# Modeling and Verification of Probabilistic Systems

Joost-Pieter Katoen

Lehrstuhl für Informatik 2 Software Modeling and Verification Group

http://moves.rwth-aachen.de/teaching/ws-1516/movep15/

November 17, 2015

### **Overview**

- Strong Bisimulation
- Probabilistic Bisimulation
  - Quotient Markov Chain
  - Examples
- Logical Preservation
  - The Logics PCTL, PCTL\* and PCTL-
  - Preservation Theorem
- 4 Lumpability
- Summary

### Labeled transition system

#### Transition system

A (labeled) transition system TS is a structure  $(S, Act, \longrightarrow, I_0, AP, L)$  where

- S is a (possibly infinitely countable) set of states.
- Act is a (possibly infinitely countable) set of actions.
- $ightharpoonup \longrightarrow \subseteq S \times Act \times S$  is a transition relation.
- ▶  $I_0 \subseteq S$  the set of initial states.
- ► *AP* is a set of atomic propositions.
- ▶  $L: S \rightarrow 2^{AP}$  is the labeling function.

## Labeled transition system

#### Transition system

A (labeled) transition system TS is a structure  $(S, Act, \longrightarrow, I_0, AP, L)$  where

- S is a (possibly infinitely countable) set of states.
- Act is a (possibly infinitely countable) set of actions.
- $ightharpoonup \longrightarrow \subseteq S \times Act \times S$  is a transition relation.
- ▶  $I_0 \subseteq S$  the set of initial states.
- AP is a set of atomic propositions.
- ▶  $L: S \rightarrow 2^{AP}$  is the labeling function.

#### **Notation**

We write  $s \xrightarrow{\alpha} s'$  instead of  $(s, \alpha, s') \in \longrightarrow$ .

#### Strong bisimulation relation

[Milner, 1980 & Park, 1981]

Let  $TS = (S, Act, \longrightarrow, I_0, AP, L)$  be a transition system and  $R \subseteq S \times S$ .

#### Strong bisimulation relation

[Milner, 1980 & Park, 1981]

#### Strong bisimulation relation

[Milner, 1980 & Park, 1981]

1. 
$$L(s) = L(t)$$

#### Strong bisimulation relation

[Milner, 1980 & Park, 1981]

- 1. L(s) = L(t)
- 2. if  $s \xrightarrow{\alpha} s'$  then there exists  $t' \in S$  such that  $t \xrightarrow{\alpha} t'$  and  $(s', t') \in R$

#### Strong bisimulation relation

[Milner, 1980 & Park, 1981]

- 1. L(s) = L(t)
- 2. if  $s \xrightarrow{\alpha} s'$  then there exists  $t' \in S$  such that  $t \xrightarrow{\alpha} t'$  and  $(s', t') \in R$
- 3. if  $t \xrightarrow{\alpha} t'$  then there exists  $s' \in S$  such that  $s \xrightarrow{\alpha} s'$  and  $(s', t') \in R$

#### Strong bisimulation relation

[Milner, 1980 & Park, 1981]

Let  $TS = (S, Act, \longrightarrow, I_0, AP, L)$  be a transition system and  $R \subseteq S \times S$ . Then R is a *strong bisimulation* on TS whenever for all  $(s, t) \in R$ :

- 1. L(s) = L(t)
- 2. if  $s \xrightarrow{\alpha} s'$  then there exists  $t' \in S$  such that  $t \xrightarrow{\alpha} t'$  and  $(s', t') \in R$
- 3. if  $t \xrightarrow{\alpha} t'$  then there exists  $s' \in S$  such that  $s \xrightarrow{\alpha} s'$  and  $(s', t') \in R$

### Strong bisimilarity

Let  $TS = (S, Act, \longrightarrow, I_0, AP, L)$  be a transition system and  $s, t \in S$ .

#### Strong bisimulation relation

[Milner, 1980 & Park, 1981]

Let  $TS = (S, Act, \longrightarrow, I_0, AP, L)$  be a transition system and  $R \subseteq S \times S$ . Then R is a *strong bisimulation* on TS whenever for all  $(s, t) \in R$ :

- 1. L(s) = L(t)
- 2. if  $s \xrightarrow{\alpha} s'$  then there exists  $t' \in S$  such that  $t \xrightarrow{\alpha} t'$  and  $(s', t') \in R$
- 3. if  $t \xrightarrow{\alpha} t'$  then there exists  $s' \in S$  such that  $s \xrightarrow{\alpha} s'$  and  $(s', t') \in R$

### Strong bisimilarity

Let  $TS = (S, Act, \longrightarrow, I_0, AP, L)$  be a transition system and  $s, t \in S$ .

Then: s is strongly bisimilar to t, notation  $s \sim t$ , if there exists a strong bisimulation R such that  $(s, t) \in R$ .

#### Strong bisimulation relation

[Milner, 1980 & Park, 1981]

Let  $TS = (S, Act, \longrightarrow, I_0, AP, L)$  be a transition system and  $R \subseteq S \times S$ . Then R is a *strong bisimulation* on TS whenever for all  $(s, t) \in R$ :

- 1. L(s) = L(t)
- 2. if  $s \xrightarrow{\alpha} s'$  then there exists  $t' \in S$  such that  $t \xrightarrow{\alpha} t'$  and  $(s', t') \in R$
- 3. if  $t \xrightarrow{\alpha} t'$  then there exists  $s' \in S$  such that  $s \xrightarrow{\alpha} s'$  and  $(s', t') \in R$

#### Strong bisimilarity

Let  $TS = (S, Act, \longrightarrow, I_0, AP, L)$  be a transition system and  $s, t \in S$ .

Then: s is strongly bisimilar to t, notation  $s \sim t$ , if there exists a strong bisimulation R such that  $(s,t) \in R$ .

#### Remarks

Not every bisimulation relation is transitive.

#### Strong bisimulation relation

[Milner, 1980 & Park, 1981]

Let  $TS = (S, Act, \longrightarrow, I_0, AP, L)$  be a transition system and  $R \subseteq S \times S$ . Then R is a *strong bisimulation* on TS whenever for all  $(s, t) \in R$ :

- 1. L(s) = L(t)
- 2. if  $s \xrightarrow{\alpha} s'$  then there exists  $t' \in S$  such that  $t \xrightarrow{\alpha} t'$  and  $(s', t') \in R$
- 3. if  $t \xrightarrow{\alpha} t'$  then there exists  $s' \in S$  such that  $s \xrightarrow{\alpha} s'$  and  $(s', t') \in R$

#### Strong bisimilarity

Let  $TS = (S, Act, \longrightarrow, I_0, AP, L)$  be a transition system and  $s, t \in S$ .

Then: s is strongly bisimilar to t, notation  $s \sim t$ , if there exists a strong bisimulation R such that  $(s, t) \in R$ .

#### Remarks

Not every bisimulation relation is transitive. But:  $\sim$  is an equivalence.

### **Pictorial representation**

$$s \xrightarrow{\alpha} s'$$
  $s \xrightarrow{\alpha} s'$   $R$  can be completed to  $R$   $R$   $t \xrightarrow{\alpha} t'$ 

#### **Pictorial representation**

and

#### Bisimilar transition systems

Let  $TS_1$ ,  $TS_2$  be transition systems over the same set of atomic propositions with initial states  $I_{0,1}$  and  $I_{0,2}$ , respectively.

#### Bisimilar transition systems

Let  $TS_1$ ,  $TS_2$  be transition systems over the same set of atomic propositions with initial states  $I_{0,1}$  and  $I_{0,2}$ , respectively.

Consider the transition system  $TS = TS_1 \uplus TS_2$  that results from the disjoint union of  $TS_1$  and  $TS_2$ .

#### Bisimilar transition systems

Let  $TS_1$ ,  $TS_2$  be transition systems over the same set of atomic propositions with initial states  $I_{0,1}$  and  $I_{0,2}$ , respectively.

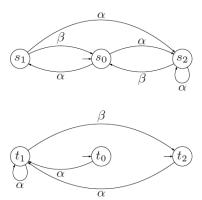
Consider the transition system  $TS = TS_1 \uplus TS_2$  that results from the disjoint union of  $TS_1$  and  $TS_2$ .

Then:  $TS_1$  and  $TS_2$  are called strongly bisimilar if there exists a strong bisimulation R on  $S_1 \uplus S_2$  such that:

- 1.  $\forall s \in I_{0,1}$ .  $\exists t \in I_{0,2}$ .  $(s, t) \in R$ , and
- 2.  $\forall t \in I_{0,2}$ .  $\exists s \in I_{0,1}$ .  $(s, t) \in R$ .

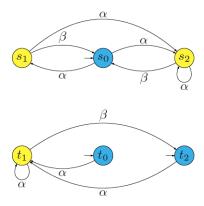
### Example (1)

### Are these transition systems strongly bisimilar? (No propositions.)

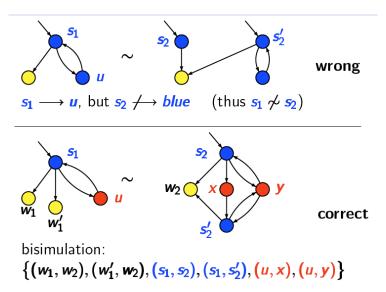


# Example (2)

### Yes, they are!



# Correct or wrong?



### **Quotient transition system**

#### **Quotient transition system**

For  $TS = (S, Act, \longrightarrow, I_0, AP, L)$  and strong bisimilarity  $\sim \subseteq S \times S$  let

$$TS/\sim = (S', Act, \longrightarrow', I'_0, AP, L'),$$
 the *quotient* of  $TS$  under  $\sim$ 

#### **Quotient transition system**

For  $TS = (S, Act, \longrightarrow, I_0, AP, L)$  and strong bisimilarity  $\sim \subseteq S \times S$  let

$$TS/\sim = (S', Act, \longrightarrow', I'_0, AP, L'),$$
 the *quotient* of  $TS$  under  $\sim$ 

#### **Quotient transition system**

For  $TS = (S, Act, \longrightarrow, I_0, AP, L)$  and strong bisimilarity  $\sim \subseteq S \times S$  let

$$TS/\sim = (S', Act, \longrightarrow', I'_0, AP, L'),$$
 the *quotient* of  $TS$  under  $\sim$ 

▶ 
$$S' = S/\sim = \{ [s]_{\sim} \mid s \in S \} \text{ with } [s]_{\sim} = \{ s' \in S \mid s \sim s' \}$$

$$ightharpoonup \longrightarrow'$$
 is defined by: 
$$\frac{s \xrightarrow{\alpha} s'}{[s]_{\sim} \xrightarrow{\alpha}' [s']_{\sim}}$$

#### **Quotient transition system**

For  $TS = (S, Act, \longrightarrow, I_0, AP, L)$  and strong bisimilarity  $\sim \subseteq S \times S$  let

$$TS/\sim = (S', Act, \longrightarrow', I'_0, AP, L'),$$
 the *quotient* of  $TS$  under  $\sim$ 

- $S' = S/\sim = \{ [s]_{\sim} \mid s \in S \} \text{ with } [s]_{\sim} = \{ s' \in S \mid s \sim s' \}$
- $ightharpoonup \longrightarrow'$  is defined by:  $\frac{s \xrightarrow{\alpha} s'}{[s]_{\sim} \xrightarrow{\alpha}' [s']_{\sim}}$
- ▶  $I_0' = \{ [s_0]_{\sim} \mid s_0 \in I_0 \}$ , the equivalence class of the initial states in TS

#### **Quotient transition system**

For  $TS = (S, Act, \longrightarrow, I_0, AP, L)$  and strong bisimilarity  $\sim \subseteq S \times S$  let

$$TS/\sim = (S', Act, \longrightarrow', I'_0, AP, L'),$$
 the *quotient* of  $TS$  under  $\sim$ 

- ▶  $S' = S/\sim = \{ [s]_{\sim} \mid s \in S \} \text{ with } [s]_{\sim} = \{ s' \in S \mid s \sim s' \}$
- $ightharpoonup \longrightarrow'$  is defined by:  $\frac{s \xrightarrow{\alpha} s'}{[s]_{\sim} \xrightarrow{\alpha}' [s']_{\sim}}$
- $I_0' = \{ [s_0]_{\sim} \mid s_0 \in I_0 \}$ , the equivalence class of the initial states in TS
- $L'([s]_{\sim}) = L(s).$

#### **Quotient transition system**

For  $TS = (S, Act, \longrightarrow, I_0, AP, L)$  and strong bisimilarity  $\sim \subseteq S \times S$  let

$$TS/\sim = (S', Act, \longrightarrow', I'_0, AP, L'),$$
 the *quotient* of  $TS$  under  $\sim$ 

where

- ▶  $S' = S/\sim = \{ [s]_{\sim} \mid s \in S \} \text{ with } [s]_{\sim} = \{ s' \in S \mid s \sim s' \}$
- $ightharpoonup \longrightarrow'$  is defined by:  $\frac{s \xrightarrow{\alpha} s'}{[s]_{\sim} \xrightarrow{\alpha}' [s']_{\sim}}$
- ▶  $I_0' = \{ [s_0]_{\sim} \mid s_0 \in I_0 \}$ , the equivalence class of the initial states in TS
- ►  $L'([s]_{\sim}) = L(s)$ .

#### Remarks

L' is well-defined as all states in  $[s]_{\sim}$  are equally labeled.

#### **Quotient transition system**

For  $TS = (S, Act, \longrightarrow, I_0, AP, L)$  and strong bisimilarity  $\sim \subseteq S \times S$  let

$$TS/\sim = (S', Act, \longrightarrow', I'_0, AP, L'),$$
 the *quotient* of  $TS$  under  $\sim$ 

where

- ▶  $S' = S/\sim = \{ [s]_{\sim} \mid s \in S \} \text{ with } [s]_{\sim} = \{ s' \in S \mid s \sim s' \}$
- $ightharpoonup \longrightarrow'$  is defined by:  $\frac{s \xrightarrow{\alpha} s'}{[s]_{\sim} \xrightarrow{\alpha}' [s']_{\sim}}$
- ▶  $I_0' = \{ [s_0]_{\sim} \mid s_0 \in I_0 \}$ , the equivalence class of the initial states in TS
- $L'([s]_{\sim}) = L(s).$

#### Remarks

L' is well-defined as all states in  $[s]_{\sim}$  are equally labeled. Note that if  $s \xrightarrow{\alpha} s'$ , then for all  $t \sim s$  we have  $t \xrightarrow{\alpha} t'$  with  $s' \sim t'$ .

### **Quotient transition system**

## **Quotient transition system**

For any transition system *TS* it holds:  $TS \sim TS/\sim$ .

# **Quotient transition system**

For any transition system *TS* it holds:  $TS \sim TS/\sim$ .

#### **Proof:**

The binary relation:

$$R = \{(s, [s]_{\sim}) \mid s \in S\}$$

is a strong bisimulation on the disjoint union  $TS \uplus TS / \sim$ .

# Strong bisimulation revisited

## Strong bisimulation revisited

#### **Auxiliary predicate**

Let  $P: S \times Act \times 2^S \rightarrow \{0,1\}$  be a predicate such that for  $S' \subseteq S$ :

$$P(s, \alpha, S') = \begin{cases} 1 & \text{if } \exists s' \in S'. \ s \xrightarrow{\alpha} s' \\ 0 & \text{otherwise.} \end{cases}$$

# Strong bisimulation revisited

### **Auxiliary predicate**

Let  $P: S \times Act \times 2^S \rightarrow \{0,1\}$  be a predicate such that for  $S' \subseteq S$ :

$$P(s, \alpha, S') = \begin{cases} 1 & \text{if } \exists s' \in S'. \ s \xrightarrow{\alpha} s' \\ 0 & \text{otherwise.} \end{cases}$$

#### Alternative definition of strong bisimulation

Let  $TS = (S, Act, \longrightarrow, I_0, AP, L)$  and R an equivalence relation on S.

Then: R is a *strong bisimulation* on S if for  $(s, t) \in R$ :

1. 
$$L(s) = L(t)$$
, and

# Strong bisimulation revisited

### **Auxiliary predicate**

Let  $P: S \times Act \times 2^S \rightarrow \{0,1\}$  be a predicate such that for  $S' \subseteq S$ :

$$P(s, \alpha, S') = \begin{cases} 1 & \text{if } \exists s' \in S'. \ s \xrightarrow{\alpha} s' \\ 0 & \text{otherwise.} \end{cases}$$

#### Alternative definition of strong bisimulation

Let  $TS = (S, Act, \longrightarrow, I_0, AP, L)$  and R an equivalence relation on S. Then: R is a strong bisimulation on S if for  $(s, t) \in R$ :

- 1. L(s) = L(t), and
- 2.  $P(s, \alpha, C) = P(t, \alpha, C)$  for all C in S/R and  $\alpha \in Act$ .

 $s \sim' t$ , if there exists a strong bisimulation R such that  $(s, t) \in R$ .

# Strong bisimulation revisited

#### **Auxiliary predicate**

Let  $P: S \times Act \times 2^S \rightarrow \{0,1\}$  be a predicate such that for  $S' \subseteq S$ :

$$P(s, \alpha, S') = \begin{cases} 1 & \text{if } \exists s' \in S'. \ s \xrightarrow{\alpha} s' \\ 0 & \text{otherwise.} \end{cases}$$

#### Alternative definition of strong bisimulation

Let  $TS = (S, Act, \longrightarrow, I_0, AP, L)$  and R an equivalence relation on S.

Then: R is a *strong bisimulation* on S if for  $(s, t) \in R$ :

- 1. L(s) = L(t), and
- 2.  $P(s, \alpha, C) = P(t, \alpha, C)$  for all C in S/R and  $\alpha \in Act$ .

 $s \sim' t$ , if there exists a strong bisimulation R such that  $(s, t) \in R$ .

It can be easily proven that  $\sim$  coincides with  $\sim'$ . Proof is omitted.

## **Overview**

- Strong Bisimulation
- Probabilistic Bisimulation
  - Quotient Markov Chain
  - Examples
- Logical Preservation
  - The Logics PCTL, PCTL\* and PCTL-
  - Preservation Theorem
- 4 Lumpability
- Summary

#### Intuition

▶ Strong bisimulation is used to compare labeled transition systems.

- ▶ Strong bisimulation is used to compare labeled transition systems.
- ▶ Strongly bisimilar states exhibit the same step-wise behaviour.

- ▶ Strong bisimulation is used to compare labeled transition systems.
- Strongly bisimilar states exhibit the same step-wise behaviour.
- ▶ Our aim: adapt bisimulation to discrete-time Markov chains.

- Strong bisimulation is used to compare labeled transition systems.
- Strongly bisimilar states exhibit the same step-wise behaviour.
- Our aim: adapt bisimulation to discrete-time Markov chains.
- ▶ This yields a probabilistic variant of strong bisimulation.

#### Intuition

- Strong bisimulation is used to compare labeled transition systems.
- Strongly bisimilar states exhibit the same step-wise behaviour.
- Our aim: adapt bisimulation to discrete-time Markov chains.
- ▶ This yields a probabilistic variant of strong bisimulation.

▶ When do two DTMC states exhibit the same step-wise behaviour?

- Strong bisimulation is used to compare labeled transition systems.
- Strongly bisimilar states exhibit the same step-wise behaviour.
- Our aim: adapt bisimulation to discrete-time Markov chains.
- This yields a probabilistic variant of strong bisimulation.

- When do two DTMC states exhibit the same step-wise behaviour?
- ► Key: if their transition probability for each equivalence class coincides.

#### **Probabilistic bisimulation**

[Larsen & Skou, 1989]

#### **Probabilistic bisimulation**

[Larsen & Skou, 1989]

Let  $\mathcal{D} = (S, \mathbf{P}, \iota_{\text{init}}, AP, L)$  be a DTMC and  $R \subseteq S \times S$  an equivalence.

#### Probabilistic bisimulation

[Larsen & Skou, 1989]

Let  $\mathcal{D} = (S, \mathbf{P}, \iota_{\text{init}}, AP, L)$  be a DTMC and  $R \subseteq S \times S$  an equivalence.

Then: R is a probabilistic bisimulation on S if for any  $(s, t) \in R$ :

#### Probabilistic bisimulation

[Larsen & Skou, 1989]

Let  $\mathcal{D} = (S, \mathbf{P}, \iota_{\text{init}}, AP, L)$  be a DTMC and  $R \subseteq S \times S$  an equivalence.

Then: R is a probabilistic bisimulation on S if for any  $(s, t) \in R$ :

1. 
$$L(s) = L(t)$$
, and

#### **Probabilistic bisimulation**

[Larsen & Skou, 1989]

Let  $\mathcal{D} = (S, \mathbf{P}, \iota_{\text{init}}, AP, L)$  be a DTMC and  $R \subseteq S \times S$  an equivalence.

Then: R is a probabilistic bisimulation on S if for any  $(s, t) \in R$ :

- 1. L(s) = L(t), and
- 2. P(s, C) = P(t, C) for all equivalence classes  $C \in S/R$

where  $P(s, C) = \sum_{s' \in C} P(s, s')$ .

#### **Probabilistic bisimulation**

[Larsen & Skou, 1989]

Let  $\mathcal{D} = (S, \mathbf{P}, \iota_{\text{init}}, AP, L)$  be a DTMC and  $R \subseteq S \times S$  an equivalence.

Then: R is a *probabilistic bisimulation* on S if for any  $(s, t) \in R$ :

- 1. L(s) = L(t), and
- 2. P(s, C) = P(t, C) for all equivalence classes  $C \in S/R$

where  $\mathbf{P}(s, C) = \sum_{s' \in C} \mathbf{P}(s, s')$ .

For states in R, the probability of moving to some equivalence class is equal.

#### **Probabilistic bisimulation**

[Larsen & Skou, 1989]

Let  $\mathcal{D} = (S, \mathbf{P}, \iota_{\text{init}}, AP, L)$  be a DTMC and  $R \subseteq S \times S$  an equivalence.

Then: R is a probabilistic bisimulation on S if for any  $(s, t) \in R$ :

- 1. L(s) = L(t), and
- 2. P(s, C) = P(t, C) for all equivalence classes  $C \in S/R$

where  $\mathbf{P}(s, C) = \sum_{s' \in C} \mathbf{P}(s, s')$ .

For states in R, the probability of moving to some equivalence class is equal.

### Probabilistic bisimilarity

Let  $\mathcal{D}$  be a DTMC and s, t states in  $\mathcal{D}$ .

#### **Probabilistic bisimulation**

[Larsen & Skou, 1989]

Let  $\mathcal{D} = (S, \mathbf{P}, \iota_{\text{init}}, AP, L)$  be a DTMC and  $R \subseteq S \times S$  an equivalence.

Then: R is a *probabilistic bisimulation* on S if for any  $(s, t) \in R$ :

- 1. L(s) = L(t), and
- 2. P(s, C) = P(t, C) for all equivalence classes  $C \in S/R$  where  $P(s, C) = \sum_{s' \in C} P(s, s')$ .

, , ======

For states in R, the probability of moving to some equivalence class is equal.

### Probabilistic bisimilarity

Let  $\mathcal{D}$  be a DTMC and s, t states in  $\mathcal{D}$ . Then: s is *probabilistic bisimilar* to t, denoted  $s \sim_p t$ , if there exists a probabilistic bisimulation R with  $(s,t) \in R$ .

#### **Probabilistic bisimulation**

Let  $\mathcal{D} = (S, \mathbf{P}, \iota_{\text{init}}, AP, L)$  be a DTMC and  $R \subseteq S \times S$  an equivalence.

Then: R is a probabilistic bisimulation on S if for any  $(s, t) \in R$ :

- 1. L(s) = L(t), and
- 2. P(s, C) = P(t, C) for all equivalence classes  $C \in S/R$ .

#### **Probabilistic bisimulation**

Let  $\mathcal{D} = (S, \mathbf{P}, \iota_{\text{init}}, AP, L)$  be a DTMC and  $R \subseteq S \times S$  an equivalence.

Then: R is a probabilistic bisimulation on S if for any  $(s, t) \in R$ :

- 1. L(s) = L(t), and
- 2. P(s, C) = P(t, C) for all equivalence classes  $C \in S/R$ .

#### Remarks

As opposed to bisimulation on states in transition systems, any probabilistic bisimulation is an equivalence.

# Example

#### **Bisimilar DTMCs**

Let  $\mathcal{D}_1$ ,  $\mathcal{D}_2$  be DTMCs over the same set of atomic propositions with initial distributions  $\iota_{\text{init}}^1$  and  $\iota_{\text{init}}^2$ , respectively.

#### **Bisimilar DTMCs**

Let  $\mathcal{D}_1$ ,  $\mathcal{D}_2$  be DTMCs over the same set of atomic propositions with initial distributions  $\iota_{\text{init}}^1$  and  $\iota_{\text{init}}^2$ , respectively.

Consider the DTMC  $\mathcal{D}=\mathcal{D}_1 \uplus \mathcal{D}_2$  that results from the disjoint union of  $\mathcal{D}_1$  and  $\mathcal{D}_2$ . Consider  $\sim_p$  on  $\mathcal{D}=\mathcal{D}_1 \uplus \mathcal{D}_2$ .

#### **Bisimilar DTMCs**

Let  $\mathcal{D}_1$ ,  $\mathcal{D}_2$  be DTMCs over the same set of atomic propositions with initial distributions  $\iota_{\text{init}}^1$  and  $\iota_{\text{init}}^2$ , respectively.

Consider the DTMC  $\mathcal{D}=\mathcal{D}_1 \uplus \mathcal{D}_2$  that results from the disjoint union of  $\mathcal{D}_1$  and  $\mathcal{D}_2$ . Consider  $\sim_p$  on  $\mathcal{D}=\mathcal{D}_1 \uplus \mathcal{D}_2$ .

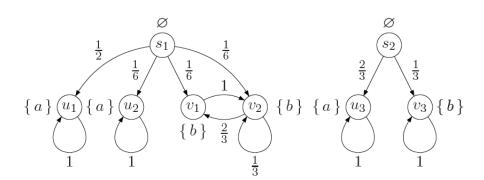
Then  $\mathcal{D}_1$  and  $\mathcal{D}_2$  are bisimilar, denoted  $\mathcal{D}_1 \sim_p \mathcal{D}_2$  whenever

$$\iota_{\text{init}}^1(C) = \iota_{\text{init}}^2(C)$$

for each bisimulation equivalence class  ${\mathcal C}$  of  ${\mathcal D}={\mathcal D}_1 \uplus {\mathcal D}_2$  under  $\sim_{\rho}.$ 

Here,  $\iota_{\text{init}}(C)$  denotes  $\sum_{s \in C} \iota_{\text{init}}(s)$ .

# **Example**



Quotient DTMC under  $\sim_p$ 

## Quotient DTMC under $\sim_p$

For  $\mathcal{D}=(S,\mathbf{P},\iota_{\mathrm{init}},\mathit{AP},\mathit{L})$  and probabilistic bisimilarity  $\sim_p\subseteq S\times S$  let

$$\mathcal{D}/\sim_p = (S', \mathbf{P}', \iota'_{\text{init}}, AP, L'), \quad \text{the quotient of } \mathcal{D} \text{ under } \sim_p$$

### Quotient DTMC under $\sim_p$

For  $\mathcal{D}=(\mathit{S},\mathsf{P},\iota_{\scriptscriptstyle\mathrm{init}},\mathit{AP},\mathit{L})$  and probabilistic bisimilarity  $\sim_{p}\subseteq \mathit{S}\times\mathit{S}$  let

$$\mathcal{D}/\sim_p = (S', \mathbf{P}', \iota'_{\text{init}}, AP, L'), \quad \text{the quotient of } \mathcal{D} \text{ under } \sim_p$$

▶ 
$$S' = S/\sim_p = \{ [s]_{\sim_p} \mid s \in S \} \text{ with } [s]_{\sim_p} = \{ s' \in S \mid s \sim_p s' \}$$

### Quotient DTMC under $\sim_p$

For  $\mathcal{D}=(S,\mathbf{P},\iota_{\mathrm{init}},\mathit{AP},\mathit{L})$  and probabilistic bisimilarity  $\sim_{p}\subseteq S\times S$  let

$$\mathcal{D}/\sim_p = (S', \mathbf{P}', \iota'_{\text{init}}, AP, L'), \quad \text{the quotient of } \mathcal{D} \text{ under } \sim_p$$

- ▶  $S' = S/\sim_p = \{ [s]_{\sim_p} \mid s \in S \} \text{ with } [s]_{\sim_p} = \{ s' \in S \mid s \sim_p s' \}$
- $\qquad \qquad \mathbf{P}'([s]_{\sim_p},[s']_{\sim_p}) \ = \ \mathbf{P}(s,[s']_{\sim_p})$

## Quotient DTMC under $\sim_p$

For  $\mathcal{D}=(S,\mathbf{P},\iota_{\mathrm{init}},\mathit{AP},\mathit{L})$  and probabilistic bisimilarity  $\sim_{p}\subseteq S\times S$  let

$$\mathcal{D}/\sim_p = (S', \mathbf{P}', \iota'_{\text{init}}, AP, L'), \quad \text{the quotient of } \mathcal{D} \text{ under } \sim_p$$

- ▶  $S' = S/\sim_p = \{ [s]_{\sim_p} \mid s \in S \} \text{ with } [s]_{\sim_p} = \{ s' \in S \mid s \sim_p s' \}$
- $\qquad \qquad \mathbf{P}'([s]_{\sim_p},[s']_{\sim_p}) \ = \ \mathbf{P}(s,[s']_{\sim_p})$
- $\iota'_{\mathrm{init}}([s]_{\sim_p}) = \sum_{s' \in [s]_{\sim_p}} \iota_{\mathrm{init}}(s)$

## Quotient DTMC under $\sim_p$

For  $\mathcal{D}=(S,\mathbf{P},\iota_{\mathrm{init}},\mathit{AP},\mathit{L})$  and probabilistic bisimilarity  $\sim_p\subseteq S\times S$  let

$$\mathcal{D}/\!\sim_p \ = \ (S', \mathbf{P}', \iota'_{\mathrm{init}}, \mathit{AP}, \mathit{L}'), \quad \text{ the } \mathit{quotient} \text{ of } \mathcal{D} \text{ under } \sim_p$$

- ▶  $S' = S/\sim_p = \{ [s]_{\sim_p} \mid s \in S \} \text{ with } [s]_{\sim_p} = \{ s' \in S \mid s \sim_p s' \}$
- ▶  $P'([s]_{\sim_p}, [s']_{\sim_p}) = P(s, [s']_{\sim_p})$
- $\iota'_{\mathrm{init}}([s]_{\sim_p}) = \sum_{s' \in [s]_{\sim_p}} \iota_{\mathrm{init}}(s)$
- $L'([s]_{\sim_p}) = L(s).$

## Quotient under $\sim_p$

#### Quotient DTMC under $\sim_p$

For  $\mathcal{D}=(S,\mathbf{P},\iota_{\mathrm{init}},\mathit{AP},\mathit{L})$  and probabilistic bisimilarity  $\sim_p\subseteq S\times S$  let

$$\mathcal{D}/\sim_p = (S', \mathbf{P}', \iota'_{\text{init}}, AP, L'), \quad \text{the quotient of } \mathcal{D} \text{ under } \sim_p$$

where

- ▶  $S' = S/\sim_p = \{ [s]_{\sim_p} \mid s \in S \} \text{ with } [s]_{\sim_p} = \{ s' \in S \mid s \sim_p s' \}$
- ▶  $P'([s]_{\sim_p}, [s']_{\sim_p}) = P(s, [s']_{\sim_p})$
- $\iota'_{\mathrm{init}}([s]_{\sim_p}) = \sum_{s' \in [s]_{\sim_p}} \iota_{\mathrm{init}}(s)$
- $L'([s]_{\sim_p}) = L(s).$

#### Remarks

The transition probability from  $[s]_{\sim_n}$  to  $[t]_{\sim_n}$  equals  $\mathbf{P}(s,[t]_{\sim_n})$ .

## Quotient under $\sim_p$

#### Quotient DTMC under $\sim_p$

For  $\mathcal{D} = (S, \mathbf{P}, \iota_{\text{init}}, AP, L)$  and probabilistic bisimilarity  $\sim_p \subseteq S \times S$  let

$$\mathcal{D}/\sim_p = (S', \mathbf{P}', \iota'_{\text{init}}, AP, L'), \quad \text{the quotient of } \mathcal{D} \text{ under } \sim_p$$

where

- ▶  $S' = S/\sim_p = \{ [s]_{\sim_p} \mid s \in S \} \text{ with } [s]_{\sim_p} = \{ s' \in S \mid s \sim_p s' \}$
- ▶  $P'([s]_{\sim_p}, [s']_{\sim_p}) = P(s, [s']_{\sim_p})$
- $\iota'_{\mathrm{init}}([s]_{\sim_p}) = \sum_{s' \in [s]_{\sim_p}} \iota_{\mathrm{init}}(s)$
- $L'([s]_{\sim_p}) = L(s).$

#### Remarks

The transition probability from  $[s]_{\sim_p}$  to  $[t]_{\sim_p}$  equals  $\mathbf{P}(s,[t]_{\sim_p})$ . This is well-defined as  $\mathbf{P}(s,C) = \mathbf{P}(s',C)$  for all  $s \sim_p s'$  and all bisimulation equivalence classes C.

# Example

▶ Roll two dice and bet

- ▶ Roll two dice and bet
- Come-out roll ("pass line" wager):
  - outcome 7 or 11: win

- Roll two dice and bet
- ► Come-out roll ("pass line" wager):
  - outcome 7 or 11: win
  - outcome 2, 3, or 12: lose ("craps")

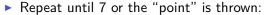
- Roll two dice and bet
- ► Come-out roll ("pass line" wager):
  - outcome 7 or 11: win
  - outcome 2, 3, or 12: lose ("craps")
  - any other outcome: roll again (outcome is "point")

- Roll two dice and bet
- ► Come-out roll ("pass line" wager):
  - outcome 7 or 11: win
  - outcome 2, 3, or 12: lose ("craps")
  - any other outcome: roll again (outcome is "point")
- Repeat until 7 or the "point" is thrown:

- Roll two dice and bet
- ► Come-out roll ("pass line" wager):
  - outcome 7 or 11: win
  - outcome 2, 3, or 12: lose ("craps")
  - any other outcome: roll again (outcome is "point")
- Repeat until 7 or the "point" is thrown:
  - outcome 7: lose ("seven-out")

- Roll two dice and bet
- ► Come-out roll ("pass line" wager):
  - outcome 7 or 11: win
  - outcome 2, 3, or 12: lose ("craps")
  - any other outcome: roll again (outcome is "point")
- Repeat until 7 or the "point" is thrown:
  - outcome 7: lose ("seven-out")
  - outcome the point: win

- Roll two dice and bet
- ► Come-out roll ("pass line" wager):
  - ▶ outcome 7 or 11: win
  - outcome 2, 3, or 12: lose ("craps")
  - any other outcome: roll again (outcome is "point")



- outcome 7: lose ("seven-out")
- outcome the point: win
- any other outcome: roll again

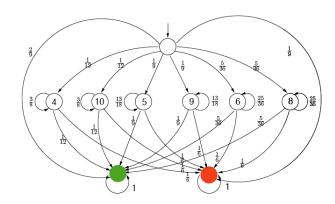


# A DTMC model of Craps

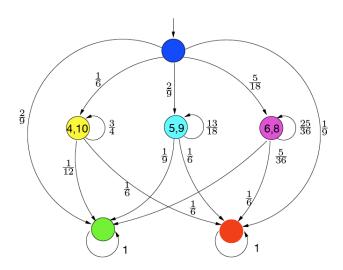
- Come-out roll:
  - ▶ 7 or 11: win
  - ▶ 2, 3, or 12:
    - lose
  - else: roll again
- ► Next roll(s):
  - ▶ 7: lose
  - point: win
  - else: roll again

# A DTMC model of Craps

- Come-out roll:
  - ▶ 7 or 11: win
  - ▶ 2, 3, or 12: lose
  - else: roll again
- ► Next roll(s):
  - ▶ 7: lose
  - point: win
  - else: roll again



# Quotient DTMC of Craps under $\sim_p$



#### **Security: Crowds protocol**

[Reiter & Rubin, 1998]

► A protocol for anonymous web browsing (variants: mCrowds, BT-Crowds)

#### Security: Crowds protocol

- ▶ A protocol for anonymous web browsing (variants: mCrowds, BT-Crowds)
- ▶ Hide user's communication by random routing within a crowd

#### Security: Crowds protocol

- ▶ A protocol for anonymous web browsing (variants: mCrowds, BT-Crowds)
- Hide user's communication by random routing within a crowd
  - sender selects a crowd member randomly using a uniform distribution

#### Security: Crowds protocol

- ▶ A protocol for anonymous web browsing (variants: mCrowds, BT-Crowds)
- ► Hide user's communication by random routing within a crowd
  - sender selects a crowd member randomly using a uniform distribution
  - selected router flips a biased coin:

#### Security: Crowds protocol

- A protocol for anonymous web browsing (variants: mCrowds, BT-Crowds)
- ► Hide user's communication by random routing within a crowd
  - sender selects a crowd member randomly using a uniform distribution
  - selected router flips a biased coin:
    - with probability 1 p: direct delivery to final destination
    - otherwise: select a next router randomly (uniformly)

#### Security: Crowds protocol

- A protocol for anonymous web browsing (variants: mCrowds, BT-Crowds)
- Hide user's communication by random routing within a crowd
  - sender selects a crowd member randomly using a uniform distribution
  - selected router flips a biased coin:
    - with probability 1 p: direct delivery to final destination
    - otherwise: select a next router randomly (uniformly)
  - once a routing path has been established, use it until crowd changes

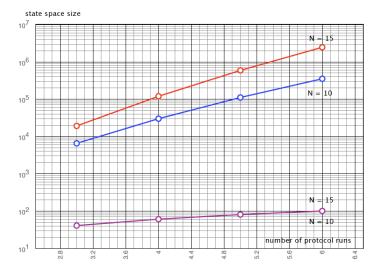
#### Security: Crowds protocol

- ➤ A protocol for anonymous web browsing (variants: mCrowds, BT-Crowds)
- Hide user's communication by random routing within a crowd
  - sender selects a crowd member randomly using a uniform distribution
  - selected router flips a biased coin:
    - with probability 1 p: direct delivery to final destination
    - otherwise: select a next router randomly (uniformly)
  - once a routing path has been established, use it until crowd changes
- Rebuild routing paths on crowd changes

#### **Security: Crowds protocol**

- ► A protocol for anonymous web browsing (variants: mCrowds, BT-Crowds)
- Hide user's communication by random routing within a crowd
  - sender selects a crowd member randomly using a uniform distribution
  - selected router flips a biased coin:
    - with probability 1 p: direct delivery to final destination
    - otherwise: select a next router randomly (uniformly)
  - once a routing path has been established, use it until crowd changes
- Rebuild routing paths on crowd changes
- Property: Crowds protocol ensures "probable innocence":
  - ▶ probability real sender is discovered  $<\frac{1}{2}$  if  $N \geqslant \frac{p}{p-\frac{1}{2}} \cdot (c+1)$
  - ▶ where *N* is crowd's size and *c* is number of corrupt crowd members

# State space reduction under $\sim_{ ho}$



# IEEE 802.11 group communication protocol

|    | original DTMC |             |           | quotient DTMC |            | red. factor |      |
|----|---------------|-------------|-----------|---------------|------------|-------------|------|
| OD | states        | transitions | ver. time | blocks        | total time | states      | time |
| 4  | 1125          | 5369        | 122       | 71            | 13         | 15.9        | 9.00 |
| 12 | 37349         | 236313      | 7180      | 1821          | 642        | 20.5        | 11.2 |
| 20 | 231525        | 1590329     | 50133     | 10627         | 5431       | 21.8        | 9.2  |
| 28 | 804837        | 5750873     | 195086    | 35961         | 24716      | 22.4        | 7.9  |
| 36 | 2076773       | 15187833    | 5103900   | 91391         | 77694      | 22.7        | 6.6  |
| 40 | 3101445       | 22871849    | 7725041   | 135752        | 127489     | 22.9        | 6.1  |

all times in milliseconds

### **Overview**

- Strong Bisimulation
- Probabilistic Bisimulation
  - Quotient Markov Chain
  - Examples
- 3 Logical Preservation
  - The Logics PCTL, PCTL\* and PCTL-
  - Preservation Theorem
- 4 Lumpability
- Summary

# **PCTL** syntax

## Probabilistic Computation Tree Logic: Syntax

PCTL consists of state- and path-formulas.

# **PCTL** syntax

#### Probabilistic Computation Tree Logic: Syntax

PCTL consists of state- and path-formulas.

▶ PCTL *state formulas* over the set *AP* obey the grammar:

$$\Phi ::= \operatorname{true} \left| \begin{array}{c|c} a & \Phi_1 \wedge \Phi_2 \end{array} \right| \neg \Phi \left| \begin{array}{c|c} \mathbb{P}_{J}(\varphi) \end{array} \right|$$

where  $a \in AP$ ,  $\varphi$  is a path formula and interval  $J \subseteq [0, 1]$ .

# **PCTL** syntax

#### Probabilistic Computation Tree Logic: Syntax

PCTL consists of state- and path-formulas.

▶ PCTL *state formulas* over the set *AP* obey the grammar:

$$\Phi ::= {\sf true} \; \Big| \; a \; \Big| \; \Phi_1 \wedge \Phi_2 \; \Big| \; \neg \Phi \; \Big| \; \mathbb{P}_{{\sf J}}(\varphi)$$

where  $a \in AP$ ,  $\varphi$  is a path formula and interval  $J \subseteq [0, 1]$ .

▶ PCTL *path formulae* are formed according to the following grammar:

$$\varphi ::= \bigcirc \Phi \mid \Phi_1 \cup \Phi_2 \mid \Phi_1 \cup \Phi_2$$

where  $\Phi$ ,  $\Phi_1$ , and  $\Phi_2$  are state formulae and  $n \in \mathbb{N}$ .

#### **Bisimulation preserves PCTL**

Let  $\mathcal{D}$  be a DTMC and s, t states in  $\mathcal{D}$ . Then:

 $s \sim_p t$  if and only if s and t are PCTL-equivalent.

#### **Bisimulation preserves PCTL**

Let  $\mathcal{D}$  be a DTMC and s, t states in  $\mathcal{D}$ . Then:

 $s \sim_p t$  if and only if s and t are PCTL-equivalent.

#### Remarks

 $s \sim_p t$  implies that

#### **Bisimulation preserves PCTL**

Let  $\mathcal{D}$  be a DTMC and s, t states in  $\mathcal{D}$ . Then:

 $s \sim_p t$  if and only if s and t are PCTL-equivalent.

#### Remarks

 $s \sim_p t$  implies that

1. transient probabilities, reachability probabilities,

#### **Bisimulation preserves PCTL**

Let  $\mathcal{D}$  be a DTMC and s, t states in  $\mathcal{D}$ . Then:

 $s \sim_p t$  if and only if s and t are PCTL-equivalent.

#### Remarks

- $s \sim_p t$  implies that
  - 1. transient probabilities, reachability probabilities,
  - 2. repeated reachability, persistence probabilities

#### Bisimulation preserves PCTL

Let  $\mathcal{D}$  be a DTMC and s, t states in  $\mathcal{D}$ . Then:

 $s \sim_p t$  if and only if s and t are PCTL-equivalent.

#### Remarks

- $s \sim_p t$  implies that
  - 1. transient probabilities, reachability probabilities,
  - 2. repeated reachability, persistence probabilities
  - 3. all qualitative PCTL formulas

#### Bisimulation preserves PCTL

Let  $\mathcal{D}$  be a DTMC and s, t states in  $\mathcal{D}$ . Then:

 $s \sim_p t$  if and only if s and t are PCTL-equivalent.

#### Remarks

 $s \sim_p t$  implies that

- 1. transient probabilities, reachability probabilities,
- 2. repeated reachability, persistence probabilities
- 3. all qualitative PCTL formulas

for s and t are equal.

#### Bisimulation preserves PCTL

Let  $\mathcal{D}$  be a DTMC and s, t states in  $\mathcal{D}$ . Then:

 $s \sim_p t$  if and only if s and t are PCTL-equivalent.

#### Remarks

- $s \sim_p t$  implies that
  - 1. transient probabilities, reachability probabilities,
  - 2. repeated reachability, persistence probabilities
  - 3. all qualitative PCTL formulas

for s and t are equal.

If for PCTL-formula  $\Phi$  we have  $s \models \Phi$  but  $t \not\models \Phi$ , then it follows  $s \not\sim_p t$ .

#### Bisimulation preserves PCTL

Let  $\mathcal{D}$  be a DTMC and s, t states in  $\mathcal{D}$ . Then:

 $s \sim_p t$  if and only if s and t are PCTL-equivalent.

#### Remarks

- $s \sim_p t$  implies that
  - 1. transient probabilities, reachability probabilities,
  - 2. repeated reachability, persistence probabilities
  - 3. all qualitative PCTL formulas

for s and t are equal.

If for PCTL-formula  $\Phi$  we have  $s \models \Phi$  but  $t \not\models \Phi$ , then it follows  $s \not\sim_p t$ . A single PCTL-formula suffices!

# **PCTL**\* syntax

## Probabilistic Computation Tree Logic: Syntax

PCTL\* consists of state- and path-formulas.

# PCTL\* syntax

#### **Probabilistic Computation Tree Logic: Syntax**

PCTL\* consists of state- and path-formulas.

▶ PCTL\* *state formulas* over the set *AP* obey the grammar:

$$\Phi ::= \text{true } \mid a \mid \Phi_1 \wedge \Phi_2 \mid \neg \Phi \mid \mathbb{P}_J(\varphi)$$

where  $a \in AP$ ,  $\varphi$  is a path formula and  $J \subseteq [0, 1]$ ,  $J \neq \emptyset$  is a non-empty interval.

# PCTL\* syntax

#### Probabilistic Computation Tree Logic: Syntax

PCTL\* consists of state- and path-formulas.

▶ PCTL\* *state formulas* over the set *AP* obey the grammar:

$$\Phi ::= \text{true } \mid a \mid \Phi_1 \wedge \Phi_2 \mid \neg \Phi \mid \mathbb{P}_J(\varphi)$$

where  $a \in AP$ ,  $\varphi$  is a path formula and  $J \subseteq [0, 1]$ ,  $J \neq \emptyset$  is a non-empty interval.

PCTL\* path formulae are formed according to the following grammar:

$$\varphi ::= \Phi \quad | \neg \varphi \quad | \varphi_1 \wedge \varphi_2 \quad | \bigcirc \varphi \quad | \varphi_1 \cup \varphi_2$$

where  $\Phi$  is a state formula and  $\varphi$ ,  $\varphi_1$ , and  $\varphi_2$  are path formulae.

#### **Notation**

 $\mathcal{D}$ ,  $s \models \Phi$  if and only if state-formula  $\Phi$  holds in state s of (possibly infinite) DTMC  $\mathcal{D}$ . As  $\mathcal{D}$  is known from the context we simply write  $s \models \Phi$ .

#### **Notation**

 $\mathcal{D}$ ,  $s \models \Phi$  if and only if state-formula  $\Phi$  holds in state s of (possibly infinite) DTMC  $\mathcal{D}$ . As  $\mathcal{D}$  is known from the context we simply write  $s \models \Phi$ .

#### Satisfaction relation for state formulas

The satisfaction relation  $\models$  is defined for PCTL\* state formulas by:

$$s \models a$$
 iff  $a \in L(s)$   
 $s \models \neg \Phi$  iff not  $(s \models \Phi)$   
 $s \models \Phi \land \Psi$  iff  $(s \models \Phi)$  and  $(s \models \Psi)$ 

#### **Notation**

 $\mathcal{D}$ ,  $s \models \Phi$  if and only if state-formula  $\Phi$  holds in state s of (possibly infinite) DTMC  $\mathcal{D}$ . As  $\mathcal{D}$  is known from the context we simply write  $s \models \Phi$ .

#### Satisfaction relation for state formulas

The satisfaction relation  $\models$  is defined for PCTL\* state formulas by:

$$s \models a$$
 iff  $a \in L(s)$   
 $s \models \neg \Phi$  iff not  $(s \models \Phi)$   
 $s \models \Phi \land \Psi$  iff  $(s \models \Phi)$  and  $(s \models \Psi)$   
 $s \models \mathbb{P}_{J}(\varphi)$  iff  $Pr(s \models \varphi) \in J$ 

where 
$$Pr(s \models \varphi) = Pr_s \{ \pi \in Paths(s) \mid \pi \models \varphi \}$$

#### Satisfaction relation for path formulas

Let  $\pi = s_0 s_1 s_2 \dots$  be an infinite path in (possibly infinite) DTMC  $\mathcal{D}$ .

#### Satisfaction relation for path formulas

Let  $\pi = s_0 s_1 s_2 \dots$  be an infinite path in (possibly infinite) DTMC  $\mathcal{D}$ . Let  $\pi^i = s_i s_{i+1} s_{i+2} \dots$  denotes the *i*-th suffix of  $\pi$ .

The satisfaction relation  $\models$  is defined for state formulas by:

$$\pi \models \Phi$$
 iff  $\pi[0] \models \Phi$ 

#### Satisfaction relation for path formulas

Let  $\pi = s_0 s_1 s_2 ...$  be an infinite path in (possibly infinite) DTMC  $\mathcal{D}$ . Let  $\pi^i = s_i s_{i+1} s_{i+2} ...$  denotes the *i*-th suffix of  $\pi$ .

The satisfaction relation  $\models$  is defined for state formulas by:

$$\pi \models \Phi \qquad \text{iff} \quad \pi[0] \models \Phi$$

$$\pi \models \neg \varphi \qquad \text{iff} \quad \text{not } \pi \models \varphi$$

$$\pi \models \varphi_1 \land \varphi_2 \quad \text{iff} \quad \pi \models \varphi_1 \text{ and } \pi \models \varphi_2$$

$$\pi \models \bigcirc \varphi \qquad \text{iff} \quad \pi^1 \models \varphi$$

#### Satisfaction relation for path formulas

Let  $\pi = s_0 s_1 s_2 ...$  be an infinite path in (possibly infinite) DTMC  $\mathcal{D}$ . Let  $\pi^i = s_i s_{i+1} s_{i+2} ...$  denotes the *i*-th suffix of  $\pi$ .

The satisfaction relation  $\models$  is defined for state formulas by:

$$\begin{split} \pi &\models \Phi & \text{iff} \quad \pi[0] \models \Phi \\ \pi &\models \neg \varphi & \text{iff} \quad \text{not } \pi \models \varphi \\ \pi &\models \varphi_1 \land \varphi_2 & \text{iff} \quad \pi \models \varphi_1 \text{ and } \pi \models \varphi_2 \\ \pi &\models \bigcirc \varphi & \text{iff} \quad \pi^1 \models \varphi \\ \pi &\models \varphi_1 \cup \varphi_2 & \text{iff} \quad \exists k \geqslant 0. (\pi^k \models \varphi_2 \land \forall 0 \leqslant i < k. \pi^i \models \varphi_1) \end{split}$$

# Measurability

# Measurability

#### PCTL\* measurability

For any PCTL\* path formula  $\varphi$  and state s of DTMC  $\mathcal{D}$ , the set  $\{\pi \in Paths(s) \mid \pi \models \varphi\}$  is measurable.

#### **Proof:**

Left as an exercise, using the result for PCTL measurability and the measurability of  $\omega$ -regular properties.

#### **Bounded until**

Bounded until can be defined using the other operators:

#### **Bounded until**

Bounded until can be defined using the other operators:

$$\varphi_1 \operatorname{U}^{\leqslant n} \varphi_2 \ = \ \bigvee_{i \in I} \ \psi_i \quad \text{where } \psi_0 = \varphi_2 \text{ and } \psi_{i+1} = \varphi_1 \wedge \bigcirc \psi_i \text{ for } i \geqslant 0.$$

#### **Bounded until**

Bounded until can be defined using the other operators:

$$\varphi_1 \operatorname{U}^{\leqslant n} \varphi_2 = \bigvee_{0 \leq i \leq r} \psi_i \quad \text{where } \psi_0 = \varphi_2 \text{ and } \psi_{i+1} = \varphi_1 \wedge \bigcirc \psi_i \text{ for } i \geqslant 0.$$

#### Examples in PCTL\* but not in PCTL

$$\mathbb{P}_{>\frac{1}{4}}(\bigcirc a \cup \bigcirc b)$$

#### **Bounded until**

Bounded until can be defined using the other operators:

$$\varphi_1 \operatorname{U}^{\leqslant n} \varphi_2 \ = \ \bigvee_{0 < i < n} \psi_i \quad \text{where } \psi_0 = \varphi_2 \text{ and } \psi_{i+1} = \varphi_1 \wedge \bigcirc \psi_i \text{ for } i \geqslant 0.$$

#### Examples in PCTL\* but not in PCTL

$$\mathbb{P}_{>\frac{1}{4}}(\bigcirc\, a\, \mathsf{U}\, \bigcirc\, b) \text{ and } \mathbb{P}_{=1}(\mathbb{P}_{>\frac{1}{2}}(\Box \lozenge a\, \vee\, \lozenge \Box b)).$$

## Bisimulation preserves PCTL\*

Let  $\mathcal{D}$  be a DTMC and s, t states in  $\mathcal{D}$ . Then:

 $s \sim_{p} t$  if and only if s and t are PCTL\*-equivalent.

#### Bisimulation preserves PCTL\*

Let  $\mathcal{D}$  be a DTMC and s, t states in  $\mathcal{D}$ . Then:

 $s \sim_p t$  if and only if s and t are PCTL\*-equivalent.

#### Remarks

#### Bisimulation preserves PCTL\*

Let  $\mathcal{D}$  be a DTMC and s, t states in  $\mathcal{D}$ . Then:

 $s \sim_{p} t$  if and only if s and t are PCTL\*-equivalent.

#### Remarks

1. Bisimulation thus preserves not only all PCTL but also all PCTL\* formulas.

#### Bisimulation preserves PCTL\*

Let  $\mathcal{D}$  be a DTMC and s, t states in  $\mathcal{D}$ . Then:

 $s \sim_p t$  if and only if s and t are PCTL\*-equivalent.

#### Remarks

- 1. Bisimulation thus preserves not only all PCTL but also all PCTL\* formulas.
- 2. By the last two results it follows that PCTL- and PCTL\*-equivalence coincide.

#### Bisimulation preserves PCTL\*

Let  $\mathcal{D}$  be a DTMC and s, t states in  $\mathcal{D}$ . Then:

 $s \sim_p t$  if and only if s and t are PCTL\*-equivalent.

#### Remarks

- 1. Bisimulation thus preserves not only all PCTL but also all PCTL $^st$  formulas.
- 2. By the last two results it follows that PCTL- and PCTL\*-equivalence coincide. Thus any two states that satisfy the same PCTL formulas, satisfy the same PCTL\* formulas.

# $\boldsymbol{\mathsf{PCTL}^-}\ \boldsymbol{\mathsf{syntax}}$

## Probabilistic Computation Tree Logic: Syntax

PCTL<sup>-</sup> only consists of state-formulas. These formulas over the set *AP* obey the grammar:

$$\Phi ::= a \mid \Phi_1 \wedge \Phi_2 \mid \Phi_1 \vee \Phi_2 \mid \mathbb{P}_{\leq p}(\bigcirc \Phi)$$

where  $a \in AP$  and p is a probability in [0, 1].

### Probabilistic Computation Tree Logic: Syntax

PCTL<sup>-</sup> only consists of state-formulas. These formulas over the set *AP* obey the grammar:

$$\Phi ::= a \mid \Phi_1 \wedge \Phi_2 \mid \Phi_1 \vee \Phi_2 \mid \mathbb{P}_{\leq p}(\bigcirc \Phi)$$

where  $a \in AP$  and p is a probability in [0, 1].

#### Remarks

This is a truly simple logic.

## Probabilistic Computation Tree Logic: Syntax

PCTL<sup>-</sup> only consists of state-formulas. These formulas over the set *AP* obey the grammar:

$$\Phi ::= a \mid \Phi_1 \wedge \Phi_2 \mid \Phi_1 \vee \Phi_2 \mid \mathbb{P}_{\leq p}(\bigcirc \Phi)$$

where  $a \in AP$  and p is a probability in [0, 1].

#### Remarks

This is a truly simple logic. It does not contain the until-operator.

### Probabilistic Computation Tree Logic: Syntax

PCTL<sup>-</sup> only consists of state-formulas. These formulas over the set *AP* obey the grammar:

$$\Phi ::= a \mid \Phi_1 \wedge \Phi_2 \mid \Phi_1 \vee \Phi_2 \mid \mathbb{P}_{\leq p}(\bigcirc \Phi)$$

where  $a \in AP$  and p is a probability in [0, 1].

#### Remarks

This is a truly simple logic. It does not contain the until-operator. Negation is not present and cannot be expressed.

### Probabilistic Computation Tree Logic: Syntax

PCTL<sup>-</sup> only consists of state-formulas. These formulas over the set *AP* obey the grammar:

$$\Phi ::= a \mid \Phi_1 \wedge \Phi_2 \mid \Phi_1 \vee \Phi_2 \mid \mathbb{P}_{\leq p}(\bigcirc \Phi)$$

where  $a \in AP$  and p is a probability in [0, 1].

#### Remarks

This is a truly simple logic. It does not contain the until-operator. Negation is not present and cannot be expressed. Only upper bounds on probabilities.

### Probabilistic Computation Tree Logic: Syntax

PCTL<sup>-</sup> only consists of state-formulas. These formulas over the set *AP* obey the grammar:

$$\Phi ::= a \mid \Phi_1 \wedge \Phi_2 \mid \Phi_1 \vee \Phi_2 \mid \mathbb{P}_{\leq p}(\bigcirc \Phi)$$

where  $a \in AP$  and p is a probability in [0, 1].

#### Remarks

This is a truly simple logic. It does not contain the until-operator. Negation is not present and cannot be expressed. Only upper bounds on probabilities.

The next theorem shows that PCTL-, PCTL\*- and PCTL<sup>-</sup>-equivalence coincide.

#### Preservation of PCTL

## PCTL/PCTL\* and Bisimulation Equivalence

Let  $\mathcal{D}$  be a DTMC and  $s_1$ ,  $s_2$  states in  $\mathcal{D}$ . Then, the following statements are equivalent:

#### **Preservation of PCTL**

## PCTL/PCTL\* and Bisimulation Equivalence

Let  $\mathcal{D}$  be a DTMC and  $s_1$ ,  $s_2$  states in  $\mathcal{D}$ . Then, the following statements are equivalent:

- (a)  $s_1 \sim_p s_2$ .
- (b)  $s_1$  and  $s_2$  are PCTL\*-equivalent, i.e., fulfill the same PCTL\* formulas

### **Preservation of PCTL**

## PCTL/PCTL\* and Bisimulation Equivalence

Let  $\mathcal{D}$  be a DTMC and  $s_1$ ,  $s_2$  states in  $\mathcal{D}$ . Then, the following statements are equivalent:

- (a)  $s_1 \sim_p s_2$ .
- (b)  $s_1$  and  $s_2$  are PCTL\*-equivalent, i.e., fulfill the same PCTL\* formulas
- (c)  $s_1$  and  $s_2$  are PCTL-equivalent, i.e., fulfill the same PCTL formulas

## PCTL/PCTL\* and Bisimulation Equivalence

Let  $\mathcal{D}$  be a DTMC and  $s_1$ ,  $s_2$  states in  $\mathcal{D}$ . Then, the following statements are equivalent:

- (a)  $s_1 \sim_p s_2$ .
- (b)  $s_1$  and  $s_2$  are PCTL\*-equivalent, i.e., fulfill the same PCTL\* formulas
- (c)  $s_1$  and  $s_2$  are PCTL-equivalent, i.e., fulfill the same PCTL formulas
- (d)  $s_1$  and  $s_2$  are PCTL<sup>-</sup>-equivalent, i.e., fulfill the same PCTL<sup>-</sup> formulas

### PCTL/PCTL\* and Bisimulation Equivalence

Let  $\mathcal{D}$  be a DTMC and  $s_1$ ,  $s_2$  states in  $\mathcal{D}$ . Then, the following statements are equivalent:

- (a)  $s_1 \sim_p s_2$ .
- (b)  $s_1$  and  $s_2$  are PCTL\*-equivalent, i.e., fulfill the same PCTL\* formulas
- (c)  $s_1$  and  $s_2$  are PCTL-equivalent, i.e., fulfill the same PCTL formulas
- (d)  $s_1$  and  $s_2$  are PCTL<sup>-</sup>-equivalent, i.e., fulfill the same PCTL<sup>-</sup> formulas

## PCTL/PCTL\* and Bisimulation Equivalence

Let  $\mathcal{D}$  be a DTMC and  $s_1$ ,  $s_2$  states in  $\mathcal{D}$ . Then, the following statements are equivalent:

- (a)  $s_1 \sim_p s_2$ .
- (b)  $s_1$  and  $s_2$  are PCTL\*-equivalent, i.e., fulfill the same PCTL\* formulas
- (c)  $s_1$  and  $s_2$  are PCTL-equivalent, i.e., fulfill the same PCTL formulas
- (d)  $s_1$  and  $s_2$  are PCTL<sup>-</sup>-equivalent, i.e., fulfill the same PCTL<sup>-</sup> formulas

#### **Proof:**

1. (a)  $\Longrightarrow$  (b): by structural induction on PCTL\* formulas.

## PCTL/PCTL\* and Bisimulation Equivalence

Let  $\mathcal{D}$  be a DTMC and  $s_1$ ,  $s_2$  states in  $\mathcal{D}$ . Then, the following statements are equivalent:

- (a)  $s_1 \sim_p s_2$ .
- (b)  $s_1$  and  $s_2$  are PCTL\*-equivalent, i.e., fulfill the same PCTL\* formulas
- (c)  $s_1$  and  $s_2$  are PCTL-equivalent, i.e., fulfill the same PCTL formulas
- (d)  $s_1$  and  $s_2$  are PCTL<sup>-</sup>-equivalent, i.e., fulfill the same PCTL<sup>-</sup> formulas

- 1. (a)  $\Longrightarrow$  (b): by structural induction on PCTL\* formulas.
- 2. (b)  $\Longrightarrow$  (c): trivial as PCTL is a sublogic of PCTL\*.

## PCTL/PCTL\* and Bisimulation Equivalence

Let  $\mathcal{D}$  be a DTMC and  $s_1$ ,  $s_2$  states in  $\mathcal{D}$ . Then, the following statements are equivalent:

- (a)  $s_1 \sim_p s_2$ .
- (b)  $s_1$  and  $s_2$  are PCTL\*-equivalent, i.e., fulfill the same PCTL\* formulas
- (c)  $s_1$  and  $s_2$  are PCTL-equivalent, i.e., fulfill the same PCTL formulas
- (d)  $s_1$  and  $s_2$  are PCTL<sup>-</sup>-equivalent, i.e., fulfill the same PCTL<sup>-</sup> formulas

- 1. (a)  $\Longrightarrow$  (b): by structural induction on PCTL\* formulas.
- 2. (b)  $\Longrightarrow$  (c): trivial as PCTL is a sublogic of PCTL\*.
- 3. (c)  $\Longrightarrow$  (d): trivial as PCTL- is a sublogic of PCTL.

## PCTL/PCTL\* and Bisimulation Equivalence

Let  $\mathcal{D}$  be a DTMC and  $s_1$ ,  $s_2$  states in  $\mathcal{D}$ . Then, the following statements are equivalent:

- (a)  $s_1 \sim_p s_2$ .
- (b)  $s_1$  and  $s_2$  are PCTL\*-equivalent, i.e., fulfill the same PCTL\* formulas
- (c)  $s_1$  and  $s_2$  are PCTL-equivalent, i.e., fulfill the same PCTL formulas
- (d)  $s_1$  and  $s_2$  are PCTL<sup>-</sup>-equivalent, i.e., fulfill the same PCTL<sup>-</sup> formulas

- 1. (a)  $\Longrightarrow$  (b): by structural induction on PCTL\* formulas.
- 2. (b)  $\Longrightarrow$  (c): trivial as PCTL is a sublogic of PCTL\*.
- 3. (c)  $\Longrightarrow$  (d): trivial as PCTL- is a sublogic of PCTL.
- 4. (d)  $\Longrightarrow$  (a): involved. First finite DTMCs, then for arbitrary DTMCs.

#### **Overview**

- Strong Bisimulation
- Probabilistic Bisimulation
  - Quotient Markov Chain
  - Examples
- 3 Logical Preservation
  - The Logics PCTL, PCTL\* and PCTL<sup>-</sup>
  - Preservation Theorem
- 4 Lumpability
- Summary

# 1960: Laurie Snell and John Kemeny





## Lumpability

Ignore the initial distribution and state-labelling of a Markov chain.

#### Lumpability

[Kemeny & Snell, 1960]

Let  $\mathcal{D}$  be a (possibly countably infinite) DTMC with state space S and  $\mathcal{B} = \{B_1, \ldots, B_n\}$  be a partitioning of S (where  $B_j$  may be countably infinite).  $\mathcal{D}$  is lumpable with respect to  $\mathcal{B}$  iff for any  $B_i$  and  $B_j$  in  $\mathcal{B}$  and any  $s, s' \in B_j$ :

$$\sum_{u \in B_j} \mathbf{P}(s, u) = \sum_{u \in B_j} \mathbf{P}(s', u) \text{ that is } \mathbf{P}(s, B_j) = \mathbf{P}(s', B_j).$$

## Lumpability

Ignore the initial distribution and state-labelling of a Markov chain.

#### Lumpability

[Kemeny & Snell, 1960]

Let  $\mathcal{D}$  be a (possibly countably infinite) DTMC with state space S and  $\mathcal{B} = \{B_1, \ldots, B_n\}$  be a partitioning of S (where  $B_j$  may be countably infinite).  $\mathcal{D}$  is lumpable with respect to  $\mathcal{B}$  iff for any  $B_i$  and  $B_j$  in  $\mathcal{B}$  and any  $s, s' \in B_i$ :

$$\sum_{u \in B_j} \mathbf{P}(s, u) = \sum_{u \in B_j} \mathbf{P}(s', u) \text{ that is } \mathbf{P}(s, B_j) = \mathbf{P}(s', B_j).$$

If  $\mathcal D$  is lumpable with respect to  $\mathcal B$ ,  $\mathcal B$  is called a lumpable partition

## Lumpability

Ignore the initial distribution and state-labelling of a Markov chain.

#### Lumpability

[Kemeny & Snell, 1960]

Let  $\mathcal{D}$  be a (possibly countably infinite) DTMC with state space S and  $\mathcal{B} = \{B_1, \ldots, B_n\}$  be a partitioning of S (where  $B_j$  may be countably infinite).  $\mathcal{D}$  is lumpable with respect to  $\mathcal{B}$  iff for any  $B_i$  and  $B_j$  in  $\mathcal{B}$  and any  $s, s' \in B_i$ :

$$\sum_{u \in B_i} \mathbf{P}(s, u) = \sum_{u \in B_i} \mathbf{P}(s', u) \text{ that is } \mathbf{P}(s, B_j) = \mathbf{P}(s', B_j).$$

If  $\mathcal{D}$  is lumpable with respect to  $\mathcal{B}$ ,  $\mathcal{B}$  is called a lumpable partition

It is easy to show that  $S/\sim_p$  is a lumpable partition of the state space S. In fact, it is the coarsest possible lumpable partition.

#### Lumping equivalence

[Kemeny & Snell, 1960]

The DTMCs  $\mathcal{D}$  and  $\mathcal{D}'$  are lumping equivalent if there are lumpable partitions  $\mathcal{B}$  of  $\mathcal{D}$  and  $\mathcal{B}'$  of  $\mathcal{D}'$  such that there is an injective function  $f: \mathbb{N} \to \mathbb{N}$  such that:

$$\mathbf{P}(B_i, B_j) = \mathbf{P}'(B'_{f(i)}, B'_{f(j)}).$$

#### **Lumping equivalence**

[Kemeny & Snell, 1960]

The DTMCs  $\mathcal{D}$  and  $\mathcal{D}'$  are lumping equivalent if there are lumpable partitions  $\mathcal{B}$  of  $\mathcal{D}$  and  $\mathcal{B}'$  of  $\mathcal{D}'$  such that there is an injective function  $f: \mathbb{N} \to \mathbb{N}$  such that:

$$P(B_i, B_j) = P'(B'_{f(i)}, B'_{f(j)}).$$

#### **Corollary**

 $D \sim_p D'$  if and only if  $\mathcal{D}$  and  $\mathcal{D}'$  are lumping equivalent (with respect to the coarsest possible lumpable partition on their union).

#### Remark

For finite Markov chains, the correspondence between lumping equivalence and  $\sim_p$  allows to obtain the coarsest possible lumpable partition in an algorithmic, i.e., automated manner.

#### Remark

For finite Markov chains, the correspondence between lumping equivalence and  $\sim_p$  allows to obtain the coarsest possible lumpable partition in an algorithmic, i.e., automated manner.

This can be considered as a breakthrough in Markov chain theory.

#### **Overview**

- Strong Bisimulation
- Probabilistic Bisimulation
  - Quotient Markov Chain
  - Examples
- Logical Preservation
  - The Logics PCTL, PCTL\* and PCTL<sup>-</sup>
  - Preservation Theorem
- 4 Lumpability
- Summary

▶ Bisimilar states have equal transition probabilities for every equivalence class.

- ▶ Bisimilar states have equal transition probabilities for every equivalence class.
- $ightharpoonup \sim_p$  is the coarsest probabilistic bisimulation.

- Bisimilar states have equal transition probabilities for every equivalence class.
- $ightharpoonup \sim_p$  is the coarsest probabilistic bisimulation.
- $\triangleright$  All states in a quotient DTMC are equivalence classes under  $\sim_p$ .

- Bisimilar states have equal transition probabilities for every equivalence class.
- $ightharpoonup \sim_p$  is the coarsest probabilistic bisimulation.
- $\triangleright$  All states in a quotient DTMC are equivalence classes under  $\sim_p$ .
- $ightharpoonup \sim_p$  and PCTL-equivalence coincide.

- Bisimilar states have equal transition probabilities for every equivalence class.
- $ightharpoonup \sim_p$  is the coarsest probabilistic bisimulation.
- $\triangleright$  All states in a quotient DTMC are equivalence classes under  $\sim_p$ .
- $ightharpoonup \sim_p$  and PCTL-equivalence coincide.
- ▶ PCTL, PCTL\*, and PCTL<sup>-</sup>-equivalence coincide.

- Bisimilar states have equal transition probabilities for every equivalence class.
- $ightharpoonup \sim_p$  is the coarsest probabilistic bisimulation.
- ▶ All states in a quotient DTMC are equivalence classes under  $\sim_p$ .
- $ightharpoonup \sim_p$  and PCTL-equivalence coincide.
- PCTL, PCTL\*, and PCTL--equivalence coincide.
- ▶ To show  $s \nsim_p t$ , show  $s \models \Phi$  and  $t \not\models \Phi$  for  $\Phi \in \mathsf{PCTL}^-$ .

- Bisimilar states have equal transition probabilities for every equivalence class.
- $ightharpoonup \sim_p$  is the coarsest probabilistic bisimulation.
- ▶ All states in a quotient DTMC are equivalence classes under  $\sim_p$ .
- $ightharpoonup \sim_p$  and PCTL-equivalence coincide.
- PCTL, PCTL\*, and PCTL\*-equivalence coincide.
- ▶ To show  $s \nsim_p t$ , show  $s \models \Phi$  and  $t \not\models \Phi$  for  $\Phi \in \mathsf{PCTL}^-$ .
- Bisimulation may yield up to exponential savings in state space.

- Bisimilar states have equal transition probabilities for every equivalence class.
- $\triangleright \sim_p$  is the coarsest probabilistic bisimulation.
- $\triangleright$  All states in a quotient DTMC are equivalence classes under  $\sim_p$ .
- $ightharpoonup \sim_p$  and PCTL-equivalence coincide.
- PCTL, PCTL\*, and PCTL--equivalence coincide.
- ▶ To show  $s \not\sim_p t$ , show  $s \models \Phi$  and  $t \not\models \Phi$  for  $\Phi \in \mathsf{PCTL}^-$ .
- Bisimulation may yield up to exponential savings in state space.

### Take-home message

Probabilistic bisimulation coincides with a notion from the sixties, named (ordinary) lumpability.