
Modeling and Verification of Probabilistic Systems

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

http://moves.rwth-aachen.de/teaching/ws-1516/movep15/

November 4, 2015

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 1/49

http://moves.rwth-aachen.de/teaching/ws-1516/movep15/


Introduction

Overview

1 Introduction

2 Preliminaries

3 Verifying regular safety properties

4 ω-regular properties

5 Verifying DBA objectives

6 Verifying ω-regular properties

7 Summary

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 2/49



Introduction

Summary of previous lectures

Reachability probabilities
Can be obtained as a unique solution of a linear equation system.

Reachability probabilities are pivotal

1. Repeated reachability
I = Reachability of the BSCCs containing a goal state

2. Persistence
I = Reachability of the BSCCs only containing goal states

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 3/49



Introduction

Summary of previous lectures

Reachability probabilities
Can be obtained as a unique solution of a linear equation system.

Reachability probabilities are pivotal

1. Repeated reachability
I = Reachability of the BSCCs containing a goal state

2. Persistence
I = Reachability of the BSCCs only containing goal states

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 3/49



Introduction

Aim of this lecture

Reachability probabilities = key to determine the probability of any
ω-regular property. (This includes all linear temporal logic formulas.)

Major steps for Markov chain D

1. Consider first a simple class of properties: regular safety properties.
2. All traces refuting such property P are recognized by a deterministic

finite-state automaton A.
3. Probability of P = reachability probability in a product of D and A.
4. What are ω-regular properties?
5. All traces satisfying such property P are recognized by a deterministic

Rabin automaton A.
6. Probability of P = reachability probability in a product of D and A.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 4/49



Introduction

Aim of this lecture

Reachability probabilities = key to determine the probability of any
ω-regular property. (This includes all linear temporal logic formulas.)

Major steps for Markov chain D

1. Consider first a simple class of properties: regular safety properties.

2. All traces refuting such property P are recognized by a deterministic
finite-state automaton A.

3. Probability of P = reachability probability in a product of D and A.
4. What are ω-regular properties?
5. All traces satisfying such property P are recognized by a deterministic

Rabin automaton A.
6. Probability of P = reachability probability in a product of D and A.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 4/49



Introduction

Aim of this lecture

Reachability probabilities = key to determine the probability of any
ω-regular property. (This includes all linear temporal logic formulas.)

Major steps for Markov chain D

1. Consider first a simple class of properties: regular safety properties.
2. All traces refuting such property P are recognized by a deterministic

finite-state automaton A.

3. Probability of P = reachability probability in a product of D and A.
4. What are ω-regular properties?
5. All traces satisfying such property P are recognized by a deterministic

Rabin automaton A.
6. Probability of P = reachability probability in a product of D and A.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 4/49



Introduction

Aim of this lecture

Reachability probabilities = key to determine the probability of any
ω-regular property. (This includes all linear temporal logic formulas.)

Major steps for Markov chain D

1. Consider first a simple class of properties: regular safety properties.
2. All traces refuting such property P are recognized by a deterministic

finite-state automaton A.
3. Probability of P = reachability probability in a product of D and A.

4. What are ω-regular properties?
5. All traces satisfying such property P are recognized by a deterministic

Rabin automaton A.
6. Probability of P = reachability probability in a product of D and A.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 4/49



Introduction

Aim of this lecture

Reachability probabilities = key to determine the probability of any
ω-regular property. (This includes all linear temporal logic formulas.)

Major steps for Markov chain D

1. Consider first a simple class of properties: regular safety properties.
2. All traces refuting such property P are recognized by a deterministic

finite-state automaton A.
3. Probability of P = reachability probability in a product of D and A.
4. What are ω-regular properties?
5. All traces satisfying such property P are recognized by a deterministic

Rabin automaton A.

6. Probability of P = reachability probability in a product of D and A.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 4/49



Introduction

Aim of this lecture

Reachability probabilities = key to determine the probability of any
ω-regular property. (This includes all linear temporal logic formulas.)

Major steps for Markov chain D

1. Consider first a simple class of properties: regular safety properties.
2. All traces refuting such property P are recognized by a deterministic

finite-state automaton A.
3. Probability of P = reachability probability in a product of D and A.
4. What are ω-regular properties?
5. All traces satisfying such property P are recognized by a deterministic

Rabin automaton A.
6. Probability of P = reachability probability in a product of D and A.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 4/49



Preliminaries

Overview

1 Introduction

2 Preliminaries

3 Verifying regular safety properties

4 ω-regular properties

5 Verifying DBA objectives

6 Verifying ω-regular properties

7 Summary

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 5/49



Preliminaries

Paths and traces

Paths
A path in DTMC D is an infinite sequence of states s0s1s2 . . . . . . with
P(si , si+1) > 0 for all i .

Let Paths(D) denote the set of paths in D, and Paths∗(D) the set of finite
prefixes thereof.

Traces
The trace of path π = s0 s1 s2 . . . is trace(π) = L(s0) L(s1) L(s2) . . ..
The trace of finite path π̂ = s0 s1 . . . sn is trace(π̂) = L(s0) L(s1) . . . L(sn).
The set of traces of a set Π of paths: trace(Π) = { trace(π) | π ∈ Π }.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 6/49



Preliminaries

Paths and traces

Paths
A path in DTMC D is an infinite sequence of states s0s1s2 . . . . . . with
P(si , si+1) > 0 for all i .
Let Paths(D) denote the set of paths in D, and Paths∗(D) the set of finite
prefixes thereof.

Traces
The trace of path π = s0 s1 s2 . . . is trace(π) = L(s0) L(s1) L(s2) . . ..
The trace of finite path π̂ = s0 s1 . . . sn is trace(π̂) = L(s0) L(s1) . . . L(sn).
The set of traces of a set Π of paths: trace(Π) = { trace(π) | π ∈ Π }.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 6/49



Preliminaries

Paths and traces

Paths
A path in DTMC D is an infinite sequence of states s0s1s2 . . . . . . with
P(si , si+1) > 0 for all i .
Let Paths(D) denote the set of paths in D, and Paths∗(D) the set of finite
prefixes thereof.

Traces
The trace of path π = s0 s1 s2 . . . is trace(π) = L(s0) L(s1) L(s2) . . ..

The trace of finite path π̂ = s0 s1 . . . sn is trace(π̂) = L(s0) L(s1) . . . L(sn).
The set of traces of a set Π of paths: trace(Π) = { trace(π) | π ∈ Π }.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 6/49



Preliminaries

Paths and traces

Paths
A path in DTMC D is an infinite sequence of states s0s1s2 . . . . . . with
P(si , si+1) > 0 for all i .
Let Paths(D) denote the set of paths in D, and Paths∗(D) the set of finite
prefixes thereof.

Traces
The trace of path π = s0 s1 s2 . . . is trace(π) = L(s0) L(s1) L(s2) . . ..
The trace of finite path π̂ = s0 s1 . . . sn is trace(π̂) = L(s0) L(s1) . . . L(sn).

The set of traces of a set Π of paths: trace(Π) = { trace(π) | π ∈ Π }.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 6/49



Preliminaries

Paths and traces

Paths
A path in DTMC D is an infinite sequence of states s0s1s2 . . . . . . with
P(si , si+1) > 0 for all i .
Let Paths(D) denote the set of paths in D, and Paths∗(D) the set of finite
prefixes thereof.

Traces
The trace of path π = s0 s1 s2 . . . is trace(π) = L(s0) L(s1) L(s2) . . ..
The trace of finite path π̂ = s0 s1 . . . sn is trace(π̂) = L(s0) L(s1) . . . L(sn).
The set of traces of a set Π of paths: trace(Π) = { trace(π) | π ∈ Π }.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 6/49



Preliminaries

Paths and traces

Paths
A path in DTMC D is an infinite sequence of states s0s1s2 . . . . . . with
P(si , si+1) > 0 for all i .
Let Paths(D) denote the set of paths in D, and Paths∗(D) the set of finite
prefixes thereof.

Traces
The trace of path π = s0 s1 s2 . . . is trace(π) = L(s0) L(s1) L(s2) . . ..
The trace of finite path π̂ = s0 s1 . . . sn is trace(π̂) = L(s0) L(s1) . . . L(sn).
The set of traces of a set Π of paths: trace(Π) = { trace(π) | π ∈ Π }.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 6/49



Preliminaries

LT properties

Linear-time property
A linear-time property (LT property) over AP is a subset of

(
2AP)ω.

An
LT-property is thus a set of infinite traces over 2AP.

Intuition
An LT-property gives the admissible behaviours of the DTMC at hand.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 7/49



Preliminaries

LT properties

Linear-time property
A linear-time property (LT property) over AP is a subset of

(
2AP)ω. An

LT-property is thus a set of infinite traces over 2AP.

Intuition
An LT-property gives the admissible behaviours of the DTMC at hand.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 7/49



Preliminaries

LT properties

Linear-time property
A linear-time property (LT property) over AP is a subset of

(
2AP)ω. An

LT-property is thus a set of infinite traces over 2AP.

Intuition
An LT-property gives the admissible behaviours of the DTMC at hand.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 7/49



Preliminaries

Probability of LT properties

Probability of LT properties
The probability for DTMC D to exhibit a trace in property P (over AP) is:

PrD(P) = PrD{π ∈ Paths(D) | trace(π) ∈ P }.

For state s in D, let Pr(s |= P) = Prs{π ∈ Paths(s) | trace(π) ∈ P }.

We do not address measurability of P yet. We will later identify a rich set P of
LT-properties—those that include all LTL formulas—for which the set of paths
{π ∈ Paths(D) | trace(π) ∈ P } is measurable.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 8/49



Preliminaries

Probability of LT properties

Probability of LT properties
The probability for DTMC D to exhibit a trace in property P (over AP) is:

PrD(P) = PrD{π ∈ Paths(D) | trace(π) ∈ P }.

For state s in D, let Pr(s |= P) = Prs{π ∈ Paths(s) | trace(π) ∈ P }.

We do not address measurability of P yet. We will later identify a rich set P of
LT-properties—those that include all LTL formulas—for which the set of paths
{π ∈ Paths(D) | trace(π) ∈ P } is measurable.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 8/49



Preliminaries

Probability of LT properties

Probability of LT properties
The probability for DTMC D to exhibit a trace in property P (over AP) is:

PrD(P) = PrD{π ∈ Paths(D) | trace(π) ∈ P }.

For state s in D, let Pr(s |= P) = Prs{π ∈ Paths(s) | trace(π) ∈ P }.

We do not address measurability of P yet. We will later identify a rich set P of
LT-properties—those that include all LTL formulas—for which the set of paths
{π ∈ Paths(D) | trace(π) ∈ P } is measurable.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 8/49



Preliminaries

Safety properties

Safety property
LT property Psafe over AP is a safety property if for all σ ∈

(
2AP)ω \ Psafe

there exists a finite prefix σ̂ of σ such that:

Psafe ∩
{
σ′ ∈

(
2AP)ω | σ̂ is a prefix of σ′

}
︸ ︷︷ ︸

all possible extensions of σ̂

= ∅.

Any such finite word σ̂ is called a bad prefix for Psafe .

Regular safety property
A safety property is regular if its set of bad prefixes constitutes a regular
language (over the alphabet 2AP). Thus, the set of all bad prefixes of a
regular safety property can be represented by a finite-state automaton.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 9/49



Preliminaries

Safety properties

Safety property
LT property Psafe over AP is a safety property if for all σ ∈

(
2AP)ω \ Psafe

there exists a finite prefix σ̂ of σ such that:

Psafe ∩
{
σ′ ∈

(
2AP)ω | σ̂ is a prefix of σ′

}
︸ ︷︷ ︸

all possible extensions of σ̂

= ∅.

Any such finite word σ̂ is called a bad prefix for Psafe .

Regular safety property
A safety property is regular if its set of bad prefixes constitutes a regular
language (over the alphabet 2AP). Thus, the set of all bad prefixes of a
regular safety property can be represented by a finite-state automaton.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 9/49



Preliminaries

Safety properties

Safety property
LT property Psafe over AP is a safety property if for all σ ∈

(
2AP)ω \ Psafe

there exists a finite prefix σ̂ of σ such that:

Psafe ∩
{
σ′ ∈

(
2AP)ω | σ̂ is a prefix of σ′

}
︸ ︷︷ ︸

all possible extensions of σ̂

= ∅.

Any such finite word σ̂ is called a bad prefix for Psafe .

Regular safety property
A safety property is regular if its set of bad prefixes constitutes a regular
language (over the alphabet 2AP). Thus, the set of all bad prefixes of a
regular safety property can be represented by a finite-state automaton.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 9/49



Preliminaries

Safety properties

Safety property
LT property Psafe over AP is a safety property if for all σ ∈

(
2AP)ω \ Psafe

there exists a finite prefix σ̂ of σ such that:

Psafe ∩
{
σ′ ∈

(
2AP)ω | σ̂ is a prefix of σ′

}
︸ ︷︷ ︸

all possible extensions of σ̂

= ∅.

Any such finite word σ̂ is called a bad prefix for Psafe .

Regular safety property
A safety property is regular if its set of bad prefixes constitutes a regular
language (over the alphabet 2AP).

Thus, the set of all bad prefixes of a
regular safety property can be represented by a finite-state automaton.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 9/49



Preliminaries

Safety properties

Safety property
LT property Psafe over AP is a safety property if for all σ ∈

(
2AP)ω \ Psafe

there exists a finite prefix σ̂ of σ such that:

Psafe ∩
{
σ′ ∈

(
2AP)ω | σ̂ is a prefix of σ′

}
︸ ︷︷ ︸

all possible extensions of σ̂

= ∅.

Any such finite word σ̂ is called a bad prefix for Psafe .

Regular safety property
A safety property is regular if its set of bad prefixes constitutes a regular
language (over the alphabet 2AP). Thus, the set of all bad prefixes of a
regular safety property can be represented by a finite-state automaton.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 9/49



Preliminaries

Property of Knuth’s die

Property of Knuth’s die
After initial tails, yield 1 or 3 but with maximally five time tails.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 10/49



Preliminaries

Property of Knuth’s die

Property of Knuth’s die
After initial tails, yield 1 or 3 but with maximally five time tails.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 10/49



Preliminaries

Property of Knuth’s die

Property of Knuth’s die
After initial tails, yield 1 or 3 but with maximally five time tails.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 10/49



Preliminaries

Property as an automaton

After initial tails, yield 1 or 3 but with at most five times tails in total

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 11/49



Verifying regular safety properties

Overview

1 Introduction

2 Preliminaries

3 Verifying regular safety properties

4 ω-regular properties

5 Verifying DBA objectives

6 Verifying ω-regular properties

7 Summary

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 12/49



Verifying regular safety properties

Probability of a regular safety property
Let A = (Q, 2AP, δ, q0,F ) be a deterministic finite-state automaton (DFA)
for the bad prefixes of regular safety property Psafe :

Psafe = {A0 A1 A2 . . . ∈
(
2AP)ω | ∀n > 0.A0 A1 . . .An 6∈ L(A) }.

Let δ be total, i.e., δ(q,A) is defined for each A ⊆ AP and state q ∈ Q.
Furthermore, let D = (S,P, ιinit,AP, L) be a finite DTMC. Our interest is
to compute the probability

PrD(Psafe) = 1 −
∑
s∈S

ιinit(s) · Pr(s |= A) where

Pr(s |= A) = PrDs {π ∈ Paths(s) | trace(π) /∈ Psafe }.

These probabilities can be obtained by considering a product of DTMC D with
DFA A.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 13/49



Verifying regular safety properties

Probability of a regular safety property
Let A = (Q, 2AP, δ, q0,F ) be a deterministic finite-state automaton (DFA)
for the bad prefixes of regular safety property Psafe :

Psafe = {A0 A1 A2 . . . ∈
(
2AP)ω | ∀n > 0.A0 A1 . . .An 6∈ L(A) }.

Let δ be total, i.e., δ(q,A) is defined for each A ⊆ AP and state q ∈ Q.

Furthermore, let D = (S,P, ιinit,AP, L) be a finite DTMC. Our interest is
to compute the probability

PrD(Psafe) = 1 −
∑
s∈S

ιinit(s) · Pr(s |= A) where

Pr(s |= A) = PrDs {π ∈ Paths(s) | trace(π) /∈ Psafe }.

These probabilities can be obtained by considering a product of DTMC D with
DFA A.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 13/49



Verifying regular safety properties

Probability of a regular safety property
Let A = (Q, 2AP, δ, q0,F ) be a deterministic finite-state automaton (DFA)
for the bad prefixes of regular safety property Psafe :

Psafe = {A0 A1 A2 . . . ∈
(
2AP)ω | ∀n > 0.A0 A1 . . .An 6∈ L(A) }.

Let δ be total, i.e., δ(q,A) is defined for each A ⊆ AP and state q ∈ Q.
Furthermore, let D = (S,P, ιinit,AP, L) be a finite DTMC.

Our interest is
to compute the probability

PrD(Psafe) = 1 −
∑
s∈S

ιinit(s) · Pr(s |= A) where

Pr(s |= A) = PrDs {π ∈ Paths(s) | trace(π) /∈ Psafe }.

These probabilities can be obtained by considering a product of DTMC D with
DFA A.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 13/49



Verifying regular safety properties

Probability of a regular safety property
Let A = (Q, 2AP, δ, q0,F ) be a deterministic finite-state automaton (DFA)
for the bad prefixes of regular safety property Psafe :

Psafe = {A0 A1 A2 . . . ∈
(
2AP)ω | ∀n > 0.A0 A1 . . .An 6∈ L(A) }.

Let δ be total, i.e., δ(q,A) is defined for each A ⊆ AP and state q ∈ Q.
Furthermore, let D = (S,P, ιinit,AP, L) be a finite DTMC. Our interest is
to compute the probability

PrD(Psafe) = 1 −
∑
s∈S

ιinit(s) · Pr(s |= A) where

Pr(s |= A) = PrDs {π ∈ Paths(s) | trace(π) /∈ Psafe }.

These probabilities can be obtained by considering a product of DTMC D with
DFA A.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 13/49



Verifying regular safety properties

Probability of a regular safety property
Let A = (Q, 2AP, δ, q0,F ) be a deterministic finite-state automaton (DFA)
for the bad prefixes of regular safety property Psafe :

Psafe = {A0 A1 A2 . . . ∈
(
2AP)ω | ∀n > 0.A0 A1 . . .An 6∈ L(A) }.

Let δ be total, i.e., δ(q,A) is defined for each A ⊆ AP and state q ∈ Q.
Furthermore, let D = (S,P, ιinit,AP, L) be a finite DTMC. Our interest is
to compute the probability

PrD(Psafe) = 1 −
∑
s∈S

ιinit(s) · Pr(s |= A) where

Pr(s |= A) = PrDs {π ∈ Paths(s) | trace(π) /∈ Psafe }.

These probabilities can be obtained by considering a product of DTMC D with
DFA A.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 13/49



Verifying regular safety properties

Probability of a regular safety property
Let A = (Q, 2AP, δ, q0,F ) be a deterministic finite-state automaton (DFA)
for the bad prefixes of regular safety property Psafe :

Psafe = {A0 A1 A2 . . . ∈
(
2AP)ω | ∀n > 0.A0 A1 . . .An 6∈ L(A) }.

Let δ be total, i.e., δ(q,A) is defined for each A ⊆ AP and state q ∈ Q.
Furthermore, let D = (S,P, ιinit,AP, L) be a finite DTMC. Our interest is
to compute the probability

PrD(Psafe) = 1 −
∑
s∈S

ιinit(s) · Pr(s |= A) where

Pr(s |= A) = PrDs {π ∈ Paths(s) | trace(π) /∈ Psafe }.

These probabilities can be obtained by considering a product of DTMC D with
DFA A.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 13/49



Verifying regular safety properties

Probability of a regular safety property

PrD(Psafe) = 1 −
∑
s∈S

ιinit(s) · Pr(s |= A) where

Pr(s |= A) = PrDs {π ∈ Paths(s) | trace(π) /∈ Psafe }.

Remark
The value Pr(s |= A) can be written as the (possibly infinite) sum:

Pr(s |= A) =
∑
π̂

P(π̂)

where π̂ ranges over all finite path prefixes s0 s1 . . . sn with s0 = s and:

1. trace(s0 s1 . . . sn) = L(s0) L(s1) . . . L(sn) ∈ L(A), and

2. the length of π̂ is minimal, i.e., trace(s0 s1 . . . si ) /∈ L(A) for all 0 6 i < n.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 14/49



Verifying regular safety properties

Probability of a regular safety property

PrD(Psafe) = 1 −
∑
s∈S

ιinit(s) · Pr(s |= A) where

Pr(s |= A) = PrDs {π ∈ Paths(s) | trace(π) /∈ Psafe }.

Remark
The value Pr(s |= A) can be written as the (possibly infinite) sum:

Pr(s |= A) =
∑
π̂

P(π̂)

where π̂ ranges over all finite path prefixes s0 s1 . . . sn with s0 = s and:

1. trace(s0 s1 . . . sn) = L(s0) L(s1) . . . L(sn) ∈ L(A), and

2. the length of π̂ is minimal, i.e., trace(s0 s1 . . . si ) /∈ L(A) for all 0 6 i < n.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 14/49



Verifying regular safety properties

Probability of a regular safety property

PrD(Psafe) = 1 −
∑
s∈S

ιinit(s) · Pr(s |= A) where

Pr(s |= A) = PrDs {π ∈ Paths(s) | trace(π) /∈ Psafe }.

Remark
The value Pr(s |= A) can be written as the (possibly infinite) sum:

Pr(s |= A) =
∑
π̂

P(π̂)

where π̂ ranges over all finite path prefixes s0 s1 . . . sn with s0 = s

and:

1. trace(s0 s1 . . . sn) = L(s0) L(s1) . . . L(sn) ∈ L(A), and

2. the length of π̂ is minimal, i.e., trace(s0 s1 . . . si ) /∈ L(A) for all 0 6 i < n.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 14/49



Verifying regular safety properties

Probability of a regular safety property

PrD(Psafe) = 1 −
∑
s∈S

ιinit(s) · Pr(s |= A) where

Pr(s |= A) = PrDs {π ∈ Paths(s) | trace(π) /∈ Psafe }.

Remark
The value Pr(s |= A) can be written as the (possibly infinite) sum:

Pr(s |= A) =
∑
π̂

P(π̂)

where π̂ ranges over all finite path prefixes s0 s1 . . . sn with s0 = s and:

1. trace(s0 s1 . . . sn) = L(s0) L(s1) . . . L(sn) ∈ L(A), and

2. the length of π̂ is minimal, i.e., trace(s0 s1 . . . si ) /∈ L(A) for all 0 6 i < n.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 14/49



Verifying regular safety properties

Probability of a regular safety property

PrD(Psafe) = 1 −
∑
s∈S

ιinit(s) · Pr(s |= A) where

Pr(s |= A) = PrDs {π ∈ Paths(s) | trace(π) /∈ Psafe }.

Remark
The value Pr(s |= A) can be written as the (possibly infinite) sum:

Pr(s |= A) =
∑
π̂

P(π̂)

where π̂ ranges over all finite path prefixes s0 s1 . . . sn with s0 = s and:

1. trace(s0 s1 . . . sn) = L(s0) L(s1) . . . L(sn) ∈ L(A), and

2. the length of π̂ is minimal, i.e., trace(s0 s1 . . . si ) /∈ L(A) for all 0 6 i < n.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 14/49



Verifying regular safety properties

Product construction: intuition
DTMC D DRA A
with state space S with state space Q

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 15/49



Verifying regular safety properties

Product construction: intuition
DTMC D DRA A
with state space S with state space Q

product D ⊗A
Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 16/49



Verifying regular safety properties

Product Markov chain

Product Markov chain
Let D = (S,P, ιinit,AP, L) be a DTMC and A = (Q, 2AP, δ, q0,F ) be a
DFA. The product D ⊗A is the DTMC:

D ⊗A = (S × Q,P′, ι′init, { accept }, L′)

where L′(〈s, q〉) = { accept } if q ∈ F and L′(〈s, q〉) = ∅ otherwise, and

ι′init(〈s, q〉) =
{
ιinit(s) if q = δ(q0, L(s))
0 otherwise.

The transition probabilities in D ⊗A are given by:

P′(〈s, q〉, 〈s ′, q′〉) =
{

P(s, s ′) if q′ = δ(q, L(s ′))
0 otherwise.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 17/49



Verifying regular safety properties

Product Markov chain
Product Markov chain
Let D = (S,P, ιinit,AP, L) be a DTMC and A = (Q, 2AP, δ, q0,F ) be a
DFA.

The product D ⊗A is the DTMC:

D ⊗A = (S × Q,P′, ι′init, { accept }, L′)

where L′(〈s, q〉) = { accept } if q ∈ F and L′(〈s, q〉) = ∅ otherwise, and

ι′init(〈s, q〉) =
{
ιinit(s) if q = δ(q0, L(s))
0 otherwise.

The transition probabilities in D ⊗A are given by:

P′(〈s, q〉, 〈s ′, q′〉) =
{

P(s, s ′) if q′ = δ(q, L(s ′))
0 otherwise.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 17/49



Verifying regular safety properties

Product Markov chain
Product Markov chain
Let D = (S,P, ιinit,AP, L) be a DTMC and A = (Q, 2AP, δ, q0,F ) be a
DFA. The product D ⊗A is the DTMC:

D ⊗A = (S × Q,P′, ι′init, { accept }, L′)

where L′(〈s, q〉) = { accept } if q ∈ F and L′(〈s, q〉) = ∅ otherwise, and

ι′init(〈s, q〉) =
{
ιinit(s) if q = δ(q0, L(s))
0 otherwise.

The transition probabilities in D ⊗A are given by:

P′(〈s, q〉, 〈s ′, q′〉) =
{

P(s, s ′) if q′ = δ(q, L(s ′))
0 otherwise.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 17/49



Verifying regular safety properties

Product Markov chain
Product Markov chain
Let D = (S,P, ιinit,AP, L) be a DTMC and A = (Q, 2AP, δ, q0,F ) be a
DFA. The product D ⊗A is the DTMC:

D ⊗A = (S × Q,P′, ι′init, { accept }, L′)

where L′(〈s, q〉) = { accept } if q ∈ F and L′(〈s, q〉) = ∅ otherwise,

and

ι′init(〈s, q〉) =
{
ιinit(s) if q = δ(q0, L(s))
0 otherwise.

The transition probabilities in D ⊗A are given by:

P′(〈s, q〉, 〈s ′, q′〉) =
{

P(s, s ′) if q′ = δ(q, L(s ′))
0 otherwise.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 17/49



Verifying regular safety properties

Product Markov chain
Product Markov chain
Let D = (S,P, ιinit,AP, L) be a DTMC and A = (Q, 2AP, δ, q0,F ) be a
DFA. The product D ⊗A is the DTMC:

D ⊗A = (S × Q,P′, ι′init, { accept }, L′)

where L′(〈s, q〉) = { accept } if q ∈ F and L′(〈s, q〉) = ∅ otherwise, and

ι′init(〈s, q〉) =
{
ιinit(s) if q = δ(q0, L(s))
0 otherwise.

The transition probabilities in D ⊗A are given by:

P′(〈s, q〉, 〈s ′, q′〉) =
{

P(s, s ′) if q′ = δ(q, L(s ′))
0 otherwise.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 17/49



Verifying regular safety properties

Product Markov chain
Product Markov chain
Let D = (S,P, ιinit,AP, L) be a DTMC and A = (Q, 2AP, δ, q0,F ) be a
DFA. The product D ⊗A is the DTMC:

D ⊗A = (S × Q,P′, ι′init, { accept }, L′)

where L′(〈s, q〉) = { accept } if q ∈ F and L′(〈s, q〉) = ∅ otherwise, and

ι′init(〈s, q〉) =
{
ιinit(s) if q = δ(q0, L(s))
0 otherwise.

The transition probabilities in D ⊗A are given by:

P′(〈s, q〉, 〈s ′, q′〉) =
{

P(s, s ′) if q′ = δ(q, L(s ′))
0 otherwise.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 17/49



Verifying regular safety properties

Example product: Knuth-Yao’s die

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 18/49



Verifying regular safety properties

Product Markov chain

Some observations
I For each path π = s0 s1 s2 . . . in DTMC D there exists a unique run

q0 q1 q2 . . . in DFA A for trace(π) = L(s0) L(s1) L(s2) . . . and
π+ = 〈s0, q1〉 〈s1, q2〉 〈s2, q3〉 . . . is a path in D ⊗A.

I The DFA A does not affect the probabilities, i.e., for each measurable
set Π of paths in D and state s:

PrDs (Π) = PrD⊗A〈s,δ(q0,L(s))〉 {π
+ | π ∈ Π }︸ ︷︷ ︸

Π+

I For Π =
{
π ∈ PathsD(s) | pref(trace(π)) ∩ L(A) 6= ∅

}
, the set Π+

is given by:

Π+ =
{
π+ ∈ PathsD⊗A(〈s, δ(q0, L(s))〉) | π+ |= ♦accept

}
.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 19/49



Verifying regular safety properties

Product Markov chain
Some observations
I For each path π = s0 s1 s2 . . . in DTMC D there exists a unique run

q0 q1 q2 . . . in DFA A for trace(π) = L(s0) L(s1) L(s2) . . . and
π+ = 〈s0, q1〉 〈s1, q2〉 〈s2, q3〉 . . . is a path in D ⊗A.

I The DFA A does not affect the probabilities, i.e., for each measurable
set Π of paths in D and state s:

PrDs (Π) = PrD⊗A〈s,δ(q0,L(s))〉 {π
+ | π ∈ Π }︸ ︷︷ ︸

Π+

I For Π =
{
π ∈ PathsD(s) | pref(trace(π)) ∩ L(A) 6= ∅

}
, the set Π+

is given by:

Π+ =
{
π+ ∈ PathsD⊗A(〈s, δ(q0, L(s))〉) | π+ |= ♦accept

}
.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 19/49



Verifying regular safety properties

Product Markov chain
Some observations
I For each path π = s0 s1 s2 . . . in DTMC D there exists a unique run

q0 q1 q2 . . . in DFA A for trace(π) = L(s0) L(s1) L(s2) . . . and
π+ = 〈s0, q1〉 〈s1, q2〉 〈s2, q3〉 . . . is a path in D ⊗A.

I The DFA A does not affect the probabilities, i.e., for each measurable
set Π of paths in D and state s:

PrDs (Π) = PrD⊗A〈s,δ(q0,L(s))〉 {π
+ | π ∈ Π }︸ ︷︷ ︸

Π+

I For Π =
{
π ∈ PathsD(s) | pref(trace(π)) ∩ L(A) 6= ∅

}
, the set Π+

is given by:

Π+ =
{
π+ ∈ PathsD⊗A(〈s, δ(q0, L(s))〉) | π+ |= ♦accept

}
.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 19/49



Verifying regular safety properties

Product Markov chain
Some observations
I For each path π = s0 s1 s2 . . . in DTMC D there exists a unique run

q0 q1 q2 . . . in DFA A for trace(π) = L(s0) L(s1) L(s2) . . . and
π+ = 〈s0, q1〉 〈s1, q2〉 〈s2, q3〉 . . . is a path in D ⊗A.

I The DFA A does not affect the probabilities, i.e., for each measurable
set Π of paths in D and state s:

PrDs (Π) = PrD⊗A〈s,δ(q0,L(s))〉 {π
+ | π ∈ Π }︸ ︷︷ ︸

Π+

I For Π =
{
π ∈ PathsD(s) | pref(trace(π)) ∩ L(A) 6= ∅

}
, the set Π+

is given by:

Π+ =
{
π+ ∈ PathsD⊗A(〈s, δ(q0, L(s))〉) | π+ |= ♦accept

}
.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 19/49



Verifying regular safety properties

Quantitative analysis of regular safety properties

Theorem for analysing regular safety properties
Let Psafe be a regular safety property, A a DFA for the set of bad prefixes
of Psafe , D a DTMC, and s a state in D. Then:

PrD(s |= Psafe) = PrD⊗A(〈s, qs〉 6|= ♦accept)
= 1− PrD⊗A(〈s, qs〉 |= ♦accept)

where qs = δ(q0, L(s)).

Remarks

1. For finite DTMCs, PrD(s |= Psafe) can thus be computed by determining
reachability probabilities of accept states in D ⊗A. This amounts to solving
a linear equation system.

2. For qualitative regular safety properties, i.e., PrD(s |= Psafe) > 0 and
PrD(s |= Psafe) = 1, a graph analysis of D ⊗A suffices.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 20/49



Verifying regular safety properties

Quantitative analysis of regular safety properties
Theorem for analysing regular safety properties

Let Psafe be a regular safety property, A a DFA for the set of bad prefixes
of Psafe , D a DTMC, and s a state in D. Then:

PrD(s |= Psafe) = PrD⊗A(〈s, qs〉 6|= ♦accept)
= 1− PrD⊗A(〈s, qs〉 |= ♦accept)

where qs = δ(q0, L(s)).

Remarks

1. For finite DTMCs, PrD(s |= Psafe) can thus be computed by determining
reachability probabilities of accept states in D ⊗A. This amounts to solving
a linear equation system.

2. For qualitative regular safety properties, i.e., PrD(s |= Psafe) > 0 and
PrD(s |= Psafe) = 1, a graph analysis of D ⊗A suffices.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 20/49



Verifying regular safety properties

Quantitative analysis of regular safety properties
Theorem for analysing regular safety properties
Let Psafe be a regular safety property, A a DFA for the set of bad prefixes
of Psafe , D a DTMC, and s a state in D. Then:

PrD(s |= Psafe) = PrD⊗A(〈s, qs〉 6|= ♦accept)

= 1− PrD⊗A(〈s, qs〉 |= ♦accept)

where qs = δ(q0, L(s)).

Remarks

1. For finite DTMCs, PrD(s |= Psafe) can thus be computed by determining
reachability probabilities of accept states in D ⊗A. This amounts to solving
a linear equation system.

2. For qualitative regular safety properties, i.e., PrD(s |= Psafe) > 0 and
PrD(s |= Psafe) = 1, a graph analysis of D ⊗A suffices.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 20/49



Verifying regular safety properties

Quantitative analysis of regular safety properties
Theorem for analysing regular safety properties
Let Psafe be a regular safety property, A a DFA for the set of bad prefixes
of Psafe , D a DTMC, and s a state in D. Then:

PrD(s |= Psafe) = PrD⊗A(〈s, qs〉 6|= ♦accept)
= 1− PrD⊗A(〈s, qs〉 |= ♦accept)

where qs = δ(q0, L(s)).

Remarks

1. For finite DTMCs, PrD(s |= Psafe) can thus be computed by determining
reachability probabilities of accept states in D ⊗A. This amounts to solving
a linear equation system.

2. For qualitative regular safety properties, i.e., PrD(s |= Psafe) > 0 and
PrD(s |= Psafe) = 1, a graph analysis of D ⊗A suffices.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 20/49



Verifying regular safety properties

Quantitative analysis of regular safety properties
Theorem for analysing regular safety properties
Let Psafe be a regular safety property, A a DFA for the set of bad prefixes
of Psafe , D a DTMC, and s a state in D. Then:

PrD(s |= Psafe) = PrD⊗A(〈s, qs〉 6|= ♦accept)
= 1− PrD⊗A(〈s, qs〉 |= ♦accept)

where qs = δ(q0, L(s)).

Remarks

1. For finite DTMCs, PrD(s |= Psafe) can thus be computed by determining
reachability probabilities of accept states in D ⊗A. This amounts to solving
a linear equation system.

2. For qualitative regular safety properties, i.e., PrD(s |= Psafe) > 0 and
PrD(s |= Psafe) = 1, a graph analysis of D ⊗A suffices.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 20/49



Verifying regular safety properties

Quantitative analysis of regular safety properties
Theorem for analysing regular safety properties
Let Psafe be a regular safety property, A a DFA for the set of bad prefixes
of Psafe , D a DTMC, and s a state in D. Then:

PrD(s |= Psafe) = PrD⊗A(〈s, qs〉 6|= ♦accept)
= 1− PrD⊗A(〈s, qs〉 |= ♦accept)

where qs = δ(q0, L(s)).

Remarks

1. For finite DTMCs, PrD(s |= Psafe) can thus be computed by determining
reachability probabilities of accept states in D ⊗A.

This amounts to solving
a linear equation system.

2. For qualitative regular safety properties, i.e., PrD(s |= Psafe) > 0 and
PrD(s |= Psafe) = 1, a graph analysis of D ⊗A suffices.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 20/49



Verifying regular safety properties

Quantitative analysis of regular safety properties
Theorem for analysing regular safety properties
Let Psafe be a regular safety property, A a DFA for the set of bad prefixes
of Psafe , D a DTMC, and s a state in D. Then:

PrD(s |= Psafe) = PrD⊗A(〈s, qs〉 6|= ♦accept)
= 1− PrD⊗A(〈s, qs〉 |= ♦accept)

where qs = δ(q0, L(s)).

Remarks

1. For finite DTMCs, PrD(s |= Psafe) can thus be computed by determining
reachability probabilities of accept states in D ⊗A. This amounts to solving
a linear equation system.

2. For qualitative regular safety properties, i.e., PrD(s |= Psafe) > 0 and
PrD(s |= Psafe) = 1, a graph analysis of D ⊗A suffices.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 20/49



Verifying regular safety properties

Quantitative analysis of regular safety properties
Theorem for analysing regular safety properties
Let Psafe be a regular safety property, A a DFA for the set of bad prefixes
of Psafe , D a DTMC, and s a state in D. Then:

PrD(s |= Psafe) = PrD⊗A(〈s, qs〉 6|= ♦accept)
= 1− PrD⊗A(〈s, qs〉 |= ♦accept)

where qs = δ(q0, L(s)).

Remarks

1. For finite DTMCs, PrD(s |= Psafe) can thus be computed by determining
reachability probabilities of accept states in D ⊗A. This amounts to solving
a linear equation system.

2. For qualitative regular safety properties, i.e., PrD(s |= Psafe) > 0 and
PrD(s |= Psafe) = 1, a graph analysis of D ⊗A suffices.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 20/49



Verifying regular safety properties

Determining the property’s probability

PrD⊗A(〈s, qs〉 |= ♦accept) equals 1
8 + 1

8 + 1
32 + 1

32 = 5
16 .

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 21/49



ω-regular properties

Overview

1 Introduction

2 Preliminaries

3 Verifying regular safety properties

4 ω-regular properties

5 Verifying DBA objectives

6 Verifying ω-regular properties

7 Summary

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 22/49



ω-regular properties

ω-regular languages

Infinite repetition of languages
Let Σ be a finite alphabet. For language L ⊆ Σ∗, let Lω be the set of words in
Σ∗ ∪ Σω that arise from the infinite concatenation of (arbitrary) words in Σ, i.e.,

Lω =
{
w1w2w3 . . . | wi ∈ L, i > 1

}
.

The result is an ω-language, i.e., L ⊆ Σ∗, provided that L ⊆ Σ+, i.e., ε 6∈ L.

ω-regular expression
An ω-regular expression G over the Σ has the form: G = E1.Fω1 + . . .+ En.Fωn
where n > 1 and E1, . . . , En, F1, . . . , Fn are regular expressions over Σ such that
ε /∈ L(Fi ), for all 1 6 i 6 n.
The semantics of G is defined by Lω(G) = L(E1).L(F1)ω ∪ . . . ∪ L(En).L(Fn)ω
where L(E) ⊆ Σ∗ denotes the language (of finite words) induced by the regular
expression E.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 23/49



ω-regular properties

ω-regular languages

Infinite repetition of languages

Let Σ be a finite alphabet. For language L ⊆ Σ∗, let Lω be the set of words in
Σ∗ ∪ Σω that arise from the infinite concatenation of (arbitrary) words in Σ, i.e.,

Lω =
{
w1w2w3 . . . | wi ∈ L, i > 1

}
.

The result is an ω-language, i.e., L ⊆ Σ∗, provided that L ⊆ Σ+, i.e., ε 6∈ L.

ω-regular expression
An ω-regular expression G over the Σ has the form: G = E1.Fω1 + . . .+ En.Fωn
where n > 1 and E1, . . . , En, F1, . . . , Fn are regular expressions over Σ such that
ε /∈ L(Fi ), for all 1 6 i 6 n.
The semantics of G is defined by Lω(G) = L(E1).L(F1)ω ∪ . . . ∪ L(En).L(Fn)ω
where L(E) ⊆ Σ∗ denotes the language (of finite words) induced by the regular
expression E.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 23/49



ω-regular properties

ω-regular languages

Infinite repetition of languages
Let Σ be a finite alphabet.

For language L ⊆ Σ∗, let Lω be the set of words in
Σ∗ ∪ Σω that arise from the infinite concatenation of (arbitrary) words in Σ, i.e.,

Lω =
{
w1w2w3 . . . | wi ∈ L, i > 1

}
.

The result is an ω-language, i.e., L ⊆ Σ∗, provided that L ⊆ Σ+, i.e., ε 6∈ L.

ω-regular expression
An ω-regular expression G over the Σ has the form: G = E1.Fω1 + . . .+ En.Fωn
where n > 1 and E1, . . . , En, F1, . . . , Fn are regular expressions over Σ such that
ε /∈ L(Fi ), for all 1 6 i 6 n.
The semantics of G is defined by Lω(G) = L(E1).L(F1)ω ∪ . . . ∪ L(En).L(Fn)ω
where L(E) ⊆ Σ∗ denotes the language (of finite words) induced by the regular
expression E.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 23/49



ω-regular properties

ω-regular languages

Infinite repetition of languages
Let Σ be a finite alphabet. For language L ⊆ Σ∗, let Lω be the set of words in
Σ∗ ∪ Σω that arise from the infinite concatenation of (arbitrary) words in Σ,

i.e.,

Lω =
{
w1w2w3 . . . | wi ∈ L, i > 1

}
.

The result is an ω-language, i.e., L ⊆ Σ∗, provided that L ⊆ Σ+, i.e., ε 6∈ L.

ω-regular expression
An ω-regular expression G over the Σ has the form: G = E1.Fω1 + . . .+ En.Fωn
where n > 1 and E1, . . . , En, F1, . . . , Fn are regular expressions over Σ such that
ε /∈ L(Fi ), for all 1 6 i 6 n.
The semantics of G is defined by Lω(G) = L(E1).L(F1)ω ∪ . . . ∪ L(En).L(Fn)ω
where L(E) ⊆ Σ∗ denotes the language (of finite words) induced by the regular
expression E.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 23/49



ω-regular properties

ω-regular languages

Infinite repetition of languages
Let Σ be a finite alphabet. For language L ⊆ Σ∗, let Lω be the set of words in
Σ∗ ∪ Σω that arise from the infinite concatenation of (arbitrary) words in Σ, i.e.,

Lω =
{
w1w2w3 . . . | wi ∈ L, i > 1

}
.

The result is an ω-language, i.e., L ⊆ Σ∗, provided that L ⊆ Σ+, i.e., ε 6∈ L.

ω-regular expression
An ω-regular expression G over the Σ has the form: G = E1.Fω1 + . . .+ En.Fωn
where n > 1 and E1, . . . , En, F1, . . . , Fn are regular expressions over Σ such that
ε /∈ L(Fi ), for all 1 6 i 6 n.
The semantics of G is defined by Lω(G) = L(E1).L(F1)ω ∪ . . . ∪ L(En).L(Fn)ω
where L(E) ⊆ Σ∗ denotes the language (of finite words) induced by the regular
expression E.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 23/49



ω-regular properties

ω-regular languages

Infinite repetition of languages
Let Σ be a finite alphabet. For language L ⊆ Σ∗, let Lω be the set of words in
Σ∗ ∪ Σω that arise from the infinite concatenation of (arbitrary) words in Σ, i.e.,

Lω =
{
w1w2w3 . . . | wi ∈ L, i > 1

}
.

The result is an ω-language, i.e., L ⊆ Σ∗, provided that L ⊆ Σ+, i.e., ε 6∈ L.

ω-regular expression
An ω-regular expression G over the Σ has the form: G = E1.Fω1 + . . .+ En.Fωn
where n > 1 and E1, . . . , En, F1, . . . , Fn are regular expressions over Σ such that
ε /∈ L(Fi ), for all 1 6 i 6 n.
The semantics of G is defined by Lω(G) = L(E1).L(F1)ω ∪ . . . ∪ L(En).L(Fn)ω
where L(E) ⊆ Σ∗ denotes the language (of finite words) induced by the regular
expression E.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 23/49



ω-regular properties

ω-regular languages

Infinite repetition of languages
Let Σ be a finite alphabet. For language L ⊆ Σ∗, let Lω be the set of words in
Σ∗ ∪ Σω that arise from the infinite concatenation of (arbitrary) words in Σ, i.e.,

Lω =
{
w1w2w3 . . . | wi ∈ L, i > 1

}
.

The result is an ω-language, i.e., L ⊆ Σ∗, provided that L ⊆ Σ+, i.e., ε 6∈ L.

ω-regular expression
An ω-regular expression G over the Σ has the form:

G = E1.Fω1 + . . .+ En.Fωn
where n > 1 and E1, . . . , En, F1, . . . , Fn are regular expressions over Σ such that
ε /∈ L(Fi ), for all 1 6 i 6 n.
The semantics of G is defined by Lω(G) = L(E1).L(F1)ω ∪ . . . ∪ L(En).L(Fn)ω
where L(E) ⊆ Σ∗ denotes the language (of finite words) induced by the regular
expression E.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 23/49



ω-regular properties

ω-regular languages

Infinite repetition of languages
Let Σ be a finite alphabet. For language L ⊆ Σ∗, let Lω be the set of words in
Σ∗ ∪ Σω that arise from the infinite concatenation of (arbitrary) words in Σ, i.e.,

Lω =
{
w1w2w3 . . . | wi ∈ L, i > 1

}
.

The result is an ω-language, i.e., L ⊆ Σ∗, provided that L ⊆ Σ+, i.e., ε 6∈ L.

ω-regular expression
An ω-regular expression G over the Σ has the form: G = E1.Fω1 + . . .+ En.Fωn
where n > 1 and E1, . . . , En, F1, . . . , Fn are regular expressions over Σ such that
ε /∈ L(Fi ), for all 1 6 i 6 n.

The semantics of G is defined by Lω(G) = L(E1).L(F1)ω ∪ . . . ∪ L(En).L(Fn)ω
where L(E) ⊆ Σ∗ denotes the language (of finite words) induced by the regular
expression E.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 23/49



ω-regular properties

ω-regular languages

Infinite repetition of languages
Let Σ be a finite alphabet. For language L ⊆ Σ∗, let Lω be the set of words in
Σ∗ ∪ Σω that arise from the infinite concatenation of (arbitrary) words in Σ, i.e.,

Lω =
{
w1w2w3 . . . | wi ∈ L, i > 1

}
.

The result is an ω-language, i.e., L ⊆ Σ∗, provided that L ⊆ Σ+, i.e., ε 6∈ L.

ω-regular expression
An ω-regular expression G over the Σ has the form: G = E1.Fω1 + . . .+ En.Fωn
where n > 1 and E1, . . . , En, F1, . . . , Fn are regular expressions over Σ such that
ε /∈ L(Fi ), for all 1 6 i 6 n.
The semantics of G is defined by Lω(G) = L(E1).L(F1)ω ∪ . . . ∪ L(En).L(Fn)ω
where L(E) ⊆ Σ∗ denotes the language (of finite words) induced by the regular
expression E.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 23/49



ω-regular properties

ω-regular expressions

ω-regular expression
An ω-regular expression G over the Σ has the form: G = E1.Fω1 + . . .+ En.Fωn
where n > 1 and E1, . . . , En, F1, . . . , Fn are regular expressions over Σ such that
ε /∈ L(Fi ), for all 1 6 i 6 n.
The semantics of G is defined by Lω(G) = L(E1).L(F1)ω ∪ . . . ∪ L(En).L(Fn)ω
where L(E) ⊆ Σ∗ denotes the language (of finite words) induced by the regular
expression E.

Example
Examples for ω-regular expressions over the alphabet Σ = {A,B,C } are

(A + B)∗A(AAB + C)ω or A(B + C)∗Aω + B(A + C)ω.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 24/49



ω-regular properties

ω-regular expressions

ω-regular expression
An ω-regular expression G over the Σ has the form: G = E1.Fω1 + . . .+ En.Fωn
where n > 1 and E1, . . . , En, F1, . . . , Fn are regular expressions over Σ such that
ε /∈ L(Fi ), for all 1 6 i 6 n.
The semantics of G is defined by Lω(G) = L(E1).L(F1)ω ∪ . . . ∪ L(En).L(Fn)ω
where L(E) ⊆ Σ∗ denotes the language (of finite words) induced by the regular
expression E.

Example
Examples for ω-regular expressions over the alphabet Σ = {A,B,C } are

(A + B)∗A(AAB + C)ω or A(B + C)∗Aω + B(A + C)ω.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 24/49



ω-regular properties

ω-regular properties

ω-regular property
LT property P over AP is called ω-regular if P = Lω(G) for some
ω-regular expression G over the alphabet 2AP.

Example
Let AP = { a, b }. Then some ω-regular properties over AP are:
I always a, i.e., ({ a }+ { a, b })ω.

I eventually a, i.e., (∅ + { b })∗.({ a }+ { a, b }).(2AP)ω.
I infinitely often a, i.e., ((∅ + { b })∗.({ a }+ { a, b }))ω.

I from some moment on, always a, i.e., (2AP)∗.({ a }+ { a, b })ω.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 25/49



ω-regular properties

ω-regular properties

ω-regular property
LT property P over AP is called ω-regular if P = Lω(G) for some
ω-regular expression G over the alphabet 2AP.

Example
Let AP = { a, b }. Then some ω-regular properties over AP are:
I always a, i.e., ({ a }+ { a, b })ω.

I eventually a, i.e., (∅ + { b })∗.({ a }+ { a, b }).(2AP)ω.
I infinitely often a, i.e., ((∅ + { b })∗.({ a }+ { a, b }))ω.

I from some moment on, always a, i.e., (2AP)∗.({ a }+ { a, b })ω.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 25/49



ω-regular properties

ω-regular properties

ω-regular property
LT property P over AP is called ω-regular if P = Lω(G) for some
ω-regular expression G over the alphabet 2AP.

Example
Let AP = { a, b }. Then some ω-regular properties over AP are:

I always a, i.e., ({ a }+ { a, b })ω.

I eventually a, i.e., (∅ + { b })∗.({ a }+ { a, b }).(2AP)ω.
I infinitely often a, i.e., ((∅ + { b })∗.({ a }+ { a, b }))ω.

I from some moment on, always a, i.e., (2AP)∗.({ a }+ { a, b })ω.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 25/49



ω-regular properties

ω-regular properties

ω-regular property
LT property P over AP is called ω-regular if P = Lω(G) for some
ω-regular expression G over the alphabet 2AP.

Example
Let AP = { a, b }. Then some ω-regular properties over AP are:
I always a, i.e., ({ a }+ { a, b })ω.

I eventually a, i.e., (∅ + { b })∗.({ a }+ { a, b }).(2AP)ω.
I infinitely often a, i.e., ((∅ + { b })∗.({ a }+ { a, b }))ω.

I from some moment on, always a, i.e., (2AP)∗.({ a }+ { a, b })ω.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 25/49



ω-regular properties

ω-regular properties

ω-regular property
LT property P over AP is called ω-regular if P = Lω(G) for some
ω-regular expression G over the alphabet 2AP.

Example
Let AP = { a, b }. Then some ω-regular properties over AP are:
I always a, i.e., ({ a }+ { a, b })ω.

I eventually a, i.e., (∅ + { b })∗.({ a }+ { a, b }).(2AP)ω.

I infinitely often a, i.e., ((∅ + { b })∗.({ a }+ { a, b }))ω.

I from some moment on, always a, i.e., (2AP)∗.({ a }+ { a, b })ω.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 25/49



ω-regular properties

ω-regular properties

ω-regular property
LT property P over AP is called ω-regular if P = Lω(G) for some
ω-regular expression G over the alphabet 2AP.

Example
Let AP = { a, b }. Then some ω-regular properties over AP are:
I always a, i.e., ({ a }+ { a, b })ω.

I eventually a, i.e., (∅ + { b })∗.({ a }+ { a, b }).(2AP)ω.
I infinitely often a, i.e., ((∅ + { b })∗.({ a }+ { a, b }))ω.

I from some moment on, always a, i.e., (2AP)∗.({ a }+ { a, b })ω.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 25/49



ω-regular properties

ω-regular properties

ω-regular property
LT property P over AP is called ω-regular if P = Lω(G) for some
ω-regular expression G over the alphabet 2AP.

Example
Let AP = { a, b }. Then some ω-regular properties over AP are:
I always a, i.e., ({ a }+ { a, b })ω.

I eventually a, i.e., (∅ + { b })∗.({ a }+ { a, b }).(2AP)ω.
I infinitely often a, i.e., ((∅ + { b })∗.({ a }+ { a, b }))ω.

I from some moment on, always a, i.e., (2AP)∗.({ a }+ { a, b })ω.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 25/49



ω-regular properties

ω-regular properties

ω-regular property
LT property P over AP is called ω-regular if P = Lω(G) for some
ω-regular expression G over the alphabet 2AP.

Example
Any regular safety property Psafe is an ω-regular property.

This follows from the
fact that the complement language(

2AP)ω \ Psafe = BadPref(Psafe)︸ ︷︷ ︸
regular

.
(
2AP)ω

is an ω-regular language, and ω-regular languages are closed under complement.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 26/49



ω-regular properties

ω-regular properties

ω-regular property
LT property P over AP is called ω-regular if P = Lω(G) for some
ω-regular expression G over the alphabet 2AP.

Example
Any regular safety property Psafe is an ω-regular property. This follows from the
fact that the complement language(

2AP)ω \ Psafe = BadPref(Psafe)︸ ︷︷ ︸
regular

.
(
2AP)ω

is an ω-regular language, and ω-regular languages are closed under complement.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 26/49



ω-regular properties

ω-regular properties

ω-regular property
LT property P over AP is called ω-regular if P = Lω(G) for some
ω-regular expression G over the alphabet 2AP.

Example
Starvation freedom in the sense of “whenever process P is waiting then it will
enter its critical section eventually” is an ω-regular property as it can be described
by (

(¬wait)∗.wait.true∗.crit
)ω +

(
(¬wait)∗.wait.true∗.crit

)∗
.(¬wait)ω

Intuitively, the first summand stands for the case where P requests and enters its
critical section infinitely often, while the second summand stands for the case
where P is in its waiting phase only finitely many times.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 27/49



ω-regular properties

ω-regular properties

ω-regular property
LT property P over AP is called ω-regular if P = Lω(G) for some
ω-regular expression G over the alphabet 2AP.

Example
Starvation freedom in the sense of “whenever process P is waiting then it will
enter its critical section eventually” is an ω-regular property

as it can be described
by (

(¬wait)∗.wait.true∗.crit
)ω +

(
(¬wait)∗.wait.true∗.crit

)∗
.(¬wait)ω

Intuitively, the first summand stands for the case where P requests and enters its
critical section infinitely often, while the second summand stands for the case
where P is in its waiting phase only finitely many times.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 27/49



ω-regular properties

ω-regular properties

ω-regular property
LT property P over AP is called ω-regular if P = Lω(G) for some
ω-regular expression G over the alphabet 2AP.

Example
Starvation freedom in the sense of “whenever process P is waiting then it will
enter its critical section eventually” is an ω-regular property as it can be described
by (

(¬wait)∗.wait.true∗.crit
)ω +

(
(¬wait)∗.wait.true∗.crit

)∗
.(¬wait)ω

Intuitively, the first summand stands for the case where P requests and enters its
critical section infinitely often, while the second summand stands for the case
where P is in its waiting phase only finitely many times.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 27/49



ω-regular properties

ω-regular properties

ω-regular property
LT property P over AP is called ω-regular if P = Lω(G) for some
ω-regular expression G over the alphabet 2AP.

Example
Starvation freedom in the sense of “whenever process P is waiting then it will
enter its critical section eventually” is an ω-regular property as it can be described
by (

(¬wait)∗.wait.true∗.crit
)ω +

(
(¬wait)∗.wait.true∗.crit

)∗
.(¬wait)ω

Intuitively, the first summand stands for the case where P requests and enters its
critical section infinitely often,

while the second summand stands for the case
where P is in its waiting phase only finitely many times.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 27/49



ω-regular properties

ω-regular properties

ω-regular property
LT property P over AP is called ω-regular if P = Lω(G) for some
ω-regular expression G over the alphabet 2AP.

Example
Starvation freedom in the sense of “whenever process P is waiting then it will
enter its critical section eventually” is an ω-regular property as it can be described
by (

(¬wait)∗.wait.true∗.crit
)ω +

(
(¬wait)∗.wait.true∗.crit

)∗
.(¬wait)ω

Intuitively, the first summand stands for the case where P requests and enters its
critical section infinitely often, while the second summand stands for the case
where P is in its waiting phase only finitely many times.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 27/49



Verifying DBA objectives

Overview

1 Introduction

2 Preliminaries

3 Verifying regular safety properties

4 ω-regular properties

5 Verifying DBA objectives

6 Verifying ω-regular properties

7 Summary

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 28/49



Verifying DBA objectives

Deterministic Büchi automata

Deterministic Büchi Automaton (DBA)

A deterministic Büchi automaton (DBA) A = (Q,Σ, δ, q0,F ) with
I Q is a finite set of states with initial state q0 ∈ Q0,
I Σ is an alphabet,
I δ : Q × Σ→ Q is a transition function,
I F ⊆ Q is a set of accept (or: final) states.

A run for σ = A0A1A2 . . . ∈ Σω denotes an infinite sequence q0 q1 q2 . . . of
states in A such that q0 ∈ Q0 and qi

Ai−−→ qi+1 for i > 0.
Run q0 q1 q2 . . . is accepting if qi ∈ F for infinitely many indices i ∈ IN.
The infinite language of A is

Lω(A) =
{
σ ∈ Σω | there exists an accepting run for σ in A

}
.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 29/49



Verifying DBA objectives

Deterministic Büchi automata
Deterministic Büchi Automaton (DBA)

A deterministic Büchi automaton (DBA) A = (Q,Σ, δ, q0,F ) with

I Q is a finite set of states with initial state q0 ∈ Q0,
I Σ is an alphabet,
I δ : Q × Σ→ Q is a transition function,
I F ⊆ Q is a set of accept (or: final) states.

A run for σ = A0A1A2 . . . ∈ Σω denotes an infinite sequence q0 q1 q2 . . . of
states in A such that q0 ∈ Q0 and qi

Ai−−→ qi+1 for i > 0.
Run q0 q1 q2 . . . is accepting if qi ∈ F for infinitely many indices i ∈ IN.
The infinite language of A is

Lω(A) =
{
σ ∈ Σω | there exists an accepting run for σ in A

}
.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 29/49



Verifying DBA objectives

Deterministic Büchi automata
Deterministic Büchi Automaton (DBA)

A deterministic Büchi automaton (DBA) A = (Q,Σ, δ, q0,F ) with
I Q is a finite set of states with initial state q0 ∈ Q0,

I Σ is an alphabet,
I δ : Q × Σ→ Q is a transition function,
I F ⊆ Q is a set of accept (or: final) states.

A run for σ = A0A1A2 . . . ∈ Σω denotes an infinite sequence q0 q1 q2 . . . of
states in A such that q0 ∈ Q0 and qi

Ai−−→ qi+1 for i > 0.
Run q0 q1 q2 . . . is accepting if qi ∈ F for infinitely many indices i ∈ IN.
The infinite language of A is

Lω(A) =
{
σ ∈ Σω | there exists an accepting run for σ in A

}
.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 29/49



Verifying DBA objectives

Deterministic Büchi automata
Deterministic Büchi Automaton (DBA)

A deterministic Büchi automaton (DBA) A = (Q,Σ, δ, q0,F ) with
I Q is a finite set of states with initial state q0 ∈ Q0,
I Σ is an alphabet,

I δ : Q × Σ→ Q is a transition function,
I F ⊆ Q is a set of accept (or: final) states.

A run for σ = A0A1A2 . . . ∈ Σω denotes an infinite sequence q0 q1 q2 . . . of
states in A such that q0 ∈ Q0 and qi

Ai−−→ qi+1 for i > 0.
Run q0 q1 q2 . . . is accepting if qi ∈ F for infinitely many indices i ∈ IN.
The infinite language of A is

Lω(A) =
{
σ ∈ Σω | there exists an accepting run for σ in A

}
.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 29/49



Verifying DBA objectives

Deterministic Büchi automata
Deterministic Büchi Automaton (DBA)

A deterministic Büchi automaton (DBA) A = (Q,Σ, δ, q0,F ) with
I Q is a finite set of states with initial state q0 ∈ Q0,
I Σ is an alphabet,
I δ : Q × Σ→ Q is a transition function,

I F ⊆ Q is a set of accept (or: final) states.
A run for σ = A0A1A2 . . . ∈ Σω denotes an infinite sequence q0 q1 q2 . . . of
states in A such that q0 ∈ Q0 and qi

Ai−−→ qi+1 for i > 0.
Run q0 q1 q2 . . . is accepting if qi ∈ F for infinitely many indices i ∈ IN.
The infinite language of A is

Lω(A) =
{
σ ∈ Σω | there exists an accepting run for σ in A

}
.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 29/49



Verifying DBA objectives

Deterministic Büchi automata
Deterministic Büchi Automaton (DBA)

A deterministic Büchi automaton (DBA) A = (Q,Σ, δ, q0,F ) with
I Q is a finite set of states with initial state q0 ∈ Q0,
I Σ is an alphabet,
I δ : Q × Σ→ Q is a transition function,
I F ⊆ Q is a set of accept (or: final) states.

A run for σ = A0A1A2 . . . ∈ Σω denotes an infinite sequence q0 q1 q2 . . . of
states in A such that q0 ∈ Q0 and qi

Ai−−→ qi+1 for i > 0.
Run q0 q1 q2 . . . is accepting if qi ∈ F for infinitely many indices i ∈ IN.
The infinite language of A is

Lω(A) =
{
σ ∈ Σω | there exists an accepting run for σ in A

}
.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 29/49



Verifying DBA objectives

Deterministic Büchi automata
Deterministic Büchi Automaton (DBA)

A deterministic Büchi automaton (DBA) A = (Q,Σ, δ, q0,F ) with
I Q is a finite set of states with initial state q0 ∈ Q0,
I Σ is an alphabet,
I δ : Q × Σ→ Q is a transition function,
I F ⊆ Q is a set of accept (or: final) states.

A run for σ = A0A1A2 . . . ∈ Σω denotes an infinite sequence q0 q1 q2 . . . of
states in A such that q0 ∈ Q0 and qi

Ai−−→ qi+1 for i > 0.

Run q0 q1 q2 . . . is accepting if qi ∈ F for infinitely many indices i ∈ IN.
The infinite language of A is

Lω(A) =
{
σ ∈ Σω | there exists an accepting run for σ in A

}
.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 29/49



Verifying DBA objectives

Deterministic Büchi automata
Deterministic Büchi Automaton (DBA)

A deterministic Büchi automaton (DBA) A = (Q,Σ, δ, q0,F ) with
I Q is a finite set of states with initial state q0 ∈ Q0,
I Σ is an alphabet,
I δ : Q × Σ→ Q is a transition function,
I F ⊆ Q is a set of accept (or: final) states.

A run for σ = A0A1A2 . . . ∈ Σω denotes an infinite sequence q0 q1 q2 . . . of
states in A such that q0 ∈ Q0 and qi

Ai−−→ qi+1 for i > 0.
Run q0 q1 q2 . . . is accepting if qi ∈ F for infinitely many indices i ∈ IN.

The infinite language of A is

Lω(A) =
{
σ ∈ Σω | there exists an accepting run for σ in A

}
.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 29/49



Verifying DBA objectives

Deterministic Büchi automata
Deterministic Büchi Automaton (DBA)

A deterministic Büchi automaton (DBA) A = (Q,Σ, δ, q0,F ) with
I Q is a finite set of states with initial state q0 ∈ Q0,
I Σ is an alphabet,
I δ : Q × Σ→ Q is a transition function,
I F ⊆ Q is a set of accept (or: final) states.

A run for σ = A0A1A2 . . . ∈ Σω denotes an infinite sequence q0 q1 q2 . . . of
states in A such that q0 ∈ Q0 and qi

Ai−−→ qi+1 for i > 0.
Run q0 q1 q2 . . . is accepting if qi ∈ F for infinitely many indices i ∈ IN.
The infinite language of A is

Lω(A) =
{
σ ∈ Σω | there exists an accepting run for σ in A

}
.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 29/49



Verifying DBA objectives

Deterministic Büchi automata for LT properties

DBA over {A,B } with F = { q1 } and initial state q0

accepting the LT
property “infinitely often B".

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 30/49



Verifying DBA objectives

Deterministic Büchi automata for LT properties

DBA over {A,B } with F = { q1 } and initial state q0 accepting the LT
property “infinitely often B".

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 30/49



Verifying DBA objectives

Some facts about DBA

Expressiveness of DBA
For any DBA A, the language Lω(A) is ω-regular.

There does not exist a DBA over the alphabet Σ = { a, b } for the
ω-regular expression (a + b)∗.aω.
The class of DBA-recognizable languages is a proper subclass of the class
of ω-regular languages and is not closed under complementation.

An ω-language is recognizable by a DBA iff it is the limit language of a
regular language. (Details: see lecture Applications of Automata Theory.)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 31/49



Verifying DBA objectives

Some facts about DBA

Expressiveness of DBA
For any DBA A, the language Lω(A) is ω-regular.

There does not exist a DBA over the alphabet Σ = { a, b } for the
ω-regular expression (a + b)∗.aω.
The class of DBA-recognizable languages is a proper subclass of the class
of ω-regular languages and is not closed under complementation.

An ω-language is recognizable by a DBA iff it is the limit language of a
regular language. (Details: see lecture Applications of Automata Theory.)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 31/49



Verifying DBA objectives

Some facts about DBA

Expressiveness of DBA
For any DBA A, the language Lω(A) is ω-regular.

There does not exist a DBA over the alphabet Σ = { a, b } for the
ω-regular expression (a + b)∗.aω.

The class of DBA-recognizable languages is a proper subclass of the class
of ω-regular languages and is not closed under complementation.

An ω-language is recognizable by a DBA iff it is the limit language of a
regular language. (Details: see lecture Applications of Automata Theory.)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 31/49



Verifying DBA objectives

Some facts about DBA

Expressiveness of DBA
For any DBA A, the language Lω(A) is ω-regular.

There does not exist a DBA over the alphabet Σ = { a, b } for the
ω-regular expression (a + b)∗.aω.
The class of DBA-recognizable languages is a proper subclass of the class
of ω-regular languages

and is not closed under complementation.

An ω-language is recognizable by a DBA iff it is the limit language of a
regular language. (Details: see lecture Applications of Automata Theory.)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 31/49



Verifying DBA objectives

Some facts about DBA

Expressiveness of DBA
For any DBA A, the language Lω(A) is ω-regular.

There does not exist a DBA over the alphabet Σ = { a, b } for the
ω-regular expression (a + b)∗.aω.
The class of DBA-recognizable languages is a proper subclass of the class
of ω-regular languages and is not closed under complementation.

An ω-language is recognizable by a DBA iff it is the limit language of a
regular language. (Details: see lecture Applications of Automata Theory.)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 31/49



Verifying DBA objectives

Some facts about DBA

Expressiveness of DBA
For any DBA A, the language Lω(A) is ω-regular.

There does not exist a DBA over the alphabet Σ = { a, b } for the
ω-regular expression (a + b)∗.aω.
The class of DBA-recognizable languages is a proper subclass of the class
of ω-regular languages and is not closed under complementation.

An ω-language is recognizable by a DBA iff it is the limit language of a
regular language. (Details: see lecture Applications of Automata Theory.)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 31/49



Verifying DBA objectives

Quantitative analysis of DBA properties

Quantitative Analysis for DBA-Definable Properties
Let A be a DBA and D a DTMC. Then, for all states s in D:

PrD(s |= A) = PrD⊗A(〈s, qs〉 |= �♦accept)

where qs = δ(q0, L(s)).

Algorithm
Recall that for finite DTMCs, the probability of �♦accept can be obtained in
polynomial time by first determining the BSCCs of D ⊗A. For each BSCC B
that contains a state 〈s, q〉 with q ∈ F , determine the probability of eventually
reaching B. Its sum is the required probability. Thus this amounts to solve a
linear equation system for each accepting BSCC in D.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 32/49



Verifying DBA objectives

Quantitative analysis of DBA properties

Quantitative Analysis for DBA-Definable Properties
Let A be a DBA and D a DTMC. Then, for all states s in D:

PrD(s |= A) = PrD⊗A(〈s, qs〉 |= �♦accept)

where qs = δ(q0, L(s)).

Algorithm
Recall that for finite DTMCs, the probability of �♦accept can be obtained in
polynomial time by first determining the BSCCs of D ⊗A. For each BSCC B
that contains a state 〈s, q〉 with q ∈ F , determine the probability of eventually
reaching B. Its sum is the required probability. Thus this amounts to solve a
linear equation system for each accepting BSCC in D.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 32/49



Verifying DBA objectives

Quantitative analysis of DBA properties

Quantitative Analysis for DBA-Definable Properties
Let A be a DBA and D a DTMC. Then, for all states s in D:

PrD(s |= A) = PrD⊗A(〈s, qs〉 |= �♦accept)

where qs = δ(q0, L(s)).

Algorithm
Recall that for finite DTMCs, the probability of �♦accept can be obtained in
polynomial time by first determining the BSCCs of D ⊗A.

For each BSCC B
that contains a state 〈s, q〉 with q ∈ F , determine the probability of eventually
reaching B. Its sum is the required probability. Thus this amounts to solve a
linear equation system for each accepting BSCC in D.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 32/49



Verifying DBA objectives

Quantitative analysis of DBA properties

Quantitative Analysis for DBA-Definable Properties
Let A be a DBA and D a DTMC. Then, for all states s in D:

PrD(s |= A) = PrD⊗A(〈s, qs〉 |= �♦accept)

where qs = δ(q0, L(s)).

Algorithm
Recall that for finite DTMCs, the probability of �♦accept can be obtained in
polynomial time by first determining the BSCCs of D ⊗A. For each BSCC B
that contains a state 〈s, q〉 with q ∈ F , determine the probability of eventually
reaching B.

Its sum is the required probability. Thus this amounts to solve a
linear equation system for each accepting BSCC in D.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 32/49



Verifying DBA objectives

Quantitative analysis of DBA properties

Quantitative Analysis for DBA-Definable Properties
Let A be a DBA and D a DTMC. Then, for all states s in D:

PrD(s |= A) = PrD⊗A(〈s, qs〉 |= �♦accept)

where qs = δ(q0, L(s)).

Algorithm
Recall that for finite DTMCs, the probability of �♦accept can be obtained in
polynomial time by first determining the BSCCs of D ⊗A. For each BSCC B
that contains a state 〈s, q〉 with q ∈ F , determine the probability of eventually
reaching B. Its sum is the required probability.

Thus this amounts to solve a
linear equation system for each accepting BSCC in D.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 32/49



Verifying DBA objectives

Quantitative analysis of DBA properties

Quantitative Analysis for DBA-Definable Properties
Let A be a DBA and D a DTMC. Then, for all states s in D:

PrD(s |= A) = PrD⊗A(〈s, qs〉 |= �♦accept)

where qs = δ(q0, L(s)).

Algorithm
Recall that for finite DTMCs, the probability of �♦accept can be obtained in
polynomial time by first determining the BSCCs of D ⊗A. For each BSCC B
that contains a state 〈s, q〉 with q ∈ F , determine the probability of eventually
reaching B. Its sum is the required probability. Thus this amounts to solve a
linear equation system for each accepting BSCC in D.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 32/49



Verifying ω-regular properties

Overview

1 Introduction

2 Preliminaries

3 Verifying regular safety properties

4 ω-regular properties

5 Verifying DBA objectives

6 Verifying ω-regular properties

7 Summary

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 33/49



Verifying ω-regular properties

Beyond DBA properties

Remarks

I Since DBAs do not have the full power of ω-regular languages, this approach
is not capable of handling arbitrary ω-regular properties.

I To overcome this deficiency, Büchi automata will be replaced by an
alternative automaton model for which their deterministic counterparts are
as expressive as ω-regular languages.

I Such automata have the same components as DBA (finite set of states, and
so on) except for the acceptance sets. We consider deterministic Rabin
automata. There are alternatives, e.g., Muller automata.

I Determinism is important to stay within the realm of Markov chains; a
product of an MC with a deterministic automaton yields a MC.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 34/49



Verifying ω-regular properties

Beyond DBA properties

Remarks

I Since DBAs do not have the full power of ω-regular languages, this approach
is not capable of handling arbitrary ω-regular properties.

I To overcome this deficiency, Büchi automata will be replaced by an
alternative automaton model for which their deterministic counterparts are
as expressive as ω-regular languages.

I Such automata have the same components as DBA (finite set of states, and
so on) except for the acceptance sets. We consider deterministic Rabin
automata. There are alternatives, e.g., Muller automata.

I Determinism is important to stay within the realm of Markov chains; a
product of an MC with a deterministic automaton yields a MC.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 34/49



Verifying ω-regular properties

Beyond DBA properties

Remarks

I Since DBAs do not have the full power of ω-regular languages, this approach
is not capable of handling arbitrary ω-regular properties.

I To overcome this deficiency, Büchi automata will be replaced by an
alternative automaton model for which their deterministic counterparts are
as expressive as ω-regular languages.

I Such automata have the same components as DBA (finite set of states, and
so on) except for the acceptance sets. We consider deterministic Rabin
automata. There are alternatives, e.g., Muller automata.

I Determinism is important to stay within the realm of Markov chains; a
product of an MC with a deterministic automaton yields a MC.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 34/49



Verifying ω-regular properties

Beyond DBA properties

Remarks

I Since DBAs do not have the full power of ω-regular languages, this approach
is not capable of handling arbitrary ω-regular properties.

I To overcome this deficiency, Büchi automata will be replaced by an
alternative automaton model for which their deterministic counterparts are
as expressive as ω-regular languages.

I Such automata have the same components as DBA (finite set of states, and
so on) except for the acceptance sets. We consider deterministic Rabin
automata.

There are alternatives, e.g., Muller automata.
I Determinism is important to stay within the realm of Markov chains; a

product of an MC with a deterministic automaton yields a MC.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 34/49



Verifying ω-regular properties

Beyond DBA properties

Remarks

I Since DBAs do not have the full power of ω-regular languages, this approach
is not capable of handling arbitrary ω-regular properties.

I To overcome this deficiency, Büchi automata will be replaced by an
alternative automaton model for which their deterministic counterparts are
as expressive as ω-regular languages.

I Such automata have the same components as DBA (finite set of states, and
so on) except for the acceptance sets. We consider deterministic Rabin
automata. There are alternatives, e.g., Muller automata.

I Determinism is important to stay within the realm of Markov chains; a
product of an MC with a deterministic automaton yields a MC.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 34/49



Verifying ω-regular properties

Deterministic Rabin automata

Deterministic Rabin automaton
A deterministic Rabin automaton (DRA) A = (Q,Σ, δ, q0,F) with
I Q, q0 ∈ Q0, Σ is an alphabet, and δ : Q × Σ→ Q as before
I F = { (Li ,Ki ) | 0 < i 6 k } with Li ,Ki ⊆ Q, is a set of accept pairs

A run for σ = A0A1A2 . . . ∈ Σω denotes an infinite sequence q0 q1 q2 . . . of
states in A such that q0 ∈ Q0 and qi

Ai−−→ qi+1 for i > 0.
Run q0 q1 q2 . . . is accepting if for some pair (Li ,Ki ), the states in Li are
visited finitely often and the states in Ki infinitely often. That is, an
accepting run should satisfy∨

0<i6k
(♦�¬Li ∧�♦Ki ).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 35/49



Verifying ω-regular properties

Deterministic Rabin automata

Deterministic Rabin automaton
A deterministic Rabin automaton (DRA) A = (Q,Σ, δ, q0,F) with
I Q, q0 ∈ Q0, Σ is an alphabet, and δ : Q × Σ→ Q as before

I F = { (Li ,Ki ) | 0 < i 6 k } with Li ,Ki ⊆ Q, is a set of accept pairs
A run for σ = A0A1A2 . . . ∈ Σω denotes an infinite sequence q0 q1 q2 . . . of
states in A such that q0 ∈ Q0 and qi

Ai−−→ qi+1 for i > 0.
Run q0 q1 q2 . . . is accepting if for some pair (Li ,Ki ), the states in Li are
visited finitely often and the states in Ki infinitely often. That is, an
accepting run should satisfy∨

0<i6k
(♦�¬Li ∧�♦Ki ).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 35/49



Verifying ω-regular properties

Deterministic Rabin automata

Deterministic Rabin automaton
A deterministic Rabin automaton (DRA) A = (Q,Σ, δ, q0,F) with
I Q, q0 ∈ Q0, Σ is an alphabet, and δ : Q × Σ→ Q as before
I F = { (Li ,Ki ) | 0 < i 6 k } with Li ,Ki ⊆ Q, is a set of accept pairs

A run for σ = A0A1A2 . . . ∈ Σω denotes an infinite sequence q0 q1 q2 . . . of
states in A such that q0 ∈ Q0 and qi

Ai−−→ qi+1 for i > 0.
Run q0 q1 q2 . . . is accepting if for some pair (Li ,Ki ), the states in Li are
visited finitely often and the states in Ki infinitely often. That is, an
accepting run should satisfy∨

0<i6k
(♦�¬Li ∧�♦Ki ).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 35/49



Verifying ω-regular properties

Deterministic Rabin automata

Deterministic Rabin automaton
A deterministic Rabin automaton (DRA) A = (Q,Σ, δ, q0,F) with
I Q, q0 ∈ Q0, Σ is an alphabet, and δ : Q × Σ→ Q as before
I F = { (Li ,Ki ) | 0 < i 6 k } with Li ,Ki ⊆ Q, is a set of accept pairs

A run for σ = A0A1A2 . . . ∈ Σω denotes an infinite sequence q0 q1 q2 . . . of
states in A such that q0 ∈ Q0 and qi

Ai−−→ qi+1 for i > 0.

Run q0 q1 q2 . . . is accepting if for some pair (Li ,Ki ), the states in Li are
visited finitely often and the states in Ki infinitely often. That is, an
accepting run should satisfy∨

0<i6k
(♦�¬Li ∧�♦Ki ).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 35/49



Verifying ω-regular properties

Deterministic Rabin automata

Deterministic Rabin automaton
A deterministic Rabin automaton (DRA) A = (Q,Σ, δ, q0,F) with
I Q, q0 ∈ Q0, Σ is an alphabet, and δ : Q × Σ→ Q as before
I F = { (Li ,Ki ) | 0 < i 6 k } with Li ,Ki ⊆ Q, is a set of accept pairs

A run for σ = A0A1A2 . . . ∈ Σω denotes an infinite sequence q0 q1 q2 . . . of
states in A such that q0 ∈ Q0 and qi

Ai−−→ qi+1 for i > 0.
Run q0 q1 q2 . . . is accepting if for some pair (Li ,Ki ), the states in Li are
visited finitely often and the states in Ki infinitely often.

That is, an
accepting run should satisfy∨

0<i6k
(♦�¬Li ∧�♦Ki ).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 35/49



Verifying ω-regular properties

Deterministic Rabin automata

Deterministic Rabin automaton
A deterministic Rabin automaton (DRA) A = (Q,Σ, δ, q0,F) with
I Q, q0 ∈ Q0, Σ is an alphabet, and δ : Q × Σ→ Q as before
I F = { (Li ,Ki ) | 0 < i 6 k } with Li ,Ki ⊆ Q, is a set of accept pairs

A run for σ = A0A1A2 . . . ∈ Σω denotes an infinite sequence q0 q1 q2 . . . of
states in A such that q0 ∈ Q0 and qi

Ai−−→ qi+1 for i > 0.
Run q0 q1 q2 . . . is accepting if for some pair (Li ,Ki ), the states in Li are
visited finitely often and the states in Ki infinitely often. That is, an
accepting run should satisfy∨

0<i6k
(♦�¬Li ∧�♦Ki ).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 35/49



Verifying ω-regular properties

When does a DRA accept an infinite word?

Acceptance condition
A run of a word in Σω on a DRA is accepting if and only if:

for some (Li ,Ki ) ∈ F , the states in Li are visited finitely often
and (some of) the states in Ki are visited infinitely often

Stated in terms of an LTL formula:∨
0<i6k

(♦�¬Li ∧ �♦Ki )

A deterministic Büchi automaton is a DRA with acceptance condition { (∅,F ) }.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 36/49



Verifying ω-regular properties

When does a DRA accept an infinite word?

Acceptance condition
A run of a word in Σω on a DRA is accepting if and only if:

for some (Li ,Ki ) ∈ F , the states in Li are visited finitely often
and (some of) the states in Ki are visited infinitely often

Stated in terms of an LTL formula:∨
0<i6k

(♦�¬Li ∧ �♦Ki )

A deterministic Büchi automaton is a DRA with acceptance condition { (∅,F ) }.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 36/49



Verifying ω-regular properties

When does a DRA accept an infinite word?

Acceptance condition
A run of a word in Σω on a DRA is accepting if and only if:

for some (Li ,Ki ) ∈ F , the states in Li are visited finitely often
and (some of) the states in Ki are visited infinitely often

Stated in terms of an LTL formula:∨
0<i6k

(♦�¬Li ∧ �♦Ki )

A deterministic Büchi automaton is a DRA with acceptance condition { (∅,F ) }.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 36/49



Verifying ω-regular properties

Deterministic Rabin automaton: Example

Acceptance condition
A run of a word in Σω on a DRA is accepting iff

∨
0<i6k (♦�¬Li ∧ �♦Ki ).

For F = { (L,K ) } with L = { q0 } and K = { q1 }, this DRA accepts ♦�a

Recall that there does not exist a deterministic Büchi automaton for ♦�a.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 37/49



Verifying ω-regular properties

Deterministic Rabin automaton: Example
Acceptance condition
A run of a word in Σω on a DRA is accepting iff

∨
0<i6k (♦�¬Li ∧ �♦Ki ).

For F = { (L,K ) } with L = { q0 } and K = { q1 }, this DRA accepts ♦�a

Recall that there does not exist a deterministic Büchi automaton for ♦�a.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 37/49



Verifying ω-regular properties

Deterministic Rabin automaton: Example
Acceptance condition
A run of a word in Σω on a DRA is accepting iff

∨
0<i6k (♦�¬Li ∧ �♦Ki ).

For F = { (L,K ) } with L = { q0 } and K = { q1 }, this DRA accepts ♦�a

Recall that there does not exist a deterministic Büchi automaton for ♦�a.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 37/49



Verifying ω-regular properties

Deterministic Rabin automaton: Example
Acceptance condition
A run of a word in Σω on a DRA is accepting iff

∨
0<i6k (♦�¬Li ∧ �♦Ki ).

For F = { (L,K ) } with L = { q0 } and K = { q1 }, this DRA accepts ♦�a

Recall that there does not exist a deterministic Büchi automaton for ♦�a.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 37/49



Verifying ω-regular properties

Deterministic Rabin automata

DRA are ω-regular
A language on infinite words is ω-regular iff there exists a DRA that
generates it.

I DRA are thus equally expressive as nondeterministic Büchi automata.
I They are more expressive than deterministic Büchi automata.
I Any nondeterministic Büchi automata of n states can be converted to

a DRA of size 2O(n· log n). (Details omitted.)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 38/49



Verifying ω-regular properties

Deterministic Rabin automata

DRA are ω-regular
A language on infinite words is ω-regular iff there exists a DRA that
generates it.

I DRA are thus equally expressive as nondeterministic Büchi automata.
I They are more expressive than deterministic Büchi automata.
I Any nondeterministic Büchi automata of n states can be converted to

a DRA of size 2O(n· log n). (Details omitted.)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 38/49



Verifying ω-regular properties

Deterministic Rabin automata

DRA are ω-regular
A language on infinite words is ω-regular iff there exists a DRA that
generates it.

I DRA are thus equally expressive as nondeterministic Büchi automata.
I They are more expressive than deterministic Büchi automata.
I Any nondeterministic Büchi automata of n states can be converted to

a DRA of size 2O(n· log n). (Details omitted.)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 38/49



Verifying ω-regular properties

Verifying DRA properties

Product of a Markov chain and a DRA
The product of DTMC D and DRA A is defined as the product of a Markov
chain and a DFA, except that the labeling is defined differently.

Let the acceptance condition of A is F = { (L1,K1), . . . , (Lk ,Kk) }. Then the
sets Li , Ki serve as atomic propositions in D ⊗A. The labeling function L′ in
D ⊗A is the obvious one: if H ∈ { L1, . . . , Lk ,K1, . . . ,Kk }, then H ∈ L′(〈s, q〉)
iff q ∈ H.

Accepting BSCC
A BSCC T in D ⊗A is accepting iff for some index i ∈ { 1, . . . , k } we have:

T ∩ (S × Li ) = ∅ and T ∩ (S × Ki ) 6= ∅.

Thus, once such an accepting BSCC T is reached in D ⊗A, the acceptance
criterion for the DRA A is fulfilled almost surely.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 39/49



Verifying ω-regular properties

Verifying DRA properties
Product of a Markov chain and a DRA
The product of DTMC D and DRA A is defined as the product of a Markov
chain and a DFA, except that the labeling is defined differently.

Let the acceptance condition of A is F = { (L1,K1), . . . , (Lk ,Kk) }. Then the
sets Li , Ki serve as atomic propositions in D ⊗A. The labeling function L′ in
D ⊗A is the obvious one: if H ∈ { L1, . . . , Lk ,K1, . . . ,Kk }, then H ∈ L′(〈s, q〉)
iff q ∈ H.

Accepting BSCC
A BSCC T in D ⊗A is accepting iff for some index i ∈ { 1, . . . , k } we have:

T ∩ (S × Li ) = ∅ and T ∩ (S × Ki ) 6= ∅.

Thus, once such an accepting BSCC T is reached in D ⊗A, the acceptance
criterion for the DRA A is fulfilled almost surely.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 39/49



Verifying ω-regular properties

Verifying DRA properties
Product of a Markov chain and a DRA
The product of DTMC D and DRA A is defined as the product of a Markov
chain and a DFA, except that the labeling is defined differently.

Let the acceptance condition of A is F = { (L1,K1), . . . , (Lk ,Kk) }.

Then the
sets Li , Ki serve as atomic propositions in D ⊗A. The labeling function L′ in
D ⊗A is the obvious one: if H ∈ { L1, . . . , Lk ,K1, . . . ,Kk }, then H ∈ L′(〈s, q〉)
iff q ∈ H.

Accepting BSCC
A BSCC T in D ⊗A is accepting iff for some index i ∈ { 1, . . . , k } we have:

T ∩ (S × Li ) = ∅ and T ∩ (S × Ki ) 6= ∅.

Thus, once such an accepting BSCC T is reached in D ⊗A, the acceptance
criterion for the DRA A is fulfilled almost surely.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 39/49



Verifying ω-regular properties

Verifying DRA properties
Product of a Markov chain and a DRA
The product of DTMC D and DRA A is defined as the product of a Markov
chain and a DFA, except that the labeling is defined differently.

Let the acceptance condition of A is F = { (L1,K1), . . . , (Lk ,Kk) }. Then the
sets Li , Ki serve as atomic propositions in D ⊗A.

The labeling function L′ in
D ⊗A is the obvious one: if H ∈ { L1, . . . , Lk ,K1, . . . ,Kk }, then H ∈ L′(〈s, q〉)
iff q ∈ H.

Accepting BSCC
A BSCC T in D ⊗A is accepting iff for some index i ∈ { 1, . . . , k } we have:

T ∩ (S × Li ) = ∅ and T ∩ (S × Ki ) 6= ∅.

Thus, once such an accepting BSCC T is reached in D ⊗A, the acceptance
criterion for the DRA A is fulfilled almost surely.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 39/49



Verifying ω-regular properties

Verifying DRA properties
Product of a Markov chain and a DRA
The product of DTMC D and DRA A is defined as the product of a Markov
chain and a DFA, except that the labeling is defined differently.

Let the acceptance condition of A is F = { (L1,K1), . . . , (Lk ,Kk) }. Then the
sets Li , Ki serve as atomic propositions in D ⊗A. The labeling function L′ in
D ⊗A is the obvious one: if H ∈ { L1, . . . , Lk ,K1, . . . ,Kk }, then H ∈ L′(〈s, q〉)
iff q ∈ H.

Accepting BSCC
A BSCC T in D ⊗A is accepting iff for some index i ∈ { 1, . . . , k } we have:

T ∩ (S × Li ) = ∅ and T ∩ (S × Ki ) 6= ∅.

Thus, once such an accepting BSCC T is reached in D ⊗A, the acceptance
criterion for the DRA A is fulfilled almost surely.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 39/49



Verifying ω-regular properties

Verifying DRA properties
Product of a Markov chain and a DRA
The product of DTMC D and DRA A is defined as the product of a Markov
chain and a DFA, except that the labeling is defined differently.

Let the acceptance condition of A is F = { (L1,K1), . . . , (Lk ,Kk) }. Then the
sets Li , Ki serve as atomic propositions in D ⊗A. The labeling function L′ in
D ⊗A is the obvious one: if H ∈ { L1, . . . , Lk ,K1, . . . ,Kk }, then H ∈ L′(〈s, q〉)
iff q ∈ H.

Accepting BSCC

A BSCC T in D ⊗A is accepting iff for some index i ∈ { 1, . . . , k } we have:

T ∩ (S × Li ) = ∅ and T ∩ (S × Ki ) 6= ∅.

Thus, once such an accepting BSCC T is reached in D ⊗A, the acceptance
criterion for the DRA A is fulfilled almost surely.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 39/49



Verifying ω-regular properties

Verifying DRA properties
Product of a Markov chain and a DRA
The product of DTMC D and DRA A is defined as the product of a Markov
chain and a DFA, except that the labeling is defined differently.

Let the acceptance condition of A is F = { (L1,K1), . . . , (Lk ,Kk) }. Then the
sets Li , Ki serve as atomic propositions in D ⊗A. The labeling function L′ in
D ⊗A is the obvious one: if H ∈ { L1, . . . , Lk ,K1, . . . ,Kk }, then H ∈ L′(〈s, q〉)
iff q ∈ H.

Accepting BSCC
A BSCC T in D ⊗A is accepting iff for some index i ∈ { 1, . . . , k } we have:

T ∩ (S × Li ) = ∅ and T ∩ (S × Ki ) 6= ∅.

Thus, once such an accepting BSCC T is reached in D ⊗A, the acceptance
criterion for the DRA A is fulfilled almost surely.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 39/49



Verifying ω-regular properties

Verifying DRA properties
Product of a Markov chain and a DRA
The product of DTMC D and DRA A is defined as the product of a Markov
chain and a DFA, except that the labeling is defined differently.

Let the acceptance condition of A is F = { (L1,K1), . . . , (Lk ,Kk) }. Then the
sets Li , Ki serve as atomic propositions in D ⊗A. The labeling function L′ in
D ⊗A is the obvious one: if H ∈ { L1, . . . , Lk ,K1, . . . ,Kk }, then H ∈ L′(〈s, q〉)
iff q ∈ H.

Accepting BSCC
A BSCC T in D ⊗A is accepting iff for some index i ∈ { 1, . . . , k } we have:

T ∩ (S × Li ) = ∅ and T ∩ (S × Ki ) 6= ∅.

Thus, once such an accepting BSCC T is reached in D ⊗A, the acceptance
criterion for the DRA A is fulfilled almost surely.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 39/49



Verifying ω-regular properties

Verifying DRA properties
Product of a Markov chain and a DRA
The product of DTMC D and DRA A is defined as the product of a Markov
chain and a DFA, except that the labeling is defined differently.

Let the acceptance condition of A is F = { (L1,K1), . . . , (Lk ,Kk) }. Then the
sets Li , Ki serve as atomic propositions in D ⊗A. The labeling function L′ in
D ⊗A is the obvious one: if H ∈ { L1, . . . , Lk ,K1, . . . ,Kk }, then H ∈ L′(〈s, q〉)
iff q ∈ H.

Accepting BSCC
A BSCC T in D ⊗A is accepting iff for some index i ∈ { 1, . . . , k } we have:

T ∩ (S × Li ) = ∅ and T ∩ (S × Ki ) 6= ∅.

Thus, once such an accepting BSCC T is reached in D ⊗A, the acceptance
criterion for the DRA A is fulfilled almost surely.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 39/49



Verifying ω-regular properties

Verifying DRA properties

Accepting BSCC
A BSCC T in D ⊗A is accepting iff for some index i ∈ { 1, . . . , k } we have:

T ∩ (S × Li ) = ∅ and T ∩ (S × Ki ) 6= ∅.

Thus, once such an accepting BSCC T is reached in D ⊗A, the acceptance
criterion for the DRA A is fulfilled almost surely.

DRA probabilities = reachability probabilities
Let D be a finite DTMC, s a state in D, A a DRA, and let U be the union
of all accepting BSCCs in D ⊗A. Then:

PrD(s |= A) = PrD⊗A
(
〈s, qs〉 |= ♦U

)
where qs = δ(q0, L(s)).

Proof
On the blackboard (if time permits).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 40/49



Verifying ω-regular properties

Verifying DRA properties
Accepting BSCC

A BSCC T in D ⊗A is accepting iff for some index i ∈ { 1, . . . , k } we have:

T ∩ (S × Li ) = ∅ and T ∩ (S × Ki ) 6= ∅.

Thus, once such an accepting BSCC T is reached in D ⊗A, the acceptance
criterion for the DRA A is fulfilled almost surely.

DRA probabilities = reachability probabilities
Let D be a finite DTMC, s a state in D, A a DRA, and let U be the union
of all accepting BSCCs in D ⊗A. Then:

PrD(s |= A) = PrD⊗A
(
〈s, qs〉 |= ♦U

)
where qs = δ(q0, L(s)).

Proof
On the blackboard (if time permits).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 40/49



Verifying ω-regular properties

Verifying DRA properties
Accepting BSCC
A BSCC T in D ⊗A is accepting iff for some index i ∈ { 1, . . . , k } we have:

T ∩ (S × Li ) = ∅ and T ∩ (S × Ki ) 6= ∅.

Thus, once such an accepting BSCC T is reached in D ⊗A, the acceptance
criterion for the DRA A is fulfilled almost surely.

DRA probabilities = reachability probabilities
Let D be a finite DTMC, s a state in D, A a DRA, and let U be the union
of all accepting BSCCs in D ⊗A. Then:

PrD(s |= A) = PrD⊗A
(
〈s, qs〉 |= ♦U

)
where qs = δ(q0, L(s)).

Proof
On the blackboard (if time permits).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 40/49



Verifying ω-regular properties

Verifying DRA properties
Accepting BSCC
A BSCC T in D ⊗A is accepting iff for some index i ∈ { 1, . . . , k } we have:

T ∩ (S × Li ) = ∅ and T ∩ (S × Ki ) 6= ∅.

Thus, once such an accepting BSCC T is reached in D ⊗A, the acceptance
criterion for the DRA A is fulfilled almost surely.

DRA probabilities = reachability probabilities
Let D be a finite DTMC, s a state in D, A a DRA, and let U be the union
of all accepting BSCCs in D ⊗A. Then:

PrD(s |= A) = PrD⊗A
(
〈s, qs〉 |= ♦U

)
where qs = δ(q0, L(s)).

Proof
On the blackboard (if time permits).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 40/49



Verifying ω-regular properties

Verifying DRA properties
Accepting BSCC
A BSCC T in D ⊗A is accepting iff for some index i ∈ { 1, . . . , k } we have:

T ∩ (S × Li ) = ∅ and T ∩ (S × Ki ) 6= ∅.

Thus, once such an accepting BSCC T is reached in D ⊗A, the acceptance
criterion for the DRA A is fulfilled almost surely.

DRA probabilities = reachability probabilities
Let D be a finite DTMC, s a state in D, A a DRA, and let U be the union
of all accepting BSCCs in D ⊗A.

Then:

PrD(s |= A) = PrD⊗A
(
〈s, qs〉 |= ♦U

)
where qs = δ(q0, L(s)).

Proof
On the blackboard (if time permits).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 40/49



Verifying ω-regular properties

Verifying DRA properties
Accepting BSCC
A BSCC T in D ⊗A is accepting iff for some index i ∈ { 1, . . . , k } we have:

T ∩ (S × Li ) = ∅ and T ∩ (S × Ki ) 6= ∅.

Thus, once such an accepting BSCC T is reached in D ⊗A, the acceptance
criterion for the DRA A is fulfilled almost surely.

DRA probabilities = reachability probabilities
Let D be a finite DTMC, s a state in D, A a DRA, and let U be the union
of all accepting BSCCs in D ⊗A. Then:

PrD(s |= A) = PrD⊗A
(
〈s, qs〉 |= ♦U

)
where qs = δ(q0, L(s)).

Proof
On the blackboard (if time permits).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 40/49



Verifying ω-regular properties

Verifying DRA properties
Accepting BSCC
A BSCC T in D ⊗A is accepting iff for some index i ∈ { 1, . . . , k } we have:

T ∩ (S × Li ) = ∅ and T ∩ (S × Ki ) 6= ∅.

Thus, once such an accepting BSCC T is reached in D ⊗A, the acceptance
criterion for the DRA A is fulfilled almost surely.

DRA probabilities = reachability probabilities
Let D be a finite DTMC, s a state in D, A a DRA, and let U be the union
of all accepting BSCCs in D ⊗A. Then:

PrD(s |= A) = PrD⊗A
(
〈s, qs〉 |= ♦U

)
where qs = δ(q0, L(s)).

Proof
On the blackboard (if time permits).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 40/49



Verifying ω-regular properties

Verifying DRA properties
Accepting BSCC
A BSCC T in D ⊗A is accepting iff for some index i ∈ { 1, . . . , k } we have:

T ∩ (S × Li ) = ∅ and T ∩ (S × Ki ) 6= ∅.

Thus, once such an accepting BSCC T is reached in D ⊗A, the acceptance
criterion for the DRA A is fulfilled almost surely.

DRA probabilities = reachability probabilities
Let D be a finite DTMC, s a state in D, A a DRA, and let U be the union
of all accepting BSCCs in D ⊗A. Then:

PrD(s |= A) = PrD⊗A
(
〈s, qs〉 |= ♦U

)
where qs = δ(q0, L(s)).

Proof
On the blackboard (if time permits).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 40/49



Verifying ω-regular properties

Verifying DRA objectives

DRA probabilities = reachability probabilities
Let D be a finite DTMC, s a state in D, A a DRA, and let U be the union
of all accepting BSCCs in D ⊗A. Then:

PrD(s |= A) = PrD⊗A
(
〈s, qs〉 |= ♦U

)
where qs = δ(q0, L(s)).

Probabilities for satisfying ω-regular properties are obtained by computing the
reachability probabilities for accepting BSCCs in D ⊗A. Again, a graph analysis
and solving systems of linear equations suffice. The time complexity is polynomial
in the size of D and A.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 41/49



Verifying ω-regular properties

Verifying DRA objectives

DRA probabilities = reachability probabilities
Let D be a finite DTMC, s a state in D, A a DRA, and let U be the union
of all accepting BSCCs in D ⊗A.

Then:

PrD(s |= A) = PrD⊗A
(
〈s, qs〉 |= ♦U

)
where qs = δ(q0, L(s)).

Probabilities for satisfying ω-regular properties are obtained by computing the
reachability probabilities for accepting BSCCs in D ⊗A. Again, a graph analysis
and solving systems of linear equations suffice. The time complexity is polynomial
in the size of D and A.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 41/49



Verifying ω-regular properties

Verifying DRA objectives

DRA probabilities = reachability probabilities
Let D be a finite DTMC, s a state in D, A a DRA, and let U be the union
of all accepting BSCCs in D ⊗A. Then:

PrD(s |= A) = PrD⊗A
(
〈s, qs〉 |= ♦U

)
where qs = δ(q0, L(s)).

Probabilities for satisfying ω-regular properties are obtained by computing the
reachability probabilities for accepting BSCCs in D ⊗A. Again, a graph analysis
and solving systems of linear equations suffice. The time complexity is polynomial
in the size of D and A.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 41/49



Verifying ω-regular properties

Verifying DRA objectives

DRA probabilities = reachability probabilities
Let D be a finite DTMC, s a state in D, A a DRA, and let U be the union
of all accepting BSCCs in D ⊗A. Then:

PrD(s |= A) = PrD⊗A
(
〈s, qs〉 |= ♦U

)
where qs = δ(q0, L(s)).

Probabilities for satisfying ω-regular properties are obtained by computing the
reachability probabilities for accepting BSCCs in D ⊗A.

Again, a graph analysis
and solving systems of linear equations suffice. The time complexity is polynomial
in the size of D and A.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 41/49



Verifying ω-regular properties

Verifying DRA objectives

DRA probabilities = reachability probabilities
Let D be a finite DTMC, s a state in D, A a DRA, and let U be the union
of all accepting BSCCs in D ⊗A. Then:

PrD(s |= A) = PrD⊗A
(
〈s, qs〉 |= ♦U

)
where qs = δ(q0, L(s)).

Probabilities for satisfying ω-regular properties are obtained by computing the
reachability probabilities for accepting BSCCs in D ⊗A. Again, a graph analysis
and solving systems of linear equations suffice.

The time complexity is polynomial
in the size of D and A.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 41/49



Verifying ω-regular properties

Verifying DRA objectives

DRA probabilities = reachability probabilities
Let D be a finite DTMC, s a state in D, A a DRA, and let U be the union
of all accepting BSCCs in D ⊗A. Then:

PrD(s |= A) = PrD⊗A
(
〈s, qs〉 |= ♦U

)
where qs = δ(q0, L(s)).

Probabilities for satisfying ω-regular properties are obtained by computing the
reachability probabilities for accepting BSCCs in D ⊗A. Again, a graph analysis
and solving systems of linear equations suffice. The time complexity is polynomial
in the size of D and A.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 41/49



Verifying ω-regular properties

Example: verifying a DTMC versus a DRA

Single accepting BSCC: { 〈s2, q1〉, 〈s5, q1〉 }.

Reachability probability is 1
2 ·

1
10 ·

∞∑
k=0

(3
5

)k
= 1

8.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 42/49



Verifying ω-regular properties

Example: verifying a DTMC versus a DRA

Single accepting BSCC: { 〈s2, q1〉, 〈s5, q1〉 }.

Reachability probability is 1
2 ·

1
10 ·

∞∑
k=0

(3
5

)k
= 1

8.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 42/49



Verifying ω-regular properties

Measurability

Measurability theorem for ω-regular properties [Vardi 1985]

For any DTMC D and DRA A the set

{π ∈ Paths(D) | trace(π) ∈ Lω(A) }

is measurable.

Proof (sketch)

Let DRA A with accept sets { (L1,K1), . . . , (Lm,Km) }. Let
ϕi = ♦�¬Li ∧ �♦Ki and Πi the set of paths satisfying ϕi . Then
Π = Π1 ∪ . . . ∪ Πk . In addition, Πi = Π♦�i ∩ Π�♦i where Π♦�i is the set of paths
π in D such that π+ |= ♦�¬Li , and Π�♦i is the set of paths π in D such that
π+ |= �♦Ki . It remains to show that Π♦�i and Π�♦i are measurable. This goes
along the same lines as proving that ♦�G and �♦G are measurable.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 43/49



Verifying ω-regular properties

Measurability

Measurability theorem for ω-regular properties [Vardi 1985]

For any DTMC D and DRA A the set

{π ∈ Paths(D) | trace(π) ∈ Lω(A) }

is measurable.

Proof (sketch)

Let DRA A with accept sets { (L1,K1), . . . , (Lm,Km) }. Let
ϕi = ♦�¬Li ∧ �♦Ki and Πi the set of paths satisfying ϕi . Then
Π = Π1 ∪ . . . ∪ Πk . In addition, Πi = Π♦�i ∩ Π�♦i where Π♦�i is the set of paths
π in D such that π+ |= ♦�¬Li , and Π�♦i is the set of paths π in D such that
π+ |= �♦Ki . It remains to show that Π♦�i and Π�♦i are measurable. This goes
along the same lines as proving that ♦�G and �♦G are measurable.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 43/49



Verifying ω-regular properties

Measurability

Measurability theorem for ω-regular properties [Vardi 1985]

For any DTMC D and DRA A the set

{π ∈ Paths(D) | trace(π) ∈ Lω(A) }

is measurable.

Proof (sketch)

Let DRA A with accept sets { (L1,K1), . . . , (Lm,Km) }. Let
ϕi = ♦�¬Li ∧ �♦Ki and Πi the set of paths satisfying ϕi . Then
Π = Π1 ∪ . . . ∪ Πk . In addition, Πi = Π♦�i ∩ Π�♦i where Π♦�i is the set of paths
π in D such that π+ |= ♦�¬Li , and Π�♦i is the set of paths π in D such that
π+ |= �♦Ki . It remains to show that Π♦�i and Π�♦i are measurable. This goes
along the same lines as proving that ♦�G and �♦G are measurable.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 43/49



Verifying ω-regular properties

Measurability

Measurability theorem for ω-regular properties [Vardi 1985]

For any DTMC D and DRA A the set

{π ∈ Paths(D) | trace(π) ∈ Lω(A) }

is measurable.

Proof (sketch)

Let DRA A with accept sets { (L1,K1), . . . , (Lm,Km) }.

Let
ϕi = ♦�¬Li ∧ �♦Ki and Πi the set of paths satisfying ϕi . Then
Π = Π1 ∪ . . . ∪ Πk . In addition, Πi = Π♦�i ∩ Π�♦i where Π♦�i is the set of paths
π in D such that π+ |= ♦�¬Li , and Π�♦i is the set of paths π in D such that
π+ |= �♦Ki . It remains to show that Π♦�i and Π�♦i are measurable. This goes
along the same lines as proving that ♦�G and �♦G are measurable.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 43/49



Verifying ω-regular properties

Measurability

Measurability theorem for ω-regular properties [Vardi 1985]

For any DTMC D and DRA A the set

{π ∈ Paths(D) | trace(π) ∈ Lω(A) }

is measurable.

Proof (sketch)

Let DRA A with accept sets { (L1,K1), . . . , (Lm,Km) }. Let
ϕi = ♦�¬Li ∧ �♦Ki and Πi the set of paths satisfying ϕi .

Then
Π = Π1 ∪ . . . ∪ Πk . In addition, Πi = Π♦�i ∩ Π�♦i where Π♦�i is the set of paths
π in D such that π+ |= ♦�¬Li , and Π�♦i is the set of paths π in D such that
π+ |= �♦Ki . It remains to show that Π♦�i and Π�♦i are measurable. This goes
along the same lines as proving that ♦�G and �♦G are measurable.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 43/49



Verifying ω-regular properties

Measurability

Measurability theorem for ω-regular properties [Vardi 1985]

For any DTMC D and DRA A the set

{π ∈ Paths(D) | trace(π) ∈ Lω(A) }

is measurable.

Proof (sketch)

Let DRA A with accept sets { (L1,K1), . . . , (Lm,Km) }. Let
ϕi = ♦�¬Li ∧ �♦Ki and Πi the set of paths satisfying ϕi . Then
Π = Π1 ∪ . . . ∪ Πk .

In addition, Πi = Π♦�i ∩ Π�♦i where Π♦�i is the set of paths
π in D such that π+ |= ♦�¬Li , and Π�♦i is the set of paths π in D such that
π+ |= �♦Ki . It remains to show that Π♦�i and Π�♦i are measurable. This goes
along the same lines as proving that ♦�G and �♦G are measurable.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 43/49



Verifying ω-regular properties

Measurability

Measurability theorem for ω-regular properties [Vardi 1985]

For any DTMC D and DRA A the set

{π ∈ Paths(D) | trace(π) ∈ Lω(A) }

is measurable.

Proof (sketch)

Let DRA A with accept sets { (L1,K1), . . . , (Lm,Km) }. Let
ϕi = ♦�¬Li ∧ �♦Ki and Πi the set of paths satisfying ϕi . Then
Π = Π1 ∪ . . . ∪ Πk . In addition, Πi = Π♦�i ∩ Π�♦i where Π♦�i is the set of paths
π in D such that π+ |= ♦�¬Li , and Π�♦i is the set of paths π in D such that
π+ |= �♦Ki .

It remains to show that Π♦�i and Π�♦i are measurable. This goes
along the same lines as proving that ♦�G and �♦G are measurable.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 43/49



Verifying ω-regular properties

Measurability

Measurability theorem for ω-regular properties [Vardi 1985]

For any DTMC D and DRA A the set

{π ∈ Paths(D) | trace(π) ∈ Lω(A) }

is measurable.

Proof (sketch)

Let DRA A with accept sets { (L1,K1), . . . , (Lm,Km) }. Let
ϕi = ♦�¬Li ∧ �♦Ki and Πi the set of paths satisfying ϕi . Then
Π = Π1 ∪ . . . ∪ Πk . In addition, Πi = Π♦�i ∩ Π�♦i where Π♦�i is the set of paths
π in D such that π+ |= ♦�¬Li , and Π�♦i is the set of paths π in D such that
π+ |= �♦Ki . It remains to show that Π♦�i and Π�♦i are measurable.

This goes
along the same lines as proving that ♦�G and �♦G are measurable.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 43/49



Verifying ω-regular properties

Measurability

Measurability theorem for ω-regular properties [Vardi 1985]

For any DTMC D and DRA A the set

{π ∈ Paths(D) | trace(π) ∈ Lω(A) }

is measurable.

Proof (sketch)

Let DRA A with accept sets { (L1,K1), . . . , (Lm,Km) }. Let
ϕi = ♦�¬Li ∧ �♦Ki and Πi the set of paths satisfying ϕi . Then
Π = Π1 ∪ . . . ∪ Πk . In addition, Πi = Π♦�i ∩ Π�♦i where Π♦�i is the set of paths
π in D such that π+ |= ♦�¬Li , and Π�♦i is the set of paths π in D such that
π+ |= �♦Ki . It remains to show that Π♦�i and Π�♦i are measurable. This goes
along the same lines as proving that ♦�G and �♦G are measurable.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 43/49



Verifying ω-regular properties

Linear temporal logic

Linear Temporal Logic: Syntax [Pnueli 1977]

LTL formulas over the set AP obey the grammar:

ϕ ::= a
∣∣∣ ¬ϕ ∣∣∣ ϕ1 ∧ ϕ2

∣∣∣ © ϕ
∣∣∣ ϕ1 Uϕ2

where a ∈ AP and ϕ, ϕ1, and ϕ2 are LTL formulas.

Example
On the blackboard.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 44/49



Verifying ω-regular properties

Linear temporal logic

Linear Temporal Logic: Syntax [Pnueli 1977]

LTL formulas over the set AP obey the grammar:

ϕ ::= a
∣∣∣ ¬ϕ ∣∣∣ ϕ1 ∧ ϕ2

∣∣∣ © ϕ
∣∣∣ ϕ1 Uϕ2

where a ∈ AP and ϕ, ϕ1, and ϕ2 are LTL formulas.

Example
On the blackboard.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 44/49



Verifying ω-regular properties

Linear temporal logic

Linear Temporal Logic: Syntax [Pnueli 1977]

LTL formulas over the set AP obey the grammar:

ϕ ::= a
∣∣∣ ¬ϕ ∣∣∣ ϕ1 ∧ ϕ2

∣∣∣ © ϕ
∣∣∣ ϕ1 Uϕ2

where a ∈ AP and ϕ, ϕ1, and ϕ2 are LTL formulas.

Example
On the blackboard.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 44/49



Verifying ω-regular properties

LTL semantics
LTL semantics
The LT-property induced by LTL formula ϕ over AP is:

Words(ϕ) =
{
σ ∈

(
2AP

)ω
| σ |= ϕ

}
,where |= is the smallest relation satisfying:

σ |= true
σ |= a iff a ∈ A0 (i.e., A0 |= a)
σ |= ϕ1 ∧ ϕ2 iff σ |= ϕ1 and σ |= ϕ2

σ |= ¬ϕ iff σ 6|= ϕ

σ |= ©ϕ iff σ1 = A1A2A3 . . . |= ϕ

σ |= ϕ1 Uϕ2 iff ∃j > 0. σj |= ϕ2 and σi |= ϕ1, 0 6 i < j

for σ = A0A1A2 . . . we have σi = Ai Ai+1Ai+2 . . . is the suffix of σ from index i on.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 45/49



Verifying ω-regular properties

LTL semantics
LTL semantics
The LT-property induced by LTL formula ϕ over AP is:

Words(ϕ) =
{
σ ∈

(
2AP

)ω
| σ |= ϕ

}
,where |= is the smallest relation satisfying:

σ |= true
σ |= a iff a ∈ A0 (i.e., A0 |= a)
σ |= ϕ1 ∧ ϕ2 iff σ |= ϕ1 and σ |= ϕ2

σ |= ¬ϕ iff σ 6|= ϕ

σ |= ©ϕ iff σ1 = A1A2A3 . . . |= ϕ

σ |= ϕ1 Uϕ2 iff ∃j > 0. σj |= ϕ2 and σi |= ϕ1, 0 6 i < j

for σ = A0A1A2 . . . we have σi = Ai Ai+1Ai+2 . . . is the suffix of σ from index i on.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 45/49



Verifying ω-regular properties

Some facts about LTL

LTL is ω-regular
For any LTL formula ϕ, the set Words(ϕ) is an ω-regular language.

LTL are DRA-definable
For any LTL formula ϕ, there exists a DRA A such that Lω = Words(ϕ)
where the number of states in A lies in 22|ϕ| .

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 46/49



Verifying ω-regular properties

Some facts about LTL

LTL is ω-regular
For any LTL formula ϕ, the set Words(ϕ) is an ω-regular language.

LTL are DRA-definable
For any LTL formula ϕ, there exists a DRA A such that Lω = Words(ϕ)

where the number of states in A lies in 22|ϕ| .

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 46/49



Verifying ω-regular properties

Some facts about LTL

LTL is ω-regular
For any LTL formula ϕ, the set Words(ϕ) is an ω-regular language.

LTL are DRA-definable
For any LTL formula ϕ, there exists a DRA A such that Lω = Words(ϕ)
where the number of states in A lies in 22|ϕ| .

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 46/49



Verifying ω-regular properties

Verifying a DTMC against LTL formulas

Complexity of LTL model checking [Vardi 1985]

The qualitative model-checking problem for finite DTMCs against LTL
formula ϕ is PSPACE-complete, i.e., verifying whether Pr(s |= ϕ) > 0 or
Pr(s |= ϕ) = 1 is PSPACE-complete.

Recall that the LTL model-checking problem for finite transition systems is
PSPACE-complete.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 47/49



Summary

Overview

1 Introduction

2 Preliminaries

3 Verifying regular safety properties

4 ω-regular properties

5 Verifying DBA objectives

6 Verifying ω-regular properties

7 Summary

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 48/49



Summary

Summary
Summary

I Verifying a DTMC D against a DFA A, i.e., determining Pr(D |= A),
amounts to computing reachability probabilities of accept states in D ⊗A.

I For DBA objectives, the probability of infinitely often visiting an accept state
in D ⊗A.

I DBA are strictly less powerful than ω-regular languages.
I Deterministic Rabin automata are as expressive as ω-regular languages.
I Verifying DTMC D agains DRA A amounts to computing reachability

probabilities of accepting BSCCs in D ⊗A.

Take-home message
Model checking a DTMC against various automata models reduces to computing
reachability probabilities in a product.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 49/49



Summary

Summary
Summary

I Verifying a DTMC D against a DFA A, i.e., determining Pr(D |= A),
amounts to computing reachability probabilities of accept states in D ⊗A.

I For DBA objectives, the probability of infinitely often visiting an accept state
in D ⊗A.

I DBA are strictly less powerful than ω-regular languages.
I Deterministic Rabin automata are as expressive as ω-regular languages.
I Verifying DTMC D agains DRA A amounts to computing reachability

probabilities of accepting BSCCs in D ⊗A.

Take-home message
Model checking a DTMC against various automata models reduces to computing
reachability probabilities in a product.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 49/49



Summary

Summary
Summary

I Verifying a DTMC D against a DFA A, i.e., determining Pr(D |= A),
amounts to computing reachability probabilities of accept states in D ⊗A.

I For DBA objectives, the probability of infinitely often visiting an accept state
in D ⊗A.

I DBA are strictly less powerful than ω-regular languages.

I Deterministic Rabin automata are as expressive as ω-regular languages.
I Verifying DTMC D agains DRA A amounts to computing reachability

probabilities of accepting BSCCs in D ⊗A.

Take-home message
Model checking a DTMC against various automata models reduces to computing
reachability probabilities in a product.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 49/49



Summary

Summary
Summary

I Verifying a DTMC D against a DFA A, i.e., determining Pr(D |= A),
amounts to computing reachability probabilities of accept states in D ⊗A.

I For DBA objectives, the probability of infinitely often visiting an accept state
in D ⊗A.

I DBA are strictly less powerful than ω-regular languages.
I Deterministic Rabin automata are as expressive as ω-regular languages.

I Verifying DTMC D agains DRA A amounts to computing reachability
probabilities of accepting BSCCs in D ⊗A.

Take-home message
Model checking a DTMC against various automata models reduces to computing
reachability probabilities in a product.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 49/49



Summary

Summary
Summary

I Verifying a DTMC D against a DFA A, i.e., determining Pr(D |= A),
amounts to computing reachability probabilities of accept states in D ⊗A.

I For DBA objectives, the probability of infinitely often visiting an accept state
in D ⊗A.

I DBA are strictly less powerful than ω-regular languages.
I Deterministic Rabin automata are as expressive as ω-regular languages.
I Verifying DTMC D agains DRA A amounts to computing reachability

probabilities of accepting BSCCs in D ⊗A.

Take-home message
Model checking a DTMC against various automata models reduces to computing
reachability probabilities in a product.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 49/49



Summary

Summary
Summary

I Verifying a DTMC D against a DFA A, i.e., determining Pr(D |= A),
amounts to computing reachability probabilities of accept states in D ⊗A.

I For DBA objectives, the probability of infinitely often visiting an accept state
in D ⊗A.

I DBA are strictly less powerful than ω-regular languages.
I Deterministic Rabin automata are as expressive as ω-regular languages.
I Verifying DTMC D agains DRA A amounts to computing reachability

probabilities of accepting BSCCs in D ⊗A.

Take-home message
Model checking a DTMC against various automata models reduces to computing
reachability probabilities in a product.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 49/49


	Introduction
	Preliminaries
	Verifying regular safety properties
	-regular properties
	Verifying DBA objectives
	Verifying -regular properties
	Summary

