr^{\min}(s \models \Diamond G)$ yields the unique solution of the following equation system:

• If
$$s \in G$$
, then $x_s = 1$.

• If
$$Pr^{\min}(s \models G) = 0$$
, then $x_s = 0$.

Equation system for min-reach probabilities

Let \mathcal{M} be a finite MDP with state space S, $s \in S$ and $G \subseteq S$. The vector $(x_s)_{s \in S}$ with $x_s = Pr^{\min}(s \models \Diamond G)$ yields the unique solution of the following equation system:

• If
$$s \in G$$
, then $x_s = 1$.

• If
$$Pr^{\min}(s \models G) = 0$$
, then $x_s = 0$.

• If $Pr^{\min}(s \models G) > 0$ and $s \notin G$, then

$$x_s = \min \left\{ \sum_{t \in S} \mathbf{P}(s, \alpha, t) \cdot x_t \mid \alpha \in Act(s) \right\}$$

Reachability probabilities

Preprocessing

The preprocessing required to compute the set

$$S_{=0}^{\min} = \{ s \in S \mid Pr^{\min}(s \models \Diamond G) \} = 0$$

can be performed by graph algorithms.

The preprocessing required to compute the set

$$S_{=0}^{\min} = \{ s \in S \mid Pr^{\min}(s \models \Diamond G) \} = 0$$

can be performed by graph algorithms. The set $S_{=0}^{min}$ is given by $S \setminus \mathcal{T}$ where

$$T=\bigcup_{n\geq 0}\,T_n$$

and $T_0 = G$ and, for $n \ge 0$:

 $T_{n+1} = T_n \cup \{ s \in S \mid \forall \alpha \in Act(s) \exists t \in T_n. \mathbf{P}(s, \alpha, t) > 0 \}.$

The preprocessing required to compute the set

$$S_{=0}^{\min} = \{ s \in S \mid Pr^{\min}(s \models \Diamond G) \} = 0$$

can be performed by graph algorithms. The set $S_{=0}^{min}$ is given by $S \setminus \mathcal{T}$ where

$$T=\bigcup_{n\geq 0}\,T_n$$

and $T_0 = G$ and, for $n \ge 0$:

 $T_{n+1} = T_n \cup \{ s \in S \mid \forall \alpha \in Act(s) \exists t \in T_n. \mathbf{P}(s, \alpha, t) > 0 \}.$

As $T_0 \subseteq T_1 \subseteq T_2 \subseteq \ldots \subseteq S$ and S is finite, the sequence $(T_n)_{n \ge 0}$ eventually stabilizes, i.e., for some $n \ge 0$, $T_n = T_{n+1} = \ldots = T$.

The preprocessing required to compute the set

$$S_{=0}^{\min} = \{ s \in S \mid Pr^{\min}(s \models \Diamond G) \} = 0$$

can be performed by graph algorithms. The set $S_{=0}^{min}$ is given by $S \setminus \mathcal{T}$ where

$$T=\bigcup_{n\geq 0}\,T_n$$

and $T_0 = G$ and, for $n \ge 0$:

 $T_{n+1} = T_n \cup \{ s \in S \mid \forall \alpha \in Act(s) \exists t \in T_n. \mathbf{P}(s, \alpha, t) > 0 \}.$

As $T_0 \subseteq T_1 \subseteq T_2 \subseteq \ldots \subseteq S$ and S is finite, the sequence $(T_n)_{n \ge 0}$ eventually stabilizes, i.e., for some $n \ge 0$, $T_n = T_{n+1} = \ldots = T$. It follows: $Pr^{\min}(s \models \Diamond G) > 0$ if and only if $s \in T$.

Reachability probabilities

Positional policies for min-reach probabilities

Positional policies for min-reach probabilities

Existence of optimal positional policies

Let \mathcal{M} be a finite MDP with state space S, and $G \subseteq S$. There exists a positional policy \mathfrak{S} such that for any $s \in S$ it holds:

$$Pr^{\mathfrak{S}}(s \models \Diamond G) = Pr^{\min}(s \models \Diamond G).$$

Positional policies for min-reach probabilities

Existence of optimal positional policies

Let \mathcal{M} be a finite MDP with state space S, and $G \subseteq S$. There exists a positional policy \mathfrak{S} such that for any $s \in S$ it holds:

$$Pr^{\mathfrak{S}}(s \models \Diamond G) = Pr^{\min}(s \models \Diamond G).$$

Proof:

Similar to the case for maximal reachability probabilities.

Example value iteration

Determine $Pr^{\min}(s_i \models \Diamond \{ s_2 \})$.

Example value iteration

Determine $Pr^{\min}(s_i \models \Diamond \{ s_2 \})$

Example value iteration

1.
$$G = \{ s_2 \}, S_{=0}^{\min} = \{ s_3 \}, S \setminus (G \cup S_{=0}^{\min}) = \{ s_0, s_1 \}.$$

Determine $Pr^{\min}(s_i \models \Diamond \{ s_2 \})$
1.
$$G = \{ s_2 \}, S_{=0}^{\min} = \{ s_3 \}, S \setminus (G \cup S_{=0}^{\min}) = \{ s_0, s_1 \}.$$

2. $(x_s^{(0)}) = (0, 0, 1, 0)$

1. $G = \{ s_2 \}, S_{=0}^{\min} = \{ s_3 \}, S \setminus (G \cup S_{=0}^{\min}) = \{ s_0, s_1 \}.$ 2. $(x_s^{(0)}) = (0, 0, 1, 0)$ 3. $(x_s^{(1)}) = (\min(1 \cdot 0, 0.25 \cdot 0 + 0.25 \cdot 0 + 0.5 \cdot 1), 0.1 \cdot 0 + 0.5 \cdot 0 + 0.4 \cdot 1, 1, 0)$

1.
$$G = \{ s_2 \}, S_{=0}^{\min} = \{ s_3 \}, S \setminus (G \cup S_{=0}^{\min}) = \{ s_0, s_1 \}.$$

2. $(x_s^{(0)}) = (0, 0, 1, 0)$
3. $(x_s^{(1)}) = (\min(1 \cdot 0, 0.25 \cdot 0 + 0.25 \cdot 0 + 0.5 \cdot 1), 0.1 \cdot 0 + 0.5 \cdot 0 + 0.4 \cdot 1, 1, 0)$
 $= (0, 0.4, 1, 0)$

1.
$$G = \{ s_2 \}, S_{=0}^{\min} = \{ s_3 \}, S \setminus (G \cup S_{=0}^{\min}) = \{ s_0, s_1 \}.$$

2. $(x_s^{(0)}) = (0, 0, 1, 0)$
3. $(x_s^{(1)}) = (\min(1 \cdot 0, 0.25 \cdot 0 + 0.25 \cdot 0 + 0.5 \cdot 1), 0.1 \cdot 0 + 0.5 \cdot 0 + 0.4 \cdot 1, 1, 0)$
 $= (0, 0.4, 1, 0)$
4. $(x_s^{(2)}) = (\min(1 \cdot 0.4, 0.25 \cdot 0 + 0.25 \cdot 0 + 0.5 \cdot 1), 0.1 \cdot 0 + 0.5 \cdot 0.4 + 0.4 \cdot 1, 1, 0)$

1. $G = \{s_2\}, S_{-0}^{\min} = \{s_3\}, S \setminus (G \cup S_{-0}^{\min}) = \{s_0, s_1\}.$ 2. $(x_s^{(0)}) = (0, 0, 1, 0)$ 3. $(x_{s}^{(1)}) = (\min(1.0, 0.25.0 + 0.25.0 + 0.5.1))$ $0.1 \cdot 0 + 0.5 \cdot 0 + 0.4 \cdot 1, 1, 0$ = (0, 0.4, 1, 0)4. $(x_s^{(2)}) = (\min(1.0.4, 0.25.0 + 0.25.0 + 0.5.1))$ $0.1 \cdot 0 + 0.5 \cdot 0.4 + 0.4 \cdot 1, 1, 0$ = (0.4, 0.6, 1, 0)

 $\begin{array}{c} \text{Determine} \\ \textit{Pr}^{\min}(s_i \models \Diamond \{ s_2 \}) \end{array}$

1.
$$G = \{ s_2 \}, S_{=0}^{\min} = \{ s_3 \}, S \setminus (G \cup S_{=0}^{\min}) = \{ s_0, s_1 \}.$$

2. $(x_s^{(0)}) = (0, 0, 1, 0)$
3. $(x_s^{(1)}) = (\min(1 \cdot 0, 0.25 \cdot 0 + 0.25 \cdot 0 + 0.5 \cdot 1), 0.1 \cdot 0 + 0.5 \cdot 0 + 0.4 \cdot 1, 1, 0)$
 $= (0, 0.4, 1, 0)$
4. $(x_s^{(2)}) = (\min(1 \cdot 0.4, 0.25 \cdot 0 + 0.25 \cdot 0 + 0.5 \cdot 1), 0.1 \cdot 0 + 0.5 \cdot 0.4 + 0.4 \cdot 1, 1, 0)$
 $= (0.4, 0.6, 1, 0)$
5. $(x_s^{(3)}) = \dots$

Determine $Pr^{\min}(s_i \models \Diamond \{ s_2 \})$

- $[x_0^{(n)}, x_1^{(n)}, x_2^{(n)}, x_3^{(n)}]$
- n=0: [0.000000, 0.000000, 1, 0]
- n=1: [0.000000, 0.400000, 1, 0]
- n=2: [0.400000, 0.600000, 1, 0]
- n=3: [0.600000, 0.740000, 1, 0]
- n=4: [0.650000, 0.830000, 1, 0]
- n=5: [0.662500, 0.880000, 1, 0]
- n=6: [0.665625, 0.906250, 1, 0]
- n=7: [0.666406, 0.919688, 1, 0]
- n=8: [0.666602, 0.926484, 1, 0]
- n=20: [0.6666667, 0.933332, 1, 0]
- n=21: [0.6666667, 0.933332, 1, 0] $\approx [2/3, 14/15, 1, 0]$

Positional policies $\mathfrak{S}_{\text{min}}$ and $\mathfrak{S}_{\text{max}}$ thus yield:

$$\begin{aligned} & \operatorname{Pr}^{\mathfrak{S}_{\min}}(s \models \Diamond G) = \operatorname{Pr}^{\min}(s \models \Diamond G) & \text{for all states } s \in S \\ & \operatorname{Pr}^{\mathfrak{S}_{\max}}(s \models \Diamond G) = \operatorname{Pr}^{\max}(s \models \Diamond G) & \text{for all states } s \in S \end{aligned}$$

Positional policies $\mathfrak{S}_{\text{min}}$ and $\mathfrak{S}_{\text{max}}$ thus yield:

$$\begin{aligned} & \operatorname{Pr}^{\mathfrak{S}_{\min}}(s \models \Diamond G) = \operatorname{Pr}^{\min}(s \models \Diamond G) & \text{for all states } s \in S \\ & \operatorname{Pr}^{\mathfrak{S}_{\max}}(s \models \Diamond G) = \operatorname{Pr}^{\max}(s \models \Diamond G) & \text{for all states } s \in S \end{aligned}$$

These policies are obtained as follows:

$$\mathfrak{S}_{\min}(s) = \arg\min\{\sum_{t\in S} \mathbf{P}(s, \alpha, t) \cdot Pr^{\min}(t \models \Diamond G) \mid \alpha \in Act \}$$

$$\mathfrak{S}_{\max}(s) = \arg\max\{\sum_{t\in S} \mathbf{P}(s, \alpha, t) \cdot Pr^{\max}(t \models \Diamond G) \mid \alpha \in Act \}$$

• Outcome of the value iteration $(x_s) = (\frac{2}{3}, \frac{14}{15}, 1, 0)$

- Outcome of the value iteration $(x_s) = (\frac{2}{3}, \frac{14}{15}, 1, 0)$
- How to obtain the optimal policy from this result?

- Outcome of the value iteration $(x_s) = (\frac{2}{3}, \frac{14}{15}, 1, 0)$
- How to obtain the optimal policy from this result?
- ► $x_{s_0} = \min(1 \cdot \frac{14}{15}, 0.5 \cdot 1 + 0.25 \cdot 0 + 0.25 \cdot \frac{2}{3})$

- Outcome of the value iteration $(x_s) = (\frac{2}{3}, \frac{14}{15}, 1, 0)$
- How to obtain the optimal policy from this result?
- ► $x_{s_0} = \min(1 \cdot \frac{14}{15}, 0.5 \cdot 1 + 0.25 \cdot 0 + 0.25 \cdot \frac{2}{3})$ $\min(\frac{14}{15}, \frac{2}{3})$

- Outcome of the value iteration $(x_s) = (\frac{2}{3}, \frac{14}{15}, 1, 0)$
- How to obtain the optimal policy from this result?
- ► $x_{s_0} = \min(1 \cdot \frac{14}{15}, 0.5 \cdot 1 + 0.25 \cdot 0 + 0.25 \cdot \frac{2}{3})$ $\min(\frac{14}{15}, \frac{2}{3})$

Thus the optimal policy always selects red in s₀

- Outcome of the value iteration $(x_s) = (\frac{2}{3}, \frac{14}{15}, 1, 0)$
- How to obtain the optimal policy from this result?
- ► $x_{s_0} = \min(1 \cdot \frac{14}{15}, 0.5 \cdot 1 + 0.25 \cdot 0 + 0.25 \cdot \frac{2}{3})$ $\min(\frac{14}{15}, \frac{2}{3})$
- Thus the optimal policy always selects red in s₀
- Note that the minimal reach-probability is unique; the optimal policy need not to be unique.

Induced DTMC

- Outcome of the value iteration $(x_s) = (\frac{2}{3}, \frac{14}{15}, 1, 0)$
- How to obtain the optimal policy from this results?

►
$$x_{s_0} = \min(1 \cdot \frac{14}{15}, 0.5 \cdot 1 + 0.5 \cdot 0 + 0.25 \cdot \frac{2}{3})$$

 $\min(\frac{14}{15}, \frac{2}{3})$

Thus the optimal policy always selects red.

An alternative approach

A viable alternative to value iteration is linear programming.

Linear programming

Optimisation of a linear objective function subject to linear (in)equalities.

Linear programming

Optimisation of a linear objective function subject to linear (in)equalities.

Let x_1, \ldots, x_n be non-negative real-valued variables. Maximise (or minimise) the objective function:

 $c_1 \cdot x_1 + c_2 \cdot x_2 + \ldots + c_n \cdot x_n$ for constants $c_1, \ldots, c_n \in \mathbb{R}$

Linear programming

Optimisation of a linear objective function subject to linear (in)equalities.

Let x_1, \ldots, x_n be non-negative real-valued variables. Maximise (or minimise) the objective function:

 $c_1 \cdot x_1 + c_2 \cdot x_2 + \ldots + c_n \cdot x_n$ for constants $c_1, \ldots, c_n \in \mathbb{R}$

subject to the constraints

.

$$a_{11} \cdot x_1 + a_{12} \cdot x_2 + \ldots + a_{1n} \cdot x_n \leq b_1$$

 $a_{m1} \cdot x_1 + a_{m2} \cdot x_2 + \ldots + a_{mn} \cdot x_n \leqslant b_m.$

Solution techniques: e.g., Simplex, ellipsoid method, interior point method.

Linear program for max-reach probabilities

Consider a finite MDP with state space *S*, and $G \subseteq S$. The values $x_s = Pr^{\max}(s \models \Diamond G)$ are the unique solution of the *linear program*:

Linear program for max-reach probabilities

Consider a finite MDP with state space *S*, and $G \subseteq S$. The values $x_s = Pr^{\max}(s \models \Diamond G)$ are the unique solution of the *linear program*:

• If $s \in G$, then $x_s = 1$.

Linear program for max-reach probabilities

Consider a finite MDP with state space *S*, and $G \subseteq S$. The values $x_s = Pr^{\max}(s \models \Diamond G)$ are the unique solution of the *linear program*:

- If $s \in G$, then $x_s = 1$.
- If $s \not\models \exists \Diamond G$, then $x_s = 0$.

Linear program for max-reach probabilities

Consider a finite MDP with state space S, and $G \subseteq S$. The values $x_s = Pr^{\max}(s \models \Diamond G)$ are the unique solution of the *linear program*:

• If $s \in G$, then $x_s = 1$.

• If
$$s \not\models \exists \Diamond G$$
, then $x_s = 0$.

▶ If $s \models \exists \Diamond G$ and $s \notin G$, then $0 \leq x_s \leq 1$ and for all $\alpha \in Act(s)$:

$$x_s \ge \sum_{t\in S} \mathbf{P}(s, \alpha, t) \cdot x_t$$

where $\sum_{s \in S} x_s$ is minimal.

Linear program for max-reach probabilities

Consider a finite MDP with state space S, and $G \subseteq S$. The values $x_s = Pr^{\max}(s \models \Diamond G)$ are the unique solution of the *linear program*:

• If $s \in G$, then $x_s = 1$.

• If
$$s \not\models \exists \Diamond G$$
, then $x_s = 0$.

▶ If $s \models \exists \Diamond G$ and $s \notin G$, then $0 \leq x_s \leq 1$ and for all $\alpha \in Act(s)$:

$$x_s \ge \sum_{t\in S} \mathbf{P}(s, \alpha, t) \cdot x_t$$

where $\sum_{s \in S} x_s$ is minimal.

Proof:

See lecture notes.

Linear program for min-reach probabilities

Consider a finite MDP with state space S, and $G \subseteq S$. The values $x_s = Pr^{\min}(s \models \Diamond G)$ are the unique solution of the *linear program*:

Linear program for min-reach probabilities

Consider a finite MDP with state space S, and $G \subseteq S$. The values $x_s = Pr^{\min}(s \models \Diamond G)$ are the unique solution of the *linear program*:

• If $s \in G$, then $x_s = 1$.

Linear program for min-reach probabilities

Consider a finite MDP with state space *S*, and $G \subseteq S$. The values $x_s = Pr^{\min}(s \models \Diamond G)$ are the unique solution of the *linear program*:

- If $s \in G$, then $x_s = 1$.
- If $Pr^{\min}(s \models \Diamond G) = 0$, then $x_s = 0$.

Linear program for min-reach probabilities

Consider a finite MDP with state space *S*, and $G \subseteq S$. The values $x_s = Pr^{\min}(s \models \Diamond G)$ are the unique solution of the *linear program*:

- If $s \in G$, then $x_s = 1$.
- If $Pr^{\min}(s \models \Diamond G) = 0$, then $x_s = 0$.
- ▶ If $Pr^{\min}(s \models \Diamond G) > 0$ and $s \notin G$ then $0 \leq x_s \leq 1$ and for all $\alpha \in Act(s)$:

$$x_s \leqslant \sum_{t \in S} \mathbf{P}(s, \alpha, t) \cdot x_t$$

where $\sum_{s \in S} x_s$ is maximal.

Linear program for min-reach probabilities

Consider a finite MDP with state space *S*, and $G \subseteq S$. The values $x_s = Pr^{\min}(s \models \Diamond G)$ are the unique solution of the *linear program*:

- If $s \in G$, then $x_s = 1$.
- If $Pr^{\min}(s \models \Diamond G) = 0$, then $x_s = 0$.
- ▶ If $Pr^{\min}(s \models \Diamond G) > 0$ and $s \notin G$ then $0 \leq x_s \leq 1$ and for all $\alpha \in Act(s)$:

$$x_s \leqslant \sum_{t \in S} \mathbf{P}(s, \alpha, t) \cdot x_t$$

where $\sum_{s \in S} x_s$ is maximal.

Proof:

See lecture notes.

Example linear programming

Example linear programming

•
$$G = \{ s_2 \}, S_{=0}^{\min} = \{ s_3 \}, S \setminus (G \cup S_{=0}^{\min}) = \{ s_0, s_1 \}.$$

Determine $Pr^{\min}(s_i \models \Diamond \{s_2\})$

• $G = \{ s_2 \}, S_{=0}^{\min} = \{ s_3 \}, S \setminus (G \cup S_{=0}^{\min}) = \{ s_0, s_1 \}.$

▶ Maximise *x*₀ + *x*₁ subject to the constraints:

$$\begin{array}{rcl} x_0 &\leqslant & x_1 \\ x_0 &\leqslant & \frac{1}{4} \cdot x_0 + \frac{1}{2} \\ x_1 &\leqslant & \frac{1}{10} \cdot x_0 + \frac{1}{2} \cdot x_1 + \frac{2}{5} \end{array}$$

Determine $Pr^{\min}(s_i \models \Diamond \{ s_2 \})$

•
$$G = \{ s_2 \}, S_{=0}^{\min} = \{ s_3 \}, S \setminus (G \cup S_{=0}^{\min}) = \{ s_0, s_1 \}.$$

- $G = \{ s_2 \}, S_{=0}^{\min} = \{ s_3 \}, S \setminus (G \cup S_{=0}^{\min}) = \{ s_0, s_1 \}.$
- Maximise $x_0 + x_1$ subject to the constraints:

$$\begin{array}{rcl} x_0 &\leqslant & x_1 \\ x_0 &\leqslant & \frac{2}{3} \\ x_1 &\leqslant & \frac{1}{5} \cdot x_0 + \frac{4}{5} \end{array}$$

- ▶ $G = \{ s_2 \}, S_{=0}^{\min} = \{ s_3 \}, S \setminus (G \cup S_{=0}^{\min}) = \{ s_0, s_1 \}.$
- Maximise $x_0 + x_1$ subject to the constraints:

$$\begin{array}{rcl} x_0 &\leqslant & x_1 \\ x_0 &\leqslant & \frac{2}{3} \\ x_1 &\leqslant & \frac{1}{5} \cdot x_0 + \frac{4}{5} \end{array}$$

Value iteration vs. linear programming

 $[x_0^{(n)}, x_1^{(n)}, x_2^{(n)}, x_3^{(n)}]$ n=0[0.000000, 0.000000, 1, 0]n=1: [0.000000, 0.400000, 1, 0]n=2: [0.400000, 0.600000, 1, 0]n=3: [0.600000, 0.740000, 1, 0] n=4[0.650000, 0.830000, 1, 0] n=5: [0.662500, 0.880000, 1, 0] [0.665625, 0.906250, 1, 0] n=6n=7[0.666406, 0.919688, 1, 0][0.666602, 0.926484, 1, 0] n=8: [0.666667, 0.933332, 1, 0] n=20: $n = 21^{-1}$ [0.666667, 0.933332, 1, 0]

 \approx [2/3, 14/15, 1, 0]

This curve shows how the value iteration approach approximates the solution.

Time complexity

Time complexity

For finite MDP \mathcal{M} with state space S, $G \subseteq S$ and $s \in S$, the values $Pr^{\max}(s \models \Diamond G)$ can be computed in time polynomial in the size of \mathcal{M} . The same holds for $Pr^{\min}(s \models \Diamond G)$.

Time complexity

Time complexity

For finite MDP \mathcal{M} with state space S, $G \subseteq S$ and $s \in S$, the values $Pr^{\max}(s \models \Diamond G)$ can be computed in time polynomial in the size of \mathcal{M} . The same holds for $Pr^{\min}(s \models \Diamond G)$.

Proof:

Thanks to the characterisation as a linear program and polynomial time techniques to solve such linear programs such as ellipsoid methods.

Time complexity

Time complexity

For finite MDP \mathcal{M} with state space S, $G \subseteq S$ and $s \in S$, the values $Pr^{\max}(s \models \Diamond G)$ can be computed in time polynomial in the size of \mathcal{M} . The same holds for $Pr^{\min}(s \models \Diamond G)$.

Proof:

Thanks to the characterisation as a linear program and polynomial time techniques to solve such linear programs such as ellipsoid methods.

Corollary

For finite MDPs, the question whether $Pr^{\mathfrak{S}}(s \models \Diamond G) \leq p$ for some rational $p \in [0, 1[$ is decidable in polynomial time.

Yet another alternative approach

A viable alternative to value iteration and linear programming is policy iteration.

Policy iteration

Value iteration

In value iteration, we iteratively attempt to improve the minimal (or maximal) reachability probabilities by starting with an underestimation, viz. zero for all states.

Policy iteration

Value iteration

In value iteration, we iteratively attempt to improve the minimal (or maximal) reachability probabilities by starting with an underestimation, viz. zero for all states.

Policy iteration

In policy iteration, the idea is to start with an arbitrary positional policy and improve it for each state in a step-by-step fashion, so as to determine the optimal one.

Policy iteration

Policy iteration

- 1. Start with an arbitrary positional policy \mathfrak{S} that selects some $\alpha \in Act(s)$ for each state $s \in S \setminus G \cup S_{=0}^{\min}$.
- 2. Compute the reachability probabilities $Pr^{\mathfrak{S}}(s \models \Diamond G)$. This amounts to solving a linear equation system on DTMC $\mathcal{M}_{\mathfrak{S}}$.
- 3. Improve the policy in every state according to the following rules:

$$\mathfrak{S}^{(i+1)}(s) = \arg\min\{\sum_{t\in S} \mathbf{P}(s, \alpha, t) \cdot Pr^{\mathfrak{S}^{(i)}}(t \models \Diamond G) \mid \alpha \in Act\} \text{ or}$$

$$\mathfrak{S}^{(i+1)}(s) = \arg\max\{\sum_{t\in S} \mathbf{P}(s, \alpha, t) \cdot Pr^{\mathfrak{S}^{(i)}}(t \models \Diamond G) \mid \alpha \in Act\}$$

- 4. Repeat steps 2. and 3. until the policy does not change.
- 5. Termination²: finite number of states and improvement of min/max probabilities each time.

²For a proof, see Section 6.7 of the book by Tiims on A First Course in Stochastic Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 45/50

► Consider an arbitrary policy S.

- Let $G = \{ s_2 \}$.
- ► Consider an arbitrary policy S.
- Compute $x_i = Pr^{\mathfrak{S}}(s_i \models \Diamond G)$ for all *i*.

- Let $G = \{ s_2 \}$.
- ► Consider an arbitrary policy S.
- Compute $x_i = Pr^{\mathfrak{S}}(s_i \models \Diamond G)$ for all *i*.
- Then: $x_2 = 1$, $x_3 = 0$,

- Let $G = \{ s_2 \}$.
- ► Consider an arbitrary policy S.
- Compute $x_i = Pr^{\mathfrak{S}}(s_i \models \Diamond G)$ for all *i*.
- Then: $x_2 = 1$, $x_3 = 0$,

and
$$x_0 = x_1$$
, $x_1 = \frac{1}{10} \cdot x_0 + \frac{1}{2} \cdot x_1 + \frac{2}{5}$.

- Let $G = \{ s_2 \}$.
- ► Consider an arbitrary policy S.
- Compute $x_i = Pr^{\mathfrak{S}}(s_i \models \Diamond G)$ for all *i*.
- Then: $x_2 = 1$, $x_3 = 0$,

and
$$x_0 = x_1$$
, $x_1 = \frac{1}{10} \cdot x_0 + \frac{1}{2} \cdot x_1 + \frac{2}{5}$.

• This yields
$$x_0 = x_1 = x_2 = 1$$
 and $x_3 = 0$.

- Let $G = \{ s_2 \}$.
- ► Consider an arbitrary policy S.
- Compute $x_i = Pr^{\mathfrak{S}}(s_i \models \Diamond G)$ for all *i*.
- Then: $x_2 = 1$, $x_3 = 0$,

and $x_0 = x_1$, $x_1 = \frac{1}{10} \cdot x_0 + \frac{1}{2} \cdot x_1 + \frac{2}{5}$.

- This yields $x_0 = x_1 = x_2 = 1$ and $x_3 = 0$.
- Change policy \mathfrak{S} in s_0 , yielding policy \mathfrak{S}' .

- Let $G = \{ s_2 \}$.
- ► Consider an arbitrary policy S.
- Compute $x_i = Pr^{\mathfrak{S}}(s_i \models \Diamond G)$ for all *i*.
- Then: $x_2 = 1$, $x_3 = 0$,

and $x_0 = x_1$, $x_1 = \frac{1}{10} \cdot x_0 + \frac{1}{2} \cdot x_1 + \frac{2}{5}$.

- This yields $x_0 = x_1 = x_2 = 1$ and $x_3 = 0$.
- Change policy \mathfrak{S} in s_0 , yielding policy \mathfrak{S}' .
- This yields min $(1\cdot 1, \frac{1}{2}\cdot 1 + \frac{1}{4}\cdot 0 + \frac{1}{4}\cdot 1)$

- Let $G = \{ s_2 \}$.
- ► Consider an arbitrary policy S.
- Compute $x_i = Pr^{\mathfrak{S}}(s_i \models \Diamond G)$ for all *i*.
- Then: $x_2 = 1$, $x_3 = 0$,

and $x_0 = x_1$, $x_1 = \frac{1}{10} \cdot x_0 + \frac{1}{2} \cdot x_1 + \frac{2}{5}$.

- This yields $x_0 = x_1 = x_2 = 1$ and $x_3 = 0$.
- Change policy \mathfrak{S} in s_0 , yielding policy \mathfrak{S}' .

► This yields min
$$(1 \cdot 1, \frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 0 + \frac{1}{4} \cdot 1)$$

that is, min $(1, \frac{3}{4}) = \frac{3}{4}$.

- Let $G = \{ s_2 \}$.
- ► Consider the adapted policy S'.

- Let $G = \{ s_2 \}$.
- ► Consider the adapted policy S'.
- Compute $x_i = Pr^{\mathfrak{S}'}(s_i \models \Diamond G)$ for all *i*.

- Let $G = \{ s_2 \}$.
- Consider the adapted policy \mathfrak{S}' .
- Compute $x_i = Pr^{\mathfrak{S}'}(s_i \models \Diamond G)$ for all *i*.
- Then: $x_2 = 1$, $x_3 = 0$,

- Let $G = \{ s_2 \}$.
- Consider the adapted policy \mathfrak{S}' .
- Compute $x_i = Pr^{\mathfrak{S}'}(s_i \models \Diamond G)$ for all *i*.

• Then:
$$x_2 = 1$$
, $x_3 = 0$,

and
$$x_0 = \frac{1}{4} \cdot x_0 + \frac{1}{2}$$
, $x_1 = \frac{1}{10} \cdot x_0 + \frac{1}{2} \cdot x_1 + \frac{2}{5}$.

- Let $G = \{ s_2 \}$.
- ► Consider the adapted policy S'.
- Compute $x_i = Pr^{\mathfrak{S}'}(s_i \models \Diamond G)$ for all *i*.

• Then:
$$x_2 = 1$$
, $x_3 = 0$,

- and $x_0 = \frac{1}{4} \cdot x_0 + \frac{1}{2}$, $x_1 = \frac{1}{10} \cdot x_0 + \frac{1}{2} \cdot x_1 + \frac{2}{5}$.
- This yields $x_0 = \frac{2}{3}$, $x_1 = \frac{14}{15}$, $x_2 = 1$ and $x_3 = 0$.

- Let $G = \{ s_2 \}$.
- ► Consider the adapted policy S'.
- Compute $x_i = Pr^{\mathfrak{S}'}(s_i \models \Diamond G)$ for all *i*.

• Then:
$$x_2 = 1$$
, $x_3 = 0$,

- and $x_0 = \frac{1}{4} \cdot x_0 + \frac{1}{2}$, $x_1 = \frac{1}{10} \cdot x_0 + \frac{1}{2} \cdot x_1 + \frac{2}{5}$.
- ► This yields $x_0 = \frac{2}{3}$, $x_1 = \frac{14}{15}$, $x_2 = 1$ and $x_3 = 0$.
- This policy is optimal.

Graphical representation of policy iteration

where A denotes policy \mathfrak{S} and A' policy \mathfrak{S}' .

Overview

2 Policies

- Positional policies
- Finite-memory policies

Reachability probabilities

- Mathematical characterisation
- Value iteration
- Linear programming
- Policy iteration

4 Summary

Important points

Important points

1. Maximal reachability probabilities are suprema over reachability probabilities for all, potentially infinitely many, policies.

Important points

- 1. Maximal reachability probabilities are suprema over reachability probabilities for all, potentially infinitely many, policies.
- 2. They are characterised by equation systems with maximal operators.

Important points

- 1. Maximal reachability probabilities are suprema over reachability probabilities for all, potentially infinitely many, policies.
- 2. They are characterised by equation systems with maximal operators.
- 3. There exists a positional policy that yields the maximal reachability probability.
Summary

Important points

- 1. Maximal reachability probabilities are suprema over reachability probabilities for all, potentially infinitely many, policies.
- 2. They are characterised by equation systems with maximal operators.
- 3. There exists a positional policy that yields the maximal reachability probability.
- 4. Such policies can be determined using value or policy iteration.

Summary

Important points

- 1. Maximal reachability probabilities are suprema over reachability probabilities for all, potentially infinitely many, policies.
- 2. They are characterised by equation systems with maximal operators.
- 3. There exists a positional policy that yields the maximal reachability probability.
- 4. Such policies can be determined using value or policy iteration.
- 5. Or, alternatively, in polynomial time using linear programming.

Summary

Important points

- 1. Maximal reachability probabilities are suprema over reachability probabilities for all, potentially infinitely many, policies.
- 2. They are characterised by equation systems with maximal operators.
- 3. There exists a positional policy that yields the maximal reachability probability.
- 4. Such policies can be determined using value or policy iteration.
- 5. Or, alternatively, in polynomial time using linear programming.
- 6. Positional policies are not powerful enough for arbitrary ω -regular properties.