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Strong Bisimulation

Overview

@ Strong Bisimulation
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Labeled transition system

Transition system

A (labeled) transition system TS is a structure (S, Act, —, lp, AP, L)
where

» S is a (possibly infinitely countable) set of states.
» Act is a (possibly infinitely countable) set of actions.

» — C S X Act x S is a transition relation.

v

Iy C S the set of initial states.

v

AP is a set of atomic propositions.
» L:S — 24P s the labeling function.
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Labeled transition system

Transition system

A (labeled) transition system TS is a structure (S, Act, —, lp, AP, L)
where

» S is a (possibly infinitely countable) set of states.

v

Act is a (possibly infinitely countable) set of actions.

v

— C S X Act x S is a transition relation.

v

Iy C S the set of initial states.

v

AP is a set of atomic propositions.

v

L:S — 2P s the labeling function.

We write s <% s’ instead of (s, a,s’) € —.
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Strong bisimulation
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Strong bisimulation

Strong bisimulation relation [Milner, 1980 & Park, 1981]

Let TS = (S, Act,—, Iy, AP, L) be a transition system and R C S x S.
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Strong Bisimulation

Strong bisimulation

Strong bisimulation relation

[Milner, 1980 & Park, 1981]
Let TS = (S, Act,—, Iy, AP, L) be a transition system and R C S x S.
Then R is a strong bisimulation on TS whenever for all (s, t) € R:
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Strong Bisimulation

Strong bisimulation

Strong bisimulation relation

[Milner, 1980 & Park, 1981]
Let TS = (S, Act,—, Iy, AP, L) be a transition system and R C S x S.
Then R is a strong bisimulation on TS whenever for all (s, t) € R:

1. L(s) = L(¢)
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Strong Bisimulation

Strong bisimulation

Strong bisimulation relation

[Milner, 1980 & Park, 1981]
Let TS = (S, Act,—, Iy, AP, L) be a transition system and R C S x S.
Then R is a strong bisimulation on TS whenever for all (s, t) € R:

1. L(s) = L(¢)

2. if s 255 then there exists t’ € S such that t 25 t' and (s/,t') € R
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Strong Bisimulation

Strong bisimulation

Strong bisimulation relation

[Milner, 1980 & Park, 1981]
Let TS = (S, Act,—, Iy, AP, L) be a transition system and R C S x S.
Then R is a strong bisimulation on TS whenever for all (s, t) € R:

1. L(s) = L(¢)

2. if s 255 then there exists t’ € S such that t 25 t' and (s/,t') € R
3. if t =%t/ then there exists s’ € S such that s 2+’ and (s/,t') € R
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Strong Bisimulation

Strong bisimulation

Strong bisimulation relation

[Milner, 1980 & Park, 1981]
Let TS = (S, Act,—, Iy, AP, L) be a transition system and R C S x S.
Then R is a strong bisimulation on TS whenever for all (s, t) € R:

1. L(s) = L(¢)
2. if s 255 then there exists t' € S such that t %+’ and (s/,t') € R
3. if t 2>t/ then there exists s’ € S such that s %+ s’ and (s, t') € R

Strong bisimilarity

Let TS= (S, Act,—, Iy, AP, L) be a transition system and s, t € S.
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Strong bisimulation

Strong bisimulation relation

[Milner, 1980 & Park, 1981]
Let TS = (S, Act,—, Iy, AP, L) be a transition system and R C S x S.
Then R is a strong bisimulation on TS whenever for all (s, t) € R:

1. L(s) = L(¢)

2. if s 255 then there exists t’ € S such that t 25 t' and (s/,t') € R

3. if t 2>t/ then there exists s’ € S such that s %+ s’ and (s, t') € R

Strong bisimilarity

Let TS= (S, Act,—, Iy, AP, L) be a transition system and s, t € S.

Then: s is strongly bisimilar to t, notation s ~ t, if there exists a strong
bisimulation R such that (s, t) € R.
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Strong Bisimulation

Strong bisimulation

Strong bisimulation relation

[Milner, 1980 & Park, 1981]

Let TS = (S, Act, —, Iy, AP, L) be a transition system and R C S x S.
Then R is a strong bisimulation on TS whenever for all (s, t) € R:

1. L(s) = L(t)
2. if s 255 then there exists t' € S such that t %+’ and (s/,t') € R
3. if t 2>t/ then there exists s’ € S such that s %+ s’ and (s, t') € R

Strong bisimilarity

Let TS = (S, Act, —, Iy, AP, L) be a transition system and s, t € S.

Then: s is strongly bisimilar to t, notation s ~ t, if there exists a strong
bisimulation R such that (s, t) € R.

Not every bisimulation relation is transitive.
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Strong Bisimulation

Strong bisimulation

Strong bisimulation relation

[Milner, 1980 & Park, 1981]

Let TS = (S, Act, —, Iy, AP, L) be a transition system and R C S x S.
Then R is a strong bisimulation on TS whenever for all (s, t) € R:

1. L(s) = L(t)
2. if s 255 then there exists t' € S such that t %+’ and (s/,t') € R
3. if t 2>t/ then there exists s’ € S such that s %+ s’ and (s, t') € R

Strong bisimilarity

Let TS = (S, Act, —, Iy, AP, L) be a transition system and s, t € S.

Then: s is strongly bisimilar to t, notation s ~ t, if there exists a strong
bisimulation R such that (s, t) € R.

Remarks
Not every bisimulation relation is transitive. But: ~ is an equivalence.
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Strong bisimulation

Pictorial representation

s % 4 s % 4
R can be completed to R R
t t =
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Strong bisimulation

Pictorial representation

s & 4 s & 4

R can be completed to R R

t t %t
and

s s % 4

R can be completed to R R

t % t 2
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Strongly bisimilar transition systems
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Strongly bisimilar transition systems

Bisimilar transition systems

Let TSy, TS, be transition systems over the same set of atomic
propositions with initial states lp 1 and lp 2, respectively.
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Strong Bisimulation

Strongly bisimilar transition systems

Bisimilar transition systems

Let TSy, TS, be transition systems over the same set of atomic
propositions with initial states lp 1 and lp 2, respectively.

Consider the transition system TS = TS5; W TS, that results from the
disjoint union of TS; and TS,.
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Strong Bisimulation

Strongly bisimilar transition systems

Bisimilar transition systems

Let TSy, TS, be transition systems over the same set of atomic
propositions with initial states lp 1 and lp 2, respectively.

Consider the transition system TS = TS5; W TS, that results from the
disjoint union of TS; and TS,.

Then: TS; and TS, are called strongly bisimilar if there exists a strong
bisimulation R on S; W Sy such that:

1. Vselpi.3t€lps.(s, t) € R, and
2.Vt e /02. ds € 10,1. (S, t) € R.
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Strong Bisimulation

Example (1)

Are these transition systems strongly bisimilar? (No propositions.)
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Strong Bisimulation

Example (2)

Yes, they are!

Joost-Pieter Katoen i fication of Probabilistic Systems



Strong Bisimulation

Correct or wrong?

51
wrong

st — u, but s £/— blue  (thus 51 # %)

51
~J
u
wi 4 correct
w1

bisimulation:

{(Wla WQ): (W{, WZ): (51: 52)1 (s]-?sé)? (U, X), (U’,y)}
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Quotient LTS under ~

Quotient transition system
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Quotient LTS under ~

For TS = (S, Act, —, Iy, AP, L) and strong bisimilarity ~ C S x S let
TS/~ = (S, Act,—', I}, AP, L"),

the quotient of TS under ~
where
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Quotient LTS under ~

For TS = (S, Act, —, Iy, AP, L) and strong bisimilarity ~ C S x S let
TS/~ = (S, Act,—', I}, AP, L"),

the quotient of TS under ~
where

> S =S/~ = {[s].|s€S}with[s]. = {s'€S|s~s}
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Quotient LTS under ~

For TS = (S, Act, —, Iy, AP, L) and strong bisimilarity ~ C S x S let

TS/~ = (S, Act,—', I}, AP, L"),  the quotient of TS under ~

where
» S =5/~= {[s]~|s€S}with[s]. = {s’eS|s~5}

. _ . s ¢
» —' is defined by: m
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Quotient LTS under ~

For TS = (S, Act, —, Iy, AP, L) and strong bisimilarity ~ C S x S let

TS/~ = (S, Act,—', I}, AP, L"),  the quotient of TS under ~

where
» S =5/~= {[s]~|s€S}with[s]. = {s’eS|s~5}
a /
» —' is defined by: [S]SZ:,&ES,]

> I, ={[so]~ | so € Ip }, the equivalence class of the initial states in TS

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems 10/46



Strong Bisimulation

Quotient LTS under ~

For TS = (S, Act, —, Iy, AP, L) and strong bisimilarity ~ C S x S let

TS/~ = (S, Act,—', I}, AP, L"),  the quotient of TS under ~
where
» S =S5/~= {[s]l~|seS}twith[s]. = {s'e€S|s~5"}
s
[s]~ = [s]~

> I, ={[so]~ | so € Ip }, the equivalence class of the initial states in TS

> L/(s]) = L(s).

» —' is defined by:
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Strong Bisimulation

Quotient LTS under ~

For TS = (S, Act, —, Iy, AP, L) and strong bisimilarity ~ C S x S let

TS/~ = (S, Act,—', I}, AP, L"),  the quotient of TS under ~
where
» S'=5/~= {[s]~|seS}with[s]. = {s€S|s~5}
s
[s]~ =[]~

> I, ={[so]~ | so € Ip }, the equivalence class of the initial states in TS

> L/(s]) = L(s).

» —' is defined by:

L’ is well-defined as all states in [s]. are equally labeled.
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Strong Bisimulation

Quotient LTS under ~

For TS = (S, Act, —, Iy, AP, L) and strong bisimilarity ~ C S x S let

TS/~ = (S, Act,—', I}, AP, L"),  the quotient of TS under ~
where
» S'=5/~= {[s]~|seS}with[s]. = {s€S|s~5}
s
[s]~ =[]~

> I, ={[so]~ | so € Ip }, the equivalence class of the initial states in TS

> L/(s]) = L(s).

» —' is defined by:

L’ is well-defined as all states in [s].. are equally labeled. Note that if
s 255’ then for all t ~ s we have t %5t/ with s’ ~ t/.
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Quotient transition system
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Quotient transition system

|
For any transition system TS it holds: TS ~ TS/~.
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Quotient transition system

|
For any transition system TS it holds: TS ~ TS/~.

The binary relation:

R = {(sl[sl~)[seS}

is a strong bisimulation on the disjoint union TSW TS/ ~.
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Strong bisimulation revisited
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Strong bisimulation revisited

Auxiliary predicate

Let P: S x Act x 2° — {0,1} be a predicate such that for S’ C S:

1 if3dsfes. s24
P(s,a,S") =

0 otherwise.
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Strong bisimulation revisited

Auxiliary predicate

Let P: S x Act x 2° — {0,1} be a predicate such that for S’ C S:

1 if3dsfes. s24

P(s,a,S") = {

0 otherwise.

Alternative definition of strong bisimulation

Let TS= (S, Act,—>, lp, AP, L) and R an equivalence relation on S.
Then: R is a strong bisimulation on S if for (s, t) € R:

1. L(s) = L(t), and
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Strong bisimulation revisited

Auxiliary predicate

Let P: S x Act x 2° — {0,1} be a predicate such that for S’ C S:

1 if3dsfes. s24
P(s,a,S") =

0 otherwise.

Alternative definition of strong bisimulation

Let TS= (S, Act,—>, lp, AP, L) and R an equivalence relation on S.
Then: R is a strong bisimulation on S if for (s, t) € R:

1. L(s) = L(t), and
2. P(s,a,C) = P(t,a,C) forall CinS/R and o € Act.

s ~' t, if there exists a strong bisimulation R such that (s, t) € R.
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Strong Bisimulation

Strong bisimulation revisited

Auxiliary predicate

Let P: S x Act x 2° — {0,1} be a predicate such that for S’ C S:
1 if3dsfeS. s%s

0 otherwise.

P(s,a,S) = {

Alternative definition of strong bisimulation

Let TS= (S, Act,—>, lp, AP, L) and R an equivalence relation on S.
Then: R is a strong bisimulation on S if for (s, t) € R:

1. L(s) = L(t), and

2. P(s,a,C) = P(t,a,C) forall CinS/R and o € Act.
s~ t, if there exists a strong bisimulation R such that (s, t) € R.

It can be easily proven that ~ coincides with ~’. Proof is omitted.
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Probabilistic Bisimulation

Overview

@ Probabilistic Bisimulation
@ Quotient Markov Chain
@ Examples
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Probabilistic bisimulation: intuition
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Probabilistic bisimulation: intuition

» Strong bisimulation is used to compare labeled transition systems.
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Probabilistic bisimulation: intuition

» Strong bisimulation is used to compare labeled transition systems.
» Strongly bisimilar states exhibit the same step-wise behaviour.
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Probabilistic bisimulation: intuition

» Strong bisimulation is used to compare labeled transition systems.
» Strongly bisimilar states exhibit the same step-wise behaviour.

» Our aim: adapt bisimulation to discrete-time Markov chains.
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Probabilistic bisimulation: intuition

» Strong bisimulation is used to compare labeled transition systems.
» Strongly bisimilar states exhibit the same step-wise behaviour.
» Our aim: adapt bisimulation to discrete-time Markov chains.

» This yields a probabilistic variant of strong bisimulation.
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Probabilistic bisimulation: intuition

Intuition

» Strong bisimulation is used to compare labeled transition systems.
» Strongly bisimilar states exhibit the same step-wise behaviour.
» Our aim: adapt bisimulation to discrete-time Markov chains.

» This yields a probabilistic variant of strong bisimulation.

|
» When do two DTMC states exhibit the same step-wise behaviour?
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Probabilistic bisimulation: intuition

Intuition

» Strong bisimulation is used to compare labeled transition systems.
» Strongly bisimilar states exhibit the same step-wise behaviour.
» Our aim: adapt bisimulation to discrete-time Markov chains.

» This yields a probabilistic variant of strong bisimulation.

|
» When do two DTMC states exhibit the same step-wise behaviour?

» Key: if their transition probability for each equivalence class coincides.
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Probabilistic bisimulation
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Probabilistic bisimulation

Probabilistic bisimulation [Larsen & Skou, 1989]
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Probabilistic bisimulation

Probabilistic bisimulation [Larsen & Skou, 1989]

Let D = (S, P, tinir, AP, L) be a DTMC and R C S x S an equivalence.
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Probabilistic bisimulation

Probabilistic bisimulation

[Larsen & Skou, 1989]
Let D = (S, P, tinir, AP, L) be a DTMC and R C S x S an equivalence.
Then: R is a probabilistic bisimulation on S if for any (s, t) € R:
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Probabilistic bisimulation

Probabilistic bisimulation

[Larsen & Skou, 1989]
Let D = (S, P, tinir, AP, L) be a DTMC and R C S x S an equivalence.
Then: R is a probabilistic bisimulation on S if for any (s, t) € R:
1. L(s) = L(t), and
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Probabilistic bisimulation

Probabilistic bisimulation

[Larsen & Skou, 1989]
Let D = (S, P, tinir, AP, L) be a DTMC and R C S x S an equivalence.
Then: R is a probabilistic bisimulation on S if for any (s, t) € R:

1. L(s) = L(t), and

2. P(s, C) = P(t, C) for all equivalence classes C € S/R
where P(s, C) = > o P(s, 5').
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Probabilistic bisimulation

Probabilistic bisimulation

[Larsen & Skou, 1989]
Let D = (S, P, tin, AP, L) be a DTMC and R C S x S an equivalence.
Then: R is a probabilistic bisimulation on S if for any (s, t) € R:

1. L(s) = L(t), and

2. P(s, C) = P(t, C) for all equivalence classes C € S/R
where P(s, C) = > o P(s, 5').

|
For states in R, the probability of moving to some equivalence class is equal.
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Probabilistic bisimulation

Probabilistic bisimulation

[Larsen & Skou, 1989]
Let D = (S, P, tin, AP, L) be a DTMC and R C S x S an equivalence.
Then: R is a probabilistic bisimulation on S if for any (s, t) € R:

1. L(s) = L(t), and
2. P(s, C) = P(t, C) for all equivalence classes C € S/R
where P(s, C) = > o P(s, 5').

|
For states in R, the probability of moving to some equivalence class is equal.

Probabilistic bisimilarity

Let D be a DTMC and s, t states in D.
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Probabilistic bisimulation

Probabilistic bisimulation

[Larsen & Skou, 1989]
Let D = (S, P, tin, AP, L) be a DTMC and R C S x S an equivalence.
Then: R is a probabilistic bisimulation on S if for any (s, t) € R:

1. L(s) = L(t), and
2. P(s, C) = P(t, C) for all equivalence classes C € S/R
where P(s, C) = > o P(s, 5').

|
For states in R, the probability of moving to some equivalence class is equal.

Probabilistic bisimilarity

Let D be a DTMC and s, t states in D. Then: s is probabilistic bisimilar

to t, denoted s ~, t, if there exists a probabilistic bisimulation R with
(s,t) € R.
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Probabilistic bisimulation
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Probabilistic Bisimulation

Probabilistic bisimulation

Probabilistic bisimulation

Let D = (S, P, tinir, AP, L) be a DTMC and R C S x S an equivalence.
Then: R is a probabilistic bisimulation on S if for any (s, t) € R:

1. L(s) = L(t), and
2. P(s, C) = P(t, C) for all equivalence classes C € S/R.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems



Probabilistic Bisimulation

Probabilistic bisimulation

Probabilistic bisimulation

Let D = (S, P, tinis, AP, L) be a DTMC and R C S x S an equivalence.
Then: R is a probabilistic bisimulation on S if for any (s, t) € R:

1. L(s) = L(t), and
2. P(s, C) = P(t, C) for all equivalence classes C € S/R.

As opposed to bisimulation on states in transition systems, any probabilistic
bisimulation is an equivalence.
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Bisimilar DTMCs
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Probabilistic Bisimulation

Bisimilar DTMCs

Bisimilar DTMCs

Let D1, Dy be DTMCs over the same set of atomic propositions with

. e . . . 1 2 .
initial distributions ¢ . and ¢, respectively.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 18/46



Probabilistic Bisimulation

Bisimilar DTMCs

Bisimilar DTMCs

Let D1, Dy be DTMCs over the same set of atomic propositions with
initial distributions ¢! . and 2., respectively.

init init?
Consider the DTMC D = D; W D, that results from the disjoint union of
Dy and D;. Consider ~, on D = Dy & D;.
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Bisimilar DTMCs

Bisimilar DTMCs

Let D1, Dy be DTMCs over the same set of atomic propositions with
initial distributions ¢1. and /2., respectively.

Consider the DTMC D = D; W D, that results from the disjoint union of
Dy and D;. Consider ~, on D = Dy & D;.

Then D1 and D, are bisimilar, denoted Dy ~, D> whenever

i (C) = 2. (C)

init init
for each bisimulation equivalence class C of D = D; & D, under ~,,.

Here, t1,:(C) denotes Z Linit (S)-
seC

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 18/46



Probabilistic Bisimulation

Example
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Quotient under ~,

Quotient DTMC under ~,,
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Quotient under ~,

Quotient DTMC under ~,,

For D = (S, P, tinit, AP, L) and probabilistic bisimilarity ~, € S x S let
D)~p = (S P, . AP,L"), the quotient of D under ~,
where
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Quotient under ~,

Quotient DTMC under ~,,
For D = (S, P, tinit, AP, L) and probabilistic bisimilarity ~, € S x S let
D/~p = (S P 1, AP, L),

the quotient of D under ~,,
where

» S'=S5/~p= {[s]l~, | s€S}with[s]., = {s€S|s~,5}
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Quotient under ~,

Quotient DTMC under ~,,
For D = (S, P, tinit, AP, L) and probabilistic bisimilarity ~, € S x S let
D/~p = (S P 1, AP, L),

the quotient of D under ~,,
where

» S'=S5/~p= {[s]l~, | s€S}with[s]., = {s€S|s~,5}
> P([s]~,. [s]~,) = P(s.[s]~,)
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Quotient under ~,

Quotient DTMC under ~,,

For D = (S, P, tinit, AP, L) and probabilistic bisimilarity ~, € S x S let

D)~p = (S P, . AP,L"), the quotient of D under ~,

where

» S'=S5/~p= {[s]l~, | s€S}with[s]., = {s€S|s~,5}
> P([s]~,. [s]~,) = P(s.[s]~,)
Lo Lgnit([s]"‘p) = ZS’E[S]NP Linit(s)
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For D = (S, P, tinit, AP, L) and probabilistic bisimilarity ~, € S x S let

D/~p = (S, P4, AP L"), the quotient of D under ~,

where
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Quotient under ~,

Quotient DTMC under ~,,

For D = (S, P, tinit, AP, L) and probabilistic bisimilarity ~, € S x S let

D/~p = (S, P4, AP L"), the quotient of D under ~,

where
» S'=S5/~p= {[s]l~, | s€S}with[s]., = {s€S|s~,5}
> P'([s]~,. [s']~,) = P(s.[s']~,)
> Lan([8]v,) = Lorefs)e, tnie(s)
> U((s],) = L(s).

The transition probability from [s]., to [t]., equals P(s, [t].,).

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems 20/46



Quotient under ~,

Quotient DTMC under ~,,

For D = (S, P, tinit, AP, L) and probabilistic bisimilarity ~, € S x S let

D/~p = (S, P4, AP L"), the quotient of D under ~,

where

» S'=S5/~p= {[s]l~, | s€S}with[s]., = {s€S|s~,5}
> P'([s]~,. [s']~,) = P(s.[s']~,)

> Lan([8]v,) = Lorefs)e, tnie(s)

> U((s],) = L(s).

The transition probability from [s]., to [t]., equals P(s,[t].,). Thisis

well-defined as P(s, C) = P(s’, C) for all s ~, s’ and all bisimulation equivalence
classes C.
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Craps

» Roll two dice and bet
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» Roll two dice and bet

» Come-out roll (“pass line"” wager):
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Craps

» Roll two dice and bet

» Come-out roll (“pass line"” wager):

» outcome 7 or 11: win
» outcome 2, 3, or 12: lose (“craps”)
» any other outcome: roll again (outcome is “point”)

» Repeat until 7 or the “point” is thrown:
» outcome 7: lose (“seven-out™)
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Craps

» Roll two dice and bet

» Come-out roll (“pass line"” wager):

» outcome 7 or 11: win
» outcome 2, 3, or 12: lose (“craps”)
» any other outcome: roll again (outcome is “point”)

» Repeat until 7 or the “point” is thrown:

» outcome 7: lose (“seven-out™)
» outcome the point: win
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Craps

RAPS GAMBIy, -

» Roll two dice and bet &

\'g
v

» Come-out roll (“pass line"” wager):
» outcome 7 or 11: win
» outcome 2, 3, or 12: lose (“craps”)
» any other outcome: roll again (outcome is “point”)

» Repeat until 7 or the “point” is thrown:
» outcome 7: lose (“seven-out™)
» outcome the point: win
> any other outcome: roll again
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Probabilistic Bisimulation

A DTMC model of Craps

» Come-out roll:
» 7 or 11: win
» 2,3, 0r12:
lose
» else: roll
again

> Next roll(s):
> 7: lose
> point: win
> else: roll
again
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Probabilistic Bisimulation

A DTMC model of Craps

» Come-out roll:

» 7 or 11: win

» 2,3, 0r12:
lose

> else: roll
again

> Next roll(s):
> 7: lose
> point: win
> else: roll
again
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Probabilistic Bisimulation

Quotient DTMC of Craps under ~,

O
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Example: Crowds protocol

Security: Crowds protocol [Reiter & Rubin, 1998]

> A protocol for anonymous web browsing (variants: mCrowds,
BT-Crowds)
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Security: Crowds protocol [Reiter & Rubin, 1998]

> A protocol for anonymous web browsing (variants: mCrowds,
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» Hide user's communication by random routing within a crowd
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Security: Crowds protocol [Reiter & Rubin, 1998]

> A protocol for anonymous web browsing (variants: mCrowds,
BT-Crowds)
» Hide user's communication by random routing within a crowd

» sender selects a crowd member randomly using a uniform distribution
> selected router flips a biased coin:

> with probability 1 — p: direct delivery to final destination
> otherwise: select a next router randomly (uniformly)
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Example: Crowds protocol

Security: Crowds protocol [Reiter & Rubin, 1998]

> A protocol for anonymous web browsing (variants: mCrowds,
BT-Crowds)
» Hide user's communication by random routing within a crowd

» sender selects a crowd member randomly using a uniform distribution
> selected router flips a biased coin:

> with probability 1 — p: direct delivery to final destination
> otherwise: select a next router randomly (uniformly)

> once a routing path has been established, use it until crowd changes
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Probabilistic Bisimulation

Example: Crowds protocol

Security: Crowds protocol [Reiter & Rubin, 1998]

> A protocol for anonymous web browsing (variants: mCrowds,
BT-Crowds)
» Hide user's communication by random routing within a crowd

» sender selects a crowd member randomly using a uniform distribution
> selected router flips a biased coin:

> with probability 1 — p: direct delivery to final destination
> otherwise: select a next router randomly (uniformly)

> once a routing path has been established, use it until crowd changes

» Rebuild routing paths on crowd changes
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Probabilistic Bisimulation

Example: Crowds protocol

Security: Crowds protocol [Reiter & Rubin, 1998]

> A protocol for anonymous web browsing (variants: mCrowds,
BT-Crowds)
» Hide user's communication by random routing within a crowd

» sender selects a crowd member randomly using a uniform distribution
> selected router flips a biased coin:

> with probability 1 — p: direct delivery to final destination
> otherwise: select a next router randomly (uniformly)

> once a routing path has been established, use it until crowd changes
» Rebuild routing paths on crowd changes
» Property: Crowds protocol ensures “probable innocence™:

> probability real sender is discovered < 3 if N > ﬁ-(ﬁ—l)

» where N is crowd's size and ¢ is number of corrupt crowd members

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 25/46



Probabilistic Bisimulation

State space reduction under ~,

state space size
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IEEE 802.11 group communication protocol

original DTMC quotient DTMC red. factor

oD states transitions | ver. time blocks | total time | states | time

4 1125 5369 122 71 13 15.9 | 9.00
12 37349 236313 7180 1821 642 20.5 | 11.2
20 231525 1590329 50133 10627 5431 21.8 9.2
28 804837 5750873 195086 35961 24716 22.4 7.9
36 | 2076773 | 15187833 | 5103900 91391 77694 22.7 6.6
40 | 3101445 | 22871849 | 7725041 | 135752 127489 22.9 6.1

all times in milliseconds
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Logical Preservation

Overview

© Logical Preservation
@ The Logics PCTL, PCTL* and PCTL™
@ Preservation Theorem
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PCTL syntax

Probabilistic Computation Tree Logic: Syntax

PCTL consists of state- and path-formulas.
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PCTL syntax

Probabilistic Computation Tree Logic: Syntax

PCTL consists of state- and path-formulas.
» PCTL state formulas over the set AP obey the grammar:

® = true ‘ a ‘ CTRVARO)) ‘ - ‘ P,(»)

where a € AP, ¢ is a path formula and interval J C [0, 1].
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PCTL syntax

Probabilistic Computation Tree Logic: Syntax

PCTL consists of state- and path-formulas.
» PCTL state formulas over the set AP obey the grammar:

® = true ‘ a ‘ CTRVARO)) ‘ - ‘ P,(»)

where a € AP, ¢ is a path formula and interval J C [0, 1].

» PCTL path formulae are formed according to the following grammar:
= O ‘ ®; U b, ‘ ®; US" 0,

where ®, ®;, and P, are state formulae and n € IN.
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Preservation of PCTL-formulas
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Preservation of PCTL-formulas

Bisimulation preserves PCTL

Let D be a DTMC and s, t states in D. Then:

s~pt ifandonlyif sandt are PCTL-equivalent.
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s~pt ifandonlyif sandt are PCTL-equivalent.
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1. transient probabilities, reachability probabilities,
2. repeated reachability, persistence probabilities
3. all qualitative PCTL formulas
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Preservation of PCTL-formulas

Bisimulation preserves PCTL

Let D be a DTMC and s, t states in D. Then:

s~pt ifandonlyif sandt are PCTL-equivalent.

s ~p t implies that
1. transient probabilities, reachability probabilities,
2. repeated reachability, persistence probabilities
3. all qualitative PCTL formulas

for s and t are equal.

If for PCTL-formula ® we have s |= ® but t j= ®, then it follows s %, t.
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Preservation of PCTL-formulas

Bisimulation preserves PCTL

Let D be a DTMC and s, t states in D. Then:

s~pt ifandonlyif sandt are PCTL-equivalent.

s ~p t implies that
1. transient probabilities, reachability probabilities,
2. repeated reachability, persistence probabilities
3. all qualitative PCTL formulas

for s and t are equal.

If for PCTL-formula ® we have s |= ® but t j= ®, then it follows s %, t.
A single PCTL-formula suffices!
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PCTL* syntax

Probabilistic Computation Tree Logic: Syntax

PCTL* consists of state- and path-formulas.
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PCTL* syntax

Probabilistic Computation Tree Logic: Syntax

PCTL* consists of state- and path-formulas.

» PCTL* state formulas over the set AP obey the grammar:
¢ = true ‘ a ‘ 1 A Dy ‘ - ‘ P,(¢)

where a € AP, ¢ is a path formula and J C [0,1], J # D is a
non-empty interval.
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PCTL* syntax

Probabilistic Computation Tree Logic: Syntax

PCTL* consists of state- and path-formulas.

» PCTL* state formulas over the set AP obey the grammar:
¢ = true ‘ a ‘ 1 A Dy ‘ - ‘ P,(¢)

where a € AP, ¢ is a path formula and J C [0,1], J # D is a
non-empty interval.

» PCTL" path formulae are formed according to the following grammar:

p =0 ‘ 3 ’ P1 A $2 ’ Oy ‘ p1U @

where ® is a state formula and ¢, 1, and @5 are path formulae.
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PCTL* semantics (1)
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Logical Preservation

PCTL* semantics (1)

D, s |= ¢ if and only if state-formula ® holds in state s of (possibly
infinite) DTMC D. As D is known from the context we simply write

skEo.
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Logical Preservation

PCTL* semantics (1)

D, s |= ¢ if and only if state-formula ® holds in state s of (possibly
infinite) DTMC D. As D is known from the context we simply write

skEo.

Satisfaction relation for state formulas
The satisfaction relation = is defined for PCTL* state formulas by:

skEa iff ae L(s)
sE -0 iff not (s = @)
sEP AV iff (sE®)and (s = V)
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Logical Preservation

PCTL* semantics (1)

D, s |= ¢ if and only if state-formula ® holds in state s of (possibly
infinite) DTMC D. As D is known from the context we simply write

skEo.
Satisfaction relation for state formulas

The satisfaction relation = is defined for PCTL* state formulas by:

skEa iff ae L(s)

sE -0 iff not (s = @)

sEP AV iff (sE®)and (s = V)
sEP)p) iff PisEy)ed

where Pr(s = ) = Prs{m € Paths(s) | 7 = ¢ }
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PCTL* semantics (2)
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PCTL* semantics (2)

Satisfaction relation for path formulas

Let m = sps1 s ... be an infinite path in (possibly infinite) DTMC D.
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Logical Preservation

PCTL* semantics (2)

Satisfaction relation for path formulas

Let m = sps1 sz ... be an infinite path in (possibly infinite) DTMC D. Let
7 = si ;415142 .. denotes the i-th suffix of 7.

The satisfaction relation = is defined for state formulas by:

TE® iff 7[0] E @
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PCTL* semantics (2)

Satisfaction relation for path formulas

Let m = sps1 sz ... be an infinite path in (possibly infinite) DTMC D. Let
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The satisfaction relation = is defined for state formulas by:
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PCTL* semantics (2)

Satisfaction relation for path formulas

Let m = sps1 sz ... be an infinite path in (possibly infinite) DTMC D. Let
7 = si ;415142 .. denotes the i-th suffix of 7.

The satisfaction relation = is defined for state formulas by:
TE® iff 7[0] E @
T E e iff notw =
TEpi Ay iff T and T = @2

T E Op iff =g
mlEeiUgps iff Fk>0.(7"E 2 AVOS i< k.ml = 1)
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Measurability
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Logical Preservation

Measurability

PCTL* measurability

For any PCTL* path formula ¢ and state s of DTMC D,
the set { m € Paths(s) | m = ¢ } is measurable.

Left as an exercise, using the result for PCTL measurability and the
measurability of w-regular properties.
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Bounded until in PCTL*
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Bounded until in PCTL*

Bounded until

Bounded until can be defined using the other operators:

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems



Logical Preservation

Bounded until in PCTL*

Bounded until

Bounded until can be defined using the other operators:

e1US" 02 = \/ ;i where 4o =2 and ¥j11 = 91 A Q¢ for i > 0.

0<i<n
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Logical Preservation

Bounded until in PCTL*

Bounded until

Bounded until can be defined using the other operators:

e1US" 02 = \/ ;i where 4o =2 and ¥j11 = 91 A Q¢ for i > 0.

0<i<n

Examples in PCTL* but not in PCTL
P>%(O au O b)
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Logical Preservation

Bounded until in PCTL*

Bounded until

Bounded until can be defined using the other operators:

e1US" 02 = \/ ;i where 4o =2 and ¥j11 = 91 A Q¢ for i > 0.

0<i<n

Examples in PCTL* but not in PCTL
IP’>%(Q‘9U O b) and IP’:1(IP’>%(D<>a v oOb)).
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Preservation of PCTL*-formulas
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Preservation of PCTL*-formulas

Bisimulation preserves PCTL*

Let D be a DTMC and s, t states in D. Then:

s~pt ifandonlyif sandt are PCTL*-equivalent.
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Preservation of PCTL*-formulas
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Let D be a DTMC and s, t states in D. Then:

s~pt if and only if s and t are PCTL"-equivalent.
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Preservation of PCTL*-formulas

Bisimulation preserves PCTL*

Let D be a DTMC and s, t states in D. Then:

s~pt if and only if s and t are PCTL"-equivalent.

1. Bisimulation thus preserves not only all PCTL but also all PCTL* formulas.
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Preservation of PCTL*-formulas

Bisimulation preserves PCTL*

Let D be a DTMC and s, t states in D. Then:

s~pt if and only if s and t are PCTL"-equivalent.

1. Bisimulation thus preserves not only all PCTL but also all PCTL* formulas.

2. By the last two results it follows that PCTL- and PCTL"-equivalence
coincide.
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Logical Preservation

Preservation of PCTL*-formulas

Bisimulation preserves PCTL*

Let D be a DTMC and s, t states in D. Then:

s~pt if and only if s and t are PCTL"-equivalent.

1. Bisimulation thus preserves not only all PCTL but also all PCTL* formulas.

2. By the last two results it follows that PCTL- and PCTL"-equivalence
coincide. Thus any two states that satisfy the same PCTL formulas, satisfy

the same PCTL* formulas.
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PCTL™ syntax
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PCTL™ syntax

Probabilistic Computation Tree Logic: Syntax

PCTL™ only consists of state-formulas. These formulas over the set AP
obey the grammar:

® =2 | L AG | &1V O | P(O0)

where a € AP and p is a probability in [0, 1].
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PCTL™ syntax

Probabilistic Computation Tree Logic: Syntax

PCTL™ only consists of state-formulas. These formulas over the set AP
obey the grammar:

é = a ‘ b1 A Dy ‘ o1V Oy ‘ P, (O ®)

where a € AP and p is a probability in [0, 1].

This is a truly simple logic.
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PCTL™ syntax

Probabilistic Computation Tree Logic: Syntax

PCTL™ only consists of state-formulas. These formulas over the set AP
obey the grammar:

é = a ‘ b1 A Dy ‘ o1V Oy ‘ P, (O ®)

where a € AP and p is a probability in [0, 1].

This is a truly simple logic. It does not contain the until-operator.
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PCTL™ syntax

Probabilistic Computation Tree Logic: Syntax

PCTL™ only consists of state-formulas. These formulas over the set AP
obey the grammar:

é = a ‘ b1 A Dy ‘ o1V Oy ‘ P, (O ®)

where a € AP and p is a probability in [0, 1].

This is a truly simple logic. It does not contain the until-operator. Negation is
not present and cannot be expressed.
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PCTL™ syntax

Probabilistic Computation Tree Logic: Syntax

PCTL™ only consists of state-formulas. These formulas over the set AP
obey the grammar:

é = a ‘ b1 A Dy ‘ o1V Oy ‘ P, (O ®)

where a € AP and p is a probability in [0, 1].

This is a truly simple logic. It does not contain the until-operator. Negation is
not present and cannot be expressed. Only upper bounds on probabilities.
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PCTL™ syntax

Probabilistic Computation Tree Logic: Syntax

PCTL™ only consists of state-formulas. These formulas over the set AP
obey the grammar:

b = a ‘ b1 A Dy ‘ ®1 VvV &y ‘ P, (O ®)

where a € AP and p is a probability in [0, 1].

This is a truly simple logic. It does not contain the until-operator. Negation is
not present and cannot be expressed. Only upper bounds on probabilities.

|
The next theorem shows that PCTL-, PCTL*- and PCTL™-equivalence
coincide.
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Logical Preservation

Preservation of PCTL

PCTL/PCTL" and Bisimulation Equivalence

Let D be a DTMC and s1, s, states in D. Then, the following statements
are equivalent:
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Logical Preservation

Preservation of PCTL

PCTL/PCTL" and Bisimulation Equivalence

Let D be a DTMC and s1, s, states in D. Then, the following statements
are equivalent:

(a) s1 ~p so.

(b) s1 and sp are PCTL*-equivalent, i.e., fulfill the same PCTL* formulas
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Preservation of PCTL

PCTL/PCTL" and Bisimulation Equivalence

Let D be a DTMC and s1, s, states in D. Then, the following statements
are equivalent:

(a) s1 ~p so.
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Preservation of PCTL
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Let D be a DTMC and s1, s, states in D. Then, the following statements
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~

p
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(b) s1 and sp are PCTL*-equivalent, i.e., fulfill the same PCTL" formulas
(c) s1 and s are PCTL-equivalent, i.e., fulfill the same PCTL formulas
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1. (a) = (b): by structural induction on PCTL* formulas.
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Preservation of PCTL
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Let D be a DTMC and s1, s, states in D. Then, the following statements
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(a
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) s
(b) s1 and sp are PCTL*-equivalent, i.e., fulfill the same PCTL" formulas
(c) s1 and s are PCTL-equivalent, i.e., fulfill the same PCTL formulas
(d) s1 and sp are PCTL™ -equivalent, i.e., fulfill the same PCTL™ formulas
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Preservation of PCTL

PCTL/PCTL" and Bisimulation Equivalence

Let D be a DTMC and s1, s, states in D. Then, the following statements
are equivalent'
(a p

) s
(b) s1 and s, are PCTL*-equivalent, i.e., fulfill the same PCTL* formulas
(c)
(d)

~

s1 and sp are PCTL-equivalent, i.e., fulfill the same PCTL formulas

s1 and sp are PCTL ™ -equivalent, i.e., fulfill the same PCTL™ formulas

1. (a) = (b): by structural induction on PCTL* formulas.

2. (b) = (c): trivial as PCTL is a sublogic of PCTL*.

3. (c) = (d): trivial as PCTL— is a sublogic of PCTL.

4. (d) = (a): involved. First finite DTMCs, then for arbitrary DTMCs.
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Lumpability

Overview

Q@ Lumpability
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1960: Laurie Snell and John Kemeny
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Lumpability

Ignore the initial distribution and state-labelling of a Markov chain.

Lumpability [Kemeny & Snell, 1960]

Let D be a (possibly countably infinite) DTMC with state space S and
B={B;,..., B, } be a partitioning of S (where B; may be countably
infinite). D is lumpable with respect to B iff for any B; and B; in B and
any s,s’ € B;:

> P(s,u) = Y P(s'u) thatis P(s, B;) =P(s, B).
ueB; ueB;
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Lumpability

Ignore the initial distribution and state-labelling of a Markov chain.

Lumpability [Kemeny & Snell, 1960]

Let D be a (possibly countably infinite) DTMC with state space S and
B={Bi,...,B,} be a partitioning of S (where B; may be countably
infinite). D is lumpable with respect to B iff for any B; and B; in B and
any s,s’ € B;:

> P(s,u) = Y P(s'u) thatis P(s, B;) =P(s, B).
ueB; ueB;

If D is lumpable with respect to B, B is called a lumpable partition

It is easy to show that S/~ is a lumpable partition of the state space S.
In fact, it is the coarsest possible lumpable partition.
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Lumpability

Lumping equivalence

Lumping equivalence [Kemeny & Snell, 1960]

The DTMCs D and D’ are lumping equivalent if there are lumpable

partitions B of D and B’ of D’ such that there is an injective function
f :IN — IN such that:

P(B;. B;) = P'(Bf Bry)-
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Lumpability

Lumping equivalence

Lumping equivalence [Kemeny & Snell, 1960]

The DTMCs D and D’ are lumping equivalent if there are lumpable
partitions B of D and B’ of D’ such that there is an injective function
f :IN — IN such that:

P(B;. B;) = P'(Bf Bry)-

Corollary

D ~, D' if and only if D and D’ are lumping equivalent (with respect to
the coarsest possible lumpable partition on their union).
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Lumping equivalence

For finite Markov chains, the correspondence between lumping equivalence
and ~, allows to obtain the coarsest possible lumpable partition in an
algorithmic, i.e., automated manner.
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Lumpability

Lumping equivalence

For finite Markov chains, the correspondence between lumping equivalence
and ~, allows to obtain the coarsest possible lumpable partition in an
algorithmic, i.e., automated manner.

This can be considered as a breakthrough in Markov chain theory.
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Summary

» Bisimilar states have equal transition probabilities for every
equivalence class.

» ~ is the coarsest probabilistic bisimulation.

> All states in a quotient DTMC are equivalence classes under ~ .
» ~p and PCTL-equivalence coincide.

» PCTL, PCTL*, and PCTL™-equivalence coincide.

> To show s 74, t, show s |= @ and t j= & for & € PCTL™.

> Bisimulation may yield up to exponential savings in state space.

Take-home message

Probabilistic bisimulation coincides with a notion from the sixties, named
(ordinary) lumpability.
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