Modeling and Verification of Probabilistic Systems

Joost-Pieter Katoen

Lehrstuhl für Informatik 2 Software Modeling and Verification Group

http://moves.rwth-aachen.de/teaching/ws-1516/movep15/

November 11, 2015

Overview

Introduction

- 2 Qualitative PCTL
- 3 Computation Tree Logic
- 4 CTL versus qualitative PCTL
- 5 Fair CTL versus qualitative PCTL
- 6 Repeated reachability and persistence

7) Summary

Summary of previous lecture

Probabilistic CTL

- ► Allows for path properties, such as (bounded) until and next.
- State formulas include propositional logic + the operator $\mathbb{P}_{J}(\varphi)$
- $s \models \mathbb{P}_J(\varphi)$ if the probability of all paths starting in s fulfilling φ is in J
- Model checking is done by a recursive descent over the formula
- This yields a polynomial-time algorithm (linear in $|\Phi|$).

Summary of previous lecture

Probabilistic CTL

- ► Allows for path properties, such as (bounded) until and next.
- State formulas include propositional logic + the operator $\mathbb{P}_{J}(\varphi)$
- $s \models \mathbb{P}_J(\varphi)$ if the probability of all paths starting in s fulfilling φ is in J
- Model checking is done by a recursive descent over the formula
- This yields a polynomial-time algorithm (linear in $|\Phi|$).

- ▶ Is PCTL, restricted to $\mathbb{P}_{=1}(\varphi)$, equally expressive as CTL?
- What is the expressive power of PCTL? Can repeated reachability be expressed?

- ▶ Is PCTL, restricted to $\mathbb{P}_{=1}(\varphi)$, equally expressive as CTL?
- What is the expressive power of PCTL? Can repeated reachability be expressed?

Set up of this lecture

1. Qualitative PCTL versus CTL.

- ▶ Is PCTL, restricted to $\mathbb{P}_{=1}(\varphi)$, equally expressive as CTL?
- What is the expressive power of PCTL? Can repeated reachability be expressed?

Set up of this lecture

- 1. Qualitative PCTL versus CTL.
- 2. Qualitative PCTL versus CTL with fairness.

- ▶ Is PCTL, restricted to $\mathbb{P}_{=1}(\varphi)$, equally expressive as CTL?
- What is the expressive power of PCTL? Can repeated reachability be expressed?

Set up of this lecture

- 1. Qualitative PCTL versus CTL.
- 2. Qualitative PCTL versus CTL with fairness.
- 3. Repeated reachability probabilities in PCTL.

Overview

Introduction

Qualitative PCTL

- 3 Computation Tree Logic
- 4 CTL versus qualitative PCTL
- 5 Fair CTL versus qualitative PCTL
- 6 Repeated reachability and persistence

7) Summary

PCTL syntax

Probabilistic Computation Tree Logic: Syntax

PCTL consists of state- and path-formulas.

PCTL syntax

Probabilistic Computation Tree Logic: Syntax

PCTL consists of state- and path-formulas.

PCTL state formulas over the set AP obey the grammar:

$$\Phi$$
 ::= true $| a | \Phi_1 \land \Phi_2 | \neg \Phi | \mathbb{P}_J(\varphi)$

where $a \in AP$, φ is a path formula and $J \subseteq [0, 1]$ is an interval.

PCTL syntax

Probabilistic Computation Tree Logic: Syntax

PCTL consists of state- and path-formulas.

PCTL state formulas over the set AP obey the grammar:

$$\Phi$$
 ::= true $| a | \Phi_1 \land \Phi_2 | \neg \Phi | \mathbb{P}_J(\varphi)$

where $a \in AP$, φ is a path formula and $J \subseteq [0, 1]$ is an interval.

PCTL path formulae are formed according to the following grammar:

$$\varphi ::= \bigcirc \Phi \mid \Phi_1 \cup \Phi_2 \mid \Phi_1 \cup \Phi_2$$

where Φ , Φ_1 , and Φ_2 are state formulae and $n \in \mathbb{N}$.

Qualitative PCTL

Qualitative PCTL

State formulae in the *qualitative fragment* of PCTL (over AP):

$$\Phi ::= \mathsf{true} \quad | \quad a \quad | \quad \Phi_1 \land \Phi_2 \quad | \quad \neg \Phi \quad | \quad \mathbb{P}_{>0}(\varphi) \quad | \quad \mathbb{P}_{=1}(\varphi)$$

where $a \in AP$, and φ is a path formula

Qualitative PCTL

State formulae in the *qualitative fragment* of PCTL (over AP):

$$\Phi ::= \mathsf{true} \ \left| \begin{array}{c} a \end{array} \right| \ \Phi_1 \wedge \Phi_2 \ \left| \begin{array}{c} \neg \Phi \end{array} \right| \ \mathbb{P}_{>0}(\varphi) \ \left| \begin{array}{c} \mathbb{P}_{=1}(\varphi) \end{array} \right|$$

where $a \in AP$, and φ is a path formula formed according to the grammar:

$$\varphi ::= \bigcirc \Phi \quad | \quad \Phi_1 \cup \Phi_2.$$

Remark

The probability bounds = 0 and < 1 can be derived:

$$\mathbb{P}_{=0}(\varphi) \equiv \neg \mathbb{P}_{>0}(\varphi) \quad \text{and} \quad \mathbb{P}_{<1}(\varphi) \equiv \neg \mathbb{P}_{=1}(\varphi)$$

So, in qualitative PCTL, there is no bounded until, and only > 0, = 0, > 1 and = 1 are allowed thresholds.

Qualitative PCTL

State formulae in the *qualitative fragment* of PCTL (over AP):

$$\Phi ::= \mathsf{true} \quad a \quad \Phi_1 \land \Phi_2 \quad \neg \Phi \quad \mathbb{P}_{>0}(\varphi) \quad \mathbb{P}_{=1}(\varphi)$$

where $a \in AP$, and φ is a path formula formed according to the grammar:

$$\varphi ::= \bigcirc \Phi \quad | \quad \Phi_1 \cup \Phi_2.$$

Qualitative PCTL

State formulae in the *qualitative fragment* of PCTL (over AP):

$$\Phi ::= \mathsf{true} \quad a \quad \Phi_1 \land \Phi_2 \quad \neg \Phi \quad \mathbb{P}_{>0}(\varphi) \quad \mathbb{P}_{=1}(\varphi)$$

where $a \in AP$, and φ is a path formula formed according to the grammar:

$$\varphi ::= \bigcirc \Phi \quad | \quad \Phi_1 \cup \Phi_2.$$

Examples

$$\mathbb{P}_{=1}(\Diamond \mathbb{P}_{>0}(\bigcirc a))$$

Qualitative PCTL

State formulae in the *qualitative fragment* of PCTL (over AP):

$$\Phi ::= \mathsf{true} \quad a \quad \Phi_1 \land \Phi_2 \quad \neg \Phi \quad \mathbb{P}_{>0}(\varphi) \quad \mathbb{P}_{=1}(\varphi)$$

where $a \in AP$, and φ is a path formula formed according to the grammar:

$$\varphi ::= \bigcirc \Phi \quad | \quad \Phi_1 \cup \Phi_2.$$

Examples

$\mathbb{P}_{=1}(\Diamond \mathbb{P}_{>0}(\bigcirc a))$ and $\mathbb{P}_{<1}(\mathbb{P}_{>0}(\Diamond a) \cup b)$ are qualitative PCTL formulas.

Overview

Introduction

2 Qualitative PCTL

3 Computation Tree Logic

- 4 CTL versus qualitative PCTL
- 5 Fair CTL versus qualitative PCTL
- 6 Repeated reachability and persistence

7 Summary

[Clarke & Emerson, 1981]

[Clarke & Emerson, 1981]

Computation Tree Logic: Syntax

[Clarke & Emerson, 1981]

Computation Tree Logic: Syntax

CTL consists of state- and path-formulas.

Computation Tree Logic

Computation Tree Logic: Syntax

CTL consists of state- and path-formulas.

CTL state formulas over the set AP obey the grammar:

$$\Phi ::= \mathsf{true} \ \left| \begin{array}{c} a \end{array} \right| \ \Phi_1 \land \Phi_2 \ \left| \begin{array}{c} \neg \Phi \end{array} \right| \ \exists \varphi \ \left| \begin{array}{c} \forall \varphi \end{array} \right|$$

where $a \in AP$ and φ is a path formula

Computation Tree Logic

Computation Tree Logic: Syntax

CTL consists of state- and path-formulas.

CTL state formulas over the set AP obey the grammar:

$$\Phi ::= \mathsf{true} \ \left| \begin{array}{c} a \end{array} \right| \ \Phi_1 \land \Phi_2 \ \left| \begin{array}{c} \neg \Phi \end{array} \right| \ \exists \varphi \ \left| \begin{array}{c} \forall \varphi \end{array} \right|$$

where $a \in AP$ and φ is a path formula formed by the grammar:

$$\varphi ::= \bigcirc \Phi \mid \Phi_1 \cup \Phi_2$$

Computation Tree Logic

Computation Tree Logic: Syntax

CTL consists of state- and path-formulas.

CTL state formulas over the set AP obey the grammar:

$$\Phi ::= \mathsf{true} \ \left| \begin{array}{c} a \end{array} \right| \ \Phi_1 \land \Phi_2 \ \left| \begin{array}{c} \neg \Phi \end{array} \right| \ \exists \varphi \ \left| \begin{array}{c} \forall \varphi \end{array} \right|$$

where $a \in AP$ and φ is a path formula formed by the grammar:

$$\varphi ::= \bigcirc \Phi \mid \Phi_1 \cup \Phi_2$$

Remark

No bounded until, and only universal and existential path quantifiers.

Computation Tree Logic

Computation Tree Logic: Syntax

CTL consists of state- and path-formulas.

CTL state formulas over the set AP obey the grammar:

$$\Phi ::= \mathsf{true} \ \left| \begin{array}{c} a \end{array} \right| \ \Phi_1 \land \Phi_2 \ \left| \begin{array}{c} \neg \Phi \end{array} \right| \ \exists \varphi \ \left| \begin{array}{c} \forall \varphi \end{array} \right|$$

where $a \in AP$ and φ is a path formula formed by the grammar:

$$\varphi ::= \bigcirc \Phi \mid \Phi_1 \cup \Phi_2$$

Remark

No bounded until, and only universal and existential path quantifiers.

Examples

 $\forall \Diamond \exists \bigcirc a \text{ and } \exists (\forall \Diamond a) \cup b \text{ are CTL formulas.}$

Computation Tree Logic

Computation Tree Logic: Syntax

CTL consists of state- and path-formulas.

CTL state formulas over the set AP obey the grammar:

$$\Phi ::= true | a | \Phi_1 \land \Phi_2 | \neg \Phi | \exists \varphi | \forall \varphi$$

where $a \in AP$ and φ is a path formula $\varphi ::= \bigcirc \Phi \ | \ \Phi_1 \cup \Phi_2$

Computation Tree Logic

Computation Tree Logic: Syntax

CTL consists of state- and path-formulas.

CTL state formulas over the set AP obey the grammar:

$$\Phi ::= \text{true} \mid a \mid \Phi_1 \land \Phi_2 \mid \neg \Phi \mid \exists \varphi \mid \forall \varphi$$

where $a \in AP$ and φ is a path formula $\varphi ::= \bigcirc \Phi \quad | \quad \Phi_1 \cup \Phi_2$

Intuition

•
$$s \models orall arphi$$
 if all paths starting in s fulfill $arphi$

Computation Tree Logic

Computation Tree Logic: Syntax

CTL consists of state- and path-formulas.

CTL state formulas over the set AP obey the grammar:

$$\Phi ::= true \left| a \right| \Phi_1 \land \Phi_2 \left| \neg \Phi \right| \exists \varphi \left| \forall \varphi \right|$$

where $a \in AP$ and φ is a path formula $\varphi ::= \bigcirc \Phi \quad | \quad \Phi_1 \cup \Phi_2$

Intuition

- $s \models \forall \varphi$ if all paths starting in s fulfill φ
- $s \models \exists \varphi$ if some path starting in s fulfill φ

GIC [Clarke & Emerson, 1981]

Computation Tree Logic: Syntax

CTL consists of state- and path-formulas.

CTL state formulas over the set AP obey the grammar:

$$\Phi ::= true \left| a \right| \Phi_1 \land \Phi_2 \left| \neg \Phi \right| \exists \varphi \left| \forall \varphi \right|$$

where $a \in AP$ and φ is a path formula $\varphi ::= \bigcirc \Phi \quad | \quad \Phi_1 \cup \Phi_2$

Intuition

- $s \models \forall \varphi$ if all paths starting in s fulfill φ
- $s \models \exists \varphi$ if some path starting in s fulfill φ

Question: are CTL and qualitative PCTL equally expressive?

Joost-Pieter Katoen

Computation Tree Logic

Computation Tree Logic: Syntax

CTL consists of state- and path-formulas.

CTL state formulas over the set AP obey the grammar:

$$\Phi ::= true \left| a \right| \Phi_1 \land \Phi_2 \left| \neg \Phi \right| \exists \varphi \left| \forall \varphi \right|$$

where $a \in AP$ and φ is a path formula $\varphi ::= \bigcirc \Phi \quad | \quad \Phi_1 \cup \Phi_2$

Intuition

- $s \models \forall \varphi$ if all paths starting in s fulfill φ
- $s \models \exists \varphi$ if some path starting in s fulfill φ

Question: are CTL and qualitative PCTL equally expressive? No.

Joost-Pieter Katoen

CTL semantics

CTL semantics

CTL semantics (1)

CTL semantics (1)

Notation

 \mathcal{D} , $s \models \Phi$ if and only if state-formula Φ holds in state s of (possibly infinite) DTMC \mathcal{D} . As \mathcal{D} is known from the context we simply write $s \models \Phi$.

CTL semantics (1)

Notation

 \mathcal{D} , $s \models \Phi$ if and only if state-formula Φ holds in state s of (possibly infinite) DTMC \mathcal{D} . As \mathcal{D} is known from the context we simply write $s \models \Phi$.

Satisfaction relation for state formulas

The satisfaction relation \models is defined for CTL state formulas by:
CTL semantics (1)

Notation

 \mathcal{D} , $s \models \Phi$ if and only if state-formula Φ holds in state s of (possibly infinite) DTMC \mathcal{D} . As \mathcal{D} is known from the context we simply write $s \models \Phi$.

Satisfaction relation for state formulas

The satisfaction relation \models is defined for CTL state formulas by:

$$s \models a$$
 iff $a \in L(s)$

$$s \models \neg \Phi$$
 iff not $(s \models \Phi)$

$$s \models \Phi \land \Psi$$
 iff $(s \models \Phi)$ and $(s \models \Psi)$

CTL semantics (1)

Notation

 \mathcal{D} , $s \models \Phi$ if and only if state-formula Φ holds in state s of (possibly infinite) DTMC \mathcal{D} . As \mathcal{D} is known from the context we simply write $s \models \Phi$.

Satisfaction relation for state formulas

The satisfaction relation \models is defined for CTL state formulas by:

$$s \models a$$
 iff $a \in L(s)$

$$s\models \neg\, \Phi \qquad ext{iff not} \ (s\models \Phi)$$

$$s \models \Phi \land \Psi \quad \text{iff} \ \ (s \models \Phi) \ \text{and} \ (s \models \Psi)$$

 $s \models \exists \varphi$ iff there exists $\pi \in Paths(s).\pi \models \varphi$

$$s \models \forall \varphi$$
 iff for all $\pi \in Paths(s).\pi \models \varphi$

where the semantics of CTL path-formulas is the same as for PCTL

Joost-Pieter Katoen

Overview

Introduction

2 Qualitative PCTL

- 3 Computation Tree Logic
- 4 CTL versus qualitative PCTL
 - 5 Fair CTL versus qualitative PCTL
- 6 Repeated reachability and persistence

7) Summary

Equivalence of PCTL and CTL Formulae

The PCTL formula Φ is *equivalent* to the CTL formula Ψ , denoted $\Phi \equiv \Psi$, if $Sat(\Phi) = Sat(\Psi)$ for each DTMC \mathcal{D} .

Equivalence of PCTL and CTL Formulae

The PCTL formula Φ is *equivalent* to the CTL formula Ψ , denoted $\Phi \equiv \Psi$, if $Sat(\Phi) = Sat(\Psi)$ for each DTMC \mathcal{D} .

Example

Equivalence of PCTL and CTL Formulae

The PCTL formula Φ is *equivalent* to the CTL formula Ψ , denoted $\Phi \equiv \Psi$, if $Sat(\Phi) = Sat(\Psi)$ for each DTMC \mathcal{D} .

Example

The simplest such cases are path formulae involving the next-step operator:

$$\mathbb{P}_{=1}(\bigcirc a) \equiv \forall \bigcirc a$$
$$\mathbb{P}_{>0}(\bigcirc a) \equiv \exists \bigcirc a$$

Equivalence of PCTL and CTL Formulae

The PCTL formula Φ is *equivalent* to the CTL formula Ψ , denoted $\Phi \equiv \Psi$, if $Sat(\Phi) = Sat(\Psi)$ for each DTMC \mathcal{D} .

Example

The simplest such cases are path formulae involving the next-step operator:

$$\mathbb{P}_{=1}(\bigcirc a) \equiv \forall \bigcirc a$$

 $\mathbb{P}_{>0}(\bigcirc a) \equiv \exists \bigcirc a$

And for $\exists \Diamond$ and $\forall \Box$ we have:

$$\mathbb{P}_{>0}(\Diamond a) \equiv \exists \Diamond a$$

Equivalence of PCTL and CTL Formulae

The PCTL formula Φ is *equivalent* to the CTL formula Ψ , denoted $\Phi \equiv \Psi$, if $Sat(\Phi) = Sat(\Psi)$ for each DTMC \mathcal{D} .

Example

The simplest such cases are path formulae involving the next-step operator:

$$\mathbb{P}_{=1}(\bigcirc a) \equiv \forall \bigcirc a$$

 $\mathbb{P}_{>0}(\bigcirc a) \equiv \exists \bigcirc a$

And for $\exists \Diamond$ and $\forall \Box$ we have:

$$\mathbb{P}_{>0}(\Diamond a) \equiv \exists \Diamond a$$

 $\mathbb{P}_{=1}(\Box a) \equiv \forall \Box a.$

(1) $\mathbb{P}_{>0}(\Diamond a) \equiv \exists \Diamond a \text{ and } (2) \mathbb{P}_{=1}(\Box a) \equiv \forall \Box a.$

(1)
$$\mathbb{P}_{>0}(\Diamond a) \equiv \exists \Diamond a \text{ and } (2) \mathbb{P}_{=1}(\Box a) \equiv \forall \Box a.$$

Proof:

(1)
$$\mathbb{P}_{>0}(\Diamond a) \equiv \exists \Diamond a \text{ and } (2) \mathbb{P}_{=1}(\Box a) \equiv \forall \Box a.$$

Proof:

(1)
$$\mathbb{P}_{>0}(\Diamond a) \equiv \exists \Diamond a \text{ and } (2) \mathbb{P}_{=1}(\Box a) \equiv \forall \Box a.$$

Proof:

(1)
$$\mathbb{P}_{>0}(\Diamond a) \equiv \exists \Diamond a \text{ and } (2) \mathbb{P}_{=1}(\Box a) \equiv \forall \Box a.$$

Proof:

- (1) Consider the first statement.
 - \Rightarrow Assume $s \models \mathbb{P}_{>0}(\Diamond a)$.

(1)
$$\mathbb{P}_{>0}(\Diamond a) \equiv \exists \Diamond a \text{ and } (2) \mathbb{P}_{=1}(\Box a) \equiv \forall \Box a.$$

Proof:

(1) Consider the first statement.

 \Rightarrow Assume $s \models \mathbb{P}_{>0}(\Diamond a)$. By the PCTL semantics, $Pr(s \models \Diamond a) > 0$.

(1)
$$\mathbb{P}_{>0}(\Diamond a) \equiv \exists \Diamond a \text{ and } (2) \mathbb{P}_{=1}(\Box a) \equiv \forall \Box a.$$

Proof:

- (1) Consider the first statement.
 - ⇒ Assume $s \models \mathbb{P}_{>0}(\Diamond a)$. By the PCTL semantics, $Pr(s \models \Diamond a) > 0$. Thus, $\{\pi \in Paths(s) \mid \pi \models \Diamond a\} \neq \emptyset$,

(1)
$$\mathbb{P}_{>0}(\Diamond a) \equiv \exists \Diamond a \text{ and } (2) \mathbb{P}_{=1}(\Box a) \equiv \forall \Box a.$$

Proof:

(1) Consider the first statement.

⇒ Assume $s \models \mathbb{P}_{>0}(\Diamond a)$. By the PCTL semantics, $Pr(s \models \Diamond a) > 0$. Thus, $\{\pi \in Paths(s) \mid \pi \models \Diamond a\} \neq \emptyset$, and hence, $s \models \exists \Diamond a$.

(1)
$$\mathbb{P}_{>0}(\Diamond a) \equiv \exists \Diamond a \text{ and } (2) \mathbb{P}_{=1}(\Box a) \equiv \forall \Box a.$$

Proof:

(1) Consider the first statement.

⇒ Assume $s \models \mathbb{P}_{>0}(\Diamond a)$. By the PCTL semantics, $Pr(s \models \Diamond a) > 0$. Thus, $\{\pi \in Paths(s) \mid \pi \models \Diamond a\} \neq \emptyset$, and hence, $s \models \exists \Diamond a$.

(1)
$$\mathbb{P}_{>0}(\Diamond a) \equiv \exists \Diamond a \text{ and } (2) \mathbb{P}_{=1}(\Box a) \equiv \forall \Box a.$$

Proof:

- (1) Consider the first statement.
 - ⇒ Assume $s \models \mathbb{P}_{>0}(\Diamond a)$. By the PCTL semantics, $Pr(s \models \Diamond a) > 0$. Thus, { $\pi \in Paths(s) \mid \pi \models \Diamond a$ } $\neq \emptyset$, and hence, $s \models \exists \Diamond a$.
 - $\Leftrightarrow \mathsf{Assume} \ s \models \exists \Diamond a,$

(1)
$$\mathbb{P}_{>0}(\Diamond a) \equiv \exists \Diamond a \text{ and } (2) \mathbb{P}_{=1}(\Box a) \equiv \forall \Box a.$$

Proof:

- ⇒ Assume $s \models \mathbb{P}_{>0}(\Diamond a)$. By the PCTL semantics, $Pr(s \models \Diamond a) > 0$. Thus, $\{\pi \in Paths(s) \mid \pi \models \Diamond a\} \neq \emptyset$, and hence, $s \models \exists \Diamond a$.
- $\leftarrow \text{ Assume } s \models \exists \Diamond a, \text{ i.e., there is a finite path } \hat{\pi} = s_0 s_1 \dots s_n \text{ with } s_0 = s \text{ and } s_n \models a.$

(1)
$$\mathbb{P}_{>0}(\Diamond a) \equiv \exists \Diamond a \text{ and } (2) \mathbb{P}_{=1}(\Box a) \equiv \forall \Box a.$$

Proof:

- ⇒ Assume $s \models \mathbb{P}_{>0}(\Diamond a)$. By the PCTL semantics, $Pr(s \models \Diamond a) > 0$. Thus, $\{\pi \in Paths(s) \mid \pi \models \Diamond a\} \neq \emptyset$, and hence, $s \models \exists \Diamond a$.
- \Leftarrow Assume $s \models \exists \Diamond a$, i.e., there is a finite path $\hat{\pi} = s_0 s_1 \dots s_n$ with $s_0 = s$ and $s_n \models a$. It follows that all paths in the cylinder set $Cyl(\hat{\pi})$ fulfill $\Diamond a$.

(1)
$$\mathbb{P}_{>0}(\Diamond a) \equiv \exists \Diamond a \text{ and } (2) \mathbb{P}_{=1}(\Box a) \equiv \forall \Box a.$$

Proof:

- ⇒ Assume $s \models \mathbb{P}_{>0}(\Diamond a)$. By the PCTL semantics, $Pr(s \models \Diamond a) > 0$. Thus, $\{\pi \in Paths(s) \mid \pi \models \Diamond a\} \neq \emptyset$, and hence, $s \models \exists \Diamond a$.
- \Leftarrow Assume $s \models \exists \Diamond a$, i.e., there is a finite path $\hat{\pi} = s_0 s_1 \dots s_n$ with $s_0 = s$ and $s_n \models a$. It follows that all paths in the cylinder set $Cyl(\hat{\pi})$ fulfill $\Diamond a$. Thus:

$$Pr(s \models \Diamond a) \ge Pr_s(Cyl(s_0 s_1 \dots s_n)) = \mathbf{P}(s_0 s_1 \dots s_n) > 0.$$

(1)
$$\mathbb{P}_{>0}(\Diamond a) \equiv \exists \Diamond a \text{ and } (2) \mathbb{P}_{=1}(\Box a) \equiv \forall \Box a.$$

Proof:

(1) Consider the first statement.

- ⇒ Assume $s \models \mathbb{P}_{>0}(\Diamond a)$. By the PCTL semantics, $Pr(s \models \Diamond a) > 0$. Thus, $\{\pi \in Paths(s) \mid \pi \models \Diamond a\} \neq \emptyset$, and hence, $s \models \exists \Diamond a$.
- \Leftarrow Assume $s \models \exists \Diamond a$, i.e., there is a finite path $\hat{\pi} = s_0 s_1 \dots s_n$ with $s_0 = s$ and $s_n \models a$. It follows that all paths in the cylinder set $Cyl(\hat{\pi})$ fulfill $\Diamond a$. Thus:

$$Pr(s \models \Diamond a) \ge Pr_s(Cyl(s_0 s_1 \dots s_n)) = \mathbf{P}(s_0 s_1 \dots s_n) > 0.$$

So, by the PCTL semantics we have: $s \models \mathbb{P}_{>0}(\Diamond a)$.

(1)
$$\mathbb{P}_{>0}(\Diamond a) \equiv \exists \Diamond a \text{ and } (2) \mathbb{P}_{=1}(\Box a) \equiv \forall \Box a.$$

Proof:

(1) Consider the first statement.

- ⇒ Assume $s \models \mathbb{P}_{>0}(\Diamond a)$. By the PCTL semantics, $Pr(s \models \Diamond a) > 0$. Thus, $\{\pi \in Paths(s) \mid \pi \models \Diamond a\} \neq \emptyset$, and hence, $s \models \exists \Diamond a$.
- \Leftarrow Assume $s \models \exists \Diamond a$, i.e., there is a finite path $\hat{\pi} = s_0 s_1 \dots s_n$ with $s_0 = s$ and $s_n \models a$. It follows that all paths in the cylinder set $Cyl(\hat{\pi})$ fulfill $\Diamond a$. Thus:

$$Pr(s \models \Diamond a) \ge Pr_s(Cyl(s_0 s_1 \dots s_n)) = \mathbf{P}(s_0 s_1 \dots s_n) > 0.$$

So, by the PCTL semantics we have: $s \models \mathbb{P}_{>0}(\Diamond a)$. (2) The second statement follows by duality.

(1) $\mathbb{P}_{>0}(\Diamond a) \equiv \exists \Diamond a \text{ and } (2) \mathbb{P}_{=1}(\Box a) \equiv \forall \Box a.$

(1)
$$\mathbb{P}_{>0}(\Diamond a) \equiv \exists \Diamond a \text{ and } (2) \mathbb{P}_{=1}(\Box a) \equiv \forall \Box a.$$

(3) $\mathbb{P}_{>0}(\Box a) \not\equiv \exists \Box a$

(1)
$$\mathbb{P}_{>0}(\Diamond a) \equiv \exists \Diamond a \text{ and } (2) \mathbb{P}_{=1}(\Box a) \equiv \forall \Box a.$$

(3) $\mathbb{P}_{>0}(\Box a) \not\equiv \exists \Box a \text{ and } (4) \mathbb{P}_{=1}(\Diamond a) \not\equiv \forall \Diamond a.$

(1)
$$\mathbb{P}_{>0}(\Diamond a) \equiv \exists \Diamond a \text{ and } (2) \mathbb{P}_{=1}(\Box a) \equiv \forall \Box a.$$

(3)
$$\mathbb{P}_{>0}(\Box a) \not\equiv \exists \Box a \text{ and } (4) \mathbb{P}_{=1}(\Diamond a) \not\equiv \forall \Diamond a.$$

Example

(1)
$$\mathbb{P}_{>0}(\Diamond a) \equiv \exists \Diamond a \text{ and } (2) \mathbb{P}_{=1}(\Box a) \equiv \forall \Box a.$$

(3)
$$\mathbb{P}_{>0}(\Box a) \not\equiv \exists \Box a \text{ and } (4) \mathbb{P}_{=1}(\Diamond a) \not\equiv \forall \Diamond a.$$

Example

Consider the second statement (4).

(1)
$$\mathbb{P}_{>0}(\Diamond a) \equiv \exists \Diamond a \text{ and } (2) \mathbb{P}_{=1}(\Box a) \equiv \forall \Box a.$$

(3)
$$\mathbb{P}_{>0}(\Box a) \not\equiv \exists \Box a \text{ and } (4) \mathbb{P}_{=1}(\Diamond a) \not\equiv \forall \Diamond a.$$

Example

Consider the second statement (4). Let s be a state in a (possibly infinite) DTMC.

(1)
$$\mathbb{P}_{>0}(\Diamond a) \equiv \exists \Diamond a \text{ and } (2) \mathbb{P}_{=1}(\Box a) \equiv \forall \Box a.$$

(3)
$$\mathbb{P}_{>0}(\Box a) \not\equiv \exists \Box a \text{ and } (4) \mathbb{P}_{=1}(\Diamond a) \not\equiv \forall \Diamond a.$$

Example

Consider the second statement (4). Let *s* be a state in a (possibly infinite) DTMC. Then: $s \models \forall \Diamond a$ implies $s \models \mathbb{P}_{=1}(\Diamond a)$.

(1)
$$\mathbb{P}_{>0}(\Diamond a) \equiv \exists \Diamond a \text{ and } (2) \mathbb{P}_{=1}(\Box a) \equiv \forall \Box a.$$

(3)
$$\mathbb{P}_{>0}(\Box a) \not\equiv \exists \Box a \text{ and } (4) \mathbb{P}_{=1}(\Diamond a) \not\equiv \forall \Diamond a.$$

Example

Consider the second statement (4). Let *s* be a state in a (possibly infinite) DTMC. Then: $s \models \forall \Diamond a$ implies $s \models \mathbb{P}_{=1}(\Diamond a)$. The reverse direction, however, does not hold.

(1)
$$\mathbb{P}_{>0}(\Diamond a) \equiv \exists \Diamond a \text{ and } (2) \mathbb{P}_{=1}(\Box a) \equiv \forall \Box a.$$

(3)
$$\mathbb{P}_{>0}(\Box a) \not\equiv \exists \Box a \text{ and } (4) \mathbb{P}_{=1}(\Diamond a) \not\equiv \forall \Diamond a.$$

Example

Consider the second statement (4). Let *s* be a state in a (possibly infinite) DTMC. Then: $s \models \forall \Diamond a$ implies $s \models \mathbb{P}_{=1}(\Diamond a)$. The reverse direction, however, does not hold. Consider the example DTMC:

(1)
$$\mathbb{P}_{>0}(\Diamond a) \equiv \exists \Diamond a \text{ and } (2) \mathbb{P}_{=1}(\Box a) \equiv \forall \Box a.$$

(3)
$$\mathbb{P}_{>0}(\Box a) \not\equiv \exists \Box a \text{ and } (4) \mathbb{P}_{=1}(\Diamond a) \not\equiv \forall \Diamond a.$$

Example

Consider the second statement (4). Let *s* be a state in a (possibly infinite) DTMC. Then: $s \models \forall \Diamond a$ implies $s \models \mathbb{P}_{=1}(\Diamond a)$. The reverse direction, however, does not hold. Consider the example DTMC:

 $s \models \mathbb{P}_{=1}(\Diamond a)$ as the probability of path s^{ω} is zero.

(1)
$$\mathbb{P}_{>0}(\Diamond a) \equiv \exists \Diamond a \text{ and } (2) \mathbb{P}_{=1}(\Box a) \equiv \forall \Box a.$$

(3)
$$\mathbb{P}_{>0}(\Box a) \not\equiv \exists \Box a \text{ and } (4) \mathbb{P}_{=1}(\Diamond a) \not\equiv \forall \Diamond a.$$

Example

Consider the second statement (4). Let *s* be a state in a (possibly infinite) DTMC. Then: $s \models \forall \Diamond a$ implies $s \models \mathbb{P}_{=1}(\Diamond a)$. The reverse direction, however, does not hold. Consider the example DTMC:

 $s \models \mathbb{P}_{=1}(\Diamond a)$ as the probability of path s^{ω} is zero. However, the path s^{ω} is possible and violates $\Diamond a$.
CTL versus qualitative **PCTL**

(1)
$$\mathbb{P}_{>0}(\Diamond a) \equiv \exists \Diamond a \text{ and } (2) \mathbb{P}_{=1}(\Box a) \equiv \forall \Box a.$$

(3)
$$\mathbb{P}_{>0}(\Box a) \not\equiv \exists \Box a \text{ and } (4) \mathbb{P}_{=1}(\Diamond a) \not\equiv \forall \Diamond a.$$

Example

Consider the second statement (4). Let *s* be a state in a (possibly infinite) DTMC. Then: $s \models \forall \Diamond a$ implies $s \models \mathbb{P}_{=1}(\Diamond a)$. The reverse direction, however, does not hold. Consider the example DTMC:

 $s \models \mathbb{P}_{=1}(\Diamond a)$ as the probability of path s^{ω} is zero. However, the path s^{ω} is possible and violates $\Diamond a$. Thus, $s \not\models \forall \Diamond a$.

18/36

CTL versus qualitative **PCTL**

(1)
$$\mathbb{P}_{>0}(\Diamond a) \equiv \exists \Diamond a \text{ and } (2) \mathbb{P}_{=1}(\Box a) \equiv \forall \Box a.$$

(3)
$$\mathbb{P}_{>0}(\Box a) \not\equiv \exists \Box a \text{ and } (4) \mathbb{P}_{=1}(\Diamond a) \not\equiv \forall \Diamond a.$$

Example

Consider the second statement (4). Let *s* be a state in a (possibly infinite) DTMC. Then: $s \models \forall \Diamond a$ implies $s \models \mathbb{P}_{=1}(\Diamond a)$. The reverse direction, however, does not hold. Consider the example DTMC:

 $s \models \mathbb{P}_{=1}(\Diamond a)$ as the probability of path s^{ω} is zero. However, the path s^{ω} is possible and violates $\Diamond a$. Thus, $s \not\models \forall \Diamond a$.

Statement (3) follows by duality.

Almost-sure-reachability not in CTL

Almost-sure-reachability not in CTL

1. There is no CTL formula that is equivalent to $\mathbb{P}_{=1}(\Diamond a)$.

Almost-sure-reachability not in CTL

- 1. There is no CTL formula that is equivalent to $\mathbb{P}_{=1}(\Diamond a)$.
- 2. There is no CTL formula that is equivalent to $\mathbb{P}_{>0}(\Box a)$.

Almost-sure-reachability not in CTL

- 1. There is no CTL formula that is equivalent to $\mathbb{P}_{=1}(\Diamond a)$.
- 2. There is no CTL formula that is equivalent to $\mathbb{P}_{>0}(\Box a)$.

Proof:

We provide the proof of 1.;

Almost-sure-reachability not in CTL

- 1. There is no CTL formula that is equivalent to $\mathbb{P}_{=1}(\Diamond a)$.
- 2. There is no CTL formula that is equivalent to $\mathbb{P}_{>0}(\Box a)$.

Proof:

We provide the proof of 1.; 2. follows by duality: $\mathbb{P}_{>0}(\Box a) \equiv \neg \mathbb{P}_{=1}(\Diamond \neg a)$.

Almost-sure-reachability not in CTL

- 1. There is no CTL formula that is equivalent to $\mathbb{P}_{=1}(\Diamond a)$.
- 2. There is no CTL formula that is equivalent to $\mathbb{P}_{>0}(\Box a)$.

Proof:

We provide the proof of 1.; 2. follows by duality: $\mathbb{P}_{>0}(\Box a) \equiv \neg \mathbb{P}_{=1}(\Diamond \neg a)$. By contraposition.

Almost-sure-reachability not in CTL

- 1. There is no CTL formula that is equivalent to $\mathbb{P}_{=1}(\Diamond a)$.
- 2. There is no CTL formula that is equivalent to $\mathbb{P}_{>0}(\Box a)$.

Proof:

We provide the proof of 1.; 2. follows by duality: $\mathbb{P}_{>0}(\Box a) \equiv \neg \mathbb{P}_{=1}(\Diamond \neg a)$. By contraposition. Assume $\Phi \equiv \mathbb{P}_{=1}(\Diamond a)$.

Almost-sure-reachability not in CTL

- 1. There is no CTL formula that is equivalent to $\mathbb{P}_{=1}(\Diamond a)$.
- 2. There is no CTL formula that is equivalent to $\mathbb{P}_{>0}(\Box a)$.

Proof:

We provide the proof of 1.; 2. follows by duality: $\mathbb{P}_{>0}(\Box a) \equiv \neg \mathbb{P}_{=1}(\Diamond \neg a)$. By contraposition. Assume $\Phi \equiv \mathbb{P}_{=1}(\Diamond a)$. Consider the infinite DTMC \mathcal{D}_p :

Almost-sure-reachability not in CTL

- 1. There is no CTL formula that is equivalent to $\mathbb{P}_{=1}(\Diamond a)$.
- 2. There is no CTL formula that is equivalent to $\mathbb{P}_{>0}(\Box a)$.

Proof:

We provide the proof of 1.; 2. follows by duality: $\mathbb{P}_{>0}(\Box a) \equiv \neg \mathbb{P}_{=1}(\Diamond \neg a)$. By contraposition. Assume $\Phi \equiv \mathbb{P}_{=1}(\Diamond a)$. Consider the infinite DTMC \mathcal{D}_p :

Almost-sure-reachability not in CTL

- 1. There is no CTL formula that is equivalent to $\mathbb{P}_{=1}(\Diamond a)$.
- 2. There is no CTL formula that is equivalent to $\mathbb{P}_{>0}(\Box a)$.

Proof:

We provide the proof of 1.; 2. follows by duality: $\mathbb{P}_{>0}(\Box a) \equiv \neg \mathbb{P}_{=1}(\Diamond \neg a)$. By contraposition. Assume $\Phi \equiv \mathbb{P}_{=1}(\Diamond a)$. Consider the infinite DTMC \mathcal{D}_p :

The value of *p* does affect reachability: $Pr(s \models \Diamond s_0) = \begin{cases} 1 & \text{if } p \leq \frac{1}{2} \\ < 1 & \text{if } p > \frac{1}{2} \end{cases}$

There is no CTL formula that is equivalent to $\mathbb{P}_{=1}(\Diamond a)$.

There is no CTL formula that is equivalent to $\mathbb{P}_{=1}(\Diamond a)$.

Proof:

We have:
$$Pr(s \models \Diamond s_0) = \begin{cases} 1 & \text{if } p \leq \frac{1}{2} \\ < 1 & \text{if } p > \frac{1}{2} \end{cases}$$

There is no CTL formula that is equivalent to $\mathbb{P}_{=1}(\Diamond a)$.

Proof:

We have:
$$Pr(s \models \Diamond s_0) = \begin{cases} 1 & \text{if } p \leq \frac{1}{2} \\ < 1 & \text{if } p > \frac{1}{2} \end{cases}$$

Thus, in $\mathcal{D}_{\frac{1}{4}}$ we have $s \models \mathbb{P}_{=1}(\Diamond s_0)$ for all states s,

There is no CTL formula that is equivalent to $\mathbb{P}_{=1}(\Diamond a)$.

Proof:

We have:
$$Pr(s \models \Diamond s_0) = \begin{cases} 1 & \text{if } p \leq \frac{1}{2} \\ < 1 & \text{if } p > \frac{1}{2} \end{cases}$$

Thus, in $\mathcal{D}_{\frac{1}{4}}$ we have $s \models \mathbb{P}_{=1}(\Diamond s_0)$ for all states s, while in $\mathcal{D}_{\frac{3}{4}}$, e.g., $s_1 \not\models \mathbb{P}_{=1}(\Diamond s_0)$.

There is no CTL formula that is equivalent to $\mathbb{P}_{=1}(\Diamond a)$.

Proof:

We have:
$$Pr(s \models \Diamond s_0) = \begin{cases} 1 & \text{if } p \leq \frac{1}{2} \\ <1 & \text{if } p > \frac{1}{2} \end{cases}$$

Thus, in $\mathcal{D}_{\frac{1}{4}}$ we have $s \models \mathbb{P}_{=1}(\Diamond s_0)$ for all states s, while in $\mathcal{D}_{\frac{3}{4}}$, e.g., $s_1 \not\models \mathbb{P}_{=1}(\Diamond s_0)$. Hence: $s_1 \in Sat_{\mathcal{D}_{\frac{1}{4}}}(\mathbb{P}_{=1}(\Diamond s_0))$ but $s_1 \notin Sat_{\mathcal{D}_{\frac{3}{4}}}(\mathbb{P}_{=1}(\Diamond s_0))$.

There is no CTL formula that is equivalent to $\mathbb{P}_{=1}(\Diamond a)$.

Proof:

We have:
$$Pr(s \models \Diamond s_0) = \begin{cases} 1 & \text{if } p \leq \frac{1}{2} \\ <1 & \text{if } p > \frac{1}{2} \end{cases}$$

Thus, in $\mathcal{D}_{\frac{1}{4}}$ we have $s \models \mathbb{P}_{=1}(\Diamond s_0)$ for all states s, while in $\mathcal{D}_{\frac{3}{4}}$, e.g., $s_1 \not\models \mathbb{P}_{=1}(\Diamond s_0)$. Hence: $s_1 \in Sat_{\mathcal{D}_{\frac{1}{4}}}(\mathbb{P}_{=1}(\Diamond s_0))$ but $s_1 \notin Sat_{\mathcal{D}_{\frac{3}{4}}}(\mathbb{P}_{=1}(\Diamond s_0))$. For CTL-formula Φ —by assumption $\Phi \equiv \mathbb{P}_{=1}(\Diamond s_0)$ — we have:

There is no CTL formula that is equivalent to $\mathbb{P}_{=1}(\Diamond a)$.

Proof:

We have:
$$Pr(s \models \Diamond s_0) = \begin{cases} 1 & \text{if } p \leq \frac{1}{2} \\ < 1 & \text{if } p > \frac{1}{2} \end{cases}$$

Thus, in $\mathcal{D}_{\frac{1}{4}}$ we have $s \models \mathbb{P}_{=1}(\Diamond s_0)$ for all states s, while in $\mathcal{D}_{\frac{3}{4}}$, e.g., $s_1 \not\models \mathbb{P}_{=1}(\Diamond s_0)$. Hence: $s_1 \in Sat_{\mathcal{D}_{\frac{1}{4}}}(\mathbb{P}_{=1}(\Diamond s_0))$ but $s_1 \notin Sat_{\mathcal{D}_{\frac{3}{4}}}(\mathbb{P}_{=1}(\Diamond s_0))$. For CTL-formula Φ —by assumption $\Phi \equiv \mathbb{P}_{=1}(\Diamond s_0)$ — we have:

$$Sat_{\mathcal{D}_{\frac{1}{4}}}(\Phi) = Sat_{\mathcal{D}_{\frac{3}{4}}}(\Phi).$$

There is no CTL formula that is equivalent to $\mathbb{P}_{=1}(\Diamond a)$.

Proof:

We have:
$$Pr(s \models \Diamond s_0) = \begin{cases} 1 & \text{if } p \leq \frac{1}{2} \\ < 1 & \text{if } p > \frac{1}{2} \end{cases}$$

Thus, in $\mathcal{D}_{\frac{1}{4}}$ we have $s \models \mathbb{P}_{=1}(\Diamond s_0)$ for all states s, while in $\mathcal{D}_{\frac{3}{4}}$, e.g., $s_1 \not\models \mathbb{P}_{=1}(\Diamond s_0)$. Hence: $s_1 \in Sat_{\mathcal{D}_{\frac{1}{4}}}(\mathbb{P}_{=1}(\Diamond s_0))$ but $s_1 \notin Sat_{\mathcal{D}_{\frac{3}{4}}}(\mathbb{P}_{=1}(\Diamond s_0))$. For CTL-formula Φ —by assumption $\Phi \equiv \mathbb{P}_{=1}(\Diamond s_0)$ — we have:

$$Sat_{\mathcal{D}_{\frac{1}{4}}}(\Phi) = Sat_{\mathcal{D}_{\frac{3}{4}}}(\Phi).$$

Hence, state s_1 either fulfills the CTL formula Φ in both DTMCs or in none of them.

There is no CTL formula that is equivalent to $\mathbb{P}_{=1}(\Diamond a)$.

Proof:

We have:
$$Pr(s \models \Diamond s_0) = \begin{cases} 1 & \text{if } p \leq \frac{1}{2} \\ < 1 & \text{if } p > \frac{1}{2} \end{cases}$$

Thus, in $\mathcal{D}_{\frac{1}{4}}$ we have $s \models \mathbb{P}_{=1}(\Diamond s_0)$ for all states s, while in $\mathcal{D}_{\frac{3}{4}}$, e.g., $s_1 \not\models \mathbb{P}_{=1}(\Diamond s_0)$. Hence: $s_1 \in Sat_{\mathcal{D}_{\frac{1}{4}}}(\mathbb{P}_{=1}(\Diamond s_0))$ but $s_1 \notin Sat_{\mathcal{D}_{\frac{3}{4}}}(\mathbb{P}_{=1}(\Diamond s_0))$. For CTL-formula Φ —by assumption $\Phi \equiv \mathbb{P}_{=1}(\Diamond s_0)$ — we have:

$$Sat_{\mathcal{D}_{\frac{1}{4}}}(\Phi) = Sat_{\mathcal{D}_{\frac{3}{4}}}(\Phi).$$

Hence, state s_1 either fulfills the CTL formula Φ in both DTMCs or in none of them. This, however, contradicts $\Phi \equiv \mathbb{P}_{=1}(\Diamond s_0)$.

The proof relies on the fact that the satisfaction of $\mathbb{P}_{=1}(\Diamond a)$ for infinite DTMCs may depend on the precise value of the transition probabilities, while CTL just refers to the underlying graph of a DTMC.

The proof relies on the fact that the satisfaction of $\mathbb{P}_{=1}(\Diamond a)$ for infinite DTMCs may depend on the precise value of the transition probabilities, while CTL just refers to the underlying graph of a DTMC. For finite DTMCs, the previous result does not hold.

The proof relies on the fact that the satisfaction of $\mathbb{P}_{=1}(\Diamond a)$ for infinite DTMCs may depend on the precise value of the transition probabilities, while CTL just refers to the underlying graph of a DTMC. For finite DTMCs, the previous result does not hold.

For each finite DTMC \mathcal{D} it holds that:

$$\mathbb{P}_{=1}(\Diamond a) \equiv \forall ((\exists \Diamond a) \mathsf{W} a)$$

where W is the weak until operator defined by $\Phi W \Psi = (\Phi U \Psi) \vee \Box \Phi$.

The proof relies on the fact that the satisfaction of $\mathbb{P}_{=1}(\Diamond a)$ for infinite DTMCs may depend on the precise value of the transition probabilities, while CTL just refers to the underlying graph of a DTMC. For finite DTMCs, the previous result does not hold.

For each finite DTMC ${\mathcal D}$ it holds that:

$$\mathbb{P}_{=1}(\Diamond a) \equiv \forall ((\exists \Diamond a) \mathsf{W} a)$$

where W is the weak until operator defined by $\Phi W \Psi = (\Phi U \Psi) \vee \Box \Phi$.

Proof:

Exercise.

1. There is no qualitative PCTL formula that is equivalent to $\forall \Diamond a$.

- 1. There is no qualitative PCTL formula that is equivalent to $\forall \Diamond a$.
- 2. There is no qualitative PCTL formula that is equivalent to $\exists \Box a$.

- 1. There is no qualitative PCTL formula that is equivalent to $\forall \Diamond a$.
- 2. There is no qualitative PCTL formula that is equivalent to $\exists \Box a$.

Proof:

- 1. There is no qualitative PCTL formula that is equivalent to $\forall \Diamond a$.
- 2. There is no qualitative PCTL formula that is equivalent to $\exists \Box a$.

Proof:

Proof of the first claim on the black board.

- 1. There is no qualitative PCTL formula that is equivalent to $\forall \Diamond a$.
- 2. There is no qualitative PCTL formula that is equivalent to $\exists \Box a$.

Proof:

Proof of the first claim on the black board. The second claim follows by duality since $\forall \Diamond a \equiv \neg \exists \Box \neg a$.

Qualitative PCTL versus CTL

Incomparable expressiveness

Qualitative PCTL and CTL have incomparable expressiveness; e.g., $\forall \Diamond a$ cannot be expressed in qualitative PCTL and $\mathbb{P}_{=1}(\Diamond a)$ cannot be expressed in CTL.

Overview

Introduction

2 Qualitative PCTL

- 3 Computation Tree Logic
- 4 CTL versus qualitative PCTL
- 5 Fair CTL versus qualitative PCTL
- 6 Repeated reachability and persistence

7 Summary
Remark

Remark

The existence of unfair computations (in particular s_n^{ω} is vital in the proof of the result that $\forall \Diamond$ is not expressible in qualitative PCTL.

Remark

The existence of unfair computations (in particular s_n^{ω} is vital in the proof of the result that $\forall \Diamond$ is not expressible in qualitative PCTL. In fact, under appropriate fairness constraints, we yield $\forall \Diamond a \equiv \mathbb{P}_{=1}(\Diamond a)$.

Remark

The existence of unfair computations (in particular s_n^{ω} is vital in the proof of the result that $\forall \Diamond$ is not expressible in qualitative PCTL. In fact, under appropriate fairness constraints, we yield $\forall \Diamond a \equiv \mathbb{P}_{=1}(\Diamond a)$.

Strong fairness

Remark

The existence of unfair computations (in particular s_n^{ω} is vital in the proof of the result that $\forall \Diamond$ is not expressible in qualitative PCTL. In fact, under appropriate fairness constraints, we yield $\forall \Diamond a \equiv \mathbb{P}_{=1}(\Diamond a)$.

Strong fairness

Assume D is a finite DTMC and that any state s in D is uniquely characterized by an atomic proposition, say s.

Remark

The existence of unfair computations (in particular s_n^{ω} is vital in the proof of the result that $\forall \Diamond$ is not expressible in qualitative PCTL. In fact, under appropriate fairness constraints, we yield $\forall \Diamond a \equiv \mathbb{P}_{=1}(\Diamond a)$.

Strong fairness

Assume D is a finite DTMC and that any state s in D is uniquely characterized by an atomic proposition, say s. The *(strong) fairness* constraint *fair* is defined by:

$$fair = \bigwedge_{s \in S} \bigwedge_{t \in Post(s)} (\Box \Diamond s \to \Box \Diamond t).$$

Remark

The existence of unfair computations (in particular s_n^{ω} is vital in the proof of the result that $\forall \Diamond$ is not expressible in qualitative PCTL. In fact, under appropriate fairness constraints, we yield $\forall \Diamond a \equiv \mathbb{P}_{=1}(\Diamond a)$.

Strong fairness

Assume D is a finite DTMC and that any state s in D is uniquely characterized by an atomic proposition, say s. The *(strong) fairness* constraint *fair* is defined by:

$$fair = \bigwedge_{s \in S} \bigwedge_{t \in Post(s)} (\Box \Diamond s \to \Box \Diamond t).$$

It asserts that when a state s is visited infinitely often, then any of its direct successors is visited infinitely often too.

Fair CTL versus qualitative PCTL

Fair CTL

Fair paths

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems 27/36

Fair paths

In fair CTL, path formulas are interpreted over fair infinite paths, i.e., paths π that satisfy

$$fair = \bigwedge_{s \in S} \bigwedge_{t \in Post(s)} (\Box \Diamond s \to \Box \Diamond t).$$

Fair paths

In fair CTL, path formulas are interpreted over fair infinite paths, i.e., paths π that satisfy

$$fair = \bigwedge_{s \in S} \bigwedge_{t \in Post(s)} (\Box \Diamond s \to \Box \Diamond t).$$

A path π such that $\pi \models fair$ is called fair.

Fair paths

In fair CTL, path formulas are interpreted over fair infinite paths, i.e., paths π that satisfy

$$fair = \bigwedge_{s \in S} \bigwedge_{t \in Post(s)} (\Box \Diamond s \to \Box \Diamond t).$$

A path π such that $\pi \models fair$ is called fair. Let $Paths_{fair}(s)$ be the set of fair paths starting in *s*.

Fair paths

In fair CTL, path formulas are interpreted over fair infinite paths, i.e., paths π that satisfy

$$fair = \bigwedge_{s \in S} \bigwedge_{t \in Post(s)} (\Box \Diamond s \to \Box \Diamond t).$$

A path π such that $\pi \models fair$ is called fair. Let $Paths_{fair}(s)$ be the set of fair paths starting in *s*.

Fair CTL semantics

Fair paths

In fair CTL, path formulas are interpreted over fair infinite paths, i.e., paths π that satisfy

$$fair = \bigwedge_{s \in S} \bigwedge_{t \in Post(s)} (\Box \Diamond s \to \Box \Diamond t).$$

A path π such that $\pi \models fair$ is called fair. Let $Paths_{fair}(s)$ be the set of fair paths starting in *s*.

Fair CTL semantics

The fair semantics of CTL is defined by the satisfaction \models_{fair} which is defined as \models for the CTL semantics, except that:

Fair paths

In fair CTL, path formulas are interpreted over fair infinite paths, i.e., paths π that satisfy

$$fair = \bigwedge_{s \in S} \bigwedge_{t \in Post(s)} (\Box \Diamond s \to \Box \Diamond t).$$

A path π such that $\pi \models fair$ is called fair. Let $Paths_{fair}(s)$ be the set of fair paths starting in *s*.

Fair CTL semantics

The fair semantics of CTL is defined by the satisfaction \models_{fair} which is defined as \models for the CTL semantics, except that:

 $s \models_{fair} \exists \varphi$ iff there exists $\pi \in Paths_{fair}(s)$. $\pi \models_{fair} \varphi$

Fair paths

In fair CTL, path formulas are interpreted over fair infinite paths, i.e., paths π that satisfy

$$fair = \bigwedge_{s \in S} \bigwedge_{t \in Post(s)} (\Box \Diamond s \to \Box \Diamond t).$$

A path π such that $\pi \models fair$ is called fair. Let $Paths_{fair}(s)$ be the set of fair paths starting in *s*.

Fair CTL semantics

The fair semantics of CTL is defined by the satisfaction \models_{fair} which is defined as \models for the CTL semantics, except that:

 $s \models_{fair} \exists \varphi$ iff there exists $\pi \in Paths_{fair}(s)$. $\pi \models_{fair} \varphi$ $s \models_{fair} \forall \varphi$ iff for all $\pi \in Paths_{fair}(s)$. $\pi \models_{fair} \varphi$.

Qualitative PCTL versus fair CTL theorem

Qualitative PCTL versus fair CTL theorem

$$s \models \mathbb{P}_{=1}(\Diamond a)$$
 iff $s \models_{fair} \forall \Diamond a$

Qualitative PCTL versus fair CTL theorem

$$\begin{split} s &\models \mathbb{P}_{=1}(\Diamond a) & \text{iff} \quad s \models_{fair} \forall \Diamond a \\ s &\models \mathbb{P}_{>0}(\Box a) & \text{iff} \quad s \models_{fair} \exists \Box a \end{split}$$

Qualitative PCTL versus fair CTL theorem

$$\begin{split} s &\models \mathbb{P}_{=1}(\Diamond a) & \text{iff} \quad s \models_{fair} \forall \Diamond a \\ s &\models \mathbb{P}_{>0}(\Box a) & \text{iff} \quad s \models_{fair} \exists \Box a \\ s &\models \mathbb{P}_{=1}(a \cup b) & \text{iff} \quad s \models_{fair} \forall (a \cup b) \end{split}$$

Qualitative PCTL versus fair CTL theorem

$$s \models \mathbb{P}_{=1}(\Diamond a) \quad \text{iff} \quad s \models_{fair} \forall \Diamond a$$
$$s \models \mathbb{P}_{>0}(\Box a) \quad \text{iff} \quad s \models_{fair} \exists \Box a$$
$$s \models \mathbb{P}_{=1}(a \cup b) \quad \text{iff} \quad s \models_{fair} \forall (a \cup b)$$
$$s \models \mathbb{P}_{>0}(a \cup b) \quad \text{iff} \quad s \models_{fair} \exists (a \cup b)$$

Qualitative PCTL versus fair CTL theorem

Let s be an arbitrary state in a finite DTMC. Then:

$$s \models \mathbb{P}_{=1}(\Diamond a) \quad \text{iff} \quad s \models_{fair} \forall \Diamond a$$

$$s \models \mathbb{P}_{>0}(\Box a) \quad \text{iff} \quad s \models_{fair} \exists \Box a$$

$$s \models \mathbb{P}_{=1}(a \cup b) \quad \text{iff} \quad s \models_{fair} \forall (a \cup b)$$

$$s \models \mathbb{P}_{>0}(a \cup b) \quad \text{iff} \quad s \models_{fair} \exists (a \cup b)$$

Proof:

Qualitative PCTL versus fair CTL theorem

Let s be an arbitrary state in a finite DTMC. Then:

$$s \models \mathbb{P}_{=1}(\Diamond a) \quad \text{iff} \quad s \models_{fair} \forall \Diamond a$$

$$s \models \mathbb{P}_{>0}(\Box a) \quad \text{iff} \quad s \models_{fair} \exists \Box a$$

$$s \models \mathbb{P}_{=1}(a \cup b) \quad \text{iff} \quad s \models_{fair} \forall (a \cup b)$$

$$s \models \mathbb{P}_{>0}(a \cup b) \quad \text{iff} \quad s \models_{fair} \exists (a \cup b)$$

Proof:

Using the fairness theorem (cf. Lecture 4):

Qualitative PCTL versus fair CTL theorem

Let s be an arbitrary state in a finite DTMC. Then:

$$s \models \mathbb{P}_{=1}(\Diamond a) \quad \text{iff} \quad s \models_{fair} \forall \Diamond a$$

$$s \models \mathbb{P}_{>0}(\Box a) \quad \text{iff} \quad s \models_{fair} \exists \Box a$$

$$s \models \mathbb{P}_{=1}(a \cup b) \quad \text{iff} \quad s \models_{fair} \forall (a \cup b)$$

$$s \models \mathbb{P}_{>0}(a \cup b) \quad \text{iff} \quad s \models_{fair} \exists (a \cup b)$$

Proof:

Using the fairness theorem (cf. Lecture 4): for (possibly infinite) DTMC D and s, t states in D:

$$Pr(s \models \Box \Diamond t) = Pr(s \models \bigwedge_{u \in Post^{*}(t)} \Box \Diamond u).$$

Qualitative PCTL versus fair CTL theorem

Let s be an arbitrary state in a finite DTMC. Then:

$$s \models \mathbb{P}_{=1}(\Diamond a) \quad \text{iff} \quad s \models_{fair} \forall \Diamond a$$

$$s \models \mathbb{P}_{>0}(\Box a) \quad \text{iff} \quad s \models_{fair} \exists \Box a$$

$$s \models \mathbb{P}_{=1}(a \cup b) \quad \text{iff} \quad s \models_{fair} \forall (a \cup b)$$

$$s \models \mathbb{P}_{>0}(a \cup b) \quad \text{iff} \quad s \models_{fair} \exists (a \cup b)$$

Proof:

Using the fairness theorem (cf. Lecture 4): for (possibly infinite) DTMC D and s, t states in D:

$$\Pr(s \models \Box \Diamond t) = \Pr(s \models \bigwedge_{u \in Post^{*}(t)} \Box \Diamond u).$$

In addition, we use that from every reachable state at least one fair path starts.

Qualitative PCTL versus fair CTL theorem

Let s be an arbitrary state in a finite DTMC. Then:

$$s \models \mathbb{P}_{=1}(\Diamond a) \quad \text{iff} \quad s \models_{fair} \forall \Diamond a$$

$$s \models \mathbb{P}_{>0}(\Box a) \quad \text{iff} \quad s \models_{fair} \exists \Box a$$

$$s \models \mathbb{P}_{=1}(a \cup b) \quad \text{iff} \quad s \models_{fair} \forall (a \cup b)$$

$$s \models \mathbb{P}_{>0}(a \cup b) \quad \text{iff} \quad s \models_{fair} \exists (a \cup b)$$

Proof:

Using the fairness theorem (cf. Lecture 4): for (possibly infinite) DTMC D and s, t states in D:

$$Pr(s \models \Box \Diamond t) = Pr(s \models \bigwedge_{u \in Post^*(t)} \Box \Diamond u).$$

In addition, we use that from every reachable state at least one fair path starts. Similar arguments hold for infinite DTMCs (where *fair* is interpreted as infinitary conjunction.)

Qualitative PCTL versus fair CTL

Comparable expressiveness

Qualitative PCTL and fair CTL are equally expressive for finite Markov chains.

Overview

Introduction

2 Qualitative PCTL

- 3 Computation Tree Logic
- 4 CTL versus qualitative PCTL
- 5 Fair CTL versus qualitative PCTL
- 6 Repeated reachability and persistence

7 Summary

Almost sure repeated reachability is PCTL-definable

Almost sure repeated reachability is PCTL-definable

For finite DTMC \mathcal{D} , state $s \in S$ and $G \subseteq S$:

Almost sure repeated reachability is PCTL-definable

For finite DTMC \mathcal{D} , state $s \in S$ and $G \subseteq S$:

 $s \models \mathbb{P}_{=1}(\Box \mathbb{P}_{=1}(\Diamond G)) \quad \text{iff} \quad Pr_s\{\pi \in Paths(s) \mid \pi \models \Box \Diamond G\} = 1.$

Almost sure repeated reachability is PCTL-definable

For finite DTMC \mathcal{D} , state $s \in S$ and $G \subseteq S$:

 $s \models \mathbb{P}_{=1}(\Box \mathbb{P}_{=1}(\Diamond G)) \quad \text{iff} \quad Pr_s\{\pi \in Paths(s) \mid \pi \models \Box \Diamond G\} = 1.$

We abbreviate $\mathbb{P}_{=1}(\Box \mathbb{P}_{=1}(\Diamond G))$ by $\mathbb{P}_{=1}(\Box \Diamond G)$.

Almost sure repeated reachability is PCTL-definable

For finite DTMC \mathcal{D} , state $s \in S$ and $G \subseteq S$:

 $s \models \mathbb{P}_{=1}(\Box \mathbb{P}_{=1}(\Diamond G)) \quad \text{iff} \quad Pr_s\{\pi \in Paths(s) \mid \pi \models \Box \Diamond G\} = 1.$

We abbreviate $\mathbb{P}_{=1}(\Box \mathbb{P}_{=1}(\Diamond G))$ by $\mathbb{P}_{=1}(\Box \Diamond G)$.

Proof:

On the blackboard.

Almost sure repeated reachability is PCTL-definable

For finite DTMC \mathcal{D} , state $s \in S$ and $G \subseteq S$:

 $s \models \mathbb{P}_{=1}(\Box \mathbb{P}_{=1}(\Diamond G)) \quad \text{iff} \quad Pr_s\{\pi \in Paths(s) \mid \pi \models \Box \Diamond G\} = 1.$

We abbreviate $\mathbb{P}_{=1}(\Box \mathbb{P}_{=1}(\Diamond G))$ by $\mathbb{P}_{=1}(\Box \Diamond G)$.

Proof:

On the blackboard.

Remark:
Almost sure repeated reachability

Almost sure repeated reachability is PCTL-definable

For finite DTMC \mathcal{D} , state $s \in S$ and $G \subseteq S$:

 $s \models \mathbb{P}_{=1}(\Box \mathbb{P}_{=1}(\Diamond G)) \quad \text{iff} \quad Pr_s\{\pi \in Paths(s) \mid \pi \models \Box \Diamond G\} = 1.$

We abbreviate $\mathbb{P}_{=1}(\Box \mathbb{P}_{=1}(\Diamond G))$ by $\mathbb{P}_{=1}(\Box \Diamond G)$.

Proof:

On the blackboard.

Remark:

For CTL, universal repeated reachability properties can be formalized by the combination of the modalities $\forall \Box$ and $\forall \Diamond$:

$$s \models \forall \Box \forall \Diamond G$$
 iff $\pi \models \Box \Diamond G$ for all $\pi \in Paths(s)$.

Repeated reachability probabilities are PCTL-definable

Repeated reachability probabilities are PCTL-definable

For finite DTMC \mathcal{D} , state $s \in S$, $G \subseteq S$ and interval $J \subseteq [0, 1]$ we have:

$$s \models \underbrace{\mathbb{P}_{J}(\Diamond \mathbb{P}_{=1}(\Box \mathbb{P}_{=1}(\Diamond G)))}_{=\mathbb{P}_{J}(\Box \Diamond G)} \quad \text{if and only if} \quad Pr(s \models \Box \Diamond G) \in J.$$

Repeated reachability probabilities are PCTL-definable

For finite DTMC \mathcal{D} , state $s \in S$, $G \subseteq S$ and interval $J \subseteq [0, 1]$ we have:

$$s \models \underbrace{\mathbb{P}_{J}(\Diamond \mathbb{P}_{=1}(\Box \mathbb{P}_{=1}(\Diamond G)))}_{=\mathbb{P}_{J}(\Box \Diamond G)} \quad \text{if and only if} \quad Pr(s \models \Box \Diamond G) \in J.$$

Proof:

Repeated reachability probabilities are PCTL-definable

For finite DTMC \mathcal{D} , state $s \in S$, $G \subseteq S$ and interval $J \subseteq [0, 1]$ we have:

$$s \models \underbrace{\mathbb{P}_{J}(\Diamond \mathbb{P}_{=1}(\Box \mathbb{P}_{=1}(\Diamond G)))}_{=\mathbb{P}_{J}(\Box \Diamond G)} \quad \text{if and only if} \quad Pr(s \models \Box \Diamond G) \in J.$$

Proof:

By the long run theorem (cf. Lecture 4), almost surely a BSCC T will be reached and each of its states will be visited infinitely often.

Repeated reachability probabilities are PCTL-definable

For finite DTMC \mathcal{D} , state $s \in S$, $G \subseteq S$ and interval $J \subseteq [0, 1]$ we have:

$$s \models \underbrace{\mathbb{P}_{J}(\Diamond \mathbb{P}_{=1}(\Box \mathbb{P}_{=1}(\Diamond G)))}_{=\mathbb{P}_{J}(\Box \Diamond G)} \quad \text{if and only if} \quad Pr(s \models \Box \Diamond G) \in J.$$

Proof:

By the long run theorem (cf. Lecture 4), almost surely a BSCC T will be reached and each of its states will be visited infinitely often. Thus, the probabilities for $\Box \diamondsuit G$ agree with the probability to reach a BSCC T that contains a state in G.

Repeated reachability probabilities are PCTL-definable

For finite DTMC \mathcal{D} , state $s \in S$, $G \subseteq S$ and interval $J \subseteq [0, 1]$ we have:

$$s \models \underbrace{\mathbb{P}_{J}(\Diamond \mathbb{P}_{=1}(\Box \mathbb{P}_{=1}(\Diamond G)))}_{=\mathbb{P}_{J}(\Box \Diamond G)} \quad \text{if and only if} \quad Pr(s \models \Box \Diamond G) \in J.$$

Proof:

By the long run theorem (cf. Lecture 4), almost surely a BSCC T will be reached and each of its states will be visited infinitely often. Thus, the probabilities for $\Box \diamondsuit G$ agree with the probability to reach a BSCC T that contains a state in G.

Remark:

Repeated reachability probabilities are PCTL-definable

For finite DTMC \mathcal{D} , state $s \in S$, $G \subseteq S$ and interval $J \subseteq [0, 1]$ we have:

$$s \models \underbrace{\mathbb{P}_{J}(\Diamond \mathbb{P}_{=1}(\Box \mathbb{P}_{=1}(\Diamond G)))}_{=\mathbb{P}_{J}(\Box \Diamond G)} \quad \text{if and only if} \quad Pr(s \models \Box \Diamond G) \in J.$$

Proof:

By the long run theorem (cf. Lecture 4), almost surely a BSCC T will be reached and each of its states will be visited infinitely often. Thus, the probabilities for $\Box \diamondsuit G$ agree with the probability to reach a BSCC T that contains a state in G.

Remark:

By the above theorem, $\mathbb{P}_{>0}(\Box \Diamond G)$ is PCTL definable.

Repeated reachability probabilities are PCTL-definable

For finite DTMC \mathcal{D} , state $s \in S$, $G \subseteq S$ and interval $J \subseteq [0, 1]$ we have:

$$s \models \underbrace{\mathbb{P}_{J}(\Diamond \mathbb{P}_{=1}(\Box \mathbb{P}_{=1}(\Diamond G)))}_{=\mathbb{P}_{J}(\Box \Diamond G)} \quad \text{if and only if} \quad Pr(s \models \Box \Diamond G) \in J.$$

Proof:

By the long run theorem (cf. Lecture 4), almost surely a BSCC T will be reached and each of its states will be visited infinitely often. Thus, the probabilities for $\Box \diamondsuit G$ agree with the probability to reach a BSCC T that contains a state in G.

Remark:

By the above theorem, $\mathbb{P}_{>0}(\Box \Diamond G)$ is PCTL definable. Note that $\exists \Box \Diamond G$ is not CTL-definable

Repeated reachability probabilities are PCTL-definable

For finite DTMC \mathcal{D} , state $s \in S$, $G \subseteq S$ and interval $J \subseteq [0, 1]$ we have:

$$s \models \underbrace{\mathbb{P}_{J}(\Diamond \mathbb{P}_{=1}(\Box \mathbb{P}_{=1}(\Diamond G)))}_{=\mathbb{P}_{J}(\Box \Diamond G)} \quad \text{if and only if} \quad Pr(s \models \Box \Diamond G) \in J.$$

Proof:

By the long run theorem (cf. Lecture 4), almost surely a BSCC T will be reached and each of its states will be visited infinitely often. Thus, the probabilities for $\Box \diamondsuit G$ agree with the probability to reach a BSCC T that contains a state in G.

Remark:

By the above theorem, $\mathbb{P}_{>0}(\Box \Diamond G)$ is PCTL definable. Note that $\exists \Box \Diamond G$ is not CTL-definable (but definable in a combination of CTL and LTL, called CTL*).

Almost sure persistence is PCTL-definable

Almost sure persistence is PCTL-definable

For finite DTMC \mathcal{D} , state $s \in S$ and $G \subseteq S$:

 $s \models \mathbb{P}_{=1}(\Diamond \mathbb{P}_{=1}(\Box G)) \quad \text{iff} \quad Pr_s\{\pi \in Paths(s) \mid \pi \models \Diamond \Box G\} = 1.$

Almost sure persistence is PCTL-definable

For finite DTMC \mathcal{D} , state $s \in S$ and $G \subseteq S$:

 $s \models \mathbb{P}_{=1}(\Diamond \mathbb{P}_{=1}(\Box G)) \quad \text{iff} \quad Pr_s\{\pi \in Paths(s) \mid \pi \models \Diamond \Box G\} = 1.$

We abbreviate $\mathbb{P}_{=1}(\Diamond \mathbb{P}_{=1}(\Box G))$ by $\mathbb{P}_{=1}(\Diamond \Box G)$.

Almost sure persistence is PCTL-definable

For finite DTMC \mathcal{D} , state $s \in S$ and $G \subseteq S$:

 $s \models \mathbb{P}_{=1}(\Diamond \mathbb{P}_{=1}(\Box G)) \quad \text{iff} \quad Pr_s\{\pi \in Paths(s) \mid \pi \models \Diamond \Box G\} = 1.$

We abbreviate $\mathbb{P}_{=1}(\Diamond \mathbb{P}_{=1}(\Box G))$ by $\mathbb{P}_{=1}(\Diamond \Box G)$.

Proof:

Left as an exercise.

Almost sure persistence is PCTL-definable

For finite DTMC \mathcal{D} , state $s \in S$ and $G \subseteq S$:

 $s \models \mathbb{P}_{=1}(\Diamond \mathbb{P}_{=1}(\Box G)) \quad \text{iff} \quad Pr_s\{\pi \in Paths(s) \mid \pi \models \Diamond \Box G\} = 1.$

We abbreviate $\mathbb{P}_{=1}(\Diamond \mathbb{P}_{=1}(\Box G))$ by $\mathbb{P}_{=1}(\Diamond \Box G)$.

Proof:

Left as an exercise.

Remark:

Almost sure persistence is PCTL-definable

For finite DTMC \mathcal{D} , state $s \in S$ and $G \subseteq S$:

 $s \models \mathbb{P}_{=1}(\Diamond \mathbb{P}_{=1}(\Box G)) \quad \text{iff} \quad Pr_s\{\pi \in Paths(s) \mid \pi \models \Diamond \Box G\} = 1.$

We abbreviate $\mathbb{P}_{=1}(\Diamond \mathbb{P}_{=1}(\Box G))$ by $\mathbb{P}_{=1}(\Diamond \Box G)$.

Proof:

Left as an exercise.

Remark:

Note that $\forall \Diamond \Box G$ is not CTL-definable.

Almost sure persistence is PCTL-definable

For finite DTMC \mathcal{D} , state $s \in S$ and $G \subseteq S$:

 $s \models \mathbb{P}_{=1}(\Diamond \mathbb{P}_{=1}(\Box G)) \quad \text{iff} \quad Pr_s\{\pi \in Paths(s) \mid \pi \models \Diamond \Box G\} = 1.$

We abbreviate $\mathbb{P}_{=1}(\Diamond \mathbb{P}_{=1}(\Box G))$ by $\mathbb{P}_{=1}(\Diamond \Box G)$.

Proof:

Left as an exercise.

Remark:

Note that $\forall \Diamond \Box G$ is not CTL-definable. $\Diamond \Box G$ is a well-known example formula in LTL that cannot be expressed in CTL.

Almost sure persistence is PCTL-definable

For finite DTMC \mathcal{D} , state $s \in S$ and $G \subseteq S$:

 $s \models \mathbb{P}_{=1}(\Diamond \mathbb{P}_{=1}(\Box G)) \quad \text{iff} \quad Pr_s\{\pi \in Paths(s) \mid \pi \models \Diamond \Box G\} = 1.$

We abbreviate $\mathbb{P}_{=1}(\Diamond \mathbb{P}_{=1}(\Box G))$ by $\mathbb{P}_{=1}(\Diamond \Box G)$.

Proof:

Left as an exercise.

Remark:

Note that $\forall \Diamond \Box G$ is not CTL-definable. $\Diamond \Box G$ is a well-known example formula in LTL that cannot be expressed in CTL. But by the above theorem it can be expressed in PCTL.

Persistence probabilities are PCTL-definable

Persistence probabilities are PCTL-definable

For finite DTMC \mathcal{D} , state $s \in S$, $G \subseteq S$ and interval $J \subseteq [0, 1]$ we have:

$$s \models \underbrace{\mathbb{P}_J(\Diamond \mathbb{P}_{=1}(\Box G))}_{=\mathbb{P}_J(\Diamond \Box G)} \quad \text{if and only if} \quad Pr(s \models \Diamond \Box G) \in J.$$

Persistence probabilities are PCTL-definable

For finite DTMC \mathcal{D} , state $s \in S$, $G \subseteq S$ and interval $J \subseteq [0, 1]$ we have:

$$s \models \underbrace{\mathbb{P}_J(\Diamond \mathbb{P}_{=1}(\Box G))}_{=\mathbb{P}_J(\Diamond \Box G)} \quad \text{if and only if} \quad Pr(s \models \Diamond \Box G) \in J.$$

Proof:

Left as an exercise. Hint: use the long run theorem (cf. Lecture 4).

Overview

Introduction

- 2 Qualitative PCTL
- 3 Computation Tree Logic
- 4 CTL versus qualitative PCTL
- 5 Fair CTL versus qualitative PCTL
- 6 Repeated reachability and persistence

• Qualitative PCTL only allow the probability bounds > 0 and = 1.

- Qualitative PCTL only allow the probability bounds > 0 and = 1.
- There is no CTL formula that is equivalent to $\mathbb{P}_{=1}(\Diamond a)$.

- Qualitative PCTL only allow the probability bounds > 0 and = 1.
- There is no CTL formula that is equivalent to $\mathbb{P}_{=1}(\Diamond a)$.
- There is no PCTL formula that is equivalent to $\forall \Box a$.

- Qualitative PCTL only allow the probability bounds > 0 and = 1.
- There is no CTL formula that is equivalent to $\mathbb{P}_{=1}(\Diamond a)$.
- There is no PCTL formula that is equivalent to $\forall \Box a$.
- These results do not apply to finite DTMCs.

- Qualitative PCTL only allow the probability bounds > 0 and = 1.
- There is no CTL formula that is equivalent to $\mathbb{P}_{=1}(\Diamond a)$.
- There is no PCTL formula that is equivalent to $\forall \Box a$.
- These results do not apply to finite DTMCs.
- $\mathbb{P}_{=1}(\Diamond a)$ and $\forall \Diamond a$ are equivalent under strong fairness.

- Qualitative PCTL only allow the probability bounds > 0 and = 1.
- There is no CTL formula that is equivalent to $\mathbb{P}_{=1}(\Diamond a)$.
- There is no PCTL formula that is equivalent to $\forall \Box a$.
- These results do not apply to finite DTMCs.
- $\mathbb{P}_{=1}(\Diamond a)$ and $\forall \Diamond a$ are equivalent under strong fairness.
- Repeated reachability probabilities are PCTL definable.

- Qualitative PCTL only allow the probability bounds > 0 and = 1.
- There is no CTL formula that is equivalent to $\mathbb{P}_{=1}(\Diamond a)$.
- There is no PCTL formula that is equivalent to $\forall \Box a$.
- These results do not apply to finite DTMCs.
- $\mathbb{P}_{=1}(\Diamond a)$ and $\forall \Diamond a$ are equivalent under strong fairness.
- Repeated reachability probabilities are PCTL definable.

Take-home messages

Qualitative PCTL and CTL have incomparable expressiveness.

- Qualitative PCTL only allow the probability bounds > 0 and = 1.
- There is no CTL formula that is equivalent to $\mathbb{P}_{=1}(\Diamond a)$.
- There is no PCTL formula that is equivalent to $\forall \Box a$.
- These results do not apply to finite DTMCs.
- $\mathbb{P}_{=1}(\Diamond a)$ and $\forall \Diamond a$ are equivalent under strong fairness.
- Repeated reachability probabilities are PCTL definable.

Take-home messages

Qualitative PCTL and CTL have incomparable expressiveness. Qualitative and fair CTL are equally expressive.

- Qualitative PCTL only allow the probability bounds > 0 and = 1.
- There is no CTL formula that is equivalent to $\mathbb{P}_{=1}(\Diamond a)$.
- There is no PCTL formula that is equivalent to $\forall \Box a$.
- These results do not apply to finite DTMCs.
- $\mathbb{P}_{=1}(\Diamond a)$ and $\forall \Diamond a$ are equivalent under strong fairness.
- Repeated reachability probabilities are PCTL definable.

Take-home messages

Qualitative PCTL and CTL have incomparable expressiveness. Qualitative and fair CTL are equally expressive. Repeated reachability and persistence probabilities are PCTL definable.
Summary

- Qualitative PCTL only allow the probability bounds > 0 and = 1.
- There is no CTL formula that is equivalent to $\mathbb{P}_{=1}(\Diamond a)$.
- There is no PCTL formula that is equivalent to $\forall \Box a$.
- These results do not apply to finite DTMCs.
- $\mathbb{P}_{=1}(\Diamond a)$ and $\forall \Diamond a$ are equivalent under strong fairness.
- Repeated reachability probabilities are PCTL definable.

Take-home messages

Qualitative PCTL and CTL have incomparable expressiveness. Qualitative and fair CTL are equally expressive. Repeated reachability and persistence probabilities are PCTL definable. Their qualitative counterparts are not all expressible in CTL.