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Markov Decision Processes

Markov decision process (MDP)

Markov decision processes

I In MDPs, both nondeterministic and probabilistic choices coexist.
I MDPs are transition systems in which in any state a nondeterministic

choice between probability distributions exists.
I Once a probability distribution has been chosen nondeterministically,

the next state is selected probabilistically—as in DTMCs.
I Any MC is thus an MDP in which in any state the probability

distribution is uniquely determined.
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Markov Decision Processes

Markov decision process (MDP)

Markov decision process
An MDPM is a tuple (S,Act,P, ιinit,AP, L) where
I S is a countable set of states with initial distribution ιinit : S → [0, 1]
I Act is a finite set of actions
I P : S × Act× S → [0, 1], transition probability function such that:

for all s ∈ S and α ∈ Act :
∑
s′∈S

P(s,α, s ′) ∈ { 0, 1 }

I AP is a set of atomic propositions and labeling L : S → 2AP.
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Markov Decision Processes

Markov decision process (MDP)

Markov decision process
An MDPM is a tuple (S,Act,P, ιinit,AP, L) where
I S, ιinit : S → [0, 1], AP and L are as before, i.e., as for DTMCs, and
I Act is a finite set of actions
I P : S × Act× S → [0, 1], transition probability function such that:

for all s ∈ S and α ∈ Act :
∑
s′∈S

P(s,α, s ′) ∈ { 0, 1 }

Enabled actions
Let Act(s) = {α ∈ Act | ∃s ′ ∈ S.P(s,α, s ′) > 0 } be the set of enabled
actions in state s. We require Act(s) 6= ∅ for any state s.
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Policies

Policies

Policy

LetM = (S,Act,P, ιinit,AP, L) be an MDP. A policy forM is a function
S : S+ → Act such that S(s0 s1 . . . sn) ∈ Act(sn) for all s0 s1 . . . sn ∈ S+.
The path

π = s0 α1−−→ s1 α2−−→ s2 α3−−→ . . .

is called a S-path if αi = S(s0 . . . si−1) for all i > 0.
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Policies

Induced DTMC of an MDP by a policy

DTMC of an MDP induced by a policy
LetM = (S,Act,P, ιinit,AP, L) be an MDP and S a policy onM. The
DTMC induced by S, denotedMS, is given by

MS = (S+,PS, ιinit,AP, L′)

where for σ = s0s1 . . . sn: PS

(
σ, σ sn+1

)
= P

(
sn, S(σ), sn+1

)
and

L′(σ) = L(sn).

MS is infinite, even if the MDPM is finite. Since policy S might select
different actions for finite paths that end in the same state s, a policy as defined
above is also referred to as history-dependent.
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Policies

Probability measure on MDP

Probability measure on MDP
Let PrMS , or simply PrS, denote the probability measure PrMS associated
with the DTMCMS.
This measure is the basis for associating probabilities with events in the
MDPM. Let, e.g., P ⊆

(
2AP)ω be an ω-regular property. Then PrS(P)

is defined as:

PrS(P) = PrMS(P) = PrMS
{π ∈ Paths(MS) | trace(π) ∈ P }.
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Policies

Positional policy

Positional policy
LetM be an MDP with state space S. Policy S onM is positional (or:
memoryless) iff for each sequence s0 s1 . . . sn and t0 t1 . . . tm ∈ S+ with
sn = tm:

S(s0 s1 . . . sn) = S(t0 t1 . . . tm).

In this case, S can be viewed as a function S : S → Act.

Policy S is positional if it always selects the same action in a given state. This
choice is independent of what has happened in the history, i.e., which path led to
the current state.
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Policies

Finite-memory policies

I Finite-memory policies (shortly: fm-policies) are a generalisation of
positional policies.

I The behavior of an fm-policy is described by a deterministic finite
automaton (DFA).

I The selection of the action to be performed in the MDPM depends
on the current state ofM (as before) and the current state (called
mode) of the policy, i.e., the DFA.
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Policies

Finite-memory policy

Finite-memory policy
LetM be an MDP with state space S and action set Act.
A finite-memory policy S forM is a tuple S = (Q, act,∆, start) with:
I Q is a finite set of modes,
I ∆ : Q × S → Q is the transition function,
I act : Q × S → Act is a function that selects an action

act(q, s) ∈ Act(s) for any mode q ∈ Q and state s ∈ S ofM,
I start : S → Q is a function that selects a starting mode for state

s ∈ S.
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Policies

An MDP under a finite-memory policy

The behavior of an MDPM under fm-policy S = (Q, act,∆, start) is:

I Initially, a starting state s0 is randomly determined according to the
initial distribution ιinit, i.e., ιinit(s0) > 0.

I The fm-policy S initializes its DFA to the mode q0 = start(s0) ∈ Q.

I IfM is in state s and the current mode of S is q, then the decision
of S, i.e., the selected action, is α = act(q, s) ∈ Act(s).

I The policy changes to mode ∆(q, s), whileM performs the selected
action α and randomly moves to the next state according to the
distribution P(s,α, ·).
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Policies

Finite-memory policies

Relation fm-policy to definition policy

An fm-policy S = (Q, act,∆, start) is identified with policy,
S′ : Paths∗ → Act which is defined as follows.
1. For the starting state s0, let S′(s0) = act(start(s0), s0).
2. For path fragment π̂ = s0 s1 . . . sn let

S′(π̂) = act(qn, sn)

where q0 = start(s0) and qi+1 = ∆(qi , si ) for 0 6 i 6 n.

Positional policies can be considered as fm-policies with just a single mode.
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Policies

Positional versus fm-policies
Positional policies are insufficient for ω-regular properties

Consider the MDP:

Positional policy Sα always chooses α in state s0
Positional policy Sβ always chooses β in state s0. Then:

PrSα(s0 |= ♦a ∧ ♦b) = PrSβ
(s0 |= ♦a ∧ ♦b) = 0.

Now consider fm-policy Sαβ which alternates between selecting α and β.
Then: PrSαβ

(s0 |= ♦a ∧ ♦b) = 1.
Thus, the class of positional policies is insufficiently powerful to
characterise minimal (or maximal) probabilities for ω-regular properties.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 15/50



Policies

Positional versus fm-policies
Positional policies are insufficient for ω-regular properties
Consider the MDP:

Positional policy Sα always chooses α in state s0
Positional policy Sβ always chooses β in state s0. Then:

PrSα(s0 |= ♦a ∧ ♦b) = PrSβ
(s0 |= ♦a ∧ ♦b) = 0.

Now consider fm-policy Sαβ which alternates between selecting α and β.
Then: PrSαβ

(s0 |= ♦a ∧ ♦b) = 1.
Thus, the class of positional policies is insufficiently powerful to
characterise minimal (or maximal) probabilities for ω-regular properties.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 15/50



Policies

Positional versus fm-policies
Positional policies are insufficient for ω-regular properties
Consider the MDP:

Positional policy Sα always chooses α in state s0

Positional policy Sβ always chooses β in state s0. Then:

PrSα(s0 |= ♦a ∧ ♦b) = PrSβ
(s0 |= ♦a ∧ ♦b) = 0.

Now consider fm-policy Sαβ which alternates between selecting α and β.
Then: PrSαβ

(s0 |= ♦a ∧ ♦b) = 1.
Thus, the class of positional policies is insufficiently powerful to
characterise minimal (or maximal) probabilities for ω-regular properties.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 15/50



Policies

Positional versus fm-policies
Positional policies are insufficient for ω-regular properties
Consider the MDP:

Positional policy Sα always chooses α in state s0
Positional policy Sβ always chooses β in state s0.

Then:

PrSα(s0 |= ♦a ∧ ♦b) = PrSβ
(s0 |= ♦a ∧ ♦b) = 0.

Now consider fm-policy Sαβ which alternates between selecting α and β.
Then: PrSαβ

(s0 |= ♦a ∧ ♦b) = 1.
Thus, the class of positional policies is insufficiently powerful to
characterise minimal (or maximal) probabilities for ω-regular properties.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 15/50



Policies

Positional versus fm-policies
Positional policies are insufficient for ω-regular properties
Consider the MDP:

Positional policy Sα always chooses α in state s0
Positional policy Sβ always chooses β in state s0. Then:

PrSα(s0 |= ♦a ∧ ♦b) = PrSβ
(s0 |= ♦a ∧ ♦b) = 0.

Now consider fm-policy Sαβ which alternates between selecting α and β.
Then: PrSαβ

(s0 |= ♦a ∧ ♦b) = 1.
Thus, the class of positional policies is insufficiently powerful to
characterise minimal (or maximal) probabilities for ω-regular properties.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 15/50



Policies

Positional versus fm-policies
Positional policies are insufficient for ω-regular properties
Consider the MDP:

Positional policy Sα always chooses α in state s0
Positional policy Sβ always chooses β in state s0. Then:

PrSα(s0 |= ♦a ∧ ♦b) = PrSβ
(s0 |= ♦a ∧ ♦b) = 0.

Now consider fm-policy Sαβ which alternates between selecting α and β.

Then: PrSαβ
(s0 |= ♦a ∧ ♦b) = 1.

Thus, the class of positional policies is insufficiently powerful to
characterise minimal (or maximal) probabilities for ω-regular properties.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 15/50



Policies

Positional versus fm-policies
Positional policies are insufficient for ω-regular properties
Consider the MDP:

Positional policy Sα always chooses α in state s0
Positional policy Sβ always chooses β in state s0. Then:

PrSα(s0 |= ♦a ∧ ♦b) = PrSβ
(s0 |= ♦a ∧ ♦b) = 0.

Now consider fm-policy Sαβ which alternates between selecting α and β.
Then: PrSαβ

(s0 |= ♦a ∧ ♦b) = 1.

Thus, the class of positional policies is insufficiently powerful to
characterise minimal (or maximal) probabilities for ω-regular properties.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 15/50



Policies

Positional versus fm-policies
Positional policies are insufficient for ω-regular properties
Consider the MDP:

Positional policy Sα always chooses α in state s0
Positional policy Sβ always chooses β in state s0. Then:

PrSα(s0 |= ♦a ∧ ♦b) = PrSβ
(s0 |= ♦a ∧ ♦b) = 0.

Now consider fm-policy Sαβ which alternates between selecting α and β.
Then: PrSαβ

(s0 |= ♦a ∧ ♦b) = 1.
Thus, the class of positional policies is insufficiently powerful to
characterise minimal (or maximal) probabilities for ω-regular properties.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 15/50



Policies

Other kinds of policies
I Counting policies that base their decision on the number of visits to a

state, or the length of the history (i.e., number of visits to all states)

I Partial-observation policies that base their decision on the trace
L(s0) . . . L(sn) of the history s0 . . . sn.

I Randomised policies. This is applicable to all (deterministic) policies.
For instance, a randomised positional policy S : S → Dist(Act), where
Dist(X ) is the set of probability distributions on X , such that
S(s)(α) > 0 iff α ∈ Act(s). Similar can be done for fm-policies and
history-dependent policies etc..

I There is a strict hierarchy of policies, showing their expressiveness
(black board).
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Reachability probabilities

Overview

1 Markov Decision Processes

2 Policies
Positional policies
Finite-memory policies

3 Reachability probabilities
Mathematical characterisation
Value iteration
Linear programming
Policy iteration

4 Summary
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Reachability probabilities

Reachability probabilities
Reachability probabilities

LetM be an MDP with state space S and S be a policy onM. The
reachability probability of G ⊆ S from state s ∈ S under policy S is:

PrS(s |= ♦G) = PrMS
s {π ∈ Paths(s) | π |= ♦G }

Maximal and minimal reachability probabilities
The minimal reachability probability of G ⊆ S from s ∈ S is:

Prmin(s |= ♦G) = infS PrS(s |= ♦G)

In a similar way, the maximal reachability probability of G ⊆ S is:

Prmax(s |= ♦G) = supS PrS(s |= ♦G).

where policy S ranges over all, infinitely (countably) many, policies.
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Reachability probabilities

Examples
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Reachability probabilities

Maximal reachability probabilities

MInimal guarantees for safety properties
Reasoning about the maximal probabilities for ♦G is needed, e.g., for
showing that PrS(s |= ♦G) 6 ε for all policies S and some small upper
bound 0 < ε 6 1.

Then:

PrS(s |= �¬G) > 1− ε for all policies S.

The task to compute Prmax(s |= ♦G) can thus be understood as showing
that a safety property (namely �¬G) holds with sufficiently large
probability, viz. 1− ε, regardless of the resolution of nondeterminism.
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Reachability probabilities

Equation system for max-reach probabilities

Equation system for max-reach probabilities
LetM be a finite MDP with state space S, s ∈ S and G ⊆ S. The vector
(xs)s∈S with xs = Prmax(s |= ♦G) yields the unique solution of the
following equation system:
I If s ∈ G , then xs = 1.
I If s 6|= ∃♦G , then xs = 0.
I If s |= ∃♦G and s 6∈ G , then

xs = max
{ ∑

t∈S
P(s,α, t) · xt | α ∈ Act(s)

}

This is a Bellman 1 equation as used in dynamic programming.

1Richard Bellman, an american mathematician (1920–1984), also known from the
Bellman-Form shortest path algorithm.
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Example
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Reachability probabilities

Value iteration

The previous theorem suggests to calculate the values

xs = Prmax(s |= ♦G)

by successive approximation.
For the states s |= ∃♦G and s 6∈ G , we have xs = limn→∞ x (n)

s where

x (0)
s = 0 and x (n+1)

s = max
{ ∑

t∈S
P(s,α, t) · x (n)

t | α ∈ Act(s)
}
.

Note that x (0)
s 6 x (1)

s 6 x (2)
s 6 . . .. Thus, the values Prmax(s |= ♦G) can

be approximated by successively computing the vectors

( x (0)
s ), ( x (1)

s ), ( x (2)
s ), . . .,

until maxs∈S |x (n+1)
s − x (n)

s | is below a certain (typically very small)
threshold.
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t∈S
P(s,α, t) · x (n)

t | α ∈ Act(s)
}
.

Note that x (0)
s 6 x (1)

s 6 x (2)
s 6 . . .. Thus, the values Prmax(s |= ♦G) can

be approximated by successively computing the vectors

( x (0)
s ), ( x (1)

s ), ( x (2)
s ), . . .,

until maxs∈S |x (n+1)
s − x (n)

s | is below a certain (typically very small)
threshold.
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Reachability probabilities

Positional policies suffice for reach probabilities

Existence of optimal positional policies
LetM be a finite MDP with state space S, and G ⊆ S. There exists a
positional policy S such that for any s ∈ S it holds:

PrS(s |= ♦G) = Prmax(s |= ♦G).

Proof:
On the blackboard.
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Reachability probabilities

Equation system for min-reach probabilities

Equation system for min-reach probabilities
LetM be a finite MDP with state space S, s ∈ S and G ⊆ S. The vector
(xs)s∈S with xs = Prmin(s |= ♦G) yields the unique solution of the
following equation system:
I If s ∈ G , then xs = 1.
I If Prmin(s |= G) = 0, then xs = 0.
I If Prmin(s |= G) > 0 and s 6∈ G , then

xs = min
{ ∑

t∈S
P(s,α, t) · xt | α ∈ Act(s)

}
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Reachability probabilities

Preprocessing

The preprocessing required to compute the set

Smin
=0 = { s ∈ S | Prmin(s |= ♦G) } = 0

can be performed by graph algorithms. The set Smin
=0 is given by S \ T

where
T =

⋃
n>0

Tn

and T0 = G and, for n > 0:

Tn+1 = Tn ∪ { s ∈ S | ∀α ∈ Act(s)∃t ∈ Tn.P(s,α, t) > 0 }.

As T0 ⊆ T1 ⊆ T2 ⊆ . . . ⊆ S and S is finite, the sequence (Tn)n>0
eventually stabilizes, i.e., for some n > 0, Tn = Tn+1 = . . . = T .
It follows: Prmin(s |= ♦G) > 0 if and only if s ∈ T .
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Reachability probabilities

Positional policies for min-reach probabilities

Existence of optimal positional policies
LetM be a finite MDP with state space S, and G ⊆ S. There exists a
positional policy S such that for any s ∈ S it holds:

PrS(s |= ♦G) = Prmin(s |= ♦G).

Proof:
Similar to the case for maximal reachability probabilities.
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Reachability probabilities

Example value iteration

Determine Prmin(si |= ♦{ s2 }).
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Reachability probabilities

Example value iteration

Determine
Prmin(si |= ♦{ s2 })

1. G = { s2 },Smin
=0 = { s3 }, S \ (G ∪ Smin

=0 ) = { s0, s1 }.

2. ( x (0)
s ) = (0, 0, 1, 0)

3. ( x (1)
s ) = (min(1·0, 0.25·0+0.25·0+0.5·1),

0.1·0+0.5·0+0.4·1, 1, 0)

= (0, 0.4, 1, 0)

4. ( x (2)
s ) = (min(1·0.4, 0.25·0+0.25·0+0.5·1),

0.1·0+0.5·0.4+0.4·1, 1, 0)

= (0.4, 0.6, 1, 0)

5. ( x (3)
s ) = . . . . . .

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 29/50



Reachability probabilities

Example value iteration

Determine
Prmin(si |= ♦{ s2 })

1. G = { s2 }, Smin
=0 = { s3 }, S \ (G ∪ Smin

=0 ) = { s0, s1 }.

2. ( x (0)
s ) = (0, 0, 1, 0)

3. ( x (1)
s ) = (min(1·0, 0.25·0+0.25·0+0.5·1),

0.1·0+0.5·0+0.4·1, 1, 0)

= (0, 0.4, 1, 0)

4. ( x (2)
s ) = (min(1·0.4, 0.25·0+0.25·0+0.5·1),

0.1·0+0.5·0.4+0.4·1, 1, 0)

= (0.4, 0.6, 1, 0)

5. ( x (3)
s ) = . . . . . .

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 29/50



Reachability probabilities

Example value iteration

Determine
Prmin(si |= ♦{ s2 })

1. G = { s2 }, Smin
=0 = { s3 }, S \ (G ∪ Smin

=0 ) = { s0, s1 }.

2. ( x (0)
s ) = (0, 0, 1, 0)

3. ( x (1)
s ) = (min(1·0, 0.25·0+0.25·0+0.5·1),

0.1·0+0.5·0+0.4·1, 1, 0)

= (0, 0.4, 1, 0)

4. ( x (2)
s ) = (min(1·0.4, 0.25·0+0.25·0+0.5·1),

0.1·0+0.5·0.4+0.4·1, 1, 0)

= (0.4, 0.6, 1, 0)

5. ( x (3)
s ) = . . . . . .

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 29/50



Reachability probabilities

Example value iteration

Determine
Prmin(si |= ♦{ s2 })

1. G = { s2 }, Smin
=0 = { s3 }, S \ (G ∪ Smin

=0 ) = { s0, s1 }.

2. ( x (0)
s ) = (0, 0, 1, 0)

3. ( x (1)
s ) = (min(1·0, 0.25·0+0.25·0+0.5·1),

0.1·0+0.5·0+0.4·1, 1, 0)

= (0, 0.4, 1, 0)

4. ( x (2)
s ) = (min(1·0.4, 0.25·0+0.25·0+0.5·1),

0.1·0+0.5·0.4+0.4·1, 1, 0)

= (0.4, 0.6, 1, 0)

5. ( x (3)
s ) = . . . . . .

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 29/50



Reachability probabilities

Example value iteration

Determine
Prmin(si |= ♦{ s2 })

1. G = { s2 }, Smin
=0 = { s3 }, S \ (G ∪ Smin

=0 ) = { s0, s1 }.

2. ( x (0)
s ) = (0, 0, 1, 0)

3. ( x (1)
s ) = (min(1·0, 0.25·0+0.25·0+0.5·1),

0.1·0+0.5·0+0.4·1, 1, 0)

= (0, 0.4, 1, 0)

4. ( x (2)
s ) = (min(1·0.4, 0.25·0+0.25·0+0.5·1),

0.1·0+0.5·0.4+0.4·1, 1, 0)

= (0.4, 0.6, 1, 0)

5. ( x (3)
s ) = . . . . . .

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 29/50



Reachability probabilities

Example value iteration

Determine
Prmin(si |= ♦{ s2 })

1. G = { s2 }, Smin
=0 = { s3 }, S \ (G ∪ Smin

=0 ) = { s0, s1 }.

2. ( x (0)
s ) = (0, 0, 1, 0)

3. ( x (1)
s ) = (min(1·0, 0.25·0+0.25·0+0.5·1),

0.1·0+0.5·0+0.4·1, 1, 0)

= (0, 0.4, 1, 0)

4. ( x (2)
s ) = (min(1·0.4, 0.25·0+0.25·0+0.5·1),

0.1·0+0.5·0.4+0.4·1, 1, 0)

= (0.4, 0.6, 1, 0)

5. ( x (3)
s ) = . . . . . .

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 29/50



Reachability probabilities

Example value iteration

Determine
Prmin(si |= ♦{ s2 })

1. G = { s2 }, Smin
=0 = { s3 }, S \ (G ∪ Smin

=0 ) = { s0, s1 }.

2. ( x (0)
s ) = (0, 0, 1, 0)

3. ( x (1)
s ) = (min(1·0, 0.25·0+0.25·0+0.5·1),

0.1·0+0.5·0+0.4·1, 1, 0)

= (0, 0.4, 1, 0)

4. ( x (2)
s ) = (min(1·0.4, 0.25·0+0.25·0+0.5·1),

0.1·0+0.5·0.4+0.4·1, 1, 0)

= (0.4, 0.6, 1, 0)

5. ( x (3)
s ) = . . . . . .

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 29/50



Reachability probabilities

Example value iteration

Determine
Prmin(si |= ♦{ s2 })

1. G = { s2 }, Smin
=0 = { s3 }, S \ (G ∪ Smin

=0 ) = { s0, s1 }.

2. ( x (0)
s ) = (0, 0, 1, 0)

3. ( x (1)
s ) = (min(1·0, 0.25·0+0.25·0+0.5·1),

0.1·0+0.5·0+0.4·1, 1, 0)

= (0, 0.4, 1, 0)

4. ( x (2)
s ) = (min(1·0.4, 0.25·0+0.25·0+0.5·1),

0.1·0+0.5·0.4+0.4·1, 1, 0)

= (0.4, 0.6, 1, 0)

5. ( x (3)
s ) = . . . . . .

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 29/50



Reachability probabilities

Example value iteration

Determine
Prmin(si |= ♦{ s2 })
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Reachability probabilities

Optimal positional policy

Positional policies Smin and Smax thus yield:

PrSmin(s |= ♦G) = Prmin(s |= ♦G) for all states s ∈ S
PrSmax(s |= ♦G) = Prmax(s |= ♦G) for all states s ∈ S

These policies are obtained as follows:

Smin(s) = argmin{
∑
t∈S

P(s,α, t)·Prmin(t |= ♦G) | α ∈ Act }

Smax(s) = argmax{
∑
t∈S

P(s,α, t)·Prmax(t |= ♦G) | α ∈ Act }
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Reachability probabilities

Optimal positional policy

I Outcome of the value iteration ( xs ) = ( 23 ,
14
15 , 1, 0)

I How to obtain the optimal policy from this result?
I xs0 = min(1· 1415 , 0.5·1 + 0.25·0+0.25· 23 )

min( 1415 ,
2
3 )

I Thus the optimal policy always selects red in s0

I Note that the minimal reach-probability is unique;
the optimal policy need not to be unique.
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Reachability probabilities

Induced DTMC

I Outcome of the value iteration ( xs ) = ( 23 ,
14
15 , 1, 0)

I How to obtain the optimal policy from this results?
I xs0 = min(1· 1415 , 0.5·1 + 0.5·0+0.25· 23 )

min( 1415 ,
2
3 )

I Thus the optimal policy always selects red.
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An alternative approach

A viable alternative to value iteration is linear programming.
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Linear programming

Linear programming
Optimisation of a linear objective function subject to linear (in)equalities.

Let x1, . . . , xn be non-negative real-valued variables. Maximise (or
minimise) the objective function:

c1·x1 + c2·x2 + . . .+ cn·xn for constants c1, . . . , cn ∈ R

subject to the constraints

a11·x1 + a12·x2 + . . .+ a1n·xn 6 b1
. . . . . .

am1·x1 + am2·x2 + . . .+ amn·xn 6 bm.

Solution techniques: e.g., Simplex, ellipsoid method, interior point method.
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Reachability probabilities

Maximal reach probabilities as a linear program

Linear program for max-reach probabilities
Consider a finite MDP with state space S, and G ⊆ S. The values
xs = Prmax(s |= ♦G) are the unique solution of the linear program:
I If s ∈ G , then xs = 1.
I If s 6|= ∃♦G , then xs = 0.
I If s |= ∃♦G and s 6∈ G , then 0 6 xs 6 1 and for all α ∈ Act(s):

xs >
∑
t∈S

P(s,α, t) · xt

where
∑
s∈S

xs is minimal.

Proof:
See lecture notes.
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Minimal reach probabilities as a linear program

Linear program for min-reach probabilities
Consider a finite MDP with state space S, and G ⊆ S. The values
xs = Prmin(s |= ♦G) are the unique solution of the linear program:
I If s ∈ G , then xs = 1.
I If Prmin(s |= ♦G) = 0, then xs = 0.
I If Prmin(s |= ♦G) > 0 and s 6∈ G then 0 6 xs 6 1 and for all
α ∈ Act(s):

xs 6
∑
t∈S

P(s,α, t) · xt

where
∑
s∈S

xs is maximal.

Proof:
See lecture notes.
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Example linear programming

Determine
Prmin(si |= ♦{ s2 })

I G = { s2 },Smin
=0 = { s3 }, S \ (G ∪ Smin

=0 ) = { s0, s1 }.
I Maximise x0 + x1 subject to the constraints:

x0 6 x1
x0 6 1

4 ·x0 + 1
2

x1 6 1
10 ·x0 + 1

2 ·x1 + 2
5
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Example linear programming
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Example linear programming
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Value iteration vs. linear programming

This curve shows how the value iteration approach approximates the solution.
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Time complexity

Time complexity
For finite MDPM with state space S, G ⊆ S and s ∈ S, the values
Prmax(s |= ♦G) can be computed in time polynomial in the size ofM.
The same holds for Prmin(s |= ♦G).

Proof:
Thanks to the characterisation as a linear program and polynomial time
techniques to solve such linear programs such as ellipsoid methods.

Corollary
For finite MDPs, the question whether PrS(s |= ♦G) 6 p for some
rational p ∈ [0, 1[ is decidable in polynomial time.
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Reachability probabilities

Yet another alternative approach

A viable alternative to value iteration and linear programming is policy
iteration.
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Reachability probabilities

Policy iteration

Value iteration
In value iteration, we iteratively attempt to improve the minimal (or maximal)
reachability probabilities by starting with an underestimation, viz. zero for all
states.

Policy iteration
In policy iteration, the idea is to start with an arbitrary positional policy and
improve it for each state in a step-by-step fashion, so as to determine the optimal
one.
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Policy iteration
Policy iteration

1. Start with an arbitrary positional policy S that selects some
α ∈ Act(s) for each state s ∈ S \ G ∪ Smin

=0 .
2. Compute the reachability probabilities PrS(s |= ♦G). This amounts

to solving a linear equation system on DTMCMS.
3. Improve the policy in every state according to the following rules:

S(i+1)(s) = argmin{
∑
t∈S

P(s,α, t)·PrS(i)(t |= ♦G) | α ∈ Act } or

S(i+1)(s) = argmax{
∑
t∈S

P(s,α, t)·PrS(i)(t |= ♦G) | α ∈ Act }

4. Repeat steps 2. and 3. until the policy does not change.
5. Termination2: finite number of states and improvement of min/max

probabilities each time.
2For a proof, see Section 6.7 of the book by Tijms on A First Course in Stochastic

Models.Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 45/50
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Policy iteration: example

I Let G = { s2 }.
I Consider an arbitrary policy S.

I Compute xi = PrS(si |= ♦G) for all i .
I Then: x2 = 1, x3 = 0,

and x0 = x1, x1 = 1
10 ·x0+ 1

2 ·x1+ 2
5 .

I This yields x0 = x1 = x2 = 1 and x3 = 0.
I Change policy S in s0, yielding policy S′.
I This yields min(1·1, 12 ·1+ 1

4 ·0 + 1
4 ·1)

that is, min(1, 34 ) = 3
4 .
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Policy iteration: example

I Let G = { s2 }.
I Consider the adapted policy S′.

I Compute xi = PrS
′
(si |= ♦G) for all i .

I Then: x2 = 1, x3 = 0,

and x0 = 1
4 ·x0+ 1

2 , x1 = 1
10 ·x0+ 1

2 ·x1+ 2
5 .

I This yields x0 = 2
3 , x1 = 14

15 , x2 = 1 and
x3 = 0.

I This policy is optimal.
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Reachability probabilities

Graphical representation of policy iteration

where A denotes policy S and A′ policy S′.
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Summary

Summary

Important points

1. Maximal reachability probabilities are suprema over reachability
probabilities for all, potentially infinitely many, policies.

2. They are characterised by equation systems with maximal operators.
3. There exists a positional policy that yields the maximal reachability

probability.
4. Such policies can be determined using value or policy iteration.
5. Or, alternatively, in polynomial time using linear programming.
6. Positional policies are not powerful enough for arbitrary ω-regular

properties.
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