
Modeling and Verification of Probabilistic Systems

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

http://moves.rwth-aachen.de/teaching/ws-1516/movep15/

November 17, 2015

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 1/46

http://moves.rwth-aachen.de/teaching/ws-1516/movep15/


Strong Bisimulation

Overview

1 Strong Bisimulation

2 Probabilistic Bisimulation
Quotient Markov Chain
Examples

3 Logical Preservation
The Logics PCTL, PCTL∗ and PCTL−
Preservation Theorem

4 Lumpability

5 Summary

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 2/46



Strong Bisimulation

Labeled transition system

Transition system
A (labeled) transition system TS is a structure (S,Act,−→, I0,AP, L)
where
I S is a (possibly infinitely countable) set of states.
I Act is a (possibly infinitely countable) set of actions.
I −→ ⊆ S × Act× S is a transition relation.
I I0 ⊆ S the set of initial states.
I AP is a set of atomic propositions.
I L : S → 2AP is the labeling function.

Notation
We write s α−−→ s ′ instead of (s,α, s ′) ∈ −→.
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Strong Bisimulation

Strong bisimulation

Strong bisimulation relation [Milner, 1980 & Park, 1981]

Let TS = (S,Act,−→, I0,AP, L) be a transition system and R ⊆ S × S.
Then R is a strong bisimulation on TS whenever for all (s, t) ∈ R:
1. L(s) = L(t)
2. if s α−−→ s ′ then there exists t ′ ∈ S such that t α−−→ t ′ and (s ′, t ′) ∈ R
3. if t α−−→ t ′ then there exists s ′ ∈ S such that s α−−→ s ′ and (s ′, t ′) ∈ R

Strong bisimilarity
Let TS = (S,Act,−→, I0,AP, L) be a transition system and s, t ∈ S.
Then: s is strongly bisimilar to t, notation s ∼ t, if there exists a strong
bisimulation R such that (s, t) ∈ R.

Remarks
Not every bisimulation relation is transitive. But: ∼ is an equivalence.
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Strong Bisimulation

Strong bisimulation

Pictorial representation

s α−−→ s ′ s α−−→ s ′

R can be completed to R R
t t α−−→ t ′

and

s s α−−→ s ′

R can be completed to R R
t α−−→ t ′ t α−−→ t ′
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Strong Bisimulation

Strongly bisimilar transition systems

Bisimilar transition systems
Let TS1, TS2 be transition systems over the same set of atomic
propositions with initial states I0,1 and I0,2, respectively.
Consider the transition system TS = TS1 ] TS2 that results from the
disjoint union of TS1 and TS2.
Then: TS1 and TS2 are called strongly bisimilar if there exists a strong
bisimulation R on S1 ] S2 such that:
1. ∀s ∈ I0,1.∃t ∈ I0,2. (s, t) ∈ R, and
2. ∀t ∈ I0,2.∃s ∈ I0,1. (s, t) ∈ R.
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Strong Bisimulation

Example (1)

Are these transition systems strongly bisimilar? (No propositions.)
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Strong Bisimulation

Example (2)

Yes, they are!
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Strong Bisimulation

Correct or wrong?
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Strong Bisimulation

Quotient LTS under ∼
Quotient transition system

For TS = (S,Act,−→, I0,AP, L) and strong bisimilarity ∼ ⊆ S × S let

TS/∼ = (S ′,Act,−→′, I ′0,AP, L′), the quotient of TS under ∼

where
I S ′ = S/∼ = { [s]∼ | s ∈ S } with [s]∼ = { s ′ ∈ S | s ∼ s ′ }

I −→′ is defined by: s α−−→ s ′

[s]∼ α−−→′ [s ′]∼
I I ′0 = { [s0]∼ | s0 ∈ I0 }, the equivalence class of the initial states in TS
I L′([s]∼) = L(s).

Remarks
L′ is well-defined as all states in [s]∼ are equally labeled. Note that if
s α−−→ s ′, then for all t ∼ s we have t α−−→ t ′ with s ′ ∼ t ′.
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Strong Bisimulation

Quotient transition system

For any transition system TS it holds: TS ∼ TS/∼.

Proof:
The binary relation:

R = { (s, [s]∼) | s ∈ S }

is a strong bisimulation on the disjoint union TS ] TS/∼.
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Strong Bisimulation

Strong bisimulation revisited

Auxiliary predicate
Let P : S × Act× 2S → { 0, 1 } be a predicate such that for S ′ ⊆ S:

P(s,α, S ′) =
{

1 if ∃s ′ ∈ S ′. s α−−→ s ′

0 otherwise.

Alternative definition of strong bisimulation
Let TS = (S,Act,−→, I0,AP, L) and R an equivalence relation on S.
Then: R is a strong bisimulation on S if for (s, t) ∈ R:
1. L(s) = L(t), and
2. P(s,α,C) = P(t,α,C) for all C in S/R and α ∈ Act.

s ∼′ t, if there exists a strong bisimulation R such that (s, t) ∈ R.

It can be easily proven that ∼ coincides with ∼′. Proof is omitted.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 12/46



Strong Bisimulation

Strong bisimulation revisited
Auxiliary predicate
Let P : S × Act× 2S → { 0, 1 } be a predicate such that for S ′ ⊆ S:

P(s,α, S ′) =
{

1 if ∃s ′ ∈ S ′. s α−−→ s ′

0 otherwise.

Alternative definition of strong bisimulation
Let TS = (S,Act,−→, I0,AP, L) and R an equivalence relation on S.
Then: R is a strong bisimulation on S if for (s, t) ∈ R:
1. L(s) = L(t), and
2. P(s,α,C) = P(t,α,C) for all C in S/R and α ∈ Act.

s ∼′ t, if there exists a strong bisimulation R such that (s, t) ∈ R.

It can be easily proven that ∼ coincides with ∼′. Proof is omitted.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 12/46



Strong Bisimulation

Strong bisimulation revisited
Auxiliary predicate
Let P : S × Act× 2S → { 0, 1 } be a predicate such that for S ′ ⊆ S:

P(s,α, S ′) =
{

1 if ∃s ′ ∈ S ′. s α−−→ s ′

0 otherwise.

Alternative definition of strong bisimulation
Let TS = (S,Act,−→, I0,AP, L) and R an equivalence relation on S.
Then: R is a strong bisimulation on S if for (s, t) ∈ R:
1. L(s) = L(t), and

2. P(s,α,C) = P(t,α,C) for all C in S/R and α ∈ Act.
s ∼′ t, if there exists a strong bisimulation R such that (s, t) ∈ R.

It can be easily proven that ∼ coincides with ∼′. Proof is omitted.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 12/46



Strong Bisimulation

Strong bisimulation revisited
Auxiliary predicate
Let P : S × Act× 2S → { 0, 1 } be a predicate such that for S ′ ⊆ S:

P(s,α, S ′) =
{

1 if ∃s ′ ∈ S ′. s α−−→ s ′

0 otherwise.

Alternative definition of strong bisimulation
Let TS = (S,Act,−→, I0,AP, L) and R an equivalence relation on S.
Then: R is a strong bisimulation on S if for (s, t) ∈ R:
1. L(s) = L(t), and
2. P(s,α,C) = P(t,α,C) for all C in S/R and α ∈ Act.

s ∼′ t, if there exists a strong bisimulation R such that (s, t) ∈ R.

It can be easily proven that ∼ coincides with ∼′. Proof is omitted.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 12/46



Strong Bisimulation

Strong bisimulation revisited
Auxiliary predicate
Let P : S × Act× 2S → { 0, 1 } be a predicate such that for S ′ ⊆ S:

P(s,α, S ′) =
{

1 if ∃s ′ ∈ S ′. s α−−→ s ′

0 otherwise.

Alternative definition of strong bisimulation
Let TS = (S,Act,−→, I0,AP, L) and R an equivalence relation on S.
Then: R is a strong bisimulation on S if for (s, t) ∈ R:
1. L(s) = L(t), and
2. P(s,α,C) = P(t,α,C) for all C in S/R and α ∈ Act.

s ∼′ t, if there exists a strong bisimulation R such that (s, t) ∈ R.

It can be easily proven that ∼ coincides with ∼′. Proof is omitted.
Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 12/46



Probabilistic Bisimulation

Overview

1 Strong Bisimulation

2 Probabilistic Bisimulation
Quotient Markov Chain
Examples

3 Logical Preservation
The Logics PCTL, PCTL∗ and PCTL−
Preservation Theorem

4 Lumpability

5 Summary

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 13/46



Probabilistic Bisimulation

Probabilistic bisimulation: intuition

Intuition
I Strong bisimulation is used to compare labeled transition systems.
I Strongly bisimilar states exhibit the same step-wise behaviour.
I Our aim: adapt bisimulation to discrete-time Markov chains.
I This yields a probabilistic variant of strong bisimulation.

I When do two DTMC states exhibit the same step-wise behaviour?
I Key: if their transition probability for each equivalence class coincides.
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Probabilistic Bisimulation

Probabilistic bisimulation

Probabilistic bisimulation [Larsen & Skou, 1989]

Let D = (S,P, ιinit,AP, L) be a DTMC and R ⊆ S × S an equivalence.
Then: R is a probabilistic bisimulation on S if for any (s, t) ∈ R:
1. L(s) = L(t), and
2. P(s,C) = P(t,C) for all equivalence classes C ∈ S/R

where P(s,C) =
∑

s′∈C P(s, s ′).

For states in R, the probability of moving to some equivalence class is equal.

Probabilistic bisimilarity
Let D be a DTMC and s, t states in D. Then: s is probabilistic bisimilar
to t, denoted s ∼p t, if there exists a probabilistic bisimulation R with
(s, t) ∈ R.
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Probabilistic bisimulation
Let D = (S,P, ιinit,AP, L) be a DTMC and R ⊆ S × S an equivalence.
Then: R is a probabilistic bisimulation on S if for any (s, t) ∈ R:
1. L(s) = L(t), and
2. P(s,C) = P(t,C) for all equivalence classes C ∈ S/R.

Remarks
As opposed to bisimulation on states in transition systems, any probabilistic
bisimulation is an equivalence.
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Probabilistic Bisimulation

Bisimilar DTMCs

Bisimilar DTMCs
Let D1, D2 be DTMCs over the same set of atomic propositions with
initial distributions ι1init and ι2init, respectively.
Consider the DTMC D = D1 ] D2 that results from the disjoint union of
D1 and D2. Consider ∼p on D = D1 ] D2.
Then D1 and D2 are bisimilar, denoted D1 ∼p D2 whenever

ι1init(C) = ι2init(C)

for each bisimulation equivalence class C of D = D1 ] D2 under ∼p.

Here, ιinit(C) denotes
∑
s∈C

ιinit(s).
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Probabilistic Bisimulation

Quotient under ∼p
Quotient DTMC under ∼p

For D = (S,P, ιinit,AP, L) and probabilistic bisimilarity ∼p ⊆ S × S let

D/∼p = (S ′,P′, ι′init,AP, L′), the quotient of D under ∼p

where
I S ′ = S/∼p= { [s]∼p | s ∈ S } with [s]∼p = { s ′ ∈ S | s ∼p s ′ }
I P′([s]∼p , [s ′]∼p ) = P(s, [s ′]∼p )
I ι′init([s]∼p ) =

∑
s′∈[s]∼p

ιinit(s)
I L′([s]∼p ) = L(s).

Remarks
The transition probability from [s]∼p to [t]∼p equals P(s, [t]∼p ). This is
well-defined as P(s,C) = P(s ′,C) for all s ∼p s ′ and all bisimulation equivalence
classes C .
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D/∼p = (S ′,P′, ι′init,AP, L′), the quotient of D under ∼p

where
I S ′ = S/∼p= { [s]∼p | s ∈ S } with [s]∼p = { s ′ ∈ S | s ∼p s ′ }
I P′([s]∼p , [s ′]∼p ) = P(s, [s ′]∼p )
I ι′init([s]∼p ) =

∑
s′∈[s]∼p

ιinit(s)
I L′([s]∼p ) = L(s).

Remarks
The transition probability from [s]∼p to [t]∼p equals P(s, [t]∼p ). This is
well-defined as P(s,C) = P(s ′,C) for all s ∼p s ′ and all bisimulation equivalence
classes C .
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Probabilistic Bisimulation

Example
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Probabilistic Bisimulation

Craps

I Roll two dice and bet

I Come-out roll (“pass line” wager):
I outcome 7 or 11: win
I outcome 2, 3, or 12: lose (“craps”)
I any other outcome: roll again (outcome is “point”)

I Repeat until 7 or the “point” is thrown:
I outcome 7: lose (“seven-out”)
I outcome the point: win
I any other outcome: roll again
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Probabilistic Bisimulation

A DTMC model of Craps

I Come-out roll:
I 7 or 11: win
I 2, 3, or 12:

lose
I else: roll

again

I Next roll(s):
I 7: lose
I point: win
I else: roll

again
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Probabilistic Bisimulation

Quotient DTMC of Craps under ∼p
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Probabilistic Bisimulation

Example: Crowds protocol

Security: Crowds protocol [Reiter & Rubin, 1998]

I A protocol for anonymous web browsing (variants: mCrowds,
BT-Crowds)

I Hide user’s communication by random routing within a crowd
I sender selects a crowd member randomly using a uniform distribution
I selected router flips a biased coin:

I with probability 1 − p: direct delivery to final destination
I otherwise: select a next router randomly (uniformly)

I once a routing path has been established, use it until crowd changes
I Rebuild routing paths on crowd changes
I Property: Crowds protocol ensures “probable innocence”:

I probability real sender is discovered < 1
2 if N > p

p− 1
2
·(c+1)

I where N is crowd’s size and c is number of corrupt crowd members
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Probabilistic Bisimulation

State space reduction under ∼p
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Probabilistic Bisimulation

IEEE 802.11 group communication protocol

original DTMC quotient DTMC red. factor
OD states transitions ver. time blocks total time states time
4 1125 5369 122 71 13 15.9 9.00

12 37349 236313 7180 1821 642 20.5 11.2
20 231525 1590329 50133 10627 5431 21.8 9.2
28 804837 5750873 195086 35961 24716 22.4 7.9
36 2076773 15187833 5103900 91391 77694 22.7 6.6
40 3101445 22871849 7725041 135752 127489 22.9 6.1

all times in milliseconds
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Logical Preservation

Overview

1 Strong Bisimulation

2 Probabilistic Bisimulation
Quotient Markov Chain
Examples

3 Logical Preservation
The Logics PCTL, PCTL∗ and PCTL−
Preservation Theorem

4 Lumpability

5 Summary
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Logical Preservation

PCTL syntax

Probabilistic Computation Tree Logic: Syntax
PCTL consists of state- and path-formulas.

I PCTL state formulas over the set AP obey the grammar:

Φ ::= true
∣∣∣ a

∣∣∣ Φ1 ∧ Φ2
∣∣∣ ¬Φ

∣∣∣ PJ(ϕ)

where a ∈ AP, ϕ is a path formula and interval J ⊆ [0, 1].
I PCTL path formulae are formed according to the following grammar:

ϕ ::= ©Φ
∣∣∣ Φ1 UΦ2

∣∣∣ Φ1 U6n Φ2

where Φ, Φ1, and Φ2 are state formulae and n ∈ IN.
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Logical Preservation

Preservation of PCTL-formulas

Bisimulation preserves PCTL
Let D be a DTMC and s, t states in D. Then:

s ∼p t if and only if s and t are PCTL-equivalent.

Remarks
s ∼p t implies that
1. transient probabilities, reachability probabilities,
2. repeated reachability, persistence probabilities
3. all qualitative PCTL formulas

for s and t are equal.
If for PCTL-formula Φ we have s |= Φ but t 6|= Φ, then it follows s 6∼p t.
A single PCTL-formula suffices!
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Logical Preservation

PCTL∗ syntax

Probabilistic Computation Tree Logic: Syntax
PCTL∗ consists of state- and path-formulas.

I PCTL∗ state formulas over the set AP obey the grammar:

Φ ::= true
∣∣∣ a

∣∣∣ Φ1 ∧ Φ2
∣∣∣ ¬Φ

∣∣∣ PJ(ϕ)

where a ∈ AP, ϕ is a path formula and J ⊆ [0, 1], J 6= ∅ is a
non-empty interval.

I PCTL∗ path formulae are formed according to the following grammar:

ϕ ::= Φ
∣∣∣ ¬ϕ ∣∣∣ ϕ1 ∧ ϕ2

∣∣∣ © ϕ
∣∣∣ ϕ1 Uϕ2

where Φ is a state formula and ϕ, ϕ1, and ϕ2 are path formulae.
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Logical Preservation

PCTL∗ semantics (1)

Notation
D, s |= Φ if and only if state-formula Φ holds in state s of (possibly
infinite) DTMC D. As D is known from the context we simply write
s |= Φ.

Satisfaction relation for state formulas
The satisfaction relation |= is defined for PCTL∗ state formulas by:

s |= a iff a ∈ L(s)
s |= ¬Φ iff not (s |= Φ)
s |= Φ ∧ Ψ iff (s |= Φ) and (s |= Ψ)
s |= PJ(ϕ) iff Pr(s |= ϕ) ∈ J

where Pr(s |= ϕ) = Prs{π ∈ Paths(s) | π |= ϕ }
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Logical Preservation

PCTL∗ semantics (2)

Satisfaction relation for path formulas
Let π = s0 s1 s2 . . . be an infinite path in (possibly infinite) DTMC D. Let
πi = si si+1 si+2 . . . denotes the i-th suffix of π.
The satisfaction relation |= is defined for state formulas by:

π |= Φ iff π[0] |= Φ
π |= ¬ϕ iff not π |= ϕ

π |= ϕ1 ∧ ϕ2 iff π |= ϕ1 and π |= ϕ2

π |=©ϕ iff π1 |= ϕ

π |= ϕ1 Uϕ2 iff ∃k > 0.(πk |= ϕ2 ∧ ∀0 6 i < k. πi |= ϕ1 )
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π |=©ϕ iff π1 |= ϕ

π |= ϕ1 Uϕ2 iff ∃k > 0.(πk |= ϕ2 ∧ ∀0 6 i < k. πi |= ϕ1 )
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Logical Preservation

Measurability

PCTL∗ measurability
For any PCTL∗ path formula ϕ and state s of DTMC D,
the set {π ∈ Paths(s) | π |= ϕ } is measurable.

Proof:
Left as an exercise, using the result for PCTL measurability and the
measurability of ω-regular properties.
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Logical Preservation

Bounded until in PCTL∗

Bounded until
Bounded until can be defined using the other operators:

ϕ1 U6n ϕ2 =
∨

06i6n
ψi where ψ0 = ϕ2 and ψi+1 = ϕ1 ∧©ψi for i > 0.

Examples in PCTL∗ but not in PCTL
P> 1

4
(© aU © b) and P=1(P> 1

2
(�♦a ∨ ♦�b)).
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Logical Preservation

Preservation of PCTL∗-formulas

Bisimulation preserves PCTL∗

Let D be a DTMC and s, t states in D. Then:

s ∼p t if and only if s and t are PCTL∗-equivalent.

Remarks

1. Bisimulation thus preserves not only all PCTL but also all PCTL∗ formulas.
2. By the last two results it follows that PCTL- and PCTL∗-equivalence

coincide. Thus any two states that satisfy the same PCTL formulas, satisfy
the same PCTL∗ formulas.
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Logical Preservation

PCTL− syntax

Simple Probabilistic Computation Tree Logic: Syntax
PCTL− only consists of state-formulas. These formulas over the set AP
obey the grammar:

Φ ::= a
∣∣∣ Φ1 ∧ Φ2

∣∣∣ Φ1 ∨ Φ2
∣∣∣ P6p(©Φ)

where a ∈ AP and p is a probability in [0, 1].

Remarks
This is a truly simple logic. It does not contain the until-operator. Negation is
not present and cannot be expressed. Only upper bounds on probabilities.

The next theorem shows that PCTL-, PCTL∗- and PCTL−-equivalence
coincide.
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Logical Preservation

Preservation of PCTL
PCTL/PCTL∗ and Bisimulation Equivalence

Let D be a DTMC and s1, s2 states in D. Then, the following statements
are equivalent:

(a) s1 ∼p s2.
(b) s1 and s2 are PCTL∗-equivalent, i.e., fulfill the same PCTL∗ formulas
(c) s1 and s2 are PCTL-equivalent, i.e., fulfill the same PCTL formulas
(d) s1 and s2 are PCTL−-equivalent, i.e., fulfill the same PCTL− formulas

Proof:

1. (a) =⇒ (b): by structural induction on PCTL∗ formulas.

2. (b) =⇒ (c): trivial as PCTL is a sublogic of PCTL∗.

3. (c) =⇒ (d): trivial as PCTL− is a sublogic of PCTL.

4. (d) =⇒ (a): involved. First finite DTMCs, then for arbitrary DTMCs.
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Logical Preservation

Proof

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 39/46



Lumpability

Overview

1 Strong Bisimulation

2 Probabilistic Bisimulation
Quotient Markov Chain
Examples

3 Logical Preservation
The Logics PCTL, PCTL∗ and PCTL−
Preservation Theorem

4 Lumpability

5 Summary

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 40/46



Lumpability

1960: Laurie Snell and John Kemeny

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 41/46



Lumpability

Lumpability
Ignore the initial distribution and state-labelling of a Markov chain.

Lumpability [Kemeny & Snell, 1960]

Let D be a (possibly countably infinite) DTMC with state space S and
B = {B1, . . . ,Bn } be a partitioning of S (where Bj may be countably
infinite). D is lumpable with respect to B iff for any Bi and Bj in B and
any s, s ′ ∈ Bi :∑

u∈Bj

P(s, u) =
∑
u∈Bj

P(s ′, u) that is P(s,Bj) = P(s ′,Bj).

If D is lumpable with respect to B, B is called a lumpable partition

It is easy to show that S/∼p is a lumpable partition of the state space S.
In fact, it is the coarsest possible lumpable partition.
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Lumpability

Lumping equivalence

Lumping equivalence [Kemeny & Snell, 1960]

The DTMCs D and D′ are lumping equivalent if there are lumpable
partitions B of D and B′ of D′ such that there is an injective function
f : IN→ IN such that:

P(Bi ,Bj) = P′(B′f (i),B
′
f (j)).

Corollary
D ∼p D′ if and only if D and D′ are lumping equivalent (with respect to
the coarsest possible lumpable partition on their union).
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Lumpability

Lumping equivalence

Remark
For finite Markov chains, the correspondence between lumping equivalence
and ∼p allows to obtain the coarsest possible lumpable partition in an
algorithmic, i.e., automated manner.

This can be considered as a breakthrough in Markov chain theory.
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Summary

Summary

I Bisimilar states have equal transition probabilities for every
equivalence class.

I ∼p is the coarsest probabilistic bisimulation.
I All states in a quotient DTMC are equivalence classes under ∼p.
I ∼p and PCTL-equivalence coincide.
I PCTL, PCTL∗, and PCTL−-equivalence coincide.
I To show s 6∼p t, show s |= Φ and t 6|= Φ for Φ ∈ PCTL−.
I Bisimulation may yield up to exponential savings in state space.

Take-home message
Probabilistic bisimulation coincides with a notion from the sixties, named
(ordinary) lumpability.
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