Modeling and Verification of Probabilistic Systems

Joost-Pieter Katoen

Lehrstuhl für Informatik 2 Software Modeling and Verification Group

http://moves.rwth-aachen.de/teaching/ws-1516/movep15/

November 4, 2015

Overview

Introduction

2 Preliminaries

- Overifying regular safety properties
- 4) ω -regular properties
- 5 Verifying DBA objectives
- 6 Verifying ω -regular properties

7) Summary

Summary of previous lectures

Reachability probabilities

Can be obtained as a unique solution of a linear equation system.

Summary of previous lectures

Reachability probabilities

Can be obtained as a unique solution of a linear equation system.

Reachability probabilities are pivotal

- 1. Repeated reachability
 - Reachability of the BSCCs containing a goal state
- 2. Persistence
 - Reachability of the BSCCs only containing goal states

Reachability probabilities = key to determine the probability of any ω -regular property. (This includes all linear temporal logic formulas.)

Reachability probabilities = key to determine the probability of any ω -regular property. (This includes all linear temporal logic formulas.)

Major steps for Markov chain \mathcal{D}

1. Consider first a simple class of properties: regular safety properties.

Reachability probabilities = key to determine the probability of any ω -regular property. (This includes all linear temporal logic formulas.)

Major steps for Markov chain \mathcal{D}

- 1. Consider first a simple class of properties: regular safety properties.
- 2. All traces refuting such property P are recognized by a deterministic finite-state automaton A.

Reachability probabilities = key to determine the probability of any ω -regular property. (This includes all linear temporal logic formulas.)

Major steps for Markov chain $\ensuremath{\mathcal{D}}$

- 1. Consider first a simple class of properties: regular safety properties.
- 2. All traces refuting such property P are recognized by a deterministic finite-state automaton A.
- 3. Probability of P = reachability probability in a product of D and A.

Reachability probabilities = key to determine the probability of any ω -regular property. (This includes all linear temporal logic formulas.)

Major steps for Markov chain \mathcal{D}

- 1. Consider first a simple class of properties: regular safety properties.
- 2. All traces refuting such property P are recognized by a deterministic finite-state automaton A.
- 3. Probability of P = reachability probability in a product of D and A.
- 4. What are ω -regular properties?
- 5. All traces satisfying such property P are recognized by a deterministic Rabin automaton A.

Reachability probabilities = key to determine the probability of any ω -regular property. (This includes all linear temporal logic formulas.)

Major steps for Markov chain $\ensuremath{\mathcal{D}}$

- 1. Consider first a simple class of properties: regular safety properties.
- 2. All traces refuting such property P are recognized by a deterministic finite-state automaton A.
- 3. Probability of P = reachability probability in a product of D and A.
- 4. What are ω -regular properties?
- 5. All traces satisfying such property P are recognized by a deterministic Rabin automaton A.
- 6. Probability of P = reachability probability in a product of D and A.

Overview

Introduction

2 Preliminaries

- Overifying regular safety properties
- 4) ω -regular properties
- 5 Verifying DBA objectives
- **6** Verifying ω -regular properties

7 Summary

Paths

A *path* in DTMC \mathcal{D} is an infinite sequence of states $s_0s_1s_2...$ with $\mathbf{P}(s_i, s_{i+1}) > 0$ for all *i*.

Paths

A *path* in DTMC \mathcal{D} is an infinite sequence of states $s_0 s_1 s_2 \dots$ with $\mathbf{P}(s_i, s_{i+1}) > 0$ for all *i*.

Let $Paths(\mathcal{D})$ denote the set of paths in \mathcal{D} , and $Paths^*(\mathcal{D})$ the set of finite prefixes thereof.

Paths

A *path* in DTMC \mathcal{D} is an infinite sequence of states $s_0 s_1 s_2 \dots$ with $\mathbf{P}(s_i, s_{i+1}) > 0$ for all *i*.

Let $Paths(\mathcal{D})$ denote the set of paths in \mathcal{D} , and $Paths^*(\mathcal{D})$ the set of finite prefixes thereof.

Traces

The *trace* of path $\pi = s_0 s_1 s_2 \dots$ is *trace* $(\pi) = L(s_0) L(s_1) L(s_2) \dots$

Paths

A *path* in DTMC \mathcal{D} is an infinite sequence of states $s_0 s_1 s_2 \dots$ with $\mathbf{P}(s_i, s_{i+1}) > 0$ for all *i*.

Let $Paths(\mathcal{D})$ denote the set of paths in \mathcal{D} , and $Paths^*(\mathcal{D})$ the set of finite prefixes thereof.

Traces

The *trace* of path $\pi = s_0 s_1 s_2 \dots$ is $trace(\pi) = L(s_0) L(s_1) L(s_2) \dots$ The trace of finite path $\hat{\pi} = s_0 s_1 \dots s_n$ is $trace(\hat{\pi}) = L(s_0) L(s_1) \dots L(s_n)$.

Paths

A *path* in DTMC \mathcal{D} is an infinite sequence of states $s_0 s_1 s_2 \dots$ with $\mathbf{P}(s_i, s_{i+1}) > 0$ for all *i*.

Let $Paths(\mathcal{D})$ denote the set of paths in \mathcal{D} , and $Paths^*(\mathcal{D})$ the set of finite prefixes thereof.

Traces

The trace of path $\pi = s_0 s_1 s_2 \dots$ is $trace(\pi) = L(s_0) L(s_1) L(s_2) \dots$ The trace of finite path $\hat{\pi} = s_0 s_1 \dots s_n$ is $trace(\hat{\pi}) = L(s_0) L(s_1) \dots L(s_n)$. The set of traces of a set Π of paths: $trace(\Pi) = \{ trace(\pi) \mid \pi \in \Pi \}$.

Paths

A *path* in DTMC \mathcal{D} is an infinite sequence of states $s_0 s_1 s_2 \dots$ with $\mathbf{P}(s_i, s_{i+1}) > 0$ for all *i*.

Let $Paths(\mathcal{D})$ denote the set of paths in \mathcal{D} , and $Paths^*(\mathcal{D})$ the set of finite prefixes thereof.

Traces

The trace of path $\pi = s_0 s_1 s_2 \dots$ is $trace(\pi) = L(s_0) L(s_1) L(s_2) \dots$ The trace of finite path $\hat{\pi} = s_0 s_1 \dots s_n$ is $trace(\hat{\pi}) = L(s_0) L(s_1) \dots L(s_n)$. The set of traces of a set Π of paths: $trace(\Pi) = \{ trace(\pi) \mid \pi \in \Pi \}$.

LT properties

Linear-time property

A *linear-time property* (LT property) over AP is a subset of $(2^{AP})^{\omega}$.

LT properties

Linear-time property

A *linear-time property* (LT property) over AP is a subset of $(2^{AP})^{\omega}$. An LT-property is thus a set of infinite traces over 2^{AP} .

LT properties

Linear-time property

A *linear-time property* (LT property) over AP is a subset of $(2^{AP})^{\omega}$. An LT-property is thus a set of infinite traces over 2^{AP} .

Intuition

An LT-property gives the admissible behaviours of the DTMC at hand.

Probability of LT properties

Probability of LT properties

The *probability* for DTMC D to exhibit a trace in property *P* (over *AP*) is:

$${\it Pr}^{{\mathcal D}}({\it P}) \;=\; {\it Pr}^{{\mathcal D}}\{\,\pi\in{\it Paths}({\mathcal D})\mid{\it trace}(\pi)\in{\it P}\,\}.$$

Probability of LT properties

Probability of LT properties

The *probability* for DTMC D to exhibit a trace in property *P* (over *AP*) is:

$$\mathsf{Pr}^{\mathcal{D}}(\mathsf{P}) \;=\; \mathsf{Pr}^{\mathcal{D}}\{\,\pi\in\mathsf{Paths}(\mathcal{D})\mid \mathit{trace}(\pi)\in\mathsf{P}\,\}.$$

For state s in \mathcal{D} , let $Pr(s \models P) = Pr_s \{ \pi \in Paths(s) \mid trace(\pi) \in P \}$.

Probability of LT properties

Probability of LT properties

The *probability* for DTMC D to exhibit a trace in property *P* (over *AP*) is:

$$\mathsf{Pr}^{\mathcal{D}}(\mathsf{P}) \;=\; \mathsf{Pr}^{\mathcal{D}}\{\,\pi\in\mathsf{Paths}(\mathcal{D})\mid \mathit{trace}(\pi)\in\mathsf{P}\,\}.$$

For state s in \mathcal{D} , let $Pr(s \models P) = Pr_s \{ \pi \in Paths(s) \mid trace(\pi) \in P \}$.

We do not address measurability of P yet. We will later identify a rich set P of LT-properties—those that include all LTL formulas—for which the set of paths $\{ \pi \in Paths(D) \mid trace(\pi) \in P \}$ is measurable.

Safety property

LT property P_{safe} over AP is a safety property if for all $\sigma \in (2^{AP})^{\omega} \setminus P_{safe}$ there exists a finite prefix $\hat{\sigma}$ of σ such that:

$$P_{\textit{safe}} \cap \underbrace{\left\{ \sigma' \in \left(2^{AP}\right)^{\omega} \mid \widehat{\sigma} \text{ is a prefix of } \sigma' \right\}}_{\textit{all possible extensions of } \widehat{\sigma}} = \varnothing$$

Safety property

LT property P_{safe} over AP is a safety property if for all $\sigma \in (2^{AP})^{\omega} \setminus P_{safe}$ there exists a finite prefix $\hat{\sigma}$ of σ such that:

$$P_{\textit{safe}} \cap \underbrace{\left\{ \sigma' \in \left(2^{\mathcal{AP}}\right)^{\omega} \mid \widehat{\sigma} \text{ is a prefix of } \sigma' \right\}}_{\textit{all possible extensions of } \widehat{\sigma}} = \varnothing$$

Any such finite word $\hat{\sigma}$ is called a *bad prefix* for P_{safe} .

Safety property

LT property P_{safe} over AP is a safety property if for all $\sigma \in (2^{AP})^{\omega} \setminus P_{safe}$ there exists a finite prefix $\hat{\sigma}$ of σ such that:

$$P_{safe} \cap \underbrace{\left\{ \sigma' \in \left(2^{\mathcal{A}P}\right)^{\omega} \mid \widehat{\sigma} \text{ is a prefix of } \sigma' \right\}}_{\text{all possible extensions of } \widehat{\sigma}} = \varnothing$$

Any such finite word $\hat{\sigma}$ is called a *bad prefix* for P_{safe} .

Regular safety property

A safety property is *regular* if its set of bad prefixes constitutes a regular language (over the alphabet 2^{AP}).

Safety property

LT property P_{safe} over AP is a safety property if for all $\sigma \in (2^{AP})^{\omega} \setminus P_{safe}$ there exists a finite prefix $\hat{\sigma}$ of σ such that:

$$P_{safe} \cap \underbrace{\left\{ \sigma' \in (2^{AP})^{\omega} \mid \widehat{\sigma} \text{ is a prefix of } \sigma' \right\}}_{\text{all possible extensions of } \widehat{\sigma}} = \varnothing$$

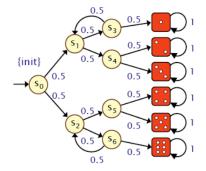
Any such finite word $\hat{\sigma}$ is called a *bad prefix* for P_{safe} .

Regular safety property

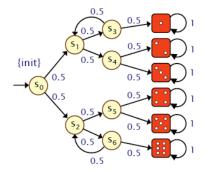
A safety property is *regular* if its set of bad prefixes constitutes a regular language (over the alphabet 2^{AP}). Thus, the set of all bad prefixes of a regular safety property can be represented by a finite-state automaton.

Property of Knuth's die

Property of Knuth's die



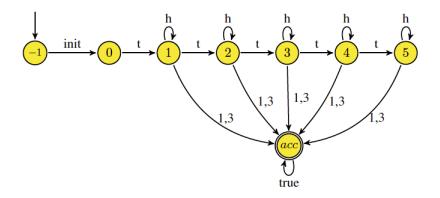
Property of Knuth's die



Property of Knuth's die

After initial tails, yield 1 or 3 but with maximally five time tails.

Property as an automaton



After initial tails, yield 1 or 3 but with at most five times tails in total

Overview

Introduction

2 Preliminaries

3 Verifying regular safety properties

- 4) ω -regular properties
- 5 Verifying DBA objectives
- 6 Verifying ω -regular properties

Summary

Probability of a regular safety property

Let $\mathcal{A} = (Q, 2^{AP}, \delta, q_0, F)$ be a deterministic finite-state automaton (DFA) for the bad prefixes of regular safety property P_{safe} :

$$P_{\mathsf{safe}} \,=\, \{\, A_0 \, A_1 \, A_2 \ldots \in \left(2^{AP}\right)^\omega \mid \forall n \geqslant 0. \, A_0 \, A_1 \ldots A_n \not\in \mathcal{L}(\mathcal{A}) \, \}.$$

Probability of a regular safety property

Let $\mathcal{A} = (Q, 2^{AP}, \delta, q_0, F)$ be a deterministic finite-state automaton (DFA) for the bad prefixes of regular safety property P_{safe} :

$$P_{\mathsf{safe}} = \{ A_0 A_1 A_2 \ldots \in (2^{AP})^{\omega} \mid \forall n \ge 0. A_0 A_1 \ldots A_n \notin \mathcal{L}(\mathcal{A}) \}.$$

Let δ be total, i.e., $\delta(q, A)$ is defined for each $A \subseteq AP$ and state $q \in Q$.

Probability of a regular safety property

Let $\mathcal{A} = (Q, 2^{AP}, \delta, q_0, F)$ be a deterministic finite-state automaton (DFA) for the bad prefixes of regular safety property P_{safe} :

$$P_{\textit{safe}} = \{ A_0 A_1 A_2 \ldots \in (2^{AP})^{\omega} \mid \forall n \ge 0. A_0 A_1 \ldots A_n \not\in \mathcal{L}(\mathcal{A}) \}.$$

Let δ be total, i.e., $\delta(q, A)$ is defined for each $A \subseteq AP$ and state $q \in Q$. Furthermore, let $\mathcal{D} = (S, \mathbf{P}, \iota_{\text{init}}, AP, L)$ be a finite DTMC.

Let $\mathcal{A} = (Q, 2^{AP}, \delta, q_0, F)$ be a deterministic finite-state automaton (DFA) for the bad prefixes of regular safety property P_{safe} :

$$P_{safe} = \{ A_0 A_1 A_2 \ldots \in (2^{AP})^{\omega} \mid \forall n \ge 0. A_0 A_1 \ldots A_n \notin \mathcal{L}(\mathcal{A}) \}.$$

Let δ be total, i.e., $\delta(q, A)$ is defined for each $A \subseteq AP$ and state $q \in Q$. Furthermore, let $\mathcal{D} = (S, \mathbf{P}, \iota_{\text{init}}, AP, L)$ be a finite DTMC. Our interest is to compute the probability

$$\mathit{Pr}^{\mathcal{D}}(\mathit{P_{safe}}) \ = \ 1 \ - \ \sum_{s \in S} \iota_{ ext{init}}(s) \cdot \mathit{Pr}(s \models \mathcal{A}) \quad ext{where}$$

Let $\mathcal{A} = (Q, 2^{AP}, \delta, q_0, F)$ be a deterministic finite-state automaton (DFA) for the bad prefixes of regular safety property P_{safe} :

$$P_{safe} = \{ A_0 A_1 A_2 \ldots \in (2^{AP})^{\omega} \mid \forall n \ge 0. A_0 A_1 \ldots A_n \notin \mathcal{L}(\mathcal{A}) \}.$$

Let δ be total, i.e., $\delta(q, A)$ is defined for each $A \subseteq AP$ and state $q \in Q$. Furthermore, let $\mathcal{D} = (S, \mathbf{P}, \iota_{\text{init}}, AP, L)$ be a finite DTMC. Our interest is to compute the probability

$$Pr^{\mathcal{D}}(P_{safe}) = 1 - \sum_{s \in S} \iota_{\text{init}}(s) \cdot Pr(s \models \mathcal{A})$$
 where

$$Pr(s \models A) = Pr_s^{\mathcal{D}} \{ \pi \in Paths(s) \mid trace(\pi) \notin P_{safe} \}.$$

Let $\mathcal{A} = (Q, 2^{AP}, \delta, q_0, F)$ be a deterministic finite-state automaton (DFA) for the bad prefixes of regular safety property P_{safe} :

$$P_{safe} = \{ A_0 A_1 A_2 \ldots \in (2^{AP})^{\omega} \mid \forall n \ge 0. A_0 A_1 \ldots A_n \notin \mathcal{L}(\mathcal{A}) \}.$$

Let δ be total, i.e., $\delta(q, A)$ is defined for each $A \subseteq AP$ and state $q \in Q$. Furthermore, let $\mathcal{D} = (S, \mathbf{P}, \iota_{\text{init}}, AP, L)$ be a finite DTMC. Our interest is to compute the probability

$$\textit{Pr}^{\mathcal{D}}(\textit{P}_{\textit{safe}}) = 1 - \sum_{s \in S} \iota_{\text{init}}(s) \cdot \textit{Pr}(s \models \mathcal{A}) \;\;\; \text{where}$$

$$Pr(s \models A) = Pr_s^{\mathcal{D}} \{ \pi \in Paths(s) \mid trace(\pi) \notin P_{safe} \}.$$

These probabilities can be obtained by considering a product of DTMC ${\cal D}$ with DFA ${\cal A}.$

Joost-Pieter Katoen

13/49

$$\mathit{Pr}^{\mathcal{D}}(\mathit{P_{safe}}) \ = \ 1 \ - \ \sum_{s \in S} \iota_{ ext{init}}(s) \cdot \mathit{Pr}(s \models \mathcal{A}) \quad ext{where}$$

$$\textit{Pr}^{\mathcal{D}}(\textit{P}_{\textit{safe}}) = 1 - \sum_{s \in S} \iota_{\text{init}}(s) \cdot \textit{Pr}(s \models \mathcal{A}) \text{ where }$$

 $Pr(s \models A) = Pr_s^{\mathcal{D}} \{ \pi \in Paths(s) \mid trace(\pi) \notin P_{safe} \}.$

$$\textit{Pr}^{\mathcal{D}}(\textit{P}_{\textit{safe}}) = 1 - \sum_{s \in S} \iota_{\text{init}}(s) \cdot \textit{Pr}(s \models \mathcal{A}) \ \ \text{where}$$

$$Pr(s \models A) = Pr_s^{\mathcal{D}} \{ \pi \in Paths(s) \mid trace(\pi) \notin P_{safe} \}.$$

Remark

The value $Pr(s \models A)$ can be written as the (possibly infinite) sum:

$$Pr(s \models A) = \sum_{\widehat{\pi}} \mathbf{P}(\widehat{\pi})$$

where $\hat{\pi}$ ranges over all finite path prefixes $s_0 s_1 \dots s_n$ with $s_0 = s$

$$\textit{Pr}^{\mathcal{D}}(\textit{P}_{\textit{safe}}) = 1 - \sum_{s \in S} \iota_{\text{init}}(s) \cdot \textit{Pr}(s \models \mathcal{A}) \ \ \text{where}$$

$$Pr(s \models A) = Pr_s^{\mathcal{D}} \{ \pi \in Paths(s) \mid trace(\pi) \notin P_{safe} \}.$$

Remark

The value $Pr(s \models A)$ can be written as the (possibly infinite) sum:

$$Pr(s \models A) = \sum_{\widehat{\pi}} \mathbf{P}(\widehat{\pi})$$

where $\hat{\pi}$ ranges over all finite path prefixes $s_0 s_1 \dots s_n$ with $s_0 = s$ and:

1. $trace(s_0 s_1 \ldots s_n) = L(s_0) L(s_1) \ldots L(s_n) \in \mathcal{L}(\mathcal{A})$, and

$$\textit{Pr}^{\mathcal{D}}(\textit{P}_{\textit{safe}}) = 1 - \sum_{s \in S} \iota_{\text{init}}(s) \cdot \textit{Pr}(s \models \mathcal{A}) \ \ \text{where}$$

$$Pr(s \models A) = Pr_s^{\mathcal{D}} \{ \pi \in Paths(s) \mid trace(\pi) \notin P_{safe} \}.$$

Remark

The value $Pr(s \models A)$ can be written as the (possibly infinite) sum:

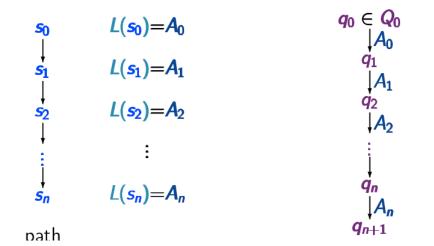
$$Pr(s \models A) = \sum_{\widehat{\pi}} \mathbf{P}(\widehat{\pi})$$

where $\hat{\pi}$ ranges over all finite path prefixes $s_0 s_1 \dots s_n$ with $s_0 = s$ and:

- 1. $trace(s_0 s_1 \dots s_n) = L(s_0) L(s_1) \dots L(s_n) \in \mathcal{L}(\mathcal{A})$, and
- 2. the length of $\hat{\pi}$ is minimal, i.e., $trace(s_0 s_1 \dots s_i) \notin \mathcal{L}(\mathcal{A})$ for all $0 \leq i < n$.

Product construction: intuition

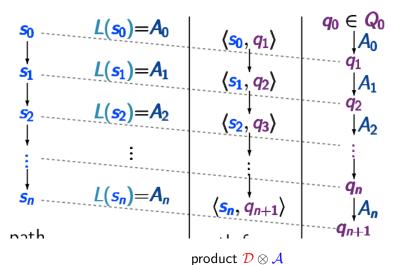
DTMC \mathcal{D} with state space S DRA \mathcal{A} with state space Q



Product construction: intuition

DTMC \mathcal{D} with state space S

DRA \mathcal{A} with state space Q



Product Markov chain

Let $\mathcal{D} = (S, \mathbf{P}, \iota_{\text{init}}, AP, L)$ be a DTMC and $\mathcal{A} = (Q, 2^{AP}, \delta, q_0, F)$ be a DFA.

Product Markov chain

Let $\mathcal{D} = (S, \mathbf{P}, \iota_{\text{init}}, AP, \mathbf{L})$ be a DTMC and $\mathcal{A} = (Q, 2^{AP}, \delta, q_0, F)$ be a DFA. The product $\mathcal{D} \otimes \mathcal{A}$ is the DTMC:

$$\mathcal{D} \otimes \mathcal{A} = (\mathbf{S} \times \mathbf{Q}, \mathbf{P}', \iota'_{\text{init}}, \{ \text{accept} \}, L')$$

Product Markov chain

Let $\mathcal{D} = (S, \mathbf{P}, \iota_{\text{init}}, AP, L)$ be a DTMC and $\mathcal{A} = (Q, 2^{AP}, \delta, q_0, F)$ be a DFA. The product $\mathcal{D} \otimes \mathcal{A}$ is the DTMC:

$$\mathcal{D} \otimes \mathcal{A} = (\mathbf{S} \times \mathbf{Q}, \mathbf{P}', \iota'_{\text{init}}, \{ \text{ accept } \}, L')$$

where $L'(\langle s, q \rangle) = \{ accept \}$ if $q \in F$ and $L'(\langle s, q \rangle) = \emptyset$ otherwise,

Product Markov chain

Let $\mathcal{D} = (S, \mathbf{P}, \iota_{\text{init}}, AP, L)$ be a DTMC and $\mathcal{A} = (Q, 2^{AP}, \delta, q_0, F)$ be a DFA. The product $\mathcal{D} \otimes \mathcal{A}$ is the DTMC:

$$\mathcal{D} \otimes \mathcal{A} = (\mathbf{S} \times \mathbf{Q}, \mathbf{P}', \iota'_{\text{init}}, \{ \text{accept} \}, L')$$

where $L'(\langle s, q \rangle) = \{ accept \}$ if $q \in F$ and $L'(\langle s, q \rangle) = \emptyset$ otherwise, and

$$\iota'_{\mathrm{init}}(\langle s, q \rangle) = \begin{cases} \iota_{\mathrm{init}}(s) & \text{if } q = \delta(q_0, L(s)) \\ 0 & \text{otherwise.} \end{cases}$$

Product Markov chain

Let $\mathcal{D} = (S, \mathbf{P}, \iota_{\text{init}}, AP, L)$ be a DTMC and $\mathcal{A} = (Q, 2^{AP}, \delta, q_0, F)$ be a DFA. The product $\mathcal{D} \otimes \mathcal{A}$ is the DTMC:

$$\mathcal{D} \otimes \mathcal{A} = (\mathbf{S} \times \mathbf{Q}, \mathbf{P}', \iota'_{\text{init}}, \{ \text{ accept } \}, L')$$

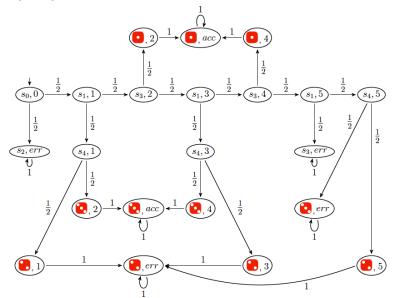
where $L'(\langle s, q \rangle) = \{ accept \}$ if $q \in F$ and $L'(\langle s, q \rangle) = \emptyset$ otherwise, and

$$\iota'_{\mathrm{init}}(\langle s,q \rangle) = \begin{cases} \iota_{\mathrm{init}}(s) & \text{ if } q = \delta(q_0, L(s)) \\ 0 & \text{ otherwise.} \end{cases}$$

The transition probabilities in $\mathcal{D} \otimes \mathcal{A}$ are given by:

$$\mathbf{P}'(\langle s, q \rangle, \langle s', q' \rangle) = \begin{cases} \mathbf{P}(s, s') & \text{if } q' = \delta(q, L(s')) \\ 0 & \text{otherwise.} \end{cases}$$

Example product: Knuth-Yao's die



Some observations

▶ For each path $\pi = s_0 s_1 s_2 \dots$ in DTMC \mathcal{D} there exists a unique run $q_0 q_1 q_2 \dots$ in DFA \mathcal{A} for $trace(\pi) = L(s_0) L(s_1) L(s_2) \dots$ and $\pi^+ = \langle s_0, q_1 \rangle \langle s_1, q_2 \rangle \langle s_2, q_3 \rangle \dots$ is a path in $\mathcal{D} \otimes \mathcal{A}$.

Some observations

- ▶ For each path $\pi = s_0 s_1 s_2 \dots$ in DTMC \mathcal{D} there exists a unique run $q_0 q_1 q_2 \dots$ in DFA \mathcal{A} for $trace(\pi) = L(s_0) L(s_1) L(s_2) \dots$ and $\pi^+ = \langle s_0, q_1 \rangle \langle s_1, q_2 \rangle \langle s_2, q_3 \rangle \dots$ is a path in $\mathcal{D} \otimes \mathcal{A}$.
- The DFA A does not affect the probabilities, i.e., for each measurable set Π of paths in D and state s:

$$Pr_{s}^{\mathcal{D}}(\Pi) = Pr_{\langle s,\delta(q_{0},L(s))\rangle}^{\mathcal{D}\otimes\mathcal{A}} \underbrace{\{\pi^{+} \mid \pi \in \Pi\}}_{\Pi^{+}}$$

Some observations

- ▶ For each path $\pi = s_0 s_1 s_2 \dots$ in DTMC \mathcal{D} there exists a unique run $q_0 q_1 q_2 \dots$ in DFA \mathcal{A} for $trace(\pi) = L(s_0) L(s_1) L(s_2) \dots$ and $\pi^+ = \langle s_0, q_1 \rangle \langle s_1, q_2 \rangle \langle s_2, q_3 \rangle \dots$ is a path in $\mathcal{D} \otimes \mathcal{A}$.
- The DFA A does not affect the probabilities, i.e., for each measurable set Π of paths in D and state s:

$$Pr_{s}^{\mathcal{D}}(\Pi) = Pr_{\langle s,\delta(q_{0},L(s))\rangle}^{\mathcal{D}\otimes\mathcal{A}} \underbrace{\{\pi^{+} \mid \pi \in \Pi\}}_{\Pi^{+}}$$

For Π = { π ∈ Paths^D(s) | pref(trace(π)) ∩ L(A) ≠ ∅ }, the set Π⁺ is given by:

$$\mathsf{\Pi}^+ \,=\, \{\, \pi^+ \in \mathsf{Paths}^{\mathcal{D}\otimes\mathcal{A}}(\langle s, \delta(q_0, \mathsf{L}(s))\rangle) \,\mid\, \pi^+ \models \Diamond \mathsf{accept}\, \}.$$

Theorem for analysing regular safety properties

Theorem for analysing regular safety properties

Let P_{safe} be a regular safety property, A a DFA for the set of bad prefixes of P_{safe} , D a DTMC, and s a state in D. Then:

$$Pr^{\mathcal{D}}(s \models P_{safe}) = Pr^{\mathcal{D} \otimes \mathcal{A}}(\langle s, q_s \rangle \not\models \Diamond accept)$$

Theorem for analysing regular safety properties

Let P_{safe} be a regular safety property, A a DFA for the set of bad prefixes of P_{safe} , D a DTMC, and s a state in D. Then:

$$egin{aligned} & extsf{Pr}^{\mathcal{D}}(s \models extsf{P}_{safe}) &= extsf{Pr}^{\mathcal{D} \otimes \mathcal{A}}(\langle s, q_s
angle
ot \models \Diamond extsf{accept}) \ &= extsf{1} - extsf{Pr}^{\mathcal{D} \otimes \mathcal{A}}(\langle s, q_s
angle \models \Diamond extsf{accept}) \end{aligned}$$

where $q_s = \delta(q_0, L(s))$.

Theorem for analysing regular safety properties

Let P_{safe} be a regular safety property, A a DFA for the set of bad prefixes of P_{safe} , D a DTMC, and s a state in D. Then:

$$egin{aligned} & extsf{Pr}^{\mathcal{D}}(s \models extsf{P}_{safe}) &= extsf{Pr}^{\mathcal{D} \otimes \mathcal{A}}(\langle s, q_s
angle
ot \models \Diamond extsf{accept}) \ &= extsf{1} - extsf{Pr}^{\mathcal{D} \otimes \mathcal{A}}(\langle s, q_s
angle \models \Diamond extsf{accept}) \end{aligned}$$

where $q_s = \delta(q_0, L(s))$.

Remarks

Theorem for analysing regular safety properties

Let P_{safe} be a regular safety property, A a DFA for the set of bad prefixes of P_{safe} , D a DTMC, and s a state in D. Then:

$$egin{aligned} & extsf{Pr}^{\mathcal{D}}(s \models extsf{P}_{safe}) &= extsf{Pr}^{\mathcal{D} \otimes \mathcal{A}}(\langle s, q_s
angle
ot \models \Diamond extsf{accept}) \ &= extsf{1} - extsf{Pr}^{\mathcal{D} \otimes \mathcal{A}}(\langle s, q_s
angle \models \Diamond extsf{accept}) \end{aligned}$$

where $q_s = \delta(q_0, L(s))$.

Remarks

1. For finite DTMCs, $Pr^{\mathcal{D}}(s \models P_{safe})$ can thus be computed by determining reachability probabilities of *accept* states in $\mathcal{D} \otimes \mathcal{A}$.

Theorem for analysing regular safety properties

Let P_{safe} be a regular safety property, A a DFA for the set of bad prefixes of P_{safe} , D a DTMC, and s a state in D. Then:

$$egin{aligned} & extsf{Pr}^{\mathcal{D}}(s \models extsf{P}_{safe}) &= extsf{Pr}^{\mathcal{D} \otimes \mathcal{A}}(\langle s, q_s
angle
ot \models \Diamond extsf{accept}) \ &= extsf{1} - extsf{Pr}^{\mathcal{D} \otimes \mathcal{A}}(\langle s, q_s
angle \models \Diamond extsf{accept}) \end{aligned}$$

where $q_s = \delta(q_0, L(s))$.

Remarks

1. For finite DTMCs, $Pr^{\mathcal{D}}(s \models P_{safe})$ can thus be computed by determining reachability probabilities of *accept* states in $\mathcal{D} \otimes \mathcal{A}$. This amounts to solving a linear equation system.

Theorem for analysing regular safety properties

Let P_{safe} be a regular safety property, A a DFA for the set of bad prefixes of P_{safe} , D a DTMC, and s a state in D. Then:

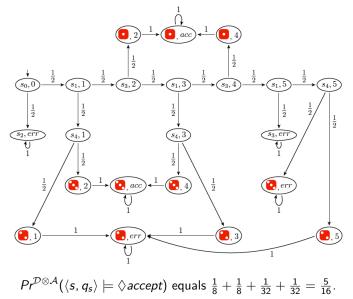
$$egin{aligned} & extsf{Pr}^{\mathcal{D}}(s \models extsf{P}_{safe}) &= extsf{Pr}^{\mathcal{D} \otimes \mathcal{A}}(\langle s, q_s
angle
ot \models \Diamond extsf{accept}) \ &= extsf{1} - extsf{Pr}^{\mathcal{D} \otimes \mathcal{A}}(\langle s, q_s
angle \models \Diamond extsf{accept}) \end{aligned}$$

where $q_s = \delta(q_0, L(s))$.

Remarks

- 1. For finite DTMCs, $Pr^{\mathcal{D}}(s \models P_{safe})$ can thus be computed by determining reachability probabilities of *accept* states in $\mathcal{D} \otimes \mathcal{A}$. This amounts to solving a linear equation system.
- 2. For qualitative regular safety properties, i.e., $Pr^{\mathcal{D}}(s \models P_{safe}) > 0$ and $Pr^{\mathcal{D}}(s \models P_{safe}) = 1$, a graph analysis of $\mathcal{D} \otimes \mathcal{A}$ suffices.

Determining the property's probability



Overview

Introduction

2 Preliminaries

- 3 Verifying regular safety properties
- 4 ω -regular properties
 - 5 Verifying DBA objectives
- 6 Verifying ω -regular properties

7 Summary

Modeling and Verification of Probabilistic Systems

Infinite repetition of languages

Infinite repetition of languages

Let $\boldsymbol{\Sigma}$ be a finite alphabet.

Infinite repetition of languages

Let Σ be a finite alphabet. For language $\mathcal{L} \subseteq \Sigma^*$, let \mathcal{L}^{ω} be the set of words in $\Sigma^* \cup \Sigma^{\omega}$ that arise from the infinite concatenation of (arbitrary) words in Σ ,

Infinite repetition of languages

Let Σ be a finite alphabet. For language $\mathcal{L} \subseteq \Sigma^*$, let \mathcal{L}^{ω} be the set of words in $\Sigma^* \cup \Sigma^{\omega}$ that arise from the infinite concatenation of (arbitrary) words in Σ , i.e.,

$$\mathcal{L}^{\omega} = \{ w_1 w_2 w_3 \dots \mid w_i \in \mathcal{L}, i \ge 1 \}.$$

Infinite repetition of languages

Let Σ be a finite alphabet. For language $\mathcal{L} \subseteq \Sigma^*$, let \mathcal{L}^{ω} be the set of words in $\Sigma^* \cup \Sigma^{\omega}$ that arise from the infinite concatenation of (arbitrary) words in Σ , i.e.,

$$\mathcal{L}^{\omega} = \{w_1 w_2 w_3 \dots \mid w_i \in \mathcal{L}, i \geq 1\}.$$

The result is an ω -language, i.e., $\mathcal{L} \subseteq \Sigma^*$, provided that $\mathcal{L} \subseteq \Sigma^+$, i.e., $\varepsilon \notin \mathcal{L}$.

Infinite repetition of languages

Let Σ be a finite alphabet. For language $\mathcal{L} \subseteq \Sigma^*$, let \mathcal{L}^{ω} be the set of words in $\Sigma^* \cup \Sigma^{\omega}$ that arise from the infinite concatenation of (arbitrary) words in Σ , i.e.,

$$\mathcal{L}^{\omega} = \{w_1w_2w_3\ldots \mid w_i \in \mathcal{L}, i \ge 1\}.$$

The result is an ω -language, i.e., $\mathcal{L} \subseteq \Sigma^*$, provided that $\mathcal{L} \subseteq \Sigma^+$, i.e., $\varepsilon \notin \mathcal{L}$.

ω -regular expression

An ω -regular expression G over the Σ has the form:

Infinite repetition of languages

Let Σ be a finite alphabet. For language $\mathcal{L} \subseteq \Sigma^*$, let \mathcal{L}^{ω} be the set of words in $\Sigma^* \cup \Sigma^{\omega}$ that arise from the infinite concatenation of (arbitrary) words in Σ , i.e.,

$$\mathcal{L}^{\omega} = \{w_1w_2w_3\ldots \mid w_i \in \mathcal{L}, i \ge 1\}.$$

The result is an ω -language, i.e., $\mathcal{L} \subseteq \Sigma^*$, provided that $\mathcal{L} \subseteq \Sigma^+$, i.e., $\varepsilon \notin \mathcal{L}$.

ω -regular expression

An ω -regular expression G over the Σ has the form: $G = E_1.F_1^{\omega} + \ldots + E_n.F_n^{\omega}$ where $n \ge 1$ and $E_1, \ldots, E_n, F_1, \ldots, F_n$ are regular expressions over Σ such that $\varepsilon \notin \mathcal{L}(F_i)$, for all $1 \le i \le n$.

Infinite repetition of languages

Let Σ be a finite alphabet. For language $\mathcal{L} \subseteq \Sigma^*$, let \mathcal{L}^{ω} be the set of words in $\Sigma^* \cup \Sigma^{\omega}$ that arise from the infinite concatenation of (arbitrary) words in Σ , i.e.,

$$\mathcal{L}^{\omega} = \{w_1 w_2 w_3 \dots \mid w_i \in \mathcal{L}, i \geq 1\}.$$

The result is an ω -language, i.e., $\mathcal{L} \subseteq \Sigma^*$, provided that $\mathcal{L} \subseteq \Sigma^+$, i.e., $\varepsilon \notin \mathcal{L}$.

ω -regular expression

An ω -regular expression G over the Σ has the form: $G = E_1.F_1^{\omega} + \ldots + E_n.F_n^{\omega}$ where $n \ge 1$ and $E_1, \ldots, E_n, F_1, \ldots, F_n$ are regular expressions over Σ such that $\varepsilon \notin \mathcal{L}(F_i)$, for all $1 \le i \le n$.

The semantics of G is defined by $\mathcal{L}_{\omega}(G) = \mathcal{L}(E_1).\mathcal{L}(F_1)^{\omega} \cup \ldots \cup \mathcal{L}(E_n).\mathcal{L}(F_n)^{\omega}$ where $\mathcal{L}(E) \subseteq \Sigma^*$ denotes the language (of finite words) induced by the regular expression E.

ω -regular expressions

ω -regular expression

An ω -regular expression G over the Σ has the form: $G = E_1 \cdot F_1^{\omega} + \ldots + E_n \cdot F_n^{\omega}$ where $n \ge 1$ and $E_1, \ldots, E_n, F_1, \ldots, F_n$ are regular expressions over Σ such that $\varepsilon \notin \mathcal{L}(F_i)$, for all $1 \le i \le n$.

The semantics of G is defined by $\mathcal{L}_{\omega}(G) = \mathcal{L}(E_1).\mathcal{L}(F_1)^{\omega} \cup \ldots \cup \mathcal{L}(E_n).\mathcal{L}(F_n)^{\omega}$ where $\mathcal{L}(E) \subseteq \Sigma^*$ denotes the language (of finite words) induced by the regular expression E.

ω -regular expressions

ω -regular expression

An ω -regular expression G over the Σ has the form: $G = E_1 \cdot F_1^{\omega} + \ldots + E_n \cdot F_n^{\omega}$ where $n \ge 1$ and $E_1, \ldots, E_n, F_1, \ldots, F_n$ are regular expressions over Σ such that $\varepsilon \notin \mathcal{L}(F_i)$, for all $1 \le i \le n$.

The semantics of G is defined by $\mathcal{L}_{\omega}(G) = \mathcal{L}(E_1).\mathcal{L}(F_1)^{\omega} \cup \ldots \cup \mathcal{L}(E_n).\mathcal{L}(F_n)^{\omega}$ where $\mathcal{L}(E) \subseteq \Sigma^*$ denotes the language (of finite words) induced by the regular expression E.

Example

Examples for ω -regular expressions over the alphabet $\Sigma = \{A, B, C\}$ are

$$(A+B)^*A(AAB+C)^{\omega}$$
 or $A(B+C)^*A^{\omega}+B(A+C)^{\omega}$.

Modeling and Verification of Probabilistic Systems

ω -regular property

LT property *P* over *AP* is called ω -regular if $P = \mathcal{L}_{\omega}(G)$ for some ω -regular expression G over the alphabet 2^{AP} .

ω -regular property

LT property *P* over *AP* is called ω -regular if $P = \mathcal{L}_{\omega}(G)$ for some ω -regular expression G over the alphabet 2^{AP} .

Example

ω -regular property

LT property *P* over *AP* is called ω -regular if $P = \mathcal{L}_{\omega}(G)$ for some ω -regular expression G over the alphabet 2^{AP} .

Example

Let $AP = \{a, b\}$. Then some ω -regular properties over AP are:

• always *a*, i.e., $(\{a\} + \{a, b\})^{\omega}$.

ω -regular property

LT property *P* over *AP* is called ω -regular if $P = \mathcal{L}_{\omega}(G)$ for some ω -regular expression G over the alphabet 2^{AP} .

Example

- always *a*, i.e., $(\{a\} + \{a, b\})^{\omega}$.
- eventually *a*, i.e., $(\emptyset + \{b\})^* \cdot (\{a\} + \{a, b\}) \cdot (2^{AP})^{\omega}$.

ω -regular property

LT property *P* over *AP* is called ω -regular if $P = \mathcal{L}_{\omega}(G)$ for some ω -regular expression G over the alphabet 2^{AP} .

Example

- always *a*, i.e., $(\{a\} + \{a, b\})^{\omega}$.
- eventually *a*, i.e., $(\emptyset + \{b\})^* \cdot (\{a\} + \{a, b\}) \cdot (2^{AP})^{\omega}$.
- infinitely often a, i.e., $((\emptyset + \{b\})^* \cdot (\{a\} + \{a,b\}))^{\omega}$.

ω -regular property

LT property *P* over *AP* is called ω -regular if $P = \mathcal{L}_{\omega}(G)$ for some ω -regular expression G over the alphabet 2^{AP} .

Example

- always *a*, i.e., $(\{a\} + \{a, b\})^{\omega}$.
- eventually *a*, i.e., $(\emptyset + \{b\})^* . (\{a\} + \{a, b\}) . (2^{AP})^{\omega} .$
- infinitely often a, i.e., $((\emptyset + \{b\})^* \cdot (\{a\} + \{a,b\}))^{\omega}$.
- ▶ from some moment on, always *a*, i.e., $(2^{AP})^* \cdot (\{a\} + \{a, b\})^{\omega}$.

ω -regular property

LT property *P* over *AP* is called ω -regular if $P = \mathcal{L}_{\omega}(G)$ for some ω -regular expression G over the alphabet 2^{AP} .

Example

Any regular safety property P_{safe} is an ω -regular property.

ω -regular property

LT property *P* over *AP* is called ω -regular if $P = \mathcal{L}_{\omega}(G)$ for some ω -regular expression G over the alphabet 2^{AP} .

Example

Any regular safety property P_{safe} is an ω -regular property. This follows from the fact that the complement language

$$(2^{AP})^{\omega} \setminus P_{safe} = \underbrace{BadPref(P_{safe})}_{regular} \cdot (2^{AP})^{\omega}$$

is an $\omega\text{-regular}$ language, and $\omega\text{-regular}$ languages are closed under complement.

ω -regular property

LT property *P* over *AP* is called ω -regular if $P = \mathcal{L}_{\omega}(G)$ for some ω -regular expression G over the alphabet 2^{AP} .

ω -regular property

LT property *P* over *AP* is called ω -regular if $P = \mathcal{L}_{\omega}(G)$ for some ω -regular expression G over the alphabet 2^{AP} .

Example

Starvation freedom in the sense of "whenever process \mathcal{P} is waiting then it will enter its critical section eventually" is an ω -regular property

ω -regular property

LT property *P* over *AP* is called ω -regular if $P = \mathcal{L}_{\omega}(G)$ for some ω -regular expression G over the alphabet 2^{AP} .

Example

Starvation freedom in the sense of "whenever process \mathcal{P} is waiting then it will enter its critical section eventually" is an ω -regular property as it can be described by

$$\left((\neg wait)^*.wait.true^*.crit
ight)^\omega + \left((\neg wait)^*.wait.true^*.crit
ight)^*.(\neg wait)^\omega$$

ω -regular property

LT property *P* over *AP* is called ω -regular if $P = \mathcal{L}_{\omega}(G)$ for some ω -regular expression G over the alphabet 2^{AP} .

Example

Starvation freedom in the sense of "whenever process $\mathcal P$ is waiting then it will enter its critical section eventually" is an ω -regular property as it can be described by

$$\left((\neg \textit{wait})^*.\textit{wait}.\mathsf{true}^*.\textit{crit}
ight)^\omega \ + \ \left((\neg \textit{wait})^*.\textit{wait}.\mathsf{true}^*.\textit{crit}
ight)^*.(\neg \textit{wait})^\omega$$

Intuitively, the first summand stands for the case where ${\cal P}$ requests and enters its critical section infinitely often,

ω -regular property

LT property *P* over *AP* is called ω -regular if $P = \mathcal{L}_{\omega}(G)$ for some ω -regular expression G over the alphabet 2^{AP} .

Example

Starvation freedom in the sense of "whenever process \mathcal{P} is waiting then it will enter its critical section eventually" is an ω -regular property as it can be described by

$$\left((\neg \textit{wait})^*.\textit{wait}.\mathsf{true}^*.\textit{crit}
ight)^\omega \ + \ \left((\neg \textit{wait})^*.\textit{wait}.\mathsf{true}^*.\textit{crit}
ight)^*.(\neg \textit{wait})^\omega$$

Intuitively, the first summand stands for the case where \mathcal{P} requests and enters its critical section infinitely often, while the second summand stands for the case where \mathcal{P} is in its waiting phase only finitely many times.

Overview

Introduction

2 Preliminaries

- Overifying regular safety properties
- 4 ω -regular properties
- 5 Verifying DBA objectives
 - 6 Verifying ω -regular properties

7 Summary

Deterministic Büchi Automaton (DBA)

Deterministic Büchi Automaton (DBA)

A deterministic Büchi automaton (DBA) $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ with

• Q is a finite set of states with initial state $q_0 \in Q_0$,

Deterministic Büchi Automaton (DBA)

- Q is a finite set of states with initial state $q_0 \in Q_0$,
- Σ is an alphabet,

Deterministic Büchi Automaton (DBA)

- Q is a finite set of states with initial state $q_0 \in Q_0$,
- Σ is an alphabet,
- $\delta: Q \times \Sigma \rightarrow Q$ is a transition function,

Deterministic Büchi Automaton (DBA)

- Q is a finite set of states with initial state $q_0 \in Q_0$,
- Σ is an alphabet,
- $\delta: Q \times \Sigma \rightarrow Q$ is a transition function,
- $F \subseteq Q$ is a set of *accept* (or: final) states.

Deterministic Büchi Automaton (DBA)

A deterministic Büchi automaton (DBA) $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ with

- Q is a finite set of states with initial state $q_0 \in Q_0$,
- Σ is an alphabet,
- $\delta: Q \times \Sigma \to Q$ is a transition function,

• $F \subseteq Q$ is a set of *accept* (or: final) states.

A *run* for $\sigma = A_0 A_1 A_2 \ldots \in \Sigma^{\omega}$ denotes an infinite sequence $q_0 q_1 q_2 \ldots$ of states in \mathcal{A} such that $q_0 \in Q_0$ and $q_i \xrightarrow{A_i} q_{i+1}$ for $i \ge 0$.

Deterministic Büchi Automaton (DBA)

A deterministic Büchi automaton (DBA) $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ with

- Q is a finite set of states with initial state $q_0 \in Q_0$,
- Σ is an alphabet,
- $\delta: Q \times \Sigma \rightarrow Q$ is a transition function,

• $F \subseteq Q$ is a set of *accept* (or: final) states.

A *run* for $\sigma = A_0 A_1 A_2 \ldots \in \Sigma^{\omega}$ denotes an infinite sequence $q_0 q_1 q_2 \ldots$ of states in \mathcal{A} such that $q_0 \in Q_0$ and $q_i \xrightarrow{A_i} q_{i+1}$ for $i \ge 0$.

Run $q_0 q_1 q_2 \dots$ is *accepting* if $q_i \in F$ for infinitely many indices $i \in \mathbb{N}$.

Deterministic Büchi Automaton (DBA)

A deterministic Büchi automaton (DBA) $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ with

- Q is a finite set of states with initial state $q_0 \in Q_0$,
- Σ is an alphabet,
- $\delta: Q \times \Sigma \rightarrow Q$ is a transition function,

• $F \subseteq Q$ is a set of *accept* (or: final) states.

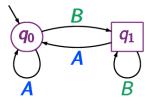
A *run* for $\sigma = A_0 A_1 A_2 \ldots \in \Sigma^{\omega}$ denotes an infinite sequence $q_0 q_1 q_2 \ldots$ of states in \mathcal{A} such that $q_0 \in Q_0$ and $q_i \xrightarrow{A_i} q_{i+1}$ for $i \ge 0$.

Run $q_0 q_1 q_2 \dots$ is accepting if $q_i \in F$ for infinitely many indices $i \in \mathbb{N}$. The infinite *language* of \mathcal{A} is

 $\mathcal{L}_{\omega}(\mathcal{A}) = \{ \sigma \in \Sigma^{\omega} \mid \text{there exists an accepting run for } \sigma \text{ in } \mathcal{A} \}.$

Verifying DBA objectives

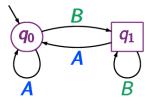
Deterministic Büchi automata for LT properties



DBA over $\{A, B\}$ with $F = \{q_1\}$ and initial state q_0

Verifying DBA objectives

Deterministic Büchi automata for LT properties



DBA over $\{A, B\}$ with $F = \{q_1\}$ and initial state q_0 accepting the LT property "infinitely often B".

Expressiveness of DBA

For any DBA \mathcal{A} , the language $\mathcal{L}_{\omega}(\mathcal{A})$ is ω -regular.

Expressiveness of DBA

For any DBA \mathcal{A} , the language $\mathcal{L}_{\omega}(\mathcal{A})$ is ω -regular.

There does not exist a DBA over the alphabet $\Sigma = \{a, b\}$ for the ω -regular expression $(a + b)^* . a^{\omega}$.

Expressiveness of DBA

For any DBA \mathcal{A} , the language $\mathcal{L}_{\omega}(\mathcal{A})$ is ω -regular.

There does not exist a DBA over the alphabet $\Sigma = \{a, b\}$ for the ω -regular expression $(a + b)^* . a^{\omega}$.

The class of DBA-recognizable languages is a proper subclass of the class of ω -regular languages

Some facts about DBA

Expressiveness of DBA

For any DBA \mathcal{A} , the language $\mathcal{L}_{\omega}(\mathcal{A})$ is ω -regular.

There does not exist a DBA over the alphabet $\Sigma = \{a, b\}$ for the ω -regular expression $(a + b)^* . a^{\omega}$.

The class of DBA-recognizable languages is a proper subclass of the class of ω -regular languages and is not closed under complementation.

Some facts about DBA

Expressiveness of DBA

For any DBA \mathcal{A} , the language $\mathcal{L}_{\omega}(\mathcal{A})$ is ω -regular.

There does not exist a DBA over the alphabet $\Sigma = \{a, b\}$ for the ω -regular expression $(a + b)^* . a^{\omega}$.

The class of DBA-recognizable languages is a proper subclass of the class of ω -regular languages and is not closed under complementation.

An ω -language is recognizable by a DBA iff it is the limit language of a regular language. (Details: see lecture Applications of Automata Theory.)

Quantitative Analysis for DBA-Definable Properties

Let \mathcal{A} be a DBA and \mathcal{D} a DTMC. Then, for all states s in \mathcal{D} :

$$Pr^{\mathcal{D}}(s \models \mathcal{A}) = Pr^{\mathcal{D} \otimes \mathcal{A}}(\langle s, q_s \rangle \models \Box \Diamond accept)$$

where $q_s = \delta(q_0, L(s))$.

Quantitative Analysis for DBA-Definable Properties

Let \mathcal{A} be a DBA and \mathcal{D} a DTMC. Then, for all states s in \mathcal{D} :

$$Pr^{\mathcal{D}}(s \models \mathcal{A}) = Pr^{\mathcal{D} \otimes \mathcal{A}}(\langle s, q_s \rangle \models \Box \Diamond accept)$$

where $q_s = \delta(q_0, L(s))$.

Algorithm

Recall that for finite DTMCs, the probability of $\Box \Diamond accept$ can be obtained in polynomial time by first determining the BSCCs of $\mathcal{D} \otimes \mathcal{A}$.

Quantitative Analysis for DBA-Definable Properties

Let \mathcal{A} be a DBA and \mathcal{D} a DTMC. Then, for all states s in \mathcal{D} :

$$Pr^{\mathcal{D}}(s \models \mathcal{A}) = Pr^{\mathcal{D} \otimes \mathcal{A}}(\langle s, q_s \rangle \models \Box \Diamond accept)$$

where $q_s = \delta(q_0, L(s))$.

Algorithm

Recall that for finite DTMCs, the probability of $\Box \Diamond accept$ can be obtained in polynomial time by first determining the BSCCs of $\mathcal{D} \otimes \mathcal{A}$. For each BSCC *B* that contains a state $\langle s, q \rangle$ with $q \in F$, determine the probability of eventually reaching *B*.

Quantitative Analysis for DBA-Definable Properties

Let \mathcal{A} be a DBA and \mathcal{D} a DTMC. Then, for all states s in \mathcal{D} :

$$Pr^{\mathcal{D}}(s \models \mathcal{A}) = Pr^{\mathcal{D} \otimes \mathcal{A}}(\langle s, q_s \rangle \models \Box \Diamond accept)$$

where $q_s = \delta(q_0, L(s))$.

Algorithm

Recall that for finite DTMCs, the probability of $\Box \Diamond accept$ can be obtained in polynomial time by first determining the BSCCs of $\mathcal{D} \otimes \mathcal{A}$. For each BSCC *B* that contains a state $\langle s, q \rangle$ with $q \in F$, determine the probability of eventually reaching *B*. Its sum is the required probability.

Quantitative Analysis for DBA-Definable Properties

Let \mathcal{A} be a DBA and \mathcal{D} a DTMC. Then, for all states s in \mathcal{D} :

$$Pr^{\mathcal{D}}(s \models \mathcal{A}) = Pr^{\mathcal{D} \otimes \mathcal{A}}(\langle s, q_s \rangle \models \Box \Diamond accept)$$

where $q_s = \delta(q_0, L(s))$.

Algorithm

Recall that for finite DTMCs, the probability of $\Box \Diamond accept$ can be obtained in polynomial time by first determining the BSCCs of $\mathcal{D} \otimes \mathcal{A}$. For each BSCC *B* that contains a state $\langle s, q \rangle$ with $q \in F$, determine the probability of eventually reaching *B*. Its sum is the required probability. Thus this amounts to solve a linear equation system for each accepting BSCC in \mathcal{D} .

Overview

Introduction

2 Preliminaries

- ③ Verifying regular safety properties
- 4 ω -regular properties
- 5 Verifying DBA objectives
- **6** Verifying ω -regular properties

7) Summary

Remarks

Since DBAs do not have the full power of ω-regular languages, this approach is not capable of handling arbitrary ω-regular properties.

Remarks

- Since DBAs do not have the full power of ω-regular languages, this approach is not capable of handling arbitrary ω-regular properties.
- To overcome this deficiency, Büchi automata will be replaced by an alternative automaton model for which their deterministic counterparts are as expressive as ω-regular languages.

Remarks

- Since DBAs do not have the full power of ω-regular languages, this approach is not capable of handling arbitrary ω-regular properties.
- To overcome this deficiency, Büchi automata will be replaced by an alternative automaton model for which their deterministic counterparts are as expressive as ω-regular languages.
- Such automata have the same components as DBA (finite set of states, and so on) except for the acceptance sets. We consider *deterministic Rabin automata*.

Remarks

- Since DBAs do not have the full power of ω-regular languages, this approach is not capable of handling arbitrary ω-regular properties.
- To overcome this deficiency, Büchi automata will be replaced by an alternative automaton model for which their deterministic counterparts are as expressive as ω-regular languages.
- Such automata have the same components as DBA (finite set of states, and so on) except for the acceptance sets. We consider *deterministic Rabin automata*. There are alternatives, e.g., Muller automata.
- Determinism is important to stay within the realm of Markov chains; a product of an MC with a deterministic automaton yields a MC.

Deterministic Rabin automaton

A deterministic Rabin automaton (DRA) $\mathcal{A} = (Q, \Sigma, \delta, q_0, \mathcal{F})$ with

• Q, $q_0 \in Q_0$, Σ is an alphabet, and $\delta: Q \times \Sigma \to Q$ as before

Deterministic Rabin automaton

A deterministic Rabin automaton (DRA) $\mathcal{A} = (Q, \Sigma, \delta, q_0, \mathcal{F})$ with

- ▶ Q, $q_0 \in Q_0$, Σ is an alphabet, and $\delta: Q \times \Sigma \rightarrow Q$ as before
- ▶ $\mathcal{F} = \{ (L_i, K_i) \mid 0 < i \leq k \}$ with $L_i, K_i \subseteq Q$, is a set of *accept pairs*

Deterministic Rabin automaton

A deterministic Rabin automaton (DRA) $\mathcal{A} = (Q, \Sigma, \delta, q_0, \mathcal{F})$ with

▶ Q, $q_0 \in Q_0$, Σ is an alphabet, and $\delta : Q \times \Sigma \rightarrow Q$ as before

▶ $\mathcal{F} = \{ (L_i, K_i) \mid 0 < i \leq k \}$ with $L_i, K_i \subseteq Q$, is a set of *accept pairs*

A *run* for $\sigma = A_0 A_1 A_2 \ldots \in \Sigma^{\omega}$ denotes an infinite sequence $q_0 q_1 q_2 \ldots$ of states in \mathcal{A} such that $q_0 \in Q_0$ and $q_i \xrightarrow{A_i} q_{i+1}$ for $i \ge 0$.

Deterministic Rabin automaton

A deterministic Rabin automaton (DRA) $\mathcal{A} = (Q, \Sigma, \delta, q_0, \mathcal{F})$ with

• Q, $q_0 \in Q_0$, Σ is an alphabet, and $\delta: Q imes \Sigma o Q$ as before

▶ $\mathcal{F} = \{ (L_i, K_i) \mid 0 < i \leq k \}$ with $L_i, K_i \subseteq Q$, is a set of *accept pairs*

A *run* for $\sigma = A_0 A_1 A_2 \ldots \in \Sigma^{\omega}$ denotes an infinite sequence $q_0 q_1 q_2 \ldots$ of states in \mathcal{A} such that $q_0 \in Q_0$ and $q_i \xrightarrow{A_i} q_{i+1}$ for $i \ge 0$.

Run $q_0 q_1 q_2 \dots$ is *accepting* if for some pair (L_i, K_i) , the states in L_i are visited finitely often and the states in K_i infinitely often.

Deterministic Rabin automaton

A deterministic Rabin automaton (DRA) $\mathcal{A} = (Q, \Sigma, \delta, q_0, \mathcal{F})$ with

• Q, $q_0 \in Q_0$, Σ is an alphabet, and $\delta: Q imes \Sigma o Q$ as before

▶ $\mathcal{F} = \{ (L_i, K_i) \mid 0 < i \leq k \}$ with $L_i, K_i \subseteq Q$, is a set of *accept pairs*

A *run* for $\sigma = A_0 A_1 A_2 \ldots \in \Sigma^{\omega}$ denotes an infinite sequence $q_0 q_1 q_2 \ldots$ of states in \mathcal{A} such that $q_0 \in Q_0$ and $q_i \xrightarrow{A_i} q_{i+1}$ for $i \ge 0$.

Run $q_0 q_1 q_2 \dots$ is *accepting* if for some pair (L_i, K_i) , the states in L_i are visited finitely often and the states in K_i infinitely often. That is, an accepting run should satisfy

$$\bigvee_{0 < i \leq k} (\Diamond \Box \neg L_i \land \Box \Diamond K_i).$$

When does a DRA accept an infinite word?

Acceptance condition

A run of a word in Σ^{ω} on a DRA is accepting if and only if: for some $(L_i, K_i) \in \mathcal{F}$, the states in L_i are visited finitely often and (some of) the states in K_i are visited infinitely often

When does a DRA accept an infinite word?

Acceptance condition

A run of a word in Σ^{ω} on a DRA is accepting if and only if: for some $(L_i, K_i) \in \mathcal{F}$, the states in L_i are visited finitely often and (some of) the states in K_i are visited infinitely often

Stated in terms of an LTL formula:

$$\bigvee_{0 < i \leq k} (\Diamond \Box \neg L_i \land \Box \Diamond K_i)$$

When does a DRA accept an infinite word?

Acceptance condition

A run of a word in Σ^{ω} on a DRA is accepting if and only if: for some $(L_i, K_i) \in \mathcal{F}$, the states in L_i are visited finitely often and (some of) the states in K_i are visited infinitely often

Stated in terms of an LTL formula:

$$\bigvee_{0 < i \leq k} (\Diamond \Box \neg L_i \land \Box \Diamond K_i)$$

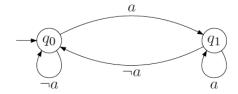
A deterministic Büchi automaton is a DRA with acceptance condition $\{(\emptyset, F)\}$.

Acceptance condition

A run of a word in Σ^{ω} on a DRA is accepting iff $\bigvee_{0 < i \leq k} (\Diamond \Box \neg L_i \land \Box \Diamond K_i)$.

Acceptance condition

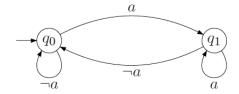
A run of a word in Σ^{ω} on a DRA is accepting iff $\bigvee_{0 < i \leq k} (\Diamond \Box \neg L_i \land \Box \Diamond K_i)$.



For $\mathcal{F} = \{ (L, K) \}$ with $L = \{ q_0 \}$ and $K = \{ q_1 \}$, this DRA accepts $\Diamond \Box a$

Acceptance condition

A run of a word in Σ^{ω} on a DRA is accepting iff $\bigvee_{0 \le i \le k} (\Diamond \Box \neg L_i \land \Box \Diamond K_i)$.



For $\mathcal{F} = \{ (L, K) \}$ with $L = \{ q_0 \}$ and $K = \{ q_1 \}$, this DRA accepts $\Diamond \Box a$

Recall that there does not exist a deterministic Büchi automaton for $\Diamond \Box a$.

Joost-Pieter Katoen

DRA are ω -regular

A language on infinite words is ω -regular iff there exists a DRA that generates it.

DRA are ω -regular

A language on infinite words is ω -regular iff there exists a DRA that generates it.

- ► DRA are thus equally expressive as nondeterministic Büchi automata.
- They are more expressive than deterministic Büchi automata.
- ► Any nondeterministic Büchi automata of *n* states can be converted to a DRA of size 2^{O(n log n)}. (Details omitted.)

Product of a Markov chain and a DRA

The product of DTMC ${\cal D}$ and DRA ${\cal A}$ is defined as the product of a Markov chain and a DFA, except that the labeling is defined differently.

Product of a Markov chain and a DRA

The product of DTMC ${\cal D}$ and DRA ${\cal A}$ is defined as the product of a Markov chain and a DFA, except that the labeling is defined differently.

Let the acceptance condition of \mathcal{A} is $\mathcal{F} = \{(L_1, K_1), \dots, (L_k, K_k)\}.$

Product of a Markov chain and a DRA

The product of DTMC ${\cal D}$ and DRA ${\cal A}$ is defined as the product of a Markov chain and a DFA, except that the labeling is defined differently.

Let the acceptance condition of \mathcal{A} is $\mathcal{F} = \{(L_1, K_1), \dots, (L_k, K_k)\}$. Then the sets L_i , K_i serve as atomic propositions in $\mathcal{D} \otimes \mathcal{A}$.

Product of a Markov chain and a DRA

The product of DTMC ${\cal D}$ and DRA ${\cal A}$ is defined as the product of a Markov chain and a DFA, except that the labeling is defined differently.

Let the acceptance condition of \mathcal{A} is $\mathcal{F} = \{(L_1, K_1), \dots, (L_k, K_k)\}$. Then the sets L_i , K_i serve as atomic propositions in $\mathcal{D} \otimes \mathcal{A}$. The labeling function L' in $\mathcal{D} \otimes \mathcal{A}$ is the obvious one: if $H \in \{L_1, \dots, L_k, K_1, \dots, K_k\}$, then $H \in L'(\langle s, q \rangle)$ iff $q \in H$.

Product of a Markov chain and a DRA

The product of DTMC ${\cal D}$ and DRA ${\cal A}$ is defined as the product of a Markov chain and a DFA, except that the labeling is defined differently.

Let the acceptance condition of \mathcal{A} is $\mathcal{F} = \{(L_1, K_1), \dots, (L_k, K_k)\}$. Then the sets L_i , K_i serve as atomic propositions in $\mathcal{D} \otimes \mathcal{A}$. The labeling function L' in $\mathcal{D} \otimes \mathcal{A}$ is the obvious one: if $H \in \{L_1, \dots, L_k, K_1, \dots, K_k\}$, then $H \in L'(\langle s, q \rangle)$ iff $q \in H$.

Accepting BSCC

Product of a Markov chain and a DRA

The product of DTMC ${\cal D}$ and DRA ${\cal A}$ is defined as the product of a Markov chain and a DFA, except that the labeling is defined differently.

Let the acceptance condition of \mathcal{A} is $\mathcal{F} = \{(L_1, K_1), \dots, (L_k, K_k)\}$. Then the sets L_i , K_i serve as atomic propositions in $\mathcal{D} \otimes \mathcal{A}$. The labeling function L' in $\mathcal{D} \otimes \mathcal{A}$ is the obvious one: if $H \in \{L_1, \dots, L_k, K_1, \dots, K_k\}$, then $H \in L'(\langle s, q \rangle)$ iff $q \in H$.

Accepting BSCC

A BSCC T in $\mathcal{D} \otimes \mathcal{A}$ is *accepting* iff for some index $i \in \{1, ..., k\}$ we have:

Product of a Markov chain and a DRA

The product of DTMC ${\cal D}$ and DRA ${\cal A}$ is defined as the product of a Markov chain and a DFA, except that the labeling is defined differently.

Let the acceptance condition of \mathcal{A} is $\mathcal{F} = \{(L_1, K_1), \dots, (L_k, K_k)\}$. Then the sets L_i , K_i serve as atomic propositions in $\mathcal{D} \otimes \mathcal{A}$. The labeling function L' in $\mathcal{D} \otimes \mathcal{A}$ is the obvious one: if $H \in \{L_1, \dots, L_k, K_1, \dots, K_k\}$, then $H \in L'(\langle s, q \rangle)$ iff $q \in H$.

Accepting BSCC

A BSCC T in $\mathcal{D} \otimes \mathcal{A}$ is *accepting* iff for some index $i \in \{1, ..., k\}$ we have:

 $T \cap (S \times L_i) = \varnothing$ and $T \cap (S \times K_i) \neq \varnothing$.

Product of a Markov chain and a DRA

The product of DTMC ${\cal D}$ and DRA ${\cal A}$ is defined as the product of a Markov chain and a DFA, except that the labeling is defined differently.

Let the acceptance condition of \mathcal{A} is $\mathcal{F} = \{(L_1, K_1), \dots, (L_k, K_k)\}$. Then the sets L_i , K_i serve as atomic propositions in $\mathcal{D} \otimes \mathcal{A}$. The labeling function L' in $\mathcal{D} \otimes \mathcal{A}$ is the obvious one: if $H \in \{L_1, \dots, L_k, K_1, \dots, K_k\}$, then $H \in L'(\langle s, q \rangle)$ iff $q \in H$.

Accepting BSCC

A BSCC T in $\mathcal{D} \otimes \mathcal{A}$ is *accepting* iff for some index $i \in \{1, ..., k\}$ we have:

$$T \cap (S imes L_i) = \varnothing$$
 and $T \cap (S imes K_i) \neq \varnothing$.

Thus, once such an accepting BSCC T is reached in $\mathcal{D} \otimes \mathcal{A}$, the acceptance criterion for the DRA \mathcal{A} is fulfilled almost surely.

Accepting BSCC

Accepting BSCC

A BSCC T in $\mathcal{D} \otimes \mathcal{A}$ is *accepting* iff for some index $i \in \{1, ..., k\}$ we have:

Accepting BSCC

A BSCC T in $\mathcal{D} \otimes \mathcal{A}$ is *accepting* iff for some index $i \in \{1, ..., k\}$ we have:

 $T \cap (S \times L_i) = \varnothing$ and $T \cap (S \times K_i) \neq \varnothing$.

Accepting BSCC

A BSCC T in $\mathcal{D} \otimes \mathcal{A}$ is *accepting* iff for some index $i \in \{1, ..., k\}$ we have:

```
T \cap (S \times L_i) = \varnothing and T \cap (S \times K_i) \neq \varnothing.
```

Thus, once such an accepting BSCC T is reached in $\mathcal{D} \otimes \mathcal{A}$, the acceptance criterion for the DRA \mathcal{A} is fulfilled almost surely.

DRA probabilities = reachability probabilities

Let \mathcal{D} be a finite DTMC, *s* a state in \mathcal{D} , \mathcal{A} a DRA, and let U be the union of all accepting BSCCs in $\mathcal{D} \otimes \mathcal{A}$.

Accepting BSCC

A BSCC T in $\mathcal{D} \otimes \mathcal{A}$ is *accepting* iff for some index $i \in \{1, ..., k\}$ we have:

```
T \cap (S \times L_i) = \varnothing and T \cap (S \times K_i) \neq \varnothing.
```

Thus, once such an accepting BSCC T is reached in $\mathcal{D} \otimes \mathcal{A}$, the acceptance criterion for the DRA \mathcal{A} is fulfilled almost surely.

DRA probabilities = reachability probabilities

Let \mathcal{D} be a finite DTMC, *s* a state in \mathcal{D} , \mathcal{A} a DRA, and let U be the union of all accepting BSCCs in $\mathcal{D} \otimes \mathcal{A}$. Then:

$$\mathsf{Pr}^{\mathcal{D}}(s\models\mathcal{A}) = \mathsf{Pr}^{\mathcal{D}\otimes\mathcal{A}}(\langle s,q_s
angle\models\Diamond oldsymbol{U})$$
 where $q_s = \delta(q_0,L(s)).$

Accepting BSCC

A BSCC T in $\mathcal{D} \otimes \mathcal{A}$ is *accepting* iff for some index $i \in \{1, ..., k\}$ we have:

```
T \cap (S \times L_i) = \varnothing and T \cap (S \times K_i) \neq \varnothing.
```

Thus, once such an accepting BSCC T is reached in $\mathcal{D} \otimes \mathcal{A}$, the acceptance criterion for the DRA \mathcal{A} is fulfilled almost surely.

DRA probabilities = reachability probabilities

Let \mathcal{D} be a finite DTMC, *s* a state in \mathcal{D} , \mathcal{A} a DRA, and let U be the union of all accepting BSCCs in $\mathcal{D} \otimes \mathcal{A}$. Then:

$$\mathsf{Pr}^{\mathcal{D}}(s\models\mathcal{A}) = \mathsf{Pr}^{\mathcal{D}\otimes\mathcal{A}}(\langle s,q_s
angle\models\Diamond oldsymbol{U}) \quad ext{where} \quad q_s=\delta(q_0,L(s)).$$

Proof

On the blackboard (if time permits).

Joost-Pieter Katoen

Accepting BSCC

A BSCC T in $\mathcal{D} \otimes \mathcal{A}$ is *accepting* iff for some index $i \in \{1, ..., k\}$ we have:

```
T \cap (S \times L_i) = \varnothing and T \cap (S \times K_i) \neq \varnothing.
```

Thus, once such an accepting BSCC T is reached in $\mathcal{D} \otimes \mathcal{A}$, the acceptance criterion for the DRA \mathcal{A} is fulfilled almost surely.

DRA probabilities = reachability probabilities

Let \mathcal{D} be a finite DTMC, *s* a state in \mathcal{D} , \mathcal{A} a DRA, and let U be the union of all accepting BSCCs in $\mathcal{D} \otimes \mathcal{A}$. Then:

$$\mathsf{Pr}^{\mathcal{D}}(s\models\mathcal{A}) = \mathsf{Pr}^{\mathcal{D}\otimes\mathcal{A}}(\langle s,q_s
angle\models\Diamond oldsymbol{U}) \quad ext{where} \quad q_s=\delta(q_0,L(s)).$$

Proof

On the blackboard (if time permits).

Joost-Pieter Katoen

DRA probabilities = reachability probabilities

Let \mathcal{D} be a finite DTMC, *s* a state in \mathcal{D} , \mathcal{A} a DRA, and let U be the union of all accepting BSCCs in $\mathcal{D} \otimes \mathcal{A}$.

DRA probabilities = reachability probabilities

Let \mathcal{D} be a finite DTMC, *s* a state in \mathcal{D} , \mathcal{A} a DRA, and let U be the union of all accepting BSCCs in $\mathcal{D} \otimes \mathcal{A}$. Then:

 $Pr^{\mathcal{D}}(s \models \mathcal{A}) = Pr^{\mathcal{D} \otimes \mathcal{A}}(\langle s, q_s \rangle \models \Diamond U) \text{ where } q_s = \delta(q_0, L(s)).$

DRA probabilities = reachability probabilities

Let \mathcal{D} be a finite DTMC, *s* a state in \mathcal{D} , \mathcal{A} a DRA, and let U be the union of all accepting BSCCs in $\mathcal{D} \otimes \mathcal{A}$. Then:

$$Pr^{\mathcal{D}}(s \models \mathcal{A}) = Pr^{\mathcal{D} \otimes \mathcal{A}}(\langle s, q_s \rangle \models \Diamond U) \text{ where } q_s = \delta(q_0, L(s)).$$

Probabilities for satisfying ω -regular properties are obtained by computing the reachability probabilities for accepting BSCCs in $\mathcal{D} \otimes \mathcal{A}$.

DRA probabilities = reachability probabilities

Let \mathcal{D} be a finite DTMC, *s* a state in \mathcal{D} , \mathcal{A} a DRA, and let U be the union of all accepting BSCCs in $\mathcal{D} \otimes \mathcal{A}$. Then:

$$Pr^{\mathcal{D}}(s \models \mathcal{A}) = Pr^{\mathcal{D} \otimes \mathcal{A}}(\langle s, q_s \rangle \models \Diamond U) \text{ where } q_s = \delta(q_0, L(s)).$$

Probabilities for satisfying ω -regular properties are obtained by computing the reachability probabilities for accepting BSCCs in $\mathcal{D} \otimes \mathcal{A}$. Again, a graph analysis and solving systems of linear equations suffice.

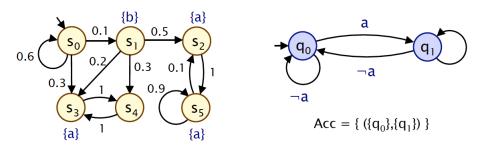
DRA probabilities = reachability probabilities

Let \mathcal{D} be a finite DTMC, *s* a state in \mathcal{D} , \mathcal{A} a DRA, and let U be the union of all accepting BSCCs in $\mathcal{D} \otimes \mathcal{A}$. Then:

$$Pr^{\mathcal{D}}(s \models \mathcal{A}) = Pr^{\mathcal{D} \otimes \mathcal{A}}(\langle s, q_s \rangle \models \Diamond U) \text{ where } q_s = \delta(q_0, L(s)).$$

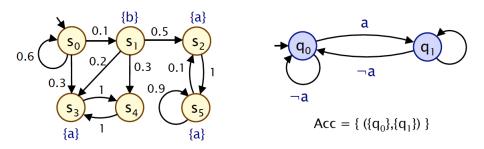
Probabilities for satisfying ω -regular properties are obtained by computing the reachability probabilities for accepting BSCCs in $\mathcal{D} \otimes \mathcal{A}$. Again, a graph analysis and solving systems of linear equations suffice. The time complexity is polynomial in the size of \mathcal{D} and \mathcal{A} .

Example: verifying a DTMC versus a DRA



Single accepting BSCC: $\{ \langle s_2, q_1 \rangle, \langle s_5, q_1 \rangle \}.$

Example: verifying a DTMC versus a DRA



Single accepting BSCC:
$$\{ \langle s_2, q_1 \rangle, \langle s_5, q_1 \rangle \}$$
.
Reachability probability is $\frac{1}{2} \cdot \frac{1}{10} \cdot \sum_{k=0}^{\infty} \left(\frac{3}{5}\right)^k = \frac{1}{8}$.

Measurability theorem for ω -regular properties

[Vardi 1985]

For any DTMC ${\mathcal D}$ and DRA ${\mathcal A}$ the set

$$\{\pi \in Paths(\mathcal{D}) \mid trace(\pi) \in \mathcal{L}_{\omega}(\mathcal{A})\}$$

is measurable.

Measurability theorem for ω -regular properties

[Vardi 1985]

For any DTMC ${\mathcal D}$ and DRA ${\mathcal A}$ the set

$$\{\pi \in Paths(\mathcal{D}) \mid trace(\pi) \in \mathcal{L}_{\omega}(\mathcal{A})\}$$

is measurable.

Proof (sketch)

Measurability theorem for ω -regular properties

For any DTMC ${\mathcal D}$ and DRA ${\mathcal A}$ the set

$$\{\pi \in Paths(\mathcal{D}) \mid trace(\pi) \in \mathcal{L}_{\omega}(\mathcal{A})\}$$

is measurable.

Proof (sketch)

Let DRA \mathcal{A} with accept sets { $(L_1, K_1), \ldots, (L_m, K_m)$ }.

Measurability theorem for ω -regular properties

For any DTMC ${\mathcal D}$ and DRA ${\mathcal A}$ the set

$$\{\pi \in Paths(\mathcal{D}) \mid trace(\pi) \in \mathcal{L}_{\omega}(\mathcal{A})\}$$

is measurable.

Proof (sketch)

Let DRA \mathcal{A} with accept sets { $(L_1, K_1), \ldots, (L_m, K_m)$ }. Let $\varphi_i = \Diamond \Box \neg L_i \land \Box \Diamond K_i$ and Π_i the set of paths satisfying φ_i .

Measurability theorem for ω -regular properties

For any DTMC ${\mathcal D}$ and DRA ${\mathcal A}$ the set

$$\{\pi \in Paths(\mathcal{D}) \mid trace(\pi) \in \mathcal{L}_{\omega}(\mathcal{A})\}$$

is measurable.

Proof (sketch)

Let DRA \mathcal{A} with accept sets { $(L_1, K_1), \ldots, (L_m, K_m)$ }. Let $\varphi_i = \Diamond \Box \neg L_i \land \Box \Diamond K_i$ and Π_i the set of paths satisfying φ_i . Then $\Pi = \Pi_1 \cup \ldots \cup \Pi_k$.

Measurability theorem for ω -regular properties

For any DTMC ${\mathcal D}$ and DRA ${\mathcal A}$ the set

$$\{\pi \in Paths(\mathcal{D}) \mid trace(\pi) \in \mathcal{L}_{\omega}(\mathcal{A})\}$$

is measurable.

Proof (sketch)

Let DRA \mathcal{A} with accept sets { $(L_1, K_1), \ldots, (L_m, K_m)$ }. Let $\varphi_i = \Diamond \Box \neg L_i \land \Box \Diamond K_i$ and Π_i the set of paths satisfying φ_i . Then $\Pi = \Pi_1 \cup \ldots \cup \Pi_k$. In addition, $\Pi_i = \Pi_i^{\Diamond \Box} \cap \Pi_i^{\Box \Diamond}$ where $\Pi_i^{\Diamond \Box}$ is the set of paths π in \mathcal{D} such that $\pi^+ \models \Diamond \Box \neg L_i$, and $\Pi_i^{\Box \Diamond}$ is the set of paths π in \mathcal{D} such that $\pi^+ \models \Box \Diamond K_i$.

Measurability theorem for ω -regular properties

For any DTMC ${\mathcal D}$ and DRA ${\mathcal A}$ the set

$$\{\pi \in Paths(\mathcal{D}) \mid trace(\pi) \in \mathcal{L}_{\omega}(\mathcal{A})\}$$

is measurable.

Proof (sketch)

Let DRA \mathcal{A} with accept sets { $(L_1, K_1), \ldots, (L_m, K_m)$ }. Let $\varphi_i = \Diamond \Box \neg L_i \land \Box \Diamond K_i$ and Π_i the set of paths satisfying φ_i . Then $\Pi = \Pi_1 \cup \ldots \cup \Pi_k$. In addition, $\Pi_i = \Pi_i^{\Diamond \Box} \cap \Pi_i^{\Box \Diamond}$ where $\Pi_i^{\Diamond \Box}$ is the set of paths π in \mathcal{D} such that $\pi^+ \models \Diamond \Box \neg L_i$, and $\Pi_i^{\Box \Diamond}$ is the set of paths π in \mathcal{D} such that $\pi^+ \models \Box \Diamond K_i$. It remains to show that $\Pi_i^{\Diamond \Box}$ and $\Pi_i^{\Box \Diamond}$ are measurable.

Measurability theorem for ω -regular properties

For any DTMC ${\mathcal D}$ and DRA ${\mathcal A}$ the set

$$\{\pi \in Paths(\mathcal{D}) \mid trace(\pi) \in \mathcal{L}_{\omega}(\mathcal{A})\}$$

is measurable.

Proof (sketch)

Let DRA \mathcal{A} with accept sets { $(L_1, K_1), \ldots, (L_m, K_m)$ }. Let $\varphi_i = \Diamond \Box \neg L_i \land \Box \Diamond K_i$ and Π_i the set of paths satisfying φ_i . Then $\Pi = \Pi_1 \cup \ldots \cup \Pi_k$. In addition, $\Pi_i = \Pi_i^{\Diamond \Box} \cap \Pi_i^{\Box \Diamond}$ where $\Pi_i^{\Diamond \Box}$ is the set of paths π in \mathcal{D} such that $\pi^+ \models \Diamond \Box \neg L_i$, and $\Pi_i^{\Box \Diamond}$ is the set of paths π in \mathcal{D} such that $\pi^+ \models \Box \Diamond K_i$. It remains to show that $\Pi_i^{\Diamond \Box}$ and $\Pi_i^{\Box \Diamond}$ are measurable. This goes along the same lines as proving that $\Diamond \Box G$ and $\Box \Diamond G$ are measurable.

Linear temporal logic

Linear temporal logic

Linear Temporal Logic: Syntax

[Pnueli 1977]

LTL formulas over the set AP obey the grammar:

$$\varphi ::= \mathbf{a} \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \bigcirc \varphi \mid \varphi_1 \mathsf{U} \varphi_2$$

where $a \in AP$ and φ , φ_1 , and φ_2 are LTL formulas.

Linear temporal logic

Linear Temporal Logic: Syntax

[Pnueli 1977]

LTL formulas over the set AP obey the grammar:

$$\varphi ::= \mathbf{a} \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \bigcirc \varphi \mid \varphi_1 \, \mathsf{U} \, \varphi_2$$

where $a \in AP$ and φ , φ_1 , and φ_2 are LTL formulas.

Example

On the blackboard.

LTL semantics

LTL semantics

The LT-property induced by LTL formula φ over AP is:

 $Words(\varphi) = \left\{ \sigma \in \left(2^{AP}\right)^{\omega} \mid \sigma \models \varphi \right\}$, where \models is the smallest relation satisfying

LTL semantics

LTL semantics

The LT-property induced by LTL formula φ over AP is:

$$Words(\varphi) = \left\{ \sigma \in \left(2^{AP}\right)^{\omega} \mid \sigma \models \varphi \right\}$$
, where \models is the smallest relation satisfying

$$\sigma \models \text{ true}$$

$$\sigma \models a \quad \text{iff} \quad a \in A_0 \quad (\text{i.e., } A_0 \models a)$$

$$\sigma \models \varphi_1 \land \varphi_2 \quad \text{iff} \quad \sigma \models \varphi_1 \text{ and } \sigma \models \varphi_2$$

$$\sigma \models \neg \varphi \quad \text{iff} \quad \sigma \not\models \varphi$$

$$\sigma \models \bigcirc \varphi \quad \text{iff} \quad \sigma^1 = A_1 A_2 A_3 \dots \models \varphi$$

$$\sigma \models \varphi_1 \cup \varphi_2 \quad \text{iff} \quad \exists j \ge 0. \ \sigma^j \models \varphi_2 \text{ and } \sigma^i \models \varphi_1, \ 0 \le i < j$$

$$\sigma = A_0 A_1 A_2 \dots \text{ we have } \sigma^i = A_i A_{i+1} A_{i+2} \dots \text{ is the suffix of } \sigma \text{ from index } i \text{ on.}$$

for

Some facts about LTL

Some facts about LTL

LTL is ω -regular

For any LTL formula φ , the set $Words(\varphi)$ is an ω -regular language.

LTL are DRA-definable

For any LTL formula φ , there exists a DRA \mathcal{A} such that $\mathcal{L}_{\omega} = Words(\varphi)$

Some facts about LTL

LTL is ω -regular

For any LTL formula φ , the set $Words(\varphi)$ is an ω -regular language.

LTL are DRA-definable

For any LTL formula φ , there exists a DRA \mathcal{A} such that $\mathcal{L}_{\omega} = Words(\varphi)$ where the number of states in \mathcal{A} lies in $2^{2^{|\varphi|}}$.

Verifying a DTMC against LTL formulas

Complexity of LTL model checking

[Vardi 1985]

The qualitative model-checking problem for finite DTMCs against LTL formula φ is PSPACE-complete, i.e., verifying whether $Pr(s \models \varphi) > 0$ or $Pr(s \models \varphi) = 1$ is PSPACE-complete.

Recall that the LTL model-checking problem for finite transition systems is PSPACE-complete.

Overview

Introduction

2 Preliminaries

- Overifying regular safety properties
- 4 ω -regular properties
- 5 Verifying DBA objectives
- 6 Verifying ω -regular properties

🕖 Summary

Summary

Verifying a DTMC D against a DFA A, i.e., determining Pr(D ⊨ A), amounts to computing reachability probabilities of accept states in D ⊗ A.

- Verifying a DTMC D against a DFA A, i.e., determining Pr(D ⊨ A), amounts to computing reachability probabilities of accept states in D ⊗ A.
- ▶ For DBA objectives, the probability of infinitely often visiting an accept state in $\mathcal{D} \otimes \mathcal{A}$.

- Verifying a DTMC D against a DFA A, i.e., determining Pr(D ⊨ A), amounts to computing reachability probabilities of accept states in D ⊗ A.
- For DBA objectives, the probability of infinitely often visiting an accept state in $\mathcal{D}\otimes \mathcal{A}$.
- DBA are strictly less powerful than ω -regular languages.

- Verifying a DTMC D against a DFA A, i.e., determining Pr(D ⊨ A), amounts to computing reachability probabilities of accept states in D ⊗ A.
- For DBA objectives, the probability of infinitely often visiting an accept state in $\mathcal{D}\otimes \mathcal{A}$.
- **•** DBA are strictly less powerful than ω -regular languages.
- Deterministic Rabin automata are as expressive as ω -regular languages.

- Verifying a DTMC D against a DFA A, i.e., determining Pr(D ⊨ A), amounts to computing reachability probabilities of accept states in D ⊗ A.
- For DBA objectives, the probability of infinitely often visiting an accept state in $\mathcal{D}\otimes \mathcal{A}$.
- > DBA are strictly less powerful than ω -regular languages.
- Deterministic Rabin automata are as expressive as ω -regular languages.
- Verifying DTMC D agains DRA A amounts to computing reachability probabilities of accepting BSCCs in D ⊗ A.

Summary

- Verifying a DTMC D against a DFA A, i.e., determining Pr(D ⊨ A), amounts to computing reachability probabilities of accept states in D ⊗ A.
- For DBA objectives, the probability of infinitely often visiting an accept state in $\mathcal{D}\otimes \mathcal{A}$.
- **•** DBA are strictly less powerful than ω -regular languages.
- Deterministic Rabin automata are as expressive as ω -regular languages.
- Verifying DTMC D agains DRA A amounts to computing reachability probabilities of accepting BSCCs in D ⊗ A.

Take-home message

Model checking a DTMC against various automata models reduces to computing reachability probabilities in a product.