
Modeling and Verification of Probabilistic Systems

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

http://moves.rwth-aachen.de/teaching/ws-1516/movep15/

November 10, 2015

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 1/39

http://moves.rwth-aachen.de/teaching/ws-1516/movep15/


Introduction

Overview

1 Introduction

2 PCTL Syntax

3 PCTL Semantics

4 PCTL Model Checking

5 Complexity

6 Summary

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 2/39



Introduction

Summary of previous lecture

Reachability probabilities
Can be obtained as a unique solution of a linear equation system.

Reachability probabilities are pivotal
The probability of satisfying an ω-regular property P in a Markov chain D
= reachability probability of accepting BSCCs in the product of D with a
DRA for P.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 3/39



Introduction

Summary of previous lecture

Reachability probabilities
Can be obtained as a unique solution of a linear equation system.

Reachability probabilities are pivotal
The probability of satisfying an ω-regular property P in a Markov chain D
= reachability probability of accepting BSCCs in the product of D with a
DRA for P.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 3/39



Introduction

Aim of this lecture

Introduce probabilistic CTL. Provide a polynomial-time model-checking
algorithm for verifying a finite Markov chain against a PCTL formula.

Set up of this lecture

1. Syntax and formal semantics of probabilistic CTL.
2. Model checking algorithm for probabilistic CTL on Markov chains.
3. Time complexity analysis.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 4/39



Introduction

Aim of this lecture

Introduce probabilistic CTL. Provide a polynomial-time model-checking
algorithm for verifying a finite Markov chain against a PCTL formula.

Set up of this lecture

1. Syntax and formal semantics of probabilistic CTL.

2. Model checking algorithm for probabilistic CTL on Markov chains.
3. Time complexity analysis.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 4/39



Introduction

Aim of this lecture

Introduce probabilistic CTL. Provide a polynomial-time model-checking
algorithm for verifying a finite Markov chain against a PCTL formula.

Set up of this lecture

1. Syntax and formal semantics of probabilistic CTL.
2. Model checking algorithm for probabilistic CTL on Markov chains.

3. Time complexity analysis.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 4/39



Introduction

Aim of this lecture

Introduce probabilistic CTL. Provide a polynomial-time model-checking
algorithm for verifying a finite Markov chain against a PCTL formula.

Set up of this lecture

1. Syntax and formal semantics of probabilistic CTL.
2. Model checking algorithm for probabilistic CTL on Markov chains.
3. Time complexity analysis.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 4/39



PCTL Syntax

Overview

1 Introduction

2 PCTL Syntax

3 PCTL Semantics

4 PCTL Model Checking

5 Complexity

6 Summary

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 5/39



PCTL Syntax

Probabilistic Computation Tree Logic

I PCTL is a language for formally specifying properties over DTMCs.
I It is a branching-time temporal logic (based on CTL).
I Formula interpretation is Boolean, i.e., a formula is satisfied or not.
I The main operator is PJ(ϕ)

I where ϕ constrains the set of paths and J is a threshold on the
probability.

I it is the probabilistic counterpart of ∃ and ∀ path-quantifiers in CTL.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 6/39



PCTL Syntax

Probabilistic Computation Tree Logic

I PCTL is a language for formally specifying properties over DTMCs.

I It is a branching-time temporal logic (based on CTL).
I Formula interpretation is Boolean, i.e., a formula is satisfied or not.
I The main operator is PJ(ϕ)

I where ϕ constrains the set of paths and J is a threshold on the
probability.

I it is the probabilistic counterpart of ∃ and ∀ path-quantifiers in CTL.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 6/39



PCTL Syntax

Probabilistic Computation Tree Logic

I PCTL is a language for formally specifying properties over DTMCs.
I It is a branching-time temporal logic (based on CTL).

I Formula interpretation is Boolean, i.e., a formula is satisfied or not.
I The main operator is PJ(ϕ)

I where ϕ constrains the set of paths and J is a threshold on the
probability.

I it is the probabilistic counterpart of ∃ and ∀ path-quantifiers in CTL.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 6/39



PCTL Syntax

Probabilistic Computation Tree Logic

I PCTL is a language for formally specifying properties over DTMCs.
I It is a branching-time temporal logic (based on CTL).
I Formula interpretation is Boolean, i.e., a formula is satisfied or not.

I The main operator is PJ(ϕ)
I where ϕ constrains the set of paths and J is a threshold on the

probability.
I it is the probabilistic counterpart of ∃ and ∀ path-quantifiers in CTL.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 6/39



PCTL Syntax

Probabilistic Computation Tree Logic

I PCTL is a language for formally specifying properties over DTMCs.
I It is a branching-time temporal logic (based on CTL).
I Formula interpretation is Boolean, i.e., a formula is satisfied or not.
I The main operator is PJ(ϕ)

I where ϕ constrains the set of paths and J is a threshold on the
probability.

I it is the probabilistic counterpart of ∃ and ∀ path-quantifiers in CTL.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 6/39



PCTL Syntax

Probabilistic Computation Tree Logic

I PCTL is a language for formally specifying properties over DTMCs.
I It is a branching-time temporal logic (based on CTL).
I Formula interpretation is Boolean, i.e., a formula is satisfied or not.
I The main operator is PJ(ϕ)

I where ϕ constrains the set of paths and J is a threshold on the
probability.

I it is the probabilistic counterpart of ∃ and ∀ path-quantifiers in CTL.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 6/39



PCTL Syntax

DTMCs — A transition system perspective
Discrete-time Markov chain
A DTMC D is a tuple (S,P, ιinit,AP, L) with:
I S is a countable nonempty set of states

I P : S×S → [0, 1], transition probability function s.t.
∑

s′ P(s, s ′) = 1
I ιinit : S → [0, 1], the initial distribution with

∑
s∈S

ιinit(s) = 1

I AP is a set of atomic propositions.
I L : S → 2AP, the labeling function, assigning to state s, the set L(s)

of atomic propositions that are valid in s.

Initial states
I ιinit(s) is the probability that DTMC D starts in state s
I the set { s ∈ S | ιinit(s) > 0 } are the possible initial states.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 7/39



PCTL Syntax

DTMCs — A transition system perspective
Discrete-time Markov chain
A DTMC D is a tuple (S,P, ιinit,AP, L) with:
I S is a countable nonempty set of states
I P : S×S → [0, 1], transition probability function s.t.

∑
s′ P(s, s ′) = 1

I ιinit : S → [0, 1], the initial distribution with
∑
s∈S

ιinit(s) = 1

I AP is a set of atomic propositions.
I L : S → 2AP, the labeling function, assigning to state s, the set L(s)

of atomic propositions that are valid in s.

Initial states
I ιinit(s) is the probability that DTMC D starts in state s
I the set { s ∈ S | ιinit(s) > 0 } are the possible initial states.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 7/39



PCTL Syntax

DTMCs — A transition system perspective
Discrete-time Markov chain
A DTMC D is a tuple (S,P, ιinit,AP, L) with:
I S is a countable nonempty set of states
I P : S×S → [0, 1], transition probability function s.t.

∑
s′ P(s, s ′) = 1

I ιinit : S → [0, 1], the initial distribution with
∑
s∈S

ιinit(s) = 1

I AP is a set of atomic propositions.
I L : S → 2AP, the labeling function, assigning to state s, the set L(s)

of atomic propositions that are valid in s.

Initial states
I ιinit(s) is the probability that DTMC D starts in state s
I the set { s ∈ S | ιinit(s) > 0 } are the possible initial states.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 7/39



PCTL Syntax

DTMCs — A transition system perspective
Discrete-time Markov chain
A DTMC D is a tuple (S,P, ιinit,AP, L) with:
I S is a countable nonempty set of states
I P : S×S → [0, 1], transition probability function s.t.

∑
s′ P(s, s ′) = 1

I ιinit : S → [0, 1], the initial distribution with
∑
s∈S

ιinit(s) = 1

I AP is a set of atomic propositions.

I L : S → 2AP, the labeling function, assigning to state s, the set L(s)
of atomic propositions that are valid in s.

Initial states
I ιinit(s) is the probability that DTMC D starts in state s
I the set { s ∈ S | ιinit(s) > 0 } are the possible initial states.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 7/39



PCTL Syntax

DTMCs — A transition system perspective
Discrete-time Markov chain
A DTMC D is a tuple (S,P, ιinit,AP, L) with:
I S is a countable nonempty set of states
I P : S×S → [0, 1], transition probability function s.t.

∑
s′ P(s, s ′) = 1

I ιinit : S → [0, 1], the initial distribution with
∑
s∈S

ιinit(s) = 1

I AP is a set of atomic propositions.
I L : S → 2AP, the labeling function, assigning to state s, the set L(s)

of atomic propositions that are valid in s.

Initial states
I ιinit(s) is the probability that DTMC D starts in state s
I the set { s ∈ S | ιinit(s) > 0 } are the possible initial states.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 7/39



PCTL Syntax

DTMCs — A transition system perspective
Discrete-time Markov chain
A DTMC D is a tuple (S,P, ιinit,AP, L) with:
I S is a countable nonempty set of states
I P : S×S → [0, 1], transition probability function s.t.

∑
s′ P(s, s ′) = 1

I ιinit : S → [0, 1], the initial distribution with
∑
s∈S

ιinit(s) = 1

I AP is a set of atomic propositions.
I L : S → 2AP, the labeling function, assigning to state s, the set L(s)

of atomic propositions that are valid in s.

Initial states
I ιinit(s) is the probability that DTMC D starts in state s
I the set { s ∈ S | ιinit(s) > 0 } are the possible initial states.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 7/39



PCTL Syntax

PCTL syntax [Hansson & Jonsson, 1994]

Probabilistic Computation Tree Logic: Syntax
PCTL consists of state- and path-formulas.

I PCTL state formulas over the set AP obey the grammar:

Φ ::= true
∣∣∣ a

∣∣∣ Φ1 ∧ Φ2
∣∣∣ ¬Φ

∣∣∣ PJ(ϕ)

where a ∈ AP, ϕ is a path formula and J ⊆ [0, 1], J 6= ∅ is a
non-empty interval.

I PCTL path formulae are formed according to the following grammar:

ϕ ::= ©Φ
∣∣∣ Φ1 UΦ2

∣∣∣ Φ1 U6n Φ2

where Φ, Φ1, and Φ2 are state formulae and n ∈ IN.
Abbreviate P[0,0.5](ϕ) by P60.5(ϕ) and P]0,1](ϕ) by P>0(ϕ).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 8/39



PCTL Syntax

PCTL syntax [Hansson & Jonsson, 1994]

Probabilistic Computation Tree Logic: Syntax
PCTL consists of state- and path-formulas.
I PCTL state formulas over the set AP obey the grammar:

Φ ::= true
∣∣∣ a

∣∣∣ Φ1 ∧ Φ2
∣∣∣ ¬Φ

∣∣∣ PJ(ϕ)

where a ∈ AP, ϕ is a path formula and J ⊆ [0, 1], J 6= ∅ is a
non-empty interval.

I PCTL path formulae are formed according to the following grammar:

ϕ ::= ©Φ
∣∣∣ Φ1 UΦ2

∣∣∣ Φ1 U6n Φ2

where Φ, Φ1, and Φ2 are state formulae and n ∈ IN.
Abbreviate P[0,0.5](ϕ) by P60.5(ϕ) and P]0,1](ϕ) by P>0(ϕ).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 8/39



PCTL Syntax

PCTL syntax [Hansson & Jonsson, 1994]

Probabilistic Computation Tree Logic: Syntax
PCTL consists of state- and path-formulas.
I PCTL state formulas over the set AP obey the grammar:

Φ ::= true
∣∣∣ a

∣∣∣ Φ1 ∧ Φ2
∣∣∣ ¬Φ

∣∣∣ PJ(ϕ)

where a ∈ AP, ϕ is a path formula and J ⊆ [0, 1], J 6= ∅ is a
non-empty interval.

I PCTL path formulae are formed according to the following grammar:

ϕ ::= ©Φ
∣∣∣ Φ1 UΦ2

∣∣∣ Φ1 U6n Φ2

where Φ, Φ1, and Φ2 are state formulae and n ∈ IN.

Abbreviate P[0,0.5](ϕ) by P60.5(ϕ) and P]0,1](ϕ) by P>0(ϕ).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 8/39



PCTL Syntax

PCTL syntax [Hansson & Jonsson, 1994]

Probabilistic Computation Tree Logic: Syntax
PCTL consists of state- and path-formulas.
I PCTL state formulas over the set AP obey the grammar:

Φ ::= true
∣∣∣ a

∣∣∣ Φ1 ∧ Φ2
∣∣∣ ¬Φ

∣∣∣ PJ(ϕ)

where a ∈ AP, ϕ is a path formula and J ⊆ [0, 1], J 6= ∅ is a
non-empty interval.

I PCTL path formulae are formed according to the following grammar:

ϕ ::= ©Φ
∣∣∣ Φ1 UΦ2

∣∣∣ Φ1 U6n Φ2

where Φ, Φ1, and Φ2 are state formulae and n ∈ IN.
Abbreviate P[0,0.5](ϕ) by P60.5(ϕ) and P]0,1](ϕ) by P>0(ϕ).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 8/39



PCTL Syntax

Probabilistic Computation Tree Logic

I PCTL state formulas over the set AP obey the grammar:

Φ ::= true
∣∣∣ a

∣∣∣ Φ1 ∧ Φ2
∣∣∣ ¬Φ

∣∣∣ PJ(ϕ)

where a ∈ AP, ϕ is a path formula and J ⊆ [0, 1], J 6= ∅ is a
non-empty interval.

I PCTL path formulae are formed according to the following grammar:

ϕ ::= ©Φ
∣∣∣ Φ1 UΦ2

∣∣∣ Φ1 U6n Φ2 where n ∈ IN.

Intuitive semantics

I s0s1s2 . . . |= ΦU6n Ψ if Φ holds until Ψ holds within n steps.
I s |= PJ(ϕ) if probability that paths starting in s fulfill ϕ lies in J .

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 9/39



PCTL Syntax

Probabilistic Computation Tree Logic

I PCTL state formulas over the set AP obey the grammar:

Φ ::= true
∣∣∣ a

∣∣∣ Φ1 ∧ Φ2
∣∣∣ ¬Φ

∣∣∣ PJ(ϕ)

where a ∈ AP, ϕ is a path formula and J ⊆ [0, 1], J 6= ∅ is a
non-empty interval.

I PCTL path formulae are formed according to the following grammar:

ϕ ::= ©Φ
∣∣∣ Φ1 UΦ2

∣∣∣ Φ1 U6n Φ2 where n ∈ IN.

Intuitive semantics
I s0s1s2 . . . |= ΦU6n Ψ if Φ holds until Ψ holds within n steps.

I s |= PJ(ϕ) if probability that paths starting in s fulfill ϕ lies in J .

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 9/39



PCTL Syntax

Probabilistic Computation Tree Logic

I PCTL state formulas over the set AP obey the grammar:

Φ ::= true
∣∣∣ a

∣∣∣ Φ1 ∧ Φ2
∣∣∣ ¬Φ

∣∣∣ PJ(ϕ)

where a ∈ AP, ϕ is a path formula and J ⊆ [0, 1], J 6= ∅ is a
non-empty interval.

I PCTL path formulae are formed according to the following grammar:

ϕ ::= ©Φ
∣∣∣ Φ1 UΦ2

∣∣∣ Φ1 U6n Φ2 where n ∈ IN.

Intuitive semantics
I s0s1s2 . . . |= ΦU6n Ψ if Φ holds until Ψ holds within n steps.
I s |= PJ(ϕ) if probability that paths starting in s fulfill ϕ lies in J .

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 9/39



PCTL Semantics

Overview

1 Introduction

2 PCTL Syntax

3 PCTL Semantics

4 PCTL Model Checking

5 Complexity

6 Summary

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 10/39



PCTL Semantics

Semantics of P-operator

I s |= PJ(ϕ) if:
I the probability of all paths starting in s fulfilling ϕ lies in J .

I Example: s |= P> 1
2
(♦a) if

I the probability to reach an a-labeled state from s exceeds 1
2 .

I Formally:
I s |= PJ (ϕ) if and only if Prs{π ∈ Paths(s) | π |= ϕ } ∈ J .

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 11/39



PCTL Semantics

Semantics of P-operator

I s |= PJ(ϕ) if:
I the probability of all paths starting in s fulfilling ϕ lies in J .

I Example: s |= P> 1
2
(♦a) if

I the probability to reach an a-labeled state from s exceeds 1
2 .

I Formally:
I s |= PJ (ϕ) if and only if Prs{π ∈ Paths(s) | π |= ϕ } ∈ J .

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 11/39



PCTL Semantics

Semantics of P-operator

I s |= PJ(ϕ) if:
I the probability of all paths starting in s fulfilling ϕ lies in J .

I Example: s |= P> 1
2
(♦a) if

I the probability to reach an a-labeled state from s exceeds 1
2 .

I Formally:
I s |= PJ (ϕ) if and only if Prs{π ∈ Paths(s) | π |= ϕ } ∈ J .

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 11/39



PCTL Semantics

Semantics of P-operator

I s |= PJ(ϕ) if:
I the probability of all paths starting in s fulfilling ϕ lies in J .

I Example: s |= P> 1
2
(♦a) if

I the probability to reach an a-labeled state from s exceeds 1
2 .

I Formally:
I s |= PJ (ϕ) if and only if Prs{π ∈ Paths(s) | π |= ϕ } ∈ J .

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 11/39



PCTL Semantics

Semantics of P-operator

I s |= PJ(ϕ) if:
I the probability of all paths starting in s fulfilling ϕ lies in J .

I Example: s |= P> 1
2
(♦a) if

I the probability to reach an a-labeled state from s exceeds 1
2 .

I Formally:
I s |= PJ (ϕ) if and only if Prs{π ∈ Paths(s) | π |= ϕ } ∈ J .

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 11/39



PCTL Semantics

Derived operators

♦Φ = trueUΦ

♦6nΦ = trueU6nΦ

P6p(�Φ) = P>1−p(♦¬Φ)

P(p,q)(�6nΦ) = P[1−q,1−p](♦6n¬Φ)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 12/39



PCTL Semantics

Derived operators

♦Φ = trueUΦ

♦6nΦ = trueU6nΦ

P6p(�Φ) = P>1−p(♦¬Φ)

P(p,q)(�6nΦ) = P[1−q,1−p](♦6n¬Φ)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 12/39



PCTL Semantics

Derived operators

♦Φ = trueUΦ

♦6nΦ = trueU6nΦ

P6p(�Φ) = P>1−p(♦¬Φ)

P(p,q)(�6nΦ) = P[1−q,1−p](♦6n¬Φ)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 12/39



PCTL Semantics

Derived operators

♦Φ = trueUΦ

♦6nΦ = trueU6nΦ

P6p(�Φ) = P>1−p(♦¬Φ)

P(p,q)(�6nΦ) = P[1−q,1−p](♦6n¬Φ)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 12/39



PCTL Semantics

Correctness of Knuth’s die

Correctness of Knuth’s die
P= 1

6
(♦1) ∧ P= 1

6
(♦2) ∧ P= 1

6
(♦3) ∧ P= 1

6
(♦4) ∧ P= 1

6
(♦5) ∧ P= 1

6
(♦6)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 13/39



PCTL Semantics

Correctness of Knuth’s die

Correctness of Knuth’s die
P= 1

6
(♦1) ∧ P= 1

6
(♦2) ∧ P= 1

6
(♦3) ∧ P= 1

6
(♦4) ∧ P= 1

6
(♦5) ∧ P= 1

6
(♦6)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 13/39



PCTL Semantics

Correctness of Knuth’s die

Correctness of Knuth’s die
P= 1

6
(♦1) ∧ P= 1

6
(♦2) ∧ P= 1

6
(♦3) ∧ P= 1

6
(♦4) ∧ P= 1

6
(♦5) ∧ P= 1

6
(♦6)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 13/39



PCTL Semantics

Example properties

I Transient probabilities to be in goal state at the fourth epoch:

P> 0.92
(
♦=4 goal

)

I With probability > 0.92, a goal state is reached legally:

P> 0.92 (¬ illegal U goal)

I . . . in maximally 137 steps: P> 0.92
(
¬ illegal U6 137 goal

)
I . . . once there, remain there almost surely for the next 31 steps:

P> 0.92
(
¬ illegal U6 137 P=1(�[0,31] goal)

)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 14/39



PCTL Semantics

Example properties

I Transient probabilities to be in goal state at the fourth epoch:

P> 0.92
(
♦=4 goal

)

I With probability > 0.92, a goal state is reached legally:

P> 0.92 (¬ illegal U goal)

I . . . in maximally 137 steps: P> 0.92
(
¬ illegal U6 137 goal

)
I . . . once there, remain there almost surely for the next 31 steps:

P> 0.92
(
¬ illegal U6 137 P=1(�[0,31] goal)

)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 14/39



PCTL Semantics

Example properties

I Transient probabilities to be in goal state at the fourth epoch:

P> 0.92
(
♦=4 goal

)

I With probability > 0.92, a goal state is reached legally:

P> 0.92 (¬ illegal U goal)

I . . . in maximally 137 steps: P> 0.92
(
¬ illegal U6 137 goal

)

I . . . once there, remain there almost surely for the next 31 steps:

P> 0.92
(
¬ illegal U6 137 P=1(�[0,31] goal)

)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 14/39



PCTL Semantics

Example properties

I Transient probabilities to be in goal state at the fourth epoch:

P> 0.92
(
♦=4 goal

)

I With probability > 0.92, a goal state is reached legally:

P> 0.92 (¬ illegal U goal)

I . . . in maximally 137 steps: P> 0.92
(
¬ illegal U6 137 goal

)
I . . . once there, remain there almost surely for the next 31 steps:

P> 0.92
(
¬ illegal U6 137 P=1(�[0,31] goal)

)
Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 14/39



PCTL Semantics

PCTL semantics (1)

Notation
D, s |= Φ if and only if state-formula Φ holds in state s of (possibly
infinite) DTMC D. As D is known from the context we simply write
s |= Φ.

Satisfaction relation for state formulas
The satisfaction relation |= is defined for PCTL state formulas by:

s |= a iff a ∈ L(s)
s |= ¬Φ iff not (s |= Φ)
s |= Φ ∧ Ψ iff (s |= Φ) and (s |= Ψ)
s |= PJ(ϕ) iff Pr(s |= ϕ) ∈ J

where Pr(s |= ϕ) = Prs{π ∈ Paths(s) | π |= ϕ }

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 15/39



PCTL Semantics

PCTL semantics (1)
Notation
D, s |= Φ if and only if state-formula Φ holds in state s of (possibly
infinite) DTMC D. As D is known from the context we simply write
s |= Φ.

Satisfaction relation for state formulas
The satisfaction relation |= is defined for PCTL state formulas by:

s |= a iff a ∈ L(s)
s |= ¬Φ iff not (s |= Φ)
s |= Φ ∧ Ψ iff (s |= Φ) and (s |= Ψ)
s |= PJ(ϕ) iff Pr(s |= ϕ) ∈ J

where Pr(s |= ϕ) = Prs{π ∈ Paths(s) | π |= ϕ }

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 15/39



PCTL Semantics

PCTL semantics (1)
Notation
D, s |= Φ if and only if state-formula Φ holds in state s of (possibly
infinite) DTMC D. As D is known from the context we simply write
s |= Φ.

Satisfaction relation for state formulas
The satisfaction relation |= is defined for PCTL state formulas by:

s |= a iff a ∈ L(s)
s |= ¬Φ iff not (s |= Φ)
s |= Φ ∧ Ψ iff (s |= Φ) and (s |= Ψ)

s |= PJ(ϕ) iff Pr(s |= ϕ) ∈ J

where Pr(s |= ϕ) = Prs{π ∈ Paths(s) | π |= ϕ }

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 15/39



PCTL Semantics

PCTL semantics (1)
Notation
D, s |= Φ if and only if state-formula Φ holds in state s of (possibly
infinite) DTMC D. As D is known from the context we simply write
s |= Φ.

Satisfaction relation for state formulas
The satisfaction relation |= is defined for PCTL state formulas by:

s |= a iff a ∈ L(s)
s |= ¬Φ iff not (s |= Φ)
s |= Φ ∧ Ψ iff (s |= Φ) and (s |= Ψ)
s |= PJ(ϕ) iff Pr(s |= ϕ) ∈ J

where Pr(s |= ϕ) = Prs{π ∈ Paths(s) | π |= ϕ }

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 15/39



PCTL Semantics

PCTL semantics (2)

Satisfaction relation for path formulas
Let π = s0 s1 s2 . . . be an infinite path in (possibly infinite) DTMC D.
Recall that π[i ] = si denotes the (i+1)-st state along π.
The satisfaction relation |= is defined for state formulas by:

π |=©Φ iff s1 |= Φ
π |= ΦUΨ iff ∃k > 0.(π[k] |= Ψ and ∀0 6 i < k. π[i ] |= Φ )
π |= ΦU6n Ψ iff ∃k > 0.( k 6 n and π[k] |= Ψ and

∀0 6 i < k. π[i ] |= Φ )

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 16/39



PCTL Semantics

PCTL semantics (2)

Satisfaction relation for path formulas
Let π = s0 s1 s2 . . . be an infinite path in (possibly infinite) DTMC D.
Recall that π[i ] = si denotes the (i+1)-st state along π.
The satisfaction relation |= is defined for state formulas by:

π |=©Φ iff s1 |= Φ

π |= ΦUΨ iff ∃k > 0.(π[k] |= Ψ and ∀0 6 i < k. π[i ] |= Φ )
π |= ΦU6n Ψ iff ∃k > 0.( k 6 n and π[k] |= Ψ and

∀0 6 i < k. π[i ] |= Φ )

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 16/39



PCTL Semantics

PCTL semantics (2)

Satisfaction relation for path formulas
Let π = s0 s1 s2 . . . be an infinite path in (possibly infinite) DTMC D.
Recall that π[i ] = si denotes the (i+1)-st state along π.
The satisfaction relation |= is defined for state formulas by:

π |=©Φ iff s1 |= Φ
π |= ΦUΨ iff ∃k > 0.(π[k] |= Ψ and ∀0 6 i < k. π[i ] |= Φ )

π |= ΦU6n Ψ iff ∃k > 0.( k 6 n and π[k] |= Ψ and
∀0 6 i < k. π[i ] |= Φ )

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 16/39



PCTL Semantics

PCTL semantics (2)

Satisfaction relation for path formulas
Let π = s0 s1 s2 . . . be an infinite path in (possibly infinite) DTMC D.
Recall that π[i ] = si denotes the (i+1)-st state along π.
The satisfaction relation |= is defined for state formulas by:

π |=©Φ iff s1 |= Φ
π |= ΦUΨ iff ∃k > 0.(π[k] |= Ψ and ∀0 6 i < k. π[i ] |= Φ )
π |= ΦU6n Ψ iff ∃k > 0.( k 6 n and π[k] |= Ψ and

∀0 6 i < k. π[i ] |= Φ )

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 16/39



PCTL Semantics

Examples

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 17/39



PCTL Semantics

Measurability

PCTL measurability
For any PCTL path formula ϕ and state s of DTMC D,
the set {π ∈ Paths(s) | π |= ϕ } is measurable.

Proof (sketch):

Three cases:
1. ©Φ:

I cylinder sets constructed from paths of length one.
2. ΦU6n Ψ:

I (finite number of) cylinder sets from paths of length at most n.
3. ΦUΨ:

I countable union of paths satisfying ΦU6n Ψ for all n > 0.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 18/39



PCTL Semantics

Measurability

PCTL measurability
For any PCTL path formula ϕ and state s of DTMC D,
the set {π ∈ Paths(s) | π |= ϕ } is measurable.

Proof (sketch):

Three cases:
1. ©Φ:

I cylinder sets constructed from paths of length one.
2. ΦU6n Ψ:

I (finite number of) cylinder sets from paths of length at most n.
3. ΦUΨ:

I countable union of paths satisfying ΦU6n Ψ for all n > 0.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 18/39



PCTL Semantics

Measurability

PCTL measurability
For any PCTL path formula ϕ and state s of DTMC D,
the set {π ∈ Paths(s) | π |= ϕ } is measurable.

Proof (sketch):

Three cases:
1. ©Φ:

I cylinder sets constructed from paths of length one.
2. ΦU6n Ψ:

I (finite number of) cylinder sets from paths of length at most n.
3. ΦUΨ:

I countable union of paths satisfying ΦU6n Ψ for all n > 0.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 18/39



PCTL Model Checking

Overview

1 Introduction

2 PCTL Syntax

3 PCTL Semantics

4 PCTL Model Checking

5 Complexity

6 Summary

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 19/39



PCTL Model Checking

PCTL model checking

PCTL model checking problem

Input: a finite DTMC D = (S,P, ιinit,AP, L), state s ∈ S, and
PCTL state formula Φ

Output: yes, if s |= Φ; no, otherwise.

Basic algorithm
In order to check whether s |= Φ do:
1. Compute the satisfaction set Sat(Φ) = { s ∈ S | s |= Φ }.
2. This is done recursively by a bottom-up traversal of Φ’s parse tree.

I The nodes of the parse tree represent the subformulae of Φ.
I For each node, i.e., for each subformula Ψ of Φ, determine Sat(Ψ).
I Determine Sat(Ψ) as function of the satisfaction sets of its children:

e.g., Sat(Ψ1 ∧Ψ2) = Sat(Ψ1) ∩ Sat(Ψ2) and Sat(¬Ψ) = S \ Sat(Ψ).

3. Check whether state s belongs to Sat(Φ).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 20/39



PCTL Model Checking

PCTL model checking
PCTL model checking problem

Input: a finite DTMC D = (S,P, ιinit,AP, L), state s ∈ S, and
PCTL state formula Φ

Output: yes, if s |= Φ; no, otherwise.

Basic algorithm
In order to check whether s |= Φ do:
1. Compute the satisfaction set Sat(Φ) = { s ∈ S | s |= Φ }.
2. This is done recursively by a bottom-up traversal of Φ’s parse tree.

I The nodes of the parse tree represent the subformulae of Φ.
I For each node, i.e., for each subformula Ψ of Φ, determine Sat(Ψ).
I Determine Sat(Ψ) as function of the satisfaction sets of its children:

e.g., Sat(Ψ1 ∧Ψ2) = Sat(Ψ1) ∩ Sat(Ψ2) and Sat(¬Ψ) = S \ Sat(Ψ).

3. Check whether state s belongs to Sat(Φ).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 20/39



PCTL Model Checking

PCTL model checking
PCTL model checking problem

Input: a finite DTMC D = (S,P, ιinit,AP, L), state s ∈ S, and
PCTL state formula Φ

Output: yes, if s |= Φ; no, otherwise.

Basic algorithm
In order to check whether s |= Φ do:
1. Compute the satisfaction set Sat(Φ) = { s ∈ S | s |= Φ }.
2. This is done recursively by a bottom-up traversal of Φ’s parse tree.

I The nodes of the parse tree represent the subformulae of Φ.
I For each node, i.e., for each subformula Ψ of Φ, determine Sat(Ψ).
I Determine Sat(Ψ) as function of the satisfaction sets of its children:

e.g., Sat(Ψ1 ∧Ψ2) = Sat(Ψ1) ∩ Sat(Ψ2) and Sat(¬Ψ) = S \ Sat(Ψ).

3. Check whether state s belongs to Sat(Φ).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 20/39



PCTL Model Checking

PCTL model checking
PCTL model checking problem

Input: a finite DTMC D = (S,P, ιinit,AP, L), state s ∈ S, and
PCTL state formula Φ

Output: yes, if s |= Φ; no, otherwise.

Basic algorithm
In order to check whether s |= Φ do:

1. Compute the satisfaction set Sat(Φ) = { s ∈ S | s |= Φ }.
2. This is done recursively by a bottom-up traversal of Φ’s parse tree.

I The nodes of the parse tree represent the subformulae of Φ.
I For each node, i.e., for each subformula Ψ of Φ, determine Sat(Ψ).
I Determine Sat(Ψ) as function of the satisfaction sets of its children:

e.g., Sat(Ψ1 ∧Ψ2) = Sat(Ψ1) ∩ Sat(Ψ2) and Sat(¬Ψ) = S \ Sat(Ψ).

3. Check whether state s belongs to Sat(Φ).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 20/39



PCTL Model Checking

PCTL model checking
PCTL model checking problem

Input: a finite DTMC D = (S,P, ιinit,AP, L), state s ∈ S, and
PCTL state formula Φ

Output: yes, if s |= Φ; no, otherwise.

Basic algorithm
In order to check whether s |= Φ do:
1. Compute the satisfaction set Sat(Φ) = { s ∈ S | s |= Φ }.

2. This is done recursively by a bottom-up traversal of Φ’s parse tree.
I The nodes of the parse tree represent the subformulae of Φ.
I For each node, i.e., for each subformula Ψ of Φ, determine Sat(Ψ).
I Determine Sat(Ψ) as function of the satisfaction sets of its children:

e.g., Sat(Ψ1 ∧Ψ2) = Sat(Ψ1) ∩ Sat(Ψ2) and Sat(¬Ψ) = S \ Sat(Ψ).

3. Check whether state s belongs to Sat(Φ).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 20/39



PCTL Model Checking

PCTL model checking
PCTL model checking problem

Input: a finite DTMC D = (S,P, ιinit,AP, L), state s ∈ S, and
PCTL state formula Φ

Output: yes, if s |= Φ; no, otherwise.

Basic algorithm
In order to check whether s |= Φ do:
1. Compute the satisfaction set Sat(Φ) = { s ∈ S | s |= Φ }.
2. This is done recursively by a bottom-up traversal of Φ’s parse tree.

I The nodes of the parse tree represent the subformulae of Φ.
I For each node, i.e., for each subformula Ψ of Φ, determine Sat(Ψ).
I Determine Sat(Ψ) as function of the satisfaction sets of its children:

e.g., Sat(Ψ1 ∧Ψ2) = Sat(Ψ1) ∩ Sat(Ψ2) and Sat(¬Ψ) = S \ Sat(Ψ).

3. Check whether state s belongs to Sat(Φ).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 20/39



PCTL Model Checking

PCTL model checking
PCTL model checking problem

Input: a finite DTMC D = (S,P, ιinit,AP, L), state s ∈ S, and
PCTL state formula Φ

Output: yes, if s |= Φ; no, otherwise.

Basic algorithm
In order to check whether s |= Φ do:
1. Compute the satisfaction set Sat(Φ) = { s ∈ S | s |= Φ }.
2. This is done recursively by a bottom-up traversal of Φ’s parse tree.

I The nodes of the parse tree represent the subformulae of Φ.

I For each node, i.e., for each subformula Ψ of Φ, determine Sat(Ψ).
I Determine Sat(Ψ) as function of the satisfaction sets of its children:

e.g., Sat(Ψ1 ∧Ψ2) = Sat(Ψ1) ∩ Sat(Ψ2) and Sat(¬Ψ) = S \ Sat(Ψ).

3. Check whether state s belongs to Sat(Φ).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 20/39



PCTL Model Checking

PCTL model checking
PCTL model checking problem

Input: a finite DTMC D = (S,P, ιinit,AP, L), state s ∈ S, and
PCTL state formula Φ

Output: yes, if s |= Φ; no, otherwise.

Basic algorithm
In order to check whether s |= Φ do:
1. Compute the satisfaction set Sat(Φ) = { s ∈ S | s |= Φ }.
2. This is done recursively by a bottom-up traversal of Φ’s parse tree.

I The nodes of the parse tree represent the subformulae of Φ.
I For each node, i.e., for each subformula Ψ of Φ, determine Sat(Ψ).

I Determine Sat(Ψ) as function of the satisfaction sets of its children:
e.g., Sat(Ψ1 ∧Ψ2) = Sat(Ψ1) ∩ Sat(Ψ2) and Sat(¬Ψ) = S \ Sat(Ψ).

3. Check whether state s belongs to Sat(Φ).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 20/39



PCTL Model Checking

PCTL model checking
PCTL model checking problem

Input: a finite DTMC D = (S,P, ιinit,AP, L), state s ∈ S, and
PCTL state formula Φ

Output: yes, if s |= Φ; no, otherwise.

Basic algorithm
In order to check whether s |= Φ do:
1. Compute the satisfaction set Sat(Φ) = { s ∈ S | s |= Φ }.
2. This is done recursively by a bottom-up traversal of Φ’s parse tree.

I The nodes of the parse tree represent the subformulae of Φ.
I For each node, i.e., for each subformula Ψ of Φ, determine Sat(Ψ).
I Determine Sat(Ψ) as function of the satisfaction sets of its children:

e.g., Sat(Ψ1 ∧Ψ2) = Sat(Ψ1) ∩ Sat(Ψ2) and Sat(¬Ψ) = S \ Sat(Ψ).

3. Check whether state s belongs to Sat(Φ).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 20/39



PCTL Model Checking

PCTL model checking
PCTL model checking problem

Input: a finite DTMC D = (S,P, ιinit,AP, L), state s ∈ S, and
PCTL state formula Φ

Output: yes, if s |= Φ; no, otherwise.

Basic algorithm
In order to check whether s |= Φ do:
1. Compute the satisfaction set Sat(Φ) = { s ∈ S | s |= Φ }.
2. This is done recursively by a bottom-up traversal of Φ’s parse tree.

I The nodes of the parse tree represent the subformulae of Φ.
I For each node, i.e., for each subformula Ψ of Φ, determine Sat(Ψ).
I Determine Sat(Ψ) as function of the satisfaction sets of its children:

e.g., Sat(Ψ1 ∧Ψ2) = Sat(Ψ1) ∩ Sat(Ψ2) and Sat(¬Ψ) = S \ Sat(Ψ).

3. Check whether state s belongs to Sat(Φ).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 20/39



PCTL Model Checking

Example

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 21/39



PCTL Model Checking

Core model checking algorithm

Propositional formulas
Sat(·) is defined by structural induction as follows:

Sat(true) = S
Sat(a) = { s ∈ S | a ∈ L(s) }, for any a ∈ AP

Sat(Φ ∧Ψ) = Sat(Φ) ∩ Sat(Ψ)
Sat(¬Φ) = S \ Sat(Φ).

Probabilistic operator P
In order to determine whether s ∈ Sat(PJ(ϕ)), the probability Pr(s |= ϕ)
for the event specified by ϕ needs to be established. Then

Sat(PJ(ϕ)) =
{
s ∈ S | Pr(s |= ϕ) ∈ J

}
.

Let us consider the computation of Pr(s |= ϕ) for all possible ϕ.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 22/39



PCTL Model Checking

Core model checking algorithm
Propositional formulas

Sat(·) is defined by structural induction as follows:

Sat(true) = S
Sat(a) = { s ∈ S | a ∈ L(s) }, for any a ∈ AP

Sat(Φ ∧Ψ) = Sat(Φ) ∩ Sat(Ψ)
Sat(¬Φ) = S \ Sat(Φ).

Probabilistic operator P
In order to determine whether s ∈ Sat(PJ(ϕ)), the probability Pr(s |= ϕ)
for the event specified by ϕ needs to be established. Then

Sat(PJ(ϕ)) =
{
s ∈ S | Pr(s |= ϕ) ∈ J

}
.

Let us consider the computation of Pr(s |= ϕ) for all possible ϕ.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 22/39



PCTL Model Checking

Core model checking algorithm
Propositional formulas
Sat(·) is defined by structural induction as follows:

Sat(true) = S
Sat(a) = { s ∈ S | a ∈ L(s) }, for any a ∈ AP

Sat(Φ ∧Ψ) = Sat(Φ) ∩ Sat(Ψ)
Sat(¬Φ) = S \ Sat(Φ).

Probabilistic operator P
In order to determine whether s ∈ Sat(PJ(ϕ)), the probability Pr(s |= ϕ)
for the event specified by ϕ needs to be established. Then

Sat(PJ(ϕ)) =
{
s ∈ S | Pr(s |= ϕ) ∈ J

}
.

Let us consider the computation of Pr(s |= ϕ) for all possible ϕ.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 22/39



PCTL Model Checking

Core model checking algorithm
Propositional formulas
Sat(·) is defined by structural induction as follows:

Sat(true) = S
Sat(a) = { s ∈ S | a ∈ L(s) }, for any a ∈ AP

Sat(Φ ∧Ψ) = Sat(Φ) ∩ Sat(Ψ)
Sat(¬Φ) = S \ Sat(Φ).

Probabilistic operator P
In order to determine whether s ∈ Sat(PJ(ϕ)), the probability Pr(s |= ϕ)
for the event specified by ϕ needs to be established.

Then

Sat(PJ(ϕ)) =
{
s ∈ S | Pr(s |= ϕ) ∈ J

}
.

Let us consider the computation of Pr(s |= ϕ) for all possible ϕ.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 22/39



PCTL Model Checking

Core model checking algorithm
Propositional formulas
Sat(·) is defined by structural induction as follows:

Sat(true) = S
Sat(a) = { s ∈ S | a ∈ L(s) }, for any a ∈ AP

Sat(Φ ∧Ψ) = Sat(Φ) ∩ Sat(Ψ)
Sat(¬Φ) = S \ Sat(Φ).

Probabilistic operator P
In order to determine whether s ∈ Sat(PJ(ϕ)), the probability Pr(s |= ϕ)
for the event specified by ϕ needs to be established. Then

Sat(PJ(ϕ)) =
{
s ∈ S | Pr(s |= ϕ) ∈ J

}
.

Let us consider the computation of Pr(s |= ϕ) for all possible ϕ.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 22/39



PCTL Model Checking

Core model checking algorithm
Propositional formulas
Sat(·) is defined by structural induction as follows:

Sat(true) = S
Sat(a) = { s ∈ S | a ∈ L(s) }, for any a ∈ AP

Sat(Φ ∧Ψ) = Sat(Φ) ∩ Sat(Ψ)
Sat(¬Φ) = S \ Sat(Φ).

Probabilistic operator P
In order to determine whether s ∈ Sat(PJ(ϕ)), the probability Pr(s |= ϕ)
for the event specified by ϕ needs to be established. Then

Sat(PJ(ϕ)) =
{
s ∈ S | Pr(s |= ϕ) ∈ J

}
.

Let us consider the computation of Pr(s |= ϕ) for all possible ϕ.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 22/39



PCTL Model Checking

The next-step operator

Recall that: s |= PJ(©Φ) if and only if Pr(s |=©Φ) ∈ J .

Lemma
Pr(s |=©Φ) =

∑
s′∈ S−−→ at(Φ)

P(s, s ′).

Algorithm
Considering the above equation for all states simultaneously yields:(

Pr(s |=©Φ)
)

s∈S = P · bΦ

with bΦ the characteristic vector of Sat(Φ), i.e., bΦ(s) = 1 iff
s ∈ S−−→ at(Φ).

Checking the next-step operator reduces to a single matrix-vector multiplication.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 23/39



PCTL Model Checking

The next-step operator

Recall that: s |= PJ(©Φ) if and only if Pr(s |=©Φ) ∈ J .

Lemma
Pr(s |=©Φ) =

∑
s′∈ S−−→ at(Φ)

P(s, s ′).

Algorithm
Considering the above equation for all states simultaneously yields:(

Pr(s |=©Φ)
)

s∈S = P · bΦ

with bΦ the characteristic vector of Sat(Φ), i.e., bΦ(s) = 1 iff
s ∈ S−−→ at(Φ).

Checking the next-step operator reduces to a single matrix-vector multiplication.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 23/39



PCTL Model Checking

The next-step operator

Recall that: s |= PJ(©Φ) if and only if Pr(s |=©Φ) ∈ J .

Lemma
Pr(s |=©Φ) =

∑
s′∈ S−−→ at(Φ)

P(s, s ′).

Algorithm
Considering the above equation for all states simultaneously yields:(

Pr(s |=©Φ)
)

s∈S = P · bΦ

with bΦ the characteristic vector of Sat(Φ), i.e., bΦ(s) = 1 iff
s ∈ S−−→ at(Φ).

Checking the next-step operator reduces to a single matrix-vector multiplication.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 23/39



PCTL Model Checking

The next-step operator

Recall that: s |= PJ(©Φ) if and only if Pr(s |=©Φ) ∈ J .

Lemma
Pr(s |=©Φ) =

∑
s′∈ S−−→ at(Φ)

P(s, s ′).

Algorithm
Considering the above equation for all states simultaneously yields:

(
Pr(s |=©Φ)

)
s∈S = P · bΦ

with bΦ the characteristic vector of Sat(Φ), i.e., bΦ(s) = 1 iff
s ∈ S−−→ at(Φ).

Checking the next-step operator reduces to a single matrix-vector multiplication.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 23/39



PCTL Model Checking

The next-step operator

Recall that: s |= PJ(©Φ) if and only if Pr(s |=©Φ) ∈ J .

Lemma
Pr(s |=©Φ) =

∑
s′∈ S−−→ at(Φ)

P(s, s ′).

Algorithm
Considering the above equation for all states simultaneously yields:(

Pr(s |=©Φ)
)

s∈S = P · bΦ

with bΦ the characteristic vector of Sat(Φ), i.e., bΦ(s) = 1 iff
s ∈ S−−→ at(Φ).

Checking the next-step operator reduces to a single matrix-vector multiplication.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 23/39



PCTL Model Checking

The next-step operator

Recall that: s |= PJ(©Φ) if and only if Pr(s |=©Φ) ∈ J .

Lemma
Pr(s |=©Φ) =

∑
s′∈ S−−→ at(Φ)

P(s, s ′).

Algorithm
Considering the above equation for all states simultaneously yields:(

Pr(s |=©Φ)
)

s∈S = P · bΦ

with bΦ the characteristic vector of Sat(Φ), i.e., bΦ(s) = 1 iff
s ∈ S−−→ at(Φ).

Checking the next-step operator reduces to a single matrix-vector multiplication.
Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 23/39



PCTL Model Checking

Example

Consider DTMC:

and PCTL-formula:

P>0.9 (© (¬try ∨ succ))

1. Sat(¬try ∨ succ) = (S \ Sat(try)) ∪ Sat(succ) = { s0, s2, s3 }
2. We know:

(
Pr(s |=©Φ)

)
s∈S = P · bΦ where Φ = ¬try ∨ succ

3. Applying that to this example yields:

(
Pr(s |=©Φ)

)
s∈S

=

 0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1

 ·
 1

0
1
1

 =

 0
0.99
1
1


4. Thus: Sat(P>0.9(© (¬try ∨ succ)) = { s1, s2, s3 }.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 24/39



PCTL Model Checking

Example

Consider DTMC:
and PCTL-formula:

P>0.9 (© (¬try ∨ succ))

1. Sat(¬try ∨ succ) = (S \ Sat(try)) ∪ Sat(succ) = { s0, s2, s3 }
2. We know:

(
Pr(s |=©Φ)

)
s∈S = P · bΦ where Φ = ¬try ∨ succ

3. Applying that to this example yields:

(
Pr(s |=©Φ)

)
s∈S

=

 0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1

 ·
 1

0
1
1

 =

 0
0.99
1
1


4. Thus: Sat(P>0.9(© (¬try ∨ succ)) = { s1, s2, s3 }.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 24/39



PCTL Model Checking

Example

Consider DTMC:
and PCTL-formula:

P>0.9 (© (¬try ∨ succ))

1. Sat(¬try ∨ succ) = (S \ Sat(try)) ∪ Sat(succ) = { s0, s2, s3 }

2. We know:
(
Pr(s |=©Φ)

)
s∈S = P · bΦ where Φ = ¬try ∨ succ

3. Applying that to this example yields:

(
Pr(s |=©Φ)

)
s∈S

=

 0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1

 ·
 1

0
1
1

 =

 0
0.99
1
1


4. Thus: Sat(P>0.9(© (¬try ∨ succ)) = { s1, s2, s3 }.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 24/39



PCTL Model Checking

Example

Consider DTMC:
and PCTL-formula:

P>0.9 (© (¬try ∨ succ))

1. Sat(¬try ∨ succ) = (S \ Sat(try)) ∪ Sat(succ) = { s0, s2, s3 }
2. We know:

(
Pr(s |=©Φ)

)
s∈S = P · bΦ where Φ = ¬try ∨ succ

3. Applying that to this example yields:

(
Pr(s |=©Φ)

)
s∈S

=

 0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1

 ·
 1

0
1
1

 =

 0
0.99
1
1


4. Thus: Sat(P>0.9(© (¬try ∨ succ)) = { s1, s2, s3 }.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 24/39



PCTL Model Checking

Example

Consider DTMC:
and PCTL-formula:

P>0.9 (© (¬try ∨ succ))

1. Sat(¬try ∨ succ) = (S \ Sat(try)) ∪ Sat(succ) = { s0, s2, s3 }
2. We know:

(
Pr(s |=©Φ)

)
s∈S = P · bΦ where Φ = ¬try ∨ succ

3. Applying that to this example yields:

(
Pr(s |=©Φ)

)
s∈S

=

 0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1

 ·
 1

0
1
1

 =

 0
0.99
1
1


4. Thus: Sat(P>0.9(© (¬try ∨ succ)) = { s1, s2, s3 }.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 24/39



PCTL Model Checking

Example

Consider DTMC:
and PCTL-formula:

P>0.9 (© (¬try ∨ succ))

1. Sat(¬try ∨ succ) = (S \ Sat(try)) ∪ Sat(succ) = { s0, s2, s3 }
2. We know:

(
Pr(s |=©Φ)

)
s∈S = P · bΦ where Φ = ¬try ∨ succ

3. Applying that to this example yields:

(
Pr(s |=©Φ)

)
s∈S

=

 0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1

 ·
 1

0
1
1

 =

 0
0.99
1
1


4. Thus: Sat(P>0.9(© (¬try ∨ succ)) = { s1, s2, s3 }.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 24/39



PCTL Model Checking

Example

Consider DTMC:
and PCTL-formula:

P>0.9 (© (¬try ∨ succ))

1. Sat(¬try ∨ succ) = (S \ Sat(try)) ∪ Sat(succ) = { s0, s2, s3 }
2. We know:

(
Pr(s |=©Φ)

)
s∈S = P · bΦ where Φ = ¬try ∨ succ

3. Applying that to this example yields:

(
Pr(s |=©Φ)

)
s∈S

=

 0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1



·

 1
0
1
1

 =

 0
0.99
1
1


4. Thus: Sat(P>0.9(© (¬try ∨ succ)) = { s1, s2, s3 }.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 24/39



PCTL Model Checking

Example

Consider DTMC:
and PCTL-formula:

P>0.9 (© (¬try ∨ succ))

1. Sat(¬try ∨ succ) = (S \ Sat(try)) ∪ Sat(succ) = { s0, s2, s3 }
2. We know:

(
Pr(s |=©Φ)

)
s∈S = P · bΦ where Φ = ¬try ∨ succ

3. Applying that to this example yields:

(
Pr(s |=©Φ)

)
s∈S

=

 0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1

 ·
 1

0
1
1



=

 0
0.99
1
1


4. Thus: Sat(P>0.9(© (¬try ∨ succ)) = { s1, s2, s3 }.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 24/39



PCTL Model Checking

Example

Consider DTMC:
and PCTL-formula:

P>0.9 (© (¬try ∨ succ))

1. Sat(¬try ∨ succ) = (S \ Sat(try)) ∪ Sat(succ) = { s0, s2, s3 }
2. We know:

(
Pr(s |=©Φ)

)
s∈S = P · bΦ where Φ = ¬try ∨ succ

3. Applying that to this example yields:

(
Pr(s |=©Φ)

)
s∈S

=

 0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1

 ·
 1

0
1
1

 =

 0
0.99
1
1



4. Thus: Sat(P>0.9(© (¬try ∨ succ)) = { s1, s2, s3 }.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 24/39



PCTL Model Checking

Example

Consider DTMC:
and PCTL-formula:

P>0.9 (© (¬try ∨ succ))

1. Sat(¬try ∨ succ) = (S \ Sat(try)) ∪ Sat(succ) = { s0, s2, s3 }
2. We know:

(
Pr(s |=©Φ)

)
s∈S = P · bΦ where Φ = ¬try ∨ succ

3. Applying that to this example yields:

(
Pr(s |=©Φ)

)
s∈S

=

 0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1

 ·
 1

0
1
1

 =

 0
0.99
1
1


4. Thus: Sat(P>0.9(© (¬try ∨ succ)) = { s1, s2, s3 }.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 24/39



PCTL Model Checking

Bounded until (1)

Recall that: s |= PJ(ΦU6n Ψ) if and only if Pr(s |= ΦU6n Ψ) ∈ J .

Lemma
Let S=1 = Sat(Ψ), S=0 = S \ (Sat(Φ)∪Sat(Ψ)), and S? = S \ (S=0 ∪S=1). Then:

Pr(s |= ΦU6n Ψ) =


1 if s ∈ S=1
0 if s ∈ S=0
0 if s ∈ S? ∧ n=0∑
s′∈S

P(s, s ′) · Pr(s ′ |= ΦU6n−1 Ψ) otherwise

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 25/39



PCTL Model Checking

Bounded until (1)

Recall that: s |= PJ(ΦU6n Ψ) if and only if Pr(s |= ΦU6n Ψ) ∈ J .

Lemma
Let S=1 = Sat(Ψ), S=0 = S \ (Sat(Φ)∪Sat(Ψ)), and S? = S \ (S=0 ∪S=1). Then:

Pr(s |= ΦU6n Ψ) =


1 if s ∈ S=1
0 if s ∈ S=0
0 if s ∈ S? ∧ n=0∑
s′∈S

P(s, s ′) · Pr(s ′ |= ΦU6n−1 Ψ) otherwise

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 25/39



PCTL Model Checking

Bounded until (1)

Recall that: s |= PJ(ΦU6n Ψ) if and only if Pr(s |= ΦU6n Ψ) ∈ J .

Lemma

Let S=1 = Sat(Ψ), S=0 = S \ (Sat(Φ)∪Sat(Ψ)), and S? = S \ (S=0 ∪S=1). Then:

Pr(s |= ΦU6n Ψ) =


1 if s ∈ S=1
0 if s ∈ S=0
0 if s ∈ S? ∧ n=0∑
s′∈S

P(s, s ′) · Pr(s ′ |= ΦU6n−1 Ψ) otherwise

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 25/39



PCTL Model Checking

Bounded until (1)

Recall that: s |= PJ(ΦU6n Ψ) if and only if Pr(s |= ΦU6n Ψ) ∈ J .

Lemma
Let S=1 = Sat(Ψ), S=0 = S \ (Sat(Φ)∪Sat(Ψ)), and S? = S \ (S=0 ∪S=1).

Then:

Pr(s |= ΦU6n Ψ) =


1 if s ∈ S=1
0 if s ∈ S=0
0 if s ∈ S? ∧ n=0∑
s′∈S

P(s, s ′) · Pr(s ′ |= ΦU6n−1 Ψ) otherwise

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 25/39



PCTL Model Checking

Bounded until (1)

Recall that: s |= PJ(ΦU6n Ψ) if and only if Pr(s |= ΦU6n Ψ) ∈ J .

Lemma
Let S=1 = Sat(Ψ), S=0 = S \ (Sat(Φ)∪Sat(Ψ)), and S? = S \ (S=0 ∪S=1). Then:

Pr(s |= ΦU6n Ψ) =


1 if s ∈ S=1
0 if s ∈ S=0

0 if s ∈ S? ∧ n=0∑
s′∈S

P(s, s ′) · Pr(s ′ |= ΦU6n−1 Ψ) otherwise

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 25/39



PCTL Model Checking

Bounded until (1)

Recall that: s |= PJ(ΦU6n Ψ) if and only if Pr(s |= ΦU6n Ψ) ∈ J .

Lemma
Let S=1 = Sat(Ψ), S=0 = S \ (Sat(Φ)∪Sat(Ψ)), and S? = S \ (S=0 ∪S=1). Then:

Pr(s |= ΦU6n Ψ) =


1 if s ∈ S=1
0 if s ∈ S=0
0 if s ∈ S? ∧ n=0∑
s′∈S

P(s, s ′) · Pr(s ′ |= ΦU6n−1 Ψ) otherwise

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 25/39



PCTL Model Checking

Bounded until (2)

Let S=1 = Sat(Ψ), S=0 = S \ (Sat(Φ)∪Sat(Ψ)), and S? = S \ (S=0 ∪S=1). Then:

Pr(s |= ΦU6n Ψ) =


1 if s ∈ S=1
0 if s ∈ S=0
0 if s ∈ S? ∧ n=0∑
s′∈S

P(s, s ′) · Pr(s ′ |= ΦU6n−1 Ψ) otherwise

Algorithm

1. Let PΦ,Ψ be the probability matrix of D[S=0 ∪ S=1].
2. Then

(
Pr(s |= ΦU60 Ψ)

)
s∈S = bΨ

3. And
(
Pr(s |= ΦU6i+1 Ψ)

)
s∈S = PΦ,Ψ ·

(
Pr(s |= ΦU6i Ψ)

)
s∈S .

4. This requires n matrix-vector multiplications in total.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 26/39



PCTL Model Checking

Bounded until (2)

Let S=1 = Sat(Ψ), S=0 = S \ (Sat(Φ)∪Sat(Ψ)), and S? = S \ (S=0 ∪S=1). Then:

Pr(s |= ΦU6n Ψ) =


1 if s ∈ S=1
0 if s ∈ S=0
0 if s ∈ S? ∧ n=0∑
s′∈S

P(s, s ′) · Pr(s ′ |= ΦU6n−1 Ψ) otherwise

Algorithm

1. Let PΦ,Ψ be the probability matrix of D[S=0 ∪ S=1].
2. Then

(
Pr(s |= ΦU60 Ψ)

)
s∈S = bΨ

3. And
(
Pr(s |= ΦU6i+1 Ψ)

)
s∈S = PΦ,Ψ ·

(
Pr(s |= ΦU6i Ψ)

)
s∈S .

4. This requires n matrix-vector multiplications in total.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 26/39



PCTL Model Checking

Bounded until (2)

Let S=1 = Sat(Ψ), S=0 = S \ (Sat(Φ)∪Sat(Ψ)), and S? = S \ (S=0 ∪S=1). Then:

Pr(s |= ΦU6n Ψ) =


1 if s ∈ S=1
0 if s ∈ S=0
0 if s ∈ S? ∧ n=0∑
s′∈S

P(s, s ′) · Pr(s ′ |= ΦU6n−1 Ψ) otherwise

Algorithm

1. Let PΦ,Ψ be the probability matrix of D[S=0 ∪ S=1].

2. Then
(
Pr(s |= ΦU60 Ψ)

)
s∈S = bΨ

3. And
(
Pr(s |= ΦU6i+1 Ψ)

)
s∈S = PΦ,Ψ ·

(
Pr(s |= ΦU6i Ψ)

)
s∈S .

4. This requires n matrix-vector multiplications in total.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 26/39



PCTL Model Checking

Bounded until (2)

Let S=1 = Sat(Ψ), S=0 = S \ (Sat(Φ)∪Sat(Ψ)), and S? = S \ (S=0 ∪S=1). Then:

Pr(s |= ΦU6n Ψ) =


1 if s ∈ S=1
0 if s ∈ S=0
0 if s ∈ S? ∧ n=0∑
s′∈S

P(s, s ′) · Pr(s ′ |= ΦU6n−1 Ψ) otherwise

Algorithm

1. Let PΦ,Ψ be the probability matrix of D[S=0 ∪ S=1].
2. Then

(
Pr(s |= ΦU60 Ψ)

)
s∈S = bΨ

3. And
(
Pr(s |= ΦU6i+1 Ψ)

)
s∈S = PΦ,Ψ ·

(
Pr(s |= ΦU6i Ψ)

)
s∈S .

4. This requires n matrix-vector multiplications in total.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 26/39



PCTL Model Checking

Bounded until (2)

Let S=1 = Sat(Ψ), S=0 = S \ (Sat(Φ)∪Sat(Ψ)), and S? = S \ (S=0 ∪S=1). Then:

Pr(s |= ΦU6n Ψ) =


1 if s ∈ S=1
0 if s ∈ S=0
0 if s ∈ S? ∧ n=0∑
s′∈S

P(s, s ′) · Pr(s ′ |= ΦU6n−1 Ψ) otherwise

Algorithm

1. Let PΦ,Ψ be the probability matrix of D[S=0 ∪ S=1].
2. Then

(
Pr(s |= ΦU60 Ψ)

)
s∈S = bΨ

3. And
(
Pr(s |= ΦU6i+1 Ψ)

)
s∈S = PΦ,Ψ ·

(
Pr(s |= ΦU6i Ψ)

)
s∈S .

4. This requires n matrix-vector multiplications in total.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 26/39



PCTL Model Checking

Bounded until (2)

Let S=1 = Sat(Ψ), S=0 = S \ (Sat(Φ)∪Sat(Ψ)), and S? = S \ (S=0 ∪S=1). Then:

Pr(s |= ΦU6n Ψ) =


1 if s ∈ S=1
0 if s ∈ S=0
0 if s ∈ S? ∧ n=0∑
s′∈S

P(s, s ′) · Pr(s ′ |= ΦU6n−1 Ψ) otherwise

Algorithm

1. Let PΦ,Ψ be the probability matrix of D[S=0 ∪ S=1].
2. Then

(
Pr(s |= ΦU60 Ψ)

)
s∈S = bΨ

3. And
(
Pr(s |= ΦU6i+1 Ψ)

)
s∈S = PΦ,Ψ ·

(
Pr(s |= ΦU6i Ψ)

)
s∈S .

4. This requires n matrix-vector multiplications in total.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 26/39



PCTL Model Checking

Bounded until (3)
Algorithm

1. Let PΦ,Ψ be the probability matrix of D[S=0 ∪ S=1].
2. Then

(
Pr(s |= ΦU60 Ψ)

)
s∈S = bΨ

3. And
(
Pr(s |= ΦU6i+1 Ψ)

)
s∈S = PΦ,Ψ ·

(
Pr(s |= ΦU6i Ψ)

)
s∈S .

4. This requires n matrix-vector multiplications in total.

Remarks
1. In terms of matrix powers:

(
Pr(s |= ΦU6n Ψ)

)
s∈S = Pn

Φ,Ψ · bΨ.
I Computing Pn

Φ,Ψ in log2 n steps is inefficient due to fill-in.
I That is to say, Pn

Φ,Ψ is much less sparse than PΦ,Ψ.
2. Pn

Φ,Ψ · bΨ =
(
Pr(s |=©=n Ψ)

)
s∈S?

in D[S=0 ∪ S=1].
I Where ©0 Ψ = Ψ and ©i+1 Ψ =© (©i Ψ).
I This thus amounts to a transient analysis in DTMC D[S=0 ∪ S=1].

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 27/39



PCTL Model Checking

Bounded until (3)
Algorithm

1. Let PΦ,Ψ be the probability matrix of D[S=0 ∪ S=1].
2. Then

(
Pr(s |= ΦU60 Ψ)

)
s∈S = bΨ

3. And
(
Pr(s |= ΦU6i+1 Ψ)

)
s∈S = PΦ,Ψ ·

(
Pr(s |= ΦU6i Ψ)

)
s∈S .

4. This requires n matrix-vector multiplications in total.

Remarks

1. In terms of matrix powers:
(
Pr(s |= ΦU6n Ψ)

)
s∈S = Pn

Φ,Ψ · bΨ.
I Computing Pn

Φ,Ψ in log2 n steps is inefficient due to fill-in.
I That is to say, Pn

Φ,Ψ is much less sparse than PΦ,Ψ.
2. Pn

Φ,Ψ · bΨ =
(
Pr(s |=©=n Ψ)

)
s∈S?

in D[S=0 ∪ S=1].
I Where ©0 Ψ = Ψ and ©i+1 Ψ =© (©i Ψ).
I This thus amounts to a transient analysis in DTMC D[S=0 ∪ S=1].

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 27/39



PCTL Model Checking

Bounded until (3)
Algorithm

1. Let PΦ,Ψ be the probability matrix of D[S=0 ∪ S=1].
2. Then

(
Pr(s |= ΦU60 Ψ)

)
s∈S = bΨ

3. And
(
Pr(s |= ΦU6i+1 Ψ)

)
s∈S = PΦ,Ψ ·

(
Pr(s |= ΦU6i Ψ)

)
s∈S .

4. This requires n matrix-vector multiplications in total.

Remarks
1. In terms of matrix powers:

(
Pr(s |= ΦU6n Ψ)

)
s∈S = Pn

Φ,Ψ · bΨ.

I Computing Pn
Φ,Ψ in log2 n steps is inefficient due to fill-in.

I That is to say, Pn
Φ,Ψ is much less sparse than PΦ,Ψ.

2. Pn
Φ,Ψ · bΨ =

(
Pr(s |=©=n Ψ)

)
s∈S?

in D[S=0 ∪ S=1].
I Where ©0 Ψ = Ψ and ©i+1 Ψ =© (©i Ψ).
I This thus amounts to a transient analysis in DTMC D[S=0 ∪ S=1].

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 27/39



PCTL Model Checking

Bounded until (3)
Algorithm

1. Let PΦ,Ψ be the probability matrix of D[S=0 ∪ S=1].
2. Then

(
Pr(s |= ΦU60 Ψ)

)
s∈S = bΨ

3. And
(
Pr(s |= ΦU6i+1 Ψ)

)
s∈S = PΦ,Ψ ·

(
Pr(s |= ΦU6i Ψ)

)
s∈S .

4. This requires n matrix-vector multiplications in total.

Remarks
1. In terms of matrix powers:

(
Pr(s |= ΦU6n Ψ)

)
s∈S = Pn

Φ,Ψ · bΨ.
I Computing Pn

Φ,Ψ in log2 n steps is inefficient due to fill-in.

I That is to say, Pn
Φ,Ψ is much less sparse than PΦ,Ψ.

2. Pn
Φ,Ψ · bΨ =

(
Pr(s |=©=n Ψ)

)
s∈S?

in D[S=0 ∪ S=1].
I Where ©0 Ψ = Ψ and ©i+1 Ψ =© (©i Ψ).
I This thus amounts to a transient analysis in DTMC D[S=0 ∪ S=1].

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 27/39



PCTL Model Checking

Bounded until (3)
Algorithm

1. Let PΦ,Ψ be the probability matrix of D[S=0 ∪ S=1].
2. Then

(
Pr(s |= ΦU60 Ψ)

)
s∈S = bΨ

3. And
(
Pr(s |= ΦU6i+1 Ψ)

)
s∈S = PΦ,Ψ ·

(
Pr(s |= ΦU6i Ψ)

)
s∈S .

4. This requires n matrix-vector multiplications in total.

Remarks
1. In terms of matrix powers:

(
Pr(s |= ΦU6n Ψ)

)
s∈S = Pn

Φ,Ψ · bΨ.
I Computing Pn

Φ,Ψ in log2 n steps is inefficient due to fill-in.
I That is to say, Pn

Φ,Ψ is much less sparse than PΦ,Ψ.

2. Pn
Φ,Ψ · bΨ =

(
Pr(s |=©=n Ψ)

)
s∈S?

in D[S=0 ∪ S=1].
I Where ©0 Ψ = Ψ and ©i+1 Ψ =© (©i Ψ).
I This thus amounts to a transient analysis in DTMC D[S=0 ∪ S=1].

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 27/39



PCTL Model Checking

Bounded until (3)
Algorithm

1. Let PΦ,Ψ be the probability matrix of D[S=0 ∪ S=1].
2. Then

(
Pr(s |= ΦU60 Ψ)

)
s∈S = bΨ

3. And
(
Pr(s |= ΦU6i+1 Ψ)

)
s∈S = PΦ,Ψ ·

(
Pr(s |= ΦU6i Ψ)

)
s∈S .

4. This requires n matrix-vector multiplications in total.

Remarks
1. In terms of matrix powers:

(
Pr(s |= ΦU6n Ψ)

)
s∈S = Pn

Φ,Ψ · bΨ.
I Computing Pn

Φ,Ψ in log2 n steps is inefficient due to fill-in.
I That is to say, Pn

Φ,Ψ is much less sparse than PΦ,Ψ.
2. Pn

Φ,Ψ · bΨ =
(
Pr(s |=©=n Ψ)

)
s∈S?

in D[S=0 ∪ S=1].
I Where ©0 Ψ = Ψ and ©i+1 Ψ =© (©i Ψ).

I This thus amounts to a transient analysis in DTMC D[S=0 ∪ S=1].

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 27/39



PCTL Model Checking

Bounded until (3)
Algorithm

1. Let PΦ,Ψ be the probability matrix of D[S=0 ∪ S=1].
2. Then

(
Pr(s |= ΦU60 Ψ)

)
s∈S = bΨ

3. And
(
Pr(s |= ΦU6i+1 Ψ)

)
s∈S = PΦ,Ψ ·

(
Pr(s |= ΦU6i Ψ)

)
s∈S .

4. This requires n matrix-vector multiplications in total.

Remarks
1. In terms of matrix powers:

(
Pr(s |= ΦU6n Ψ)

)
s∈S = Pn

Φ,Ψ · bΨ.
I Computing Pn

Φ,Ψ in log2 n steps is inefficient due to fill-in.
I That is to say, Pn

Φ,Ψ is much less sparse than PΦ,Ψ.
2. Pn

Φ,Ψ · bΨ =
(
Pr(s |=©=n Ψ)

)
s∈S?

in D[S=0 ∪ S=1].
I Where ©0 Ψ = Ψ and ©i+1 Ψ =© (©i Ψ).
I This thus amounts to a transient analysis in DTMC D[S=0 ∪ S=1].

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 27/39



PCTL Model Checking

Optimization

The above procedure used:
I S=1 = Sat(Ψ), and
I S=0 = S \ (Sat(Φ) ∪ Sat(Ψ)) = Sat(¬Φ ∧ ¬Ψ), and
I perform the matrix-vector multiplications on the remaining states

This can be optimized (in practice) by enlarging S=0 andS=1:
I S=1 = Sat(P=1(ΦUΨ)), obtained by a graph analysis
I S=0 = Sat(P=0(ΦUΨ)), obtained by a graph analysis too, and
I perform the matrix-vector multiplications on the remaining states.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 28/39



PCTL Model Checking

Optimization

The above procedure used:
I S=1 = Sat(Ψ), and
I S=0 = S \ (Sat(Φ) ∪ Sat(Ψ)) = Sat(¬Φ ∧ ¬Ψ), and
I perform the matrix-vector multiplications on the remaining states

This can be optimized (in practice) by enlarging S=0 andS=1:
I S=1 = Sat(P=1(ΦUΨ)), obtained by a graph analysis
I S=0 = Sat(P=0(ΦUΨ)), obtained by a graph analysis too, and
I perform the matrix-vector multiplications on the remaining states.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 28/39



PCTL Model Checking

Example

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 29/39



PCTL Model Checking

Until

Recall that: s |= PJ(ΦUΨ) if and only if Pr(s |= ΦUΨ) ∈ J .

Algorithm

1. Determine S=1 = Sat(P=1(ΦUΨ)) by a graph analysis.
2. Determine S=0 = Sat(P=0(ΦUΨ)) by a graph analysis.
3. Then solve a linear equation system over all remaining states.

Importance of pre-computation using graph analysis

1. Ensures unique solution to linear equation system.
2. Reduces the number of variables in the linear equation system.
3. Gives exact results for the states in S=1 and S=0 (i.e., no round-off).
4. For qualitative properties, no further computation is needed.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 30/39



PCTL Model Checking

Until

Recall that: s |= PJ(ΦUΨ) if and only if Pr(s |= ΦUΨ) ∈ J .

Algorithm

1. Determine S=1 = Sat(P=1(ΦUΨ)) by a graph analysis.
2. Determine S=0 = Sat(P=0(ΦUΨ)) by a graph analysis.
3. Then solve a linear equation system over all remaining states.

Importance of pre-computation using graph analysis

1. Ensures unique solution to linear equation system.
2. Reduces the number of variables in the linear equation system.
3. Gives exact results for the states in S=1 and S=0 (i.e., no round-off).
4. For qualitative properties, no further computation is needed.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 30/39



PCTL Model Checking

Until

Recall that: s |= PJ(ΦUΨ) if and only if Pr(s |= ΦUΨ) ∈ J .

Algorithm

1. Determine S=1 = Sat(P=1(ΦUΨ)) by a graph analysis.
2. Determine S=0 = Sat(P=0(ΦUΨ)) by a graph analysis.
3. Then solve a linear equation system over all remaining states.

Importance of pre-computation using graph analysis

1. Ensures unique solution to linear equation system.
2. Reduces the number of variables in the linear equation system.
3. Gives exact results for the states in S=1 and S=0 (i.e., no round-off).
4. For qualitative properties, no further computation is needed.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 30/39



PCTL Model Checking

Until

Recall that: s |= PJ(ΦUΨ) if and only if Pr(s |= ΦUΨ) ∈ J .

Algorithm

1. Determine S=1 = Sat(P=1(ΦUΨ)) by a graph analysis.

2. Determine S=0 = Sat(P=0(ΦUΨ)) by a graph analysis.
3. Then solve a linear equation system over all remaining states.

Importance of pre-computation using graph analysis

1. Ensures unique solution to linear equation system.
2. Reduces the number of variables in the linear equation system.
3. Gives exact results for the states in S=1 and S=0 (i.e., no round-off).
4. For qualitative properties, no further computation is needed.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 30/39



PCTL Model Checking

Until

Recall that: s |= PJ(ΦUΨ) if and only if Pr(s |= ΦUΨ) ∈ J .

Algorithm

1. Determine S=1 = Sat(P=1(ΦUΨ)) by a graph analysis.
2. Determine S=0 = Sat(P=0(ΦUΨ)) by a graph analysis.

3. Then solve a linear equation system over all remaining states.

Importance of pre-computation using graph analysis

1. Ensures unique solution to linear equation system.
2. Reduces the number of variables in the linear equation system.
3. Gives exact results for the states in S=1 and S=0 (i.e., no round-off).
4. For qualitative properties, no further computation is needed.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 30/39



PCTL Model Checking

Until

Recall that: s |= PJ(ΦUΨ) if and only if Pr(s |= ΦUΨ) ∈ J .

Algorithm

1. Determine S=1 = Sat(P=1(ΦUΨ)) by a graph analysis.
2. Determine S=0 = Sat(P=0(ΦUΨ)) by a graph analysis.
3. Then solve a linear equation system over all remaining states.

Importance of pre-computation using graph analysis

1. Ensures unique solution to linear equation system.
2. Reduces the number of variables in the linear equation system.
3. Gives exact results for the states in S=1 and S=0 (i.e., no round-off).
4. For qualitative properties, no further computation is needed.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 30/39



PCTL Model Checking

Until

Recall that: s |= PJ(ΦUΨ) if and only if Pr(s |= ΦUΨ) ∈ J .

Algorithm

1. Determine S=1 = Sat(P=1(ΦUΨ)) by a graph analysis.
2. Determine S=0 = Sat(P=0(ΦUΨ)) by a graph analysis.
3. Then solve a linear equation system over all remaining states.

Importance of pre-computation using graph analysis

1. Ensures unique solution to linear equation system.
2. Reduces the number of variables in the linear equation system.
3. Gives exact results for the states in S=1 and S=0 (i.e., no round-off).
4. For qualitative properties, no further computation is needed.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 30/39



PCTL Model Checking

Until

Recall that: s |= PJ(ΦUΨ) if and only if Pr(s |= ΦUΨ) ∈ J .

Algorithm

1. Determine S=1 = Sat(P=1(ΦUΨ)) by a graph analysis.
2. Determine S=0 = Sat(P=0(ΦUΨ)) by a graph analysis.
3. Then solve a linear equation system over all remaining states.

Importance of pre-computation using graph analysis

1. Ensures unique solution to linear equation system.

2. Reduces the number of variables in the linear equation system.
3. Gives exact results for the states in S=1 and S=0 (i.e., no round-off).
4. For qualitative properties, no further computation is needed.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 30/39



PCTL Model Checking

Until

Recall that: s |= PJ(ΦUΨ) if and only if Pr(s |= ΦUΨ) ∈ J .

Algorithm

1. Determine S=1 = Sat(P=1(ΦUΨ)) by a graph analysis.
2. Determine S=0 = Sat(P=0(ΦUΨ)) by a graph analysis.
3. Then solve a linear equation system over all remaining states.

Importance of pre-computation using graph analysis

1. Ensures unique solution to linear equation system.
2. Reduces the number of variables in the linear equation system.

3. Gives exact results for the states in S=1 and S=0 (i.e., no round-off).
4. For qualitative properties, no further computation is needed.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 30/39



PCTL Model Checking

Until

Recall that: s |= PJ(ΦUΨ) if and only if Pr(s |= ΦUΨ) ∈ J .

Algorithm

1. Determine S=1 = Sat(P=1(ΦUΨ)) by a graph analysis.
2. Determine S=0 = Sat(P=0(ΦUΨ)) by a graph analysis.
3. Then solve a linear equation system over all remaining states.

Importance of pre-computation using graph analysis

1. Ensures unique solution to linear equation system.
2. Reduces the number of variables in the linear equation system.
3. Gives exact results for the states in S=1 and S=0 (i.e., no round-off).

4. For qualitative properties, no further computation is needed.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 30/39



PCTL Model Checking

Until

Recall that: s |= PJ(ΦUΨ) if and only if Pr(s |= ΦUΨ) ∈ J .

Algorithm

1. Determine S=1 = Sat(P=1(ΦUΨ)) by a graph analysis.
2. Determine S=0 = Sat(P=0(ΦUΨ)) by a graph analysis.
3. Then solve a linear equation system over all remaining states.

Importance of pre-computation using graph analysis

1. Ensures unique solution to linear equation system.
2. Reduces the number of variables in the linear equation system.
3. Gives exact results for the states in S=1 and S=0 (i.e., no round-off).
4. For qualitative properties, no further computation is needed.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 30/39



PCTL Model Checking

Example

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 31/39



Complexity

Overview

1 Introduction

2 PCTL Syntax

3 PCTL Semantics

4 PCTL Model Checking

5 Complexity

6 Summary

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 32/39



Complexity

Time complexity

Let |Φ| be the size of Φ, i.e., the number of logical and temporal operators in Φ.

Time complexity of PCTL model checking
For finite DTMC D and PCTL state-formula Φ, the PCTL model-checking
problem can be solved in time

O
( p−→ oly(size(D)) · nmax · |Φ|

)
where nmax = max{ n | Ψ1 U6nΨ2 occurs in Φ } with and nmax = 1 if Φ
does not contain a bounded until-operator.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 33/39



Complexity

Time complexity

Let |Φ| be the size of Φ, i.e., the number of logical and temporal operators in Φ.

Time complexity of PCTL model checking
For finite DTMC D and PCTL state-formula Φ, the PCTL model-checking
problem can be solved in time

O
( p−→ oly(size(D)) · nmax · |Φ|

)
where nmax = max{ n | Ψ1 U6nΨ2 occurs in Φ } with and nmax = 1 if Φ
does not contain a bounded until-operator.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 33/39



Complexity

Time complexity

Let |Φ| be the size of Φ, i.e., the number of logical and temporal operators in Φ.

Time complexity of PCTL model checking
For finite DTMC D and PCTL state-formula Φ, the PCTL model-checking
problem can be solved in time

O
( p−→ oly(size(D)) · nmax · |Φ|

)
where nmax = max{ n | Ψ1 U6nΨ2 occurs in Φ } with and nmax = 1 if Φ
does not contain a bounded until-operator.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 33/39



Complexity

Time complexity

Let |Φ| be the size of Φ, i.e., the number of logical and temporal operators in Φ.

Time complexity of PCTL model checking
For finite DTMC D and PCTL state-formula Φ, the PCTL model-checking
problem can be solved in time

O
( p−→ oly(size(D)) · nmax · |Φ|

)
where nmax = max{ n | Ψ1 U6nΨ2 occurs in Φ } with and nmax = 1 if Φ
does not contain a bounded until-operator.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 33/39



Complexity

Time complexity
Time complexity of PCTL model checking
For finite DTMC D and PCTL state-formula Φ, the PCTL model-checking
problem can be solved in time

O
( p−→ oly(size(D)) · nmax · |Φ|

)
.

Proof (sketch)

1. For each node in the parse tree, a model-checking is performed; this
yields a linear complexity in |Φ|.

2. The worst-case operator is (unbounded) until.
2.1 Determining S=0 and S=1 can be done in linear time.
2.2 Direct methods to solve linear equation systems are in Θ(|S?|3).

3. Strictly speaking, U6n could be more expensive for large n.
But it remains polynomial, and n is small in practice.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 34/39



Complexity

Time complexity
Time complexity of PCTL model checking
For finite DTMC D and PCTL state-formula Φ, the PCTL model-checking
problem can be solved in time

O
( p−→ oly(size(D)) · nmax · |Φ|

)
.

Proof (sketch)

1. For each node in the parse tree, a model-checking is performed; this
yields a linear complexity in |Φ|.

2. The worst-case operator is (unbounded) until.
2.1 Determining S=0 and S=1 can be done in linear time.
2.2 Direct methods to solve linear equation systems are in Θ(|S?|3).

3. Strictly speaking, U6n could be more expensive for large n.
But it remains polynomial, and n is small in practice.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 34/39



Complexity

Time complexity
Time complexity of PCTL model checking
For finite DTMC D and PCTL state-formula Φ, the PCTL model-checking
problem can be solved in time

O
( p−→ oly(size(D)) · nmax · |Φ|

)
.

Proof (sketch)

1. For each node in the parse tree, a model-checking is performed; this
yields a linear complexity in |Φ|.

2. The worst-case operator is (unbounded) until.
2.1 Determining S=0 and S=1 can be done in linear time.
2.2 Direct methods to solve linear equation systems are in Θ(|S?|3).

3. Strictly speaking, U6n could be more expensive for large n.
But it remains polynomial, and n is small in practice.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 34/39



Complexity

Time complexity
Time complexity of PCTL model checking
For finite DTMC D and PCTL state-formula Φ, the PCTL model-checking
problem can be solved in time

O
( p−→ oly(size(D)) · nmax · |Φ|

)
.

Proof (sketch)

1. For each node in the parse tree, a model-checking is performed; this
yields a linear complexity in |Φ|.

2. The worst-case operator is (unbounded) until.

2.1 Determining S=0 and S=1 can be done in linear time.
2.2 Direct methods to solve linear equation systems are in Θ(|S?|3).

3. Strictly speaking, U6n could be more expensive for large n.
But it remains polynomial, and n is small in practice.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 34/39



Complexity

Time complexity
Time complexity of PCTL model checking
For finite DTMC D and PCTL state-formula Φ, the PCTL model-checking
problem can be solved in time

O
( p−→ oly(size(D)) · nmax · |Φ|

)
.

Proof (sketch)

1. For each node in the parse tree, a model-checking is performed; this
yields a linear complexity in |Φ|.

2. The worst-case operator is (unbounded) until.
2.1 Determining S=0 and S=1 can be done in linear time.

2.2 Direct methods to solve linear equation systems are in Θ(|S?|3).
3. Strictly speaking, U6n could be more expensive for large n.

But it remains polynomial, and n is small in practice.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 34/39



Complexity

Time complexity
Time complexity of PCTL model checking
For finite DTMC D and PCTL state-formula Φ, the PCTL model-checking
problem can be solved in time

O
( p−→ oly(size(D)) · nmax · |Φ|

)
.

Proof (sketch)

1. For each node in the parse tree, a model-checking is performed; this
yields a linear complexity in |Φ|.

2. The worst-case operator is (unbounded) until.
2.1 Determining S=0 and S=1 can be done in linear time.
2.2 Direct methods to solve linear equation systems are in Θ(|S?|3).

3. Strictly speaking, U6n could be more expensive for large n.
But it remains polynomial, and n is small in practice.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 34/39



Complexity

Time complexity
Time complexity of PCTL model checking
For finite DTMC D and PCTL state-formula Φ, the PCTL model-checking
problem can be solved in time

O
( p−→ oly(size(D)) · nmax · |Φ|

)
.

Proof (sketch)

1. For each node in the parse tree, a model-checking is performed; this
yields a linear complexity in |Φ|.

2. The worst-case operator is (unbounded) until.
2.1 Determining S=0 and S=1 can be done in linear time.
2.2 Direct methods to solve linear equation systems are in Θ(|S?|3).

3. Strictly speaking, U6n could be more expensive for large n.
But it remains polynomial, and n is small in practice.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 34/39



Complexity

Example: Crowds protocol

Security: Crowds protocol [Reiter & Rubin, 1998]

I A protocol for anonymous web browsing (variants: mCrowds,
BT-Crowds)

I Hide user’s communication by random routing within a crowd
I sender selects a crowd member randomly using a uniform distribution
I selected router flips a biased coin:

I with probability 1− p: direct delivery to final destination
I otherwise: select a next router randomly (uniformly)

I once a routing path has been established, use it until crowd changes
I Rebuild routing paths on crowd changes
I Property: Crowds protocol ensures “probable innocence”:

I probability real sender is discovered < 1
2 if N > p

p− 1
2
·(c+1)

I where N is crowd’s size and c is number of corrupt crowd members

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 35/39



Complexity

Example: Crowds protocol

Security: Crowds protocol [Reiter & Rubin, 1998]

I A protocol for anonymous web browsing (variants: mCrowds,
BT-Crowds)

I Hide user’s communication by random routing within a crowd

I sender selects a crowd member randomly using a uniform distribution
I selected router flips a biased coin:

I with probability 1− p: direct delivery to final destination
I otherwise: select a next router randomly (uniformly)

I once a routing path has been established, use it until crowd changes
I Rebuild routing paths on crowd changes
I Property: Crowds protocol ensures “probable innocence”:

I probability real sender is discovered < 1
2 if N > p

p− 1
2
·(c+1)

I where N is crowd’s size and c is number of corrupt crowd members

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 35/39



Complexity

Example: Crowds protocol

Security: Crowds protocol [Reiter & Rubin, 1998]

I A protocol for anonymous web browsing (variants: mCrowds,
BT-Crowds)

I Hide user’s communication by random routing within a crowd
I sender selects a crowd member randomly using a uniform distribution

I selected router flips a biased coin:
I with probability 1− p: direct delivery to final destination
I otherwise: select a next router randomly (uniformly)

I once a routing path has been established, use it until crowd changes
I Rebuild routing paths on crowd changes
I Property: Crowds protocol ensures “probable innocence”:

I probability real sender is discovered < 1
2 if N > p

p− 1
2
·(c+1)

I where N is crowd’s size and c is number of corrupt crowd members

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 35/39



Complexity

Example: Crowds protocol

Security: Crowds protocol [Reiter & Rubin, 1998]

I A protocol for anonymous web browsing (variants: mCrowds,
BT-Crowds)

I Hide user’s communication by random routing within a crowd
I sender selects a crowd member randomly using a uniform distribution
I selected router flips a biased coin:

I with probability 1− p: direct delivery to final destination
I otherwise: select a next router randomly (uniformly)

I once a routing path has been established, use it until crowd changes
I Rebuild routing paths on crowd changes
I Property: Crowds protocol ensures “probable innocence”:

I probability real sender is discovered < 1
2 if N > p

p− 1
2
·(c+1)

I where N is crowd’s size and c is number of corrupt crowd members

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 35/39



Complexity

Example: Crowds protocol

Security: Crowds protocol [Reiter & Rubin, 1998]

I A protocol for anonymous web browsing (variants: mCrowds,
BT-Crowds)

I Hide user’s communication by random routing within a crowd
I sender selects a crowd member randomly using a uniform distribution
I selected router flips a biased coin:

I with probability 1− p: direct delivery to final destination
I otherwise: select a next router randomly (uniformly)

I once a routing path has been established, use it until crowd changes
I Rebuild routing paths on crowd changes
I Property: Crowds protocol ensures “probable innocence”:

I probability real sender is discovered < 1
2 if N > p

p− 1
2
·(c+1)

I where N is crowd’s size and c is number of corrupt crowd members

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 35/39



Complexity

Example: Crowds protocol

Security: Crowds protocol [Reiter & Rubin, 1998]

I A protocol for anonymous web browsing (variants: mCrowds,
BT-Crowds)

I Hide user’s communication by random routing within a crowd
I sender selects a crowd member randomly using a uniform distribution
I selected router flips a biased coin:

I with probability 1− p: direct delivery to final destination
I otherwise: select a next router randomly (uniformly)

I once a routing path has been established, use it until crowd changes

I Rebuild routing paths on crowd changes
I Property: Crowds protocol ensures “probable innocence”:

I probability real sender is discovered < 1
2 if N > p

p− 1
2
·(c+1)

I where N is crowd’s size and c is number of corrupt crowd members

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 35/39



Complexity

Example: Crowds protocol

Security: Crowds protocol [Reiter & Rubin, 1998]

I A protocol for anonymous web browsing (variants: mCrowds,
BT-Crowds)

I Hide user’s communication by random routing within a crowd
I sender selects a crowd member randomly using a uniform distribution
I selected router flips a biased coin:

I with probability 1− p: direct delivery to final destination
I otherwise: select a next router randomly (uniformly)

I once a routing path has been established, use it until crowd changes
I Rebuild routing paths on crowd changes

I Property: Crowds protocol ensures “probable innocence”:
I probability real sender is discovered < 1

2 if N > p
p− 1

2
·(c+1)

I where N is crowd’s size and c is number of corrupt crowd members

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 35/39



Complexity

Example: Crowds protocol

Security: Crowds protocol [Reiter & Rubin, 1998]

I A protocol for anonymous web browsing (variants: mCrowds,
BT-Crowds)

I Hide user’s communication by random routing within a crowd
I sender selects a crowd member randomly using a uniform distribution
I selected router flips a biased coin:

I with probability 1− p: direct delivery to final destination
I otherwise: select a next router randomly (uniformly)

I once a routing path has been established, use it until crowd changes
I Rebuild routing paths on crowd changes
I Property: Crowds protocol ensures “probable innocence”:

I probability real sender is discovered < 1
2 if N > p

p− 1
2
·(c+1)

I where N is crowd’s size and c is number of corrupt crowd members

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 35/39



Complexity

State space growth

2.
5 3

3.
5 4

4.
5 5

5.
5 6

6.
5

102

104

106

N = 10

N = 15

state space size

number of protocol runs

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 36/39



Complexity

Some practical verification times

0

5⋅
10
5

1⋅
10
6

1.
5⋅
10
6

2⋅
10
6

2.
5⋅
10
6

3⋅
10
6

3.
5⋅
10
6100

101

102

103

104

105

Crowds protocol (DTMC)

Randomised mutex (DTMC)

verification time (in ms)

state space size

I command-line tool MRMC ran on a Pentium 4, 2.66 GHz, 1 GB RAM laptop.
I PCTL formula P6p(♦obs) where obs holds when the sender’s id is detected.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 37/39



Summary

Overview

1 Introduction

2 PCTL Syntax

3 PCTL Semantics

4 PCTL Model Checking

5 Complexity

6 Summary

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 38/39



Summary

Summary

I PCTL is a branching-time logic with key operator PJ(ϕ).
I Sets of paths fulfilling PCTL path-formula ϕ are measurable.
I PCTL model checking is performed by a recursive descent over Φ.
I The next operator amounts to a single matrix-vector multiplication.
I The bounded-until operator U6n amounts to n matrix-vector

multiplications.
I The until-operator amounts to solving a linear equation system.
I Worst-case time complexity of D |= Φ is polynomial in |D| and linear

in |Φ|.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 39/39



Summary

Summary

I PCTL is a branching-time logic with key operator PJ(ϕ).

I Sets of paths fulfilling PCTL path-formula ϕ are measurable.
I PCTL model checking is performed by a recursive descent over Φ.
I The next operator amounts to a single matrix-vector multiplication.
I The bounded-until operator U6n amounts to n matrix-vector

multiplications.
I The until-operator amounts to solving a linear equation system.
I Worst-case time complexity of D |= Φ is polynomial in |D| and linear

in |Φ|.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 39/39



Summary

Summary

I PCTL is a branching-time logic with key operator PJ(ϕ).
I Sets of paths fulfilling PCTL path-formula ϕ are measurable.

I PCTL model checking is performed by a recursive descent over Φ.
I The next operator amounts to a single matrix-vector multiplication.
I The bounded-until operator U6n amounts to n matrix-vector

multiplications.
I The until-operator amounts to solving a linear equation system.
I Worst-case time complexity of D |= Φ is polynomial in |D| and linear

in |Φ|.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 39/39



Summary

Summary

I PCTL is a branching-time logic with key operator PJ(ϕ).
I Sets of paths fulfilling PCTL path-formula ϕ are measurable.
I PCTL model checking is performed by a recursive descent over Φ.

I The next operator amounts to a single matrix-vector multiplication.
I The bounded-until operator U6n amounts to n matrix-vector

multiplications.
I The until-operator amounts to solving a linear equation system.
I Worst-case time complexity of D |= Φ is polynomial in |D| and linear

in |Φ|.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 39/39



Summary

Summary

I PCTL is a branching-time logic with key operator PJ(ϕ).
I Sets of paths fulfilling PCTL path-formula ϕ are measurable.
I PCTL model checking is performed by a recursive descent over Φ.
I The next operator amounts to a single matrix-vector multiplication.

I The bounded-until operator U6n amounts to n matrix-vector
multiplications.

I The until-operator amounts to solving a linear equation system.
I Worst-case time complexity of D |= Φ is polynomial in |D| and linear

in |Φ|.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 39/39



Summary

Summary

I PCTL is a branching-time logic with key operator PJ(ϕ).
I Sets of paths fulfilling PCTL path-formula ϕ are measurable.
I PCTL model checking is performed by a recursive descent over Φ.
I The next operator amounts to a single matrix-vector multiplication.
I The bounded-until operator U6n amounts to n matrix-vector

multiplications.

I The until-operator amounts to solving a linear equation system.
I Worst-case time complexity of D |= Φ is polynomial in |D| and linear

in |Φ|.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 39/39



Summary

Summary

I PCTL is a branching-time logic with key operator PJ(ϕ).
I Sets of paths fulfilling PCTL path-formula ϕ are measurable.
I PCTL model checking is performed by a recursive descent over Φ.
I The next operator amounts to a single matrix-vector multiplication.
I The bounded-until operator U6n amounts to n matrix-vector

multiplications.
I The until-operator amounts to solving a linear equation system.

I Worst-case time complexity of D |= Φ is polynomial in |D| and linear
in |Φ|.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 39/39



Summary

Summary

I PCTL is a branching-time logic with key operator PJ(ϕ).
I Sets of paths fulfilling PCTL path-formula ϕ are measurable.
I PCTL model checking is performed by a recursive descent over Φ.
I The next operator amounts to a single matrix-vector multiplication.
I The bounded-until operator U6n amounts to n matrix-vector

multiplications.
I The until-operator amounts to solving a linear equation system.
I Worst-case time complexity of D |= Φ is polynomial in |D| and linear

in |Φ|.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 39/39


	Introduction
	PCTL Syntax
	PCTL Semantics
	PCTL Model Checking
	Complexity
	Summary

