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Reachability probabilities

Recapitulating reachability probabilities

Problem statement
Let D be a DTMC with finite state space S, s ∈ S and G ⊆ S.

Aim: determine Pr(s |= ♦G) = Prs{π ∈ Paths(s) | π |= ♦G }
where Prs is the probability measure in D with single initial state s.

Approach

1. Determine by a graph analysis S=0 = { s ∈ S | Pr(s |= ♦G) = 0 } and
S=1 = { s ∈ S | Pr(s |= ♦G) = 1 }

2. Introduce a variable xs for any state s ∈ S? = S \ (S=0 ∪ S=1)
3. Solve a linear equation system x = A·x + b
4. . . . . . . using one of your favourite techniques, e.g., iterative methods
5. Intermediate results x(i) represent the vector

(
Pr(s |= ♦6iG)

)
s∈S?
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What are qualitative properties?

Qualitative properties
Quantitative properties

Comparing the probability of an event such as �G , ♦�G and �♦G with a
threshold ∼ p with p ∈ (0, 1) and ∼ a binary comparison operator
(=,<,6,>,>) yields a quantitative property.

Example quantitative properties
Pr(s |= ♦�G) > 1

2 or Pr(s |= ♦6n G) 6 π
5

Qualitative properties
Comparing the probability of an event such as �G , ♦�G and �♦G with a
threshold > 0 or = 1 yields a qualitative property. Any event E with
Pr(E ) = 1 is called almost surely.

Example qualitative properties
Pr(s |= ♦�G) > 0 or Pr(s |= ♦6n G) = 1
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What are qualitative properties?

Aim of today’s lecture

Take-home message
For finite DTMCs, qualitative properties do only depend on their state
graph and not on the transition probabilities! For infinite DTMCs, this
does not hold.

Remark
In the following we will concentrate on almost sure events, i.e., events E
with Pr(E ) = 1. This suffices, as Pr(E ) > 0 if and only if not Pr(E ) = 1.
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Fairness theorem

Fairness
Fairness theorem
Let D be a (possibly infinite) DTMC and s, t states in D.

Then:

Pr(s |= �♦t) = Pr(s |=
∧

u∈Post∗(t)
�♦u).

When infinite branching, this is an infinitary conjunction (countable intersection).

In particular, if t is visited infinitely often almost surely, then this property
carries over to any successor u of t.

Corollary
For any state s in a (possibly infinite) DTMC we have:

Pr(s |=
∧
t∈S

∧
u∈Post∗(t)

(�♦t ⇒ �♦u) ) = 1.
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Fairness theorem

Proof (1)

Fairness theorem
Let D be a (possibly infinite) DTMC and s, t states in D. Then:

Pr(s |= �♦t) = Pr(s |=
∧

u∈Post∗(t)
�♦u).

This result follows directly from the following claim that we will prove
below.
Claim
The probability to infinitely often visit state t equals the probability to
take any finite path π̂ emanating from state t infinitely often.
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Fairness theorem

Proof (2)
Claim

Let D be a (possibly infinite) DTMC and s, t states in D. Then:

Pr(s |= �♦t) = Prs
( ∧

π̂ ∈ Paths∗(t)
�♦π̂

)

where �♦π̂ denotes the set of paths π such that π̂ occurs infinitely in π.

Proof:
This claim is proven in three steps:
1. For any π̂ ∈ Paths∗(t), it holds Pr(s |= �♦t) = Pr(s |= ♦π̂).
2. For any π̂ ∈ Paths∗(t), it holds Pr(�♦t ∧ ♦�¬π̂) = 0.
3. Pr(�♦t ∧

∧
π̂ ∈ Paths∗(t)

♦�¬π̂) = 0.
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where �♦π̂ denotes the set of paths π such that π̂ occurs infinitely in π.

Proof:
This claim is proven in three steps:
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Determining almost sure properties

Overview

1 Reachability probabilities

2 What are qualitative properties?

3 Fairness theorem

4 Determining almost sure properties
Preliminaries
Long run theorem
Reachability, repeated reachability and persistence
Quantitative repeated reachability and persistence

5 Summary
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Determining almost sure properties

Graph notions

Let D = (S,P, ιinit,AP, L) be a (possibly infinite) DTMC.

Strongly connected component

I T ⊆ S is strongly connected if for any s, t ∈ T , states s and t ∈ T
are mutually reachable via edges in T .

I T is a strongly connected component (SCC) of D if it is strongly
connected and no proper superset of T is strongly connected.

I SCC T is a bottom SCC (BSCC) if no state outside T is reachable
from T , i.e., for any state s ∈ T , P(s,T ) =

∑
t∈T P(s, t) = 1.

I Let BSCC(D) denote the set of BSCCs of DTMC D.
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Example
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Determining almost sure properties

Evolution of an example DTMC

Which states have a probability > 0 when repeating this on the long run?
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Determining almost sure properties

On the long run

The probability mass on the long run is only left in BSCCs.
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Determining almost sure properties

Measurability
Lemma

For any state s in (possibly infinite) DTMC D:

{π ∈ Paths(s) | inf(π) ∈ BSCC(D) } is measurable

where inf(π) is the set of states that are visited infinitely often along π.

Proof:

1. For BSCC T , {π ∈ Paths(s) | inf(π) = T } is measurable as:

{π ∈ Paths(s) | inf(π) = T } =
⋂

t∈T
�♦t ∩ ♦�T .

2. As BSCC(D) is countable, we have:

{π ∈ Paths(s) | inf(π) ∈ BSCC(D) } =
⋃

TS∈BSCC(D)

⋂
t∈T
�♦t ∧ ♦�T .
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Determining almost sure properties

Fundamental result

Long-run theorem

For each state s of a finite Markov chain D:

Prs
{
π ∈ Paths(s) | inf(π) ∈ BSCC(M)

}
= 1.

Intuition
Almost surely any finite DTMC eventually reaches a BSCC and visits all
its states infinitely often.
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Determining almost sure properties

Fundamental result

Long-run theorem
For each state s of a finite Markov chain D:

Prs
{
π ∈ Paths(s) | inf(π) ∈ BSCC(M)

}
= 1.

Proof:
I As D is finite, inf(π) is strongly connected, i.e., part of SCC T , say.
I Hence,

∑
SCCT

Prs{π ∈ Paths(s) | inf(π) = T } = 1 (∗)

I Assume Prs{π ∈ Paths(s) | inf(π) = T } > 0.
I By the fairness theorem, almost all paths π with inf(π) = T fulfill

Post∗(T ) = Post∗(inf(π)) ⊆ inf(π) = T .

I Hence, T = Post∗(T ), i.e., T is a BSCC. The claim follows from (∗).
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Determining almost sure properties

Zeroconf example

Aim of the Zeroconf protocol

I IPv4 is aimed at plug-and-play networks for domestic appliances.
I New devices must get a unique IP address in an automated way.
I This is done by the IPv4 zeroconf protocol (proposed by IETF).

Basic functioning of the Zeroconf protocol

1. Randomly select one of the 65,024 possible addresses.
2. Loop: as long as number of sent probes < n.
3. Broadcast probe “who is using my current address?”
4. Receive reply? Goto step 1.
5. Receive no reply within r > 0 time units, then

5.1 number of sent probes = n? Exit, and use selected address.
5.2 number of sent probes < n? Goto step 2.

Let p be probability that no reply is received on a probe.
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Determining almost sure properties

Zeroconf example

By the long-run theorem, the probability of acquiring an address infinitely
often is zero.
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Determining almost sure properties

Almost sure reachability

Recall: an absorbing state in a DTMC is a state with a self-loop with
probability one.

Almost sure reachability theorem
For finite DTMC with state space S, s ∈ S and G ⊆ S a set of absorbing
states:

Pr(s |= ♦G) = 1 iff s ∈ S \ Pre∗
(

S \ Pre∗(G)
)
.

Note: S \ Pre∗( S \ Pre∗(G)
)
are states that cannot reach states from which G

cannot be reached.

Proof:
Show that both sides of the equivalence are equivalent to
Post∗(t) ∩ G 6= ∅ for each state t ∈ Post∗(s). Rather straightforward.
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Determining almost sure properties

Computing almost sure reachability properties

Aim:
For finite DTMC D and G ⊆ S, determine { s ∈ S | Pr(s |= ♦G) = 1 }.

Algorithm

1. Make all states in G absorbing yielding D[G ].
2. Determine S \ Pre∗

(
S \ Pre∗(G)

)
by a graph analysis:

2.1 do a backward search from G in D[G ] to determine Pre∗(G).
2.2 followed by a backward search from S \ Pre∗(G) in D[G ].

This yields a time complexity which is linear in the size of the DTMC D.
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Determining almost sure properties

Repeated reachability

Almost sure repeated reachability theorem
For finite DTMC with state space S, G ⊆ S, and s ∈ S:
Pr(s |= �♦G) = 1 iff for each BSCC T ⊆ Post∗(s).T ∩ G 6= ∅.

Proof:
Immediate consequence of the long-run theorem.
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Determining almost sure properties

Almost sure persistence

Almost sure persistence theorem
For finite DTMC with state space S, G ⊆ S, and s ∈ S:
Pr(s |= ♦�G) = 1 if and only if T ⊆ G for any BSCC T ⊆ Post∗(s)
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Determining almost sure properties

A remark on infinite Markov chains

Graph analysis for infinite DTMCs does not suffice!
Consider the following infinitely countable DTMC, known as random walk:

The value of rational probability p does affect qualitative properties:

Pr(s |= ♦ s0) =
{

1 if p 6 1
2

< 1 if p > 1
2

and

Pr(s |= �♦ s0) =
{

1 if p 6 1
2

0 if p > 1
2
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Determining almost sure properties

Quantitative properties

Quantitative repeated reachability theorem
For finite DTMC with state space S, G ⊆ S, and s ∈ S:
Pr(s |= �♦G) = Pr(s |= ♦U)
where U is the union of all BSCCs T with T ∩ G 6= ∅.

Quantitative repeated reachability theorem
For finite DTMC with state space S, G ⊆ S, and s ∈ S:
Pr(s |= ♦�G) = Pr(s |= ♦U)
where U is the union of all BSCCs T with T ⊆ G .

Remark
Thus probabilities for �♦G and �♦G are reduced to reachability
probabilities. These can be computed by solving a linear equation system.
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Determining almost sure properties

Example
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Summary

Summary

I Executions of a DTMC are strongly fair with respect to all
probabilistic choices.

I A finite DTMC almost surely ends up in a BSCC on the long run.
I Almost sure reachability = double backward search.
I Almost sure �♦G and ♦�G properties can be checked by BSCC

analysis and reachability.
I Probabilities for �♦G and ♦�G reduce to reachability probabilities.

Take-home message
For finite DTMCs, qualitative properties do only depend on their state
graph and not on the transition probabilities! For infinite DTMCs, this
does not hold.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 31/31



Summary

Summary

I Executions of a DTMC are strongly fair with respect to all
probabilistic choices.

I A finite DTMC almost surely ends up in a BSCC on the long run.
I Almost sure reachability = double backward search.
I Almost sure �♦G and ♦�G properties can be checked by BSCC

analysis and reachability.
I Probabilities for �♦G and ♦�G reduce to reachability probabilities.

Take-home message
For finite DTMCs, qualitative properties do only depend on their state
graph and not on the transition probabilities! For infinite DTMCs, this
does not hold.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 31/31



Summary

Summary

I Executions of a DTMC are strongly fair with respect to all
probabilistic choices.

I A finite DTMC almost surely ends up in a BSCC on the long run.

I Almost sure reachability = double backward search.
I Almost sure �♦G and ♦�G properties can be checked by BSCC

analysis and reachability.
I Probabilities for �♦G and ♦�G reduce to reachability probabilities.

Take-home message
For finite DTMCs, qualitative properties do only depend on their state
graph and not on the transition probabilities! For infinite DTMCs, this
does not hold.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 31/31



Summary

Summary

I Executions of a DTMC are strongly fair with respect to all
probabilistic choices.

I A finite DTMC almost surely ends up in a BSCC on the long run.
I Almost sure reachability = double backward search.

I Almost sure �♦G and ♦�G properties can be checked by BSCC
analysis and reachability.

I Probabilities for �♦G and ♦�G reduce to reachability probabilities.

Take-home message
For finite DTMCs, qualitative properties do only depend on their state
graph and not on the transition probabilities! For infinite DTMCs, this
does not hold.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 31/31



Summary

Summary

I Executions of a DTMC are strongly fair with respect to all
probabilistic choices.

I A finite DTMC almost surely ends up in a BSCC on the long run.
I Almost sure reachability = double backward search.
I Almost sure �♦G and ♦�G properties can be checked by BSCC

analysis and reachability.

I Probabilities for �♦G and ♦�G reduce to reachability probabilities.

Take-home message
For finite DTMCs, qualitative properties do only depend on their state
graph and not on the transition probabilities! For infinite DTMCs, this
does not hold.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 31/31



Summary

Summary

I Executions of a DTMC are strongly fair with respect to all
probabilistic choices.

I A finite DTMC almost surely ends up in a BSCC on the long run.
I Almost sure reachability = double backward search.
I Almost sure �♦G and ♦�G properties can be checked by BSCC

analysis and reachability.
I Probabilities for �♦G and ♦�G reduce to reachability probabilities.

Take-home message
For finite DTMCs, qualitative properties do only depend on their state
graph and not on the transition probabilities! For infinite DTMCs, this
does not hold.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 31/31



Summary

Summary

I Executions of a DTMC are strongly fair with respect to all
probabilistic choices.

I A finite DTMC almost surely ends up in a BSCC on the long run.
I Almost sure reachability = double backward search.
I Almost sure �♦G and ♦�G properties can be checked by BSCC

analysis and reachability.
I Probabilities for �♦G and ♦�G reduce to reachability probabilities.

Take-home message
For finite DTMCs, qualitative properties do only depend on their state
graph and not on the transition probabilities!

For infinite DTMCs, this
does not hold.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 31/31



Summary

Summary

I Executions of a DTMC are strongly fair with respect to all
probabilistic choices.

I A finite DTMC almost surely ends up in a BSCC on the long run.
I Almost sure reachability = double backward search.
I Almost sure �♦G and ♦�G properties can be checked by BSCC

analysis and reachability.
I Probabilities for �♦G and ♦�G reduce to reachability probabilities.

Take-home message
For finite DTMCs, qualitative properties do only depend on their state
graph and not on the transition probabilities! For infinite DTMCs, this
does not hold.
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