Modeling and Verification of Probabilistic Systems

Joost-Pieter Katoen

Lehrstuhl für Informatik 2 Software Modeling and Verification Group

http://moves.rwth-aachen.de/teaching/ws-1516/movep15/

October 28, 2015

Overview

Introduction

2 Reachability Events

3 A Measurable Space on Infinite Paths

4 Reachability Probabilities as Linear Equation Solution

What are Markov chains?

What are Markov chains?

► A discrete-time Markov chain (DTMC) is a time-homogeneous Markov process with discrete parameter T and discrete state space S.

What are Markov chains?

- A discrete-time Markov chain (DTMC) is a time-homogeneous Markov process with discrete parameter T and discrete state space S.
- State residence times are geometrically distributed.

What are Markov chains?

- A discrete-time Markov chain (DTMC) is a time-homogeneous Markov process with discrete parameter T and discrete state space S.
- ► State residence times are geometrically distributed.
- Alternative: a DTMC D is a tuple $(S, \mathbf{P}, \iota_{init}, AP, L)$ with:
 - state space S
 - transition probability function P
 - initial distribution ι_{init}

What are Markov chains?

- A discrete-time Markov chain (DTMC) is a time-homogeneous Markov process with discrete parameter T and discrete state space S.
- State residence times are geometrically distributed.
- ► Alternative: a DTMC D is a tuple (S, P, t_{init}, AP, L) with:
 - state space S
 - transition probability function P
 - initial distribution ι_{init}

What are transient probabilities?

What are Markov chains?

- A discrete-time Markov chain (DTMC) is a time-homogeneous Markov process with discrete parameter T and discrete state space S.
- State residence times are geometrically distributed.
- Alternative: a DTMC D is a tuple (S, P, ι_{init} , AP, L) with:
 - state space S
 - transition probability function P
 - initial distribution ι_{init}

What are transient probabilities?

• $\Theta_n^{\mathcal{D}}(s)$ is the probability to be in state s after n steps.

What are Markov chains?

- A discrete-time Markov chain (DTMC) is a time-homogeneous Markov process with discrete parameter T and discrete state space S.
- State residence times are geometrically distributed.
- Alternative: a DTMC D is a tuple (S, P, ι_{init} , AP, L) with:
 - state space S
 - transition probability function P
 - initial distribution ι_{init}

What are transient probabilities?

- $\Theta_n^{\mathcal{D}}(s)$ is the probability to be in state s after n steps.
- These transient probabilities satisfy: $\Theta_n^{\mathcal{D}} = \iota_{\text{init}} \cdot \mathbf{P}^n$.

How to determine reachability probabilities?

¹in a slightly modified DTMC.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

How to determine reachability probabilities?

Three major steps

1. What are reachability probabilities?

¹in a slightly modified DTMC.

How to determine reachability probabilities?

Three major steps

1. What are reachability probabilities? I mean, precisely.

¹in a slightly modified DTMC.

How to determine reachability probabilities?

Three major steps

 What are reachability probabilities? I mean, precisely. This requires a bit of measure theory.

¹in a slightly modified DTMC.

How to determine reachability probabilities?

Three major steps

 What are reachability probabilities? I mean, precisely. This requires a bit of measure theory. Sorry for that.

¹in a slightly modified DTMC.

How to determine reachability probabilities?

Three major steps

- 1. What are reachability probabilities? I mean, precisely. This requires a bit of measure theory. Sorry for that.
- 2. Reachability probabilities = unique solution of linear equation system.

¹in a slightly modified DTMC.

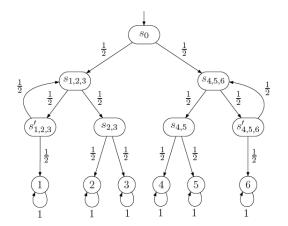
How to determine reachability probabilities?

Three major steps

- 1. What are reachability probabilities? I mean, precisely. This requires a bit of measure theory. Sorry for that.
- 2. Reachability probabilities = unique solution of linear equation system.
- 3. Bounded reachability probabilities = transient probabilities¹.

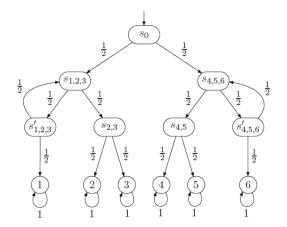
¹in a slightly modified DTMC.

Recall Knuth's die



Heads = "go left"; tails = "go right".

Recall Knuth's die



Heads = "go left"; tails = "go right". Does this DTMC model a six-sided die?

Overview

3 A Measurable Space on Infinite Paths

4 Reachability Probabilities as Linear Equation Solution

Paths

State graph

The *state graph* of DTMC \mathcal{D} is a digraph G = (V, E) with V the states of \mathcal{D} , and $(s, s') \in E$ iff $\mathbf{P}(s, s') > 0$.

Let Pre(s) be the *predecessors* of *s*, $Pre^*(s)$ its reflexive and transitive closure.

Paths

State graph

The *state graph* of DTMC \mathcal{D} is a digraph G = (V, E) with V the states of \mathcal{D} , and $(s, s') \in E$ iff $\mathbf{P}(s, s') > 0$.

Let Pre(s) be the *predecessors* of *s*, $Pre^*(s)$ its reflexive and transitive closure.

Paths

Paths in \mathcal{D} are infinite paths in its state graph.

Paths

State graph

The *state graph* of DTMC \mathcal{D} is a digraph G = (V, E) with V the states of \mathcal{D} , and $(s, s') \in E$ iff $\mathbf{P}(s, s') > 0$.

Let Pre(s) be the *predecessors* of *s*, $Pre^*(s)$ its reflexive and transitive closure.

Paths

Paths in \mathcal{D} are infinite paths in its state graph.

 $Paths(\mathcal{D})$ denotes the set of paths in \mathcal{D} , and $Paths^*(\mathcal{D})$ its finite prefixes.

Let DTMC \mathcal{D} with (possibly infinite) state space S.

Let DTMC \mathcal{D} with (possibly infinite) state space S.

(Simple) reachability

Eventually reach a state in $G \subseteq S$.

Let DTMC \mathcal{D} with (possibly infinite) state space S.

(Simple) reachability

Eventually reach a state in $G \subseteq S$. Formally:

$$\Diamond \mathbf{G} = \{ \pi \in \mathsf{Paths}(\mathcal{D}) \mid \exists i \in \mathbb{N}. \, \pi[i] \in \mathbf{G} \}$$

Let DTMC \mathcal{D} with (possibly infinite) state space S.

(Simple) reachability

Eventually reach a state in $G \subseteq S$. Formally:

$$\Diamond \mathbf{G} = \{ \pi \in \mathsf{Paths}(\mathcal{D}) \mid \exists i \in \mathbb{N}. \, \pi[i] \in \mathbf{G} \}$$

Invariance, i.e., always stay in state in G:

$$\Box G = \{ \pi \in Paths(\mathcal{D}) \mid \forall i \in \mathbb{N} . \pi[i] \in G \} = \Diamond \overline{G}.$$

Let DTMC \mathcal{D} with (possibly infinite) state space S.

(Simple) reachability

Eventually reach a state in $G \subseteq S$. Formally:

$$\Diamond \mathbf{G} = \{ \pi \in \mathsf{Paths}(\mathcal{D}) \mid \exists i \in \mathbb{N}. \pi[i] \in \mathbf{G} \}$$

Invariance, i.e., always stay in state in G:

$$\Box G = \{ \pi \in Paths(\mathcal{D}) \mid \forall i \in \mathbb{N} . \pi[i] \in G \} = \Diamond \overline{G}.$$

Constrained reachability

8/38

Let DTMC \mathcal{D} with (possibly infinite) state space S.

(Simple) reachability

Eventually reach a state in $G \subseteq S$. Formally:

$$\Diamond \mathbf{G} = \{ \pi \in \mathsf{Paths}(\mathcal{D}) \mid \exists i \in \mathbb{N}. \pi[i] \in \mathbf{G} \}$$

Invariance, i.e., always stay in state in G:

$$\Box G = \{ \pi \in Paths(\mathcal{D}) \mid \forall i \in \mathbb{N} . \pi[i] \in G \} = \Diamond \overline{G}.$$

Constrained reachability

Or "reach-avoid" properties where states in $F \subseteq S$ are forbidden:

8/38

Let DTMC \mathcal{D} with (possibly infinite) state space S.

(Simple) reachability

Eventually reach a state in $G \subseteq S$. Formally:

$$\Diamond \mathbf{G} = \{ \pi \in \mathsf{Paths}(\mathcal{D}) \mid \exists i \in \mathbb{N}. \pi[i] \in \mathbf{G} \}$$

Invariance, i.e., always stay in state in G:

$$\Box G = \{ \pi \in Paths(\mathcal{D}) \mid \forall i \in \mathbb{N} . \pi[i] \in G \} = \Diamond \overline{G}.$$

Constrained reachability

Or "reach-avoid" properties where states in $F \subseteq S$ are forbidden:

$$\overline{F} \cup G = \{ \pi \in Paths(\mathcal{D}) \mid \exists i \in \mathbb{N}. \pi[i] \in G \land \forall j < i. \pi[j] \notin F \}$$

Repeated reachability

Repeatedly visit a state in G; formally:

$$\Box \Diamond \mathbf{G} = \{ \pi \in \mathsf{Paths}(\mathcal{D}) \mid \forall i \in \mathbb{N}. \exists j \ge i. \pi[j] \in \mathbf{G} \}$$

Repeated reachability

Repeatedly visit a state in G; formally:

$$\Box \Diamond \mathbf{G} = \{ \pi \in \mathsf{Paths}(\mathcal{D}) \mid \forall i \in \mathbb{N}. \exists j \ge i. \pi[j] \in \mathbf{G} \}$$

Persistence

Eventually reach in a state in G and always stay there; formally:

$$\Diamond \Box \mathbf{G} = \{ \pi \in \mathsf{Paths}(\mathcal{D}) \mid \exists i \in \mathbb{N}. \forall j \ge i. \pi[j] \in \mathbf{G} \}$$

Overview

4 Reachability Probabilities as Linear Equation Solution

Sample space

A sample space Ω of a chance experiment is a set of elements that have a 1-to-1 relationship to the possible outcomes of the experiment.

Sample space

A sample space Ω of a chance experiment is a set of elements that have a 1-to-1 relationship to the possible outcomes of the experiment.

σ -algebra

A σ -algebra is a pair (Ω, \mathcal{F}) with $\Omega \neq \emptyset$ and $\mathcal{F} \subseteq 2^{\Omega}$ a collection of subsets of sample space Ω such that:

Sample space

A sample space Ω of a chance experiment is a set of elements that have a 1-to-1 relationship to the possible outcomes of the experiment.

σ -algebra

A σ -algebra is a pair (Ω, \mathcal{F}) with $\Omega \neq \emptyset$ and $\mathcal{F} \subseteq 2^{\Omega}$ a collection of subsets of sample space Ω such that:

1. $\Omega\in \mathcal{F}$

Sample space

A sample space Ω of a chance experiment is a set of elements that have a 1-to-1 relationship to the possible outcomes of the experiment.

σ -algebra

A σ -algebra is a pair (Ω, \mathcal{F}) with $\Omega \neq \emptyset$ and $\mathcal{F} \subseteq 2^{\Omega}$ a collection of subsets of sample space Ω such that:

1.
$$\Omega \in \mathcal{F}$$

2.
$$A \in \mathcal{F} \Rightarrow \Omega - A \in \mathcal{F}$$

complement

Sample space

A sample space Ω of a chance experiment is a set of elements that have a 1-to-1 relationship to the possible outcomes of the experiment.

σ -algebra

A σ -algebra is a pair (Ω, \mathcal{F}) with $\Omega \neq \emptyset$ and $\mathcal{F} \subseteq 2^{\Omega}$ a collection of subsets of sample space Ω such that:

1.
$$\Omega \in \mathcal{F}$$

2. $A \in \mathcal{F} \Rightarrow \Omega - A \in \mathcal{F}$ complement
3. $(\forall i \ge 0, A_i \in \mathcal{F}) \Rightarrow \bigcup_{i\ge 0} A_i \in \mathcal{F}$ countable union

Sample space

A sample space Ω of a chance experiment is a set of elements that have a 1-to-1 relationship to the possible outcomes of the experiment.

σ -algebra

A σ -algebra is a pair (Ω, \mathcal{F}) with $\Omega \neq \emptyset$ and $\mathcal{F} \subseteq 2^{\Omega}$ a collection of subsets of sample space Ω such that:

1.
$$\Omega \in \mathcal{F}$$

2. $A \in \mathcal{F} \Rightarrow \Omega - A \in \mathcal{F}$ complement
3. $(\forall i \ge 0. A_i \in \mathcal{F}) \Rightarrow \bigcup_{i\ge 0} A_i \in \mathcal{F}$ countable union

The elements in \mathcal{F} of a σ -algebra (Ω, \mathcal{F}) are called *events*.

Sample space

A sample space Ω of a chance experiment is a set of elements that have a 1-to-1 relationship to the possible outcomes of the experiment.

σ -algebra

A σ -algebra is a pair (Ω, \mathcal{F}) with $\Omega \neq \emptyset$ and $\mathcal{F} \subseteq 2^{\Omega}$ a collection of subsets of sample space Ω such that:

1.
$$\Omega \in \mathcal{F}$$

2. $A \in \mathcal{F} \Rightarrow \Omega - A \in \mathcal{F}$ complement
3. $(\forall i \ge 0, A_i \in \mathcal{F}) \Rightarrow \bigcup_{i \ge 0} A_i \in \mathcal{F}$ countable union
The elements in \mathcal{F} of a σ -algebra (Ω, \mathcal{F}) are called *events*.

The elements in \mathcal{F} of a σ -algebra (Ω, \mathcal{F}) are called *events*. The pair (Ω, \mathcal{F}) is called a *measurable space*.

Sample space

A sample space Ω of a chance experiment is a set of elements that have a 1-to-1 relationship to the possible outcomes of the experiment.

σ -algebra

A σ -algebra is a pair (Ω, \mathcal{F}) with $\Omega \neq \emptyset$ and $\mathcal{F} \subseteq 2^{\Omega}$ a collection of subsets of sample space Ω such that:

1.
$$\Omega \in \mathcal{F}$$
2. $A \in \mathcal{F} \Rightarrow \Omega - A \in \mathcal{F}$ 3. $(\forall i \ge 0, A_i \in \mathcal{F}) \Rightarrow \bigcup_{i \ge 0} A_i \in \mathcal{F}$ countable union

The elements in \mathcal{F} of a σ -algebra (Ω, \mathcal{F}) are called *events*. The pair (Ω, \mathcal{F}) is called a *measurable space*.

Let Ω be a set. $\mathcal{F} = \{ \emptyset, \Omega \}$ yields the smallest σ -algebra; $\mathcal{F} = 2^{\Omega}$ yields the largest one.

Joost-Pieter Katoen

What's the probability of infinite paths?

Probability space

A probability space \mathcal{P} is a structure $(\Omega, \mathcal{F}, Pr)$ with:

Probability space

A probability space \mathcal{P} is a structure $(\Omega, \mathcal{F}, Pr)$ with:

• (Ω, \mathcal{F}) is a σ -algebra, and

Probability space

A probability space \mathcal{P} is a structure $(\Omega, \mathcal{F}, Pr)$ with:

- (Ω, \mathcal{F}) is a σ -algebra, and
- $Pr: \mathcal{F} \rightarrow [0, 1]$ is a *probability measure*, i.e.:

Probability space

A *probability space* \mathcal{P} is a structure $(\Omega, \mathcal{F}, Pr)$ with:

- (Ω, \mathcal{F}) is a σ -algebra, and
- $Pr: \mathcal{F} \to [0, 1]$ is a probability measure, i.e.:
 - 1. $Pr(\Omega) = 1$, i.e., Ω is the certain event

Probability space

A *probability space* \mathcal{P} is a structure $(\Omega, \mathcal{F}, Pr)$ with:

•
$$(\Omega, \mathcal{F})$$
 is a σ -algebra, and

• $Pr: \mathcal{F} \rightarrow [0, 1]$ is a *probability measure*, i.e.:

1. $Pr(\Omega) = 1$, i.e., Ω is the certain event

2.
$$Pr\left(\bigcup_{i\in I}A_i\right) = \sum_{i\in I}Pr(A_i)$$
 for any $A_i \in \mathcal{F}$ with $A_i \cap A_j = \emptyset$ for $i \neq j$

Probability space

A *probability space* \mathcal{P} is a structure $(\Omega, \mathcal{F}, Pr)$ with:

•
$$(\Omega, \mathcal{F})$$
 is a σ -algebra, and

•
$$Pr: \mathcal{F} \rightarrow [0, 1]$$
 is a *probability measure*, i.e.:

1. $Pr(\Omega) = 1$, i.e., Ω is the certain event

2.
$$Pr\left(\bigcup_{i\in I}A_i\right) = \sum_{i\in I}Pr(A_i)$$
 for any $A_i \in \mathcal{F}$ with $A_i \cap A_j = \emptyset$ for $i \neq j$

The events in \mathcal{F} of a probability space $(\Omega, \mathcal{F}, Pr)$ are called *measurable*.

To reason quantitatively about the behavior of a DTMC, we need to define a probability space over its paths.

To reason quantitatively about the behavior of a DTMC, we need to define a probability space over its paths.

Intuition

For a given state s in DTMC D:

• Outcomes := set of all infinite paths starting in *s*.

To reason quantitatively about the behavior of a DTMC, we need to define a probability space over its paths.

Intuition

For a given state s in DTMC D:

- Outcomes := set of all infinite paths starting in *s*.
- Events := subsets of these outcomes.

To reason quantitatively about the behavior of a DTMC, we need to define a probability space over its paths.

Intuition

For a given state s in DTMC D:

- Outcomes := set of all infinite paths starting in *s*.
- Events := subsets of these outcomes.
- ► These events are defined using cylinder sets.

To reason quantitatively about the behavior of a DTMC, we need to define a probability space over its paths.

Intuition

For a given state s in DTMC D:

- Outcomes := set of all infinite paths starting in *s*.
- Events := subsets of these outcomes.
- These events are defined using cylinder sets.
- Cylinder set of a finite path := set of all its infinite continuations.

Cylinder set

The *cylinder set* of finite path $\hat{\pi} = s_0 s_1 \dots s_n \in Paths^*(\mathcal{D})$ is defined by:

$$\mathit{Cyl}(\hat{\pi}) \;=\; \left\{ \, \pi \in \mathit{Paths}(\mathcal{D}) \,\mid\, \hat{\pi} \,\, ext{is a prefix of} \,\, \pi \,
ight\}$$

Cylinder set

The *cylinder set* of finite path $\hat{\pi} = s_0 s_1 \dots s_n \in Paths^*(\mathcal{D})$ is defined by:

$$Cyl(\hat{\pi}) \;=\; \left\{ \, \pi \in \mathit{Paths}(\mathcal{D}) \,\mid\, \hat{\pi} ext{ is a prefix of } \pi \,
ight\}$$

The cylinder set spanned by finite path $\hat{\pi}$ thus consists of all infinite paths that have prefix $\hat{\pi}$.

Cylinder set

The *cylinder set* of finite path $\hat{\pi} = s_0 s_1 \dots s_n \in Paths^*(\mathcal{D})$ is defined by:

$$Cyl(\hat{\pi}) \;=\; \left\{ \, \pi \in \mathit{Paths}(\mathcal{D}) \,\mid\, \hat{\pi} ext{ is a prefix of } \pi \,
ight\}$$

The cylinder set spanned by finite path $\hat{\pi}$ thus consists of all infinite paths that have prefix $\hat{\pi}$.

Probability space of a DTMC

The set of events of the probability space DTMC \mathcal{D} contains all cylinder sets $Cyl(\hat{\pi})$ where $\hat{\pi}$ ranges over all finite paths in \mathcal{D} .

Cylinder set

The cylinder set of finite path $\hat{\pi} = s_0 s_1 \dots s_n \in Paths^*(\mathcal{D})$ is defined by:

$$Cyl(\hat{\pi}) = \{ \pi \in Paths(\mathcal{D}) \mid \hat{\pi} \text{ is a prefix of } \pi \}$$

Cylinder set

The cylinder set of finite path $\hat{\pi} = s_0 s_1 \dots s_n \in Paths^*(\mathcal{D})$ is defined by:

$$Cyl(\hat{\pi}) = \{ \pi \in Paths(\mathcal{D}) \mid \hat{\pi} \text{ is a prefix of } \pi \}$$

Probability measure

Pr is the unique *probability measure* defined by:

$$Pr(Cyl(s_0 \ldots s_n)) = \iota_{init}(s_0) \cdot \mathbf{P}(s_0 s_1 \ldots s_n)$$

Cylinder set

The cylinder set of finite path $\hat{\pi} = s_0 s_1 \dots s_n \in Paths^*(\mathcal{D})$ is defined by:

$$Cyl(\hat{\pi}) = \{ \pi \in Paths(\mathcal{D}) \mid \hat{\pi} \text{ is a prefix of } \pi \}$$

Probability measure

Pr is the unique *probability measure* defined by:

$$Pr(Cyl(s_0...s_n)) = \iota_{init}(s_0) \cdot \mathbf{P}(s_0 s_1...s_n)$$

where
$$\mathbf{P}(s_0 s_1 \dots s_n) = \prod_{0 \leq i < n} \mathbf{P}(s_i, s_{i+1})$$
 for $n > 0$

Cylinder set

The cylinder set of finite path $\hat{\pi} = s_0 s_1 \dots s_n \in Paths^*(\mathcal{D})$ is defined by:

$$Cyl(\hat{\pi}) = \{ \pi \in Paths(\mathcal{D}) \mid \hat{\pi} \text{ is a prefix of } \pi \}$$

Probability measure

Pr is the unique *probability measure* defined by:

$$Pr(Cyl(s_0 \dots s_n)) = \iota_{init}(s_0) \cdot \mathbf{P}(s_0 s_1 \dots s_n)$$

where $\mathbf{P}(s_0 s_1 \dots s_n) = \prod_{0 \le i \le n} \mathbf{P}(s_i, s_{i+1})$ for $n > 0$ and $\mathbf{P}(s_0) = \iota_{init}(s_0)$

Measurability theorem

Events $\Diamond G$, $\Box G$, $\overline{F} \cup G$, $\Box \Diamond G$ and $\Diamond \Box G$ are measurable on any DTMC.

Measurability theorem

Events $\Diamond G$, $\Box G$, $\overline{F} \cup G$, $\Box \Diamond G$ and $\Diamond \Box G$ are measurable on any DTMC.

Proof:

To show this, every event has to be expressed as allowed operations (complement and/or countable unions) of the events — our cylinder sets!— of a DTMC.

Measurability theorem

Events $\Diamond G$, $\Box G$, $\overline{F} \cup G$, $\Box \Diamond G$ and $\Diamond \Box G$ are measurable on any DTMC.

Proof:

To show this, every event has to be expressed as allowed operations (complement and/or countable unions) of the events — our cylinder sets!— of a DTMC.

Note that $\Box G = \overline{\Diamond \overline{G}}$ and $\Diamond \Box G = \overline{\Box \Diamond \overline{G}}$.

Measurability theorem

Events $\Diamond G$, $\Box G$, $\overline{F} \cup G$, $\Box \Diamond G$ and $\Diamond \Box G$ are measurable on any DTMC.

Proof:

To show this, every event has to be expressed as allowed operations (complement and/or countable unions) of the events — our cylinder sets!— of a DTMC.

Note that $\Box G = \overline{\Diamond \overline{G}}$ and $\Diamond \Box G = \overline{\Box \Diamond \overline{G}}$.

It remains to prove the measurability for the remaining three cases.

Measurability theorem

Events $\Diamond G$, $\Box G$, $\overline{F} \cup G$, $\Box \Diamond G$ and $\Diamond \Box G$ are measurable on any DTMC.

Proof:

To show this, every event has to be expressed as allowed operations (complement and/or countable unions) of the events — our cylinder sets!— of a DTMC.

Note that $\Box G = \overline{\Diamond \overline{G}}$ and $\Diamond \Box G = \overline{\Box \Diamond \overline{G}}$.

It remains to prove the measurability for the remaining three cases.

Which event does $\Diamond G$ exactly mean?

Which event does $\Diamond G$ exactly mean?

the union of all cylinders $Cyl(s_0 \dots s_n)$ where

 $s_0 \dots s_n$ is a finite path in \mathcal{D} with $s_0, \dots, s_{n-1} \notin G$ and $s_n \in G$, i.e.,

Which event does $\Diamond G$ exactly mean?

the union of all cylinders $Cyl(s_0 \dots s_n)$ where

 $s_0 \dots s_n$ is a finite path in \mathcal{D} with $s_0, \dots, s_{n-1} \notin G$ and $s_n \in G$, i.e.,

$$\Diamond G = \bigcup_{s_0 \dots s_n \in Paths^*(\mathcal{D}) \cap (S \setminus G)^* G} Cyl(s_0 \dots s_n)$$

Which event does $\Diamond G$ exactly mean?

the union of all cylinders $Cyl(s_0 \dots s_n)$ where

 $s_0 \dots s_n$ is a finite path in \mathcal{D} with $s_0, \dots, s_{n-1} \notin G$ and $s_n \in G$, i.e.,

$$\Diamond G = \bigcup_{s_0 \dots s_n \in Paths^*(\mathcal{D}) \cap (S \setminus G)^* G} Cyl(s_0 \dots s_n)$$

Thus $\Diamond G$ is measurable.

Proof for $\Diamond \mathbf{G}$

Which event does $\Diamond G$ exactly mean?

the union of all cylinders $Cyl(s_0 \dots s_n)$ where

 $s_0 \dots s_n$ is a finite path in \mathcal{D} with $s_0, \dots, s_{n-1} \notin G$ and $s_n \in G$, i.e.,

$$\Diamond G = \bigcup_{s_0 \dots s_n \in Paths^*(\mathcal{D}) \cap (S \setminus G)^* G} Cyl(s_0 \dots s_n)$$

Thus $\Diamond G$ is measurable.

As all cylinder sets are pairwise disjoint, its probability is defined by:

$$Pr(\Diamond G) = \sum_{s_0 \dots s_n \in Paths^*(\mathcal{D}) \cap (S \setminus G)^* G} Pr(Cyl(s_0 \dots s_n))$$

Which event does $\Diamond G$ exactly mean?

the union of all cylinders $Cyl(s_0 \dots s_n)$ where

 $s_0 \dots s_n$ is a finite path in \mathcal{D} with $s_0, \dots, s_{n-1} \notin G$ and $s_n \in G$, i.e.,

$$\Diamond G = \bigcup_{s_0 \dots s_n \in Paths^*(\mathcal{D}) \cap (S \setminus G)^* G} Cyl(s_0 \dots s_n)$$

Thus $\Diamond G$ is measurable.

As all cylinder sets are pairwise disjoint, its probability is defined by:

$$Pr(\Diamond G) = \sum_{s_0 \dots s_n \in Paths^*(\mathcal{D}) \cap (S \setminus G)^* G} Pr(Cyl(s_0 \dots s_n))$$
$$= \sum_{s_0 \dots s_n \in Paths^*(\mathcal{D}) \cap (S \setminus G)^* G} \iota_{init}(s_0) \cdot \mathbf{P}(s_0 \dots s_n)$$

Which event does $\Diamond G$ exactly mean?

the union of all cylinders $Cyl(s_0 \dots s_n)$ where

 $s_0 \dots s_n$ is a finite path in \mathcal{D} with $s_0, \dots, s_{n-1} \notin G$ and $s_n \in G$, i.e.,

$$\Diamond G = \bigcup_{s_0 \dots s_n \in Paths^*(\mathcal{D}) \cap (S \setminus G)^* G} Cyl(s_0 \dots s_n)$$

Thus $\Diamond G$ is measurable.

As all cylinder sets are pairwise disjoint, its probability is defined by:

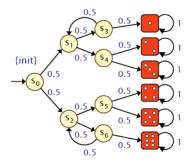
$$Pr(\Diamond G) = \sum_{s_0 \dots s_n \in Paths^*(\mathcal{D}) \cap (S \setminus G)^* G} Pr(Cyl(s_0 \dots s_n))$$
$$= \sum_{s_0 \dots s_n \in Paths^*(\mathcal{D}) \cap (S \setminus G)^* G} \iota_{init}(s_0) \cdot \mathbf{P}(s_0 \dots s_n)$$

A similar proof strategy applies to the case $\overline{F} \cup G$.

A Measurable Space on Infinite Paths

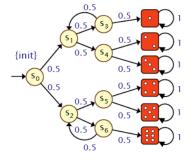
Proof for $\Box \Diamond \mathbf{G}$

Consider the event
\$\langle 4\$



- Consider the event
 \$\langle 4\$
- Using the previous theorem we obtain:

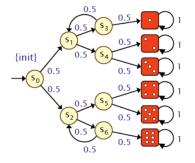
$$Pr(\diamond 4) = \sum_{s_0 \dots s_n \in (S \setminus 4^*)4} \mathbf{P}(s_0 \dots s_n)$$



- Consider the event
 \$\langle 4\$
- Using the previous theorem we obtain:

$$Pr(\diamond 4) = \sum_{s_0 \dots s_n \in (S \setminus 4^*)4} \mathbf{P}(s_0 \dots s_n)$$

• This yields: $P(s_0s_2s_54) + P(s_0s_2s_6s_2s_54) + \dots$



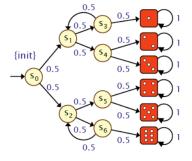
- Consider the event
 \$\langle 4\$
- Using the previous theorem we obtain:

$$Pr(\diamond 4) = \sum_{s_0 \dots s_n \in (S \setminus 4^*)4} \mathbf{P}(s_0 \dots s_n)$$

• This yields: $P(s_0s_2s_54) + P(s_0s_2s_6s_2s_54) + \dots$

• Or:
$$\sum_{k=0}^{\infty} \mathbf{P}(s_0 s_2 (s_6 s_2)^k s_5 4)$$

 \sim



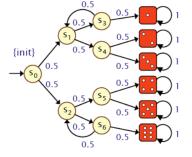
- Consider the event
 \$\langle 4\$
- Using the previous theorem we obtain:

$$Pr(\diamond 4) = \sum_{s_0 \dots s_n \in (S \setminus 4^*)4} \mathbf{P}(s_0 \dots s_n)$$

► This yields: $P(s_0s_2s_54) + P(s_0s_2s_6s_2s_54) + \dots$

• Or:
$$\sum_{k=0}^{\infty} \mathbf{P}(s_0 s_2 (s_6 s_2)^k s_5 4)$$

• Or:
$$\frac{1}{8} \cdot \sum_{k=0}^{\infty} (\frac{1}{4})^k$$



- Consider the event
 \$\langle 4\$
- Using the previous theorem we obtain:

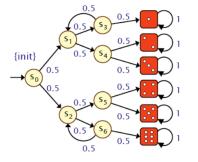
$$Pr(\diamond 4) = \sum_{s_0 \dots s_n \in (S \setminus 4^*)4} \mathbf{P}(s_0 \dots s_n)$$

► This yields: $P(s_0s_2s_54) + P(s_0s_2s_6s_2s_54) + \dots$

• Or:
$$\sum_{k=0}^{\infty} \mathbf{P}(s_0 s_2 (s_6 s_2)^k s_5 4)$$

• Or:
$$\frac{1}{8} \cdot \sum_{k=0}^{\infty} \left(\frac{1}{4}\right)^k$$

• Geometric series: $\frac{1}{8} \cdot \frac{1}{1 - \frac{1}{4}} = \frac{1}{8} \cdot \frac{4}{3} = \frac{1}{6}$



- Consider the event
 \$\langle 4\$
- Using the previous theorem we obtain:

$$Pr(\diamond 4) = \sum_{s_0 \dots s_n \in (S \setminus 4^*)4} \mathbf{P}(s_0 \dots s_n)$$

• This yields:

$$P(s_0s_2s_54) + P(s_0s_2s_6s_2s_54) + \dots$$

• Or:
$$\sum_{k=0}^{\infty} \mathbf{P}(s_0 s_2(s_6 s_2)^k s_5 4)$$

• Or:
$$\frac{1}{8} \cdot \sum_{k=0}^{\infty} \left(\frac{1}{4}\right)^k$$

 \sim

• Geometric series:
$$\frac{1}{8} \cdot \frac{1}{1 - \frac{1}{4}} = \frac{1}{8} \cdot \frac{4}{3} = \frac{1}{6}$$

There is however an simpler way to obtain reachability probabilities!

0.5

0.5

0.5

0.5

{init}

5₀

0.5

5

0.5

Overview

3 A Measurable Space on Infinite Paths

4 Reachability Probabilities as Linear Equation Solution

Problem statement

Let \mathcal{D} be a DTMC with finite state space $S, s \in S$ and $G \subseteq S$.

Problem statement

Let \mathcal{D} be a DTMC with finite state space S, $s \in S$ and $G \subseteq S$.

Aim: determine $Pr(s \models \Diamond G) = Pr_s(\Diamond G)$

Problem statement

Let \mathcal{D} be a DTMC with finite state space $S, s \in S$ and $G \subseteq S$.

Aim: determine $Pr(s \models \Diamond G) = Pr_s(\Diamond G) = Pr_s\{\pi \in Paths(s) \mid \pi \in \Diamond G\}$

where Pr_s is the probability measure in \mathcal{D} with single initial state s.

Problem statement

Let \mathcal{D} be a DTMC with finite state space S, $s \in S$ and $G \subseteq S$.

Aim: determine $Pr(s \models \Diamond G) = Pr_s(\Diamond G) = Pr_s\{\pi \in Paths(s) \mid \pi \in \Diamond G\}$

where Pr_s is the probability measure in \mathcal{D} with single initial state s.

Characterisation of reachability probabilities

• Let variable $x_s = Pr(s \models \Diamond G)$ for any state s

Problem statement

Let \mathcal{D} be a DTMC with finite state space S, $s \in S$ and $G \subseteq S$.

Aim: determine $Pr(s \models \Diamond G) = Pr_s(\Diamond G) = Pr_s\{\pi \in Paths(s) \mid \pi \in \Diamond G\}$

where Pr_s is the probability measure in \mathcal{D} with single initial state s.

- Let variable $x_s = Pr(s \models \Diamond G)$ for any state s
 - if **G** is not reachable from s, then $x_s = 0$

Problem statement

Let \mathcal{D} be a DTMC with finite state space S, $s \in S$ and $G \subseteq S$.

Aim: determine $Pr(s \models \Diamond G) = Pr_s(\Diamond G) = Pr_s\{\pi \in Paths(s) \mid \pi \in \Diamond G\}$

where Pr_s is the probability measure in \mathcal{D} with single initial state s.

- Let variable $x_s = Pr(s \models \Diamond G)$ for any state s
 - if **G** is not reachable from **s**, then $x_s = 0$
 - if $s \in \mathbf{G}$ then $x_s = 1$

Problem statement

Let \mathcal{D} be a DTMC with finite state space S, $s \in S$ and $G \subseteq S$.

Aim: determine $Pr(s \models \Diamond G) = Pr_s(\Diamond G) = Pr_s\{\pi \in Paths(s) \mid \pi \in \Diamond G\}$

where Pr_s is the probability measure in \mathcal{D} with single initial state s.

- Let variable $x_s = Pr(s \models \Diamond G)$ for any state s
 - if **G** is not reachable from **s**, then $x_s = 0$
 - if $s \in G$ then $x_s = 1$
- For any state $s \in Pre^*(G) \setminus G$:

Problem statement

Let \mathcal{D} be a DTMC with finite state space S, $s \in S$ and $G \subseteq S$.

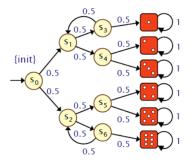
Aim: determine $Pr(s \models \Diamond G) = Pr_s(\Diamond G) = Pr_s\{\pi \in Paths(s) \mid \pi \in \Diamond G\}$

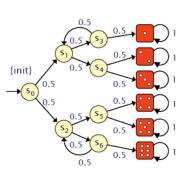
where Pr_s is the probability measure in \mathcal{D} with single initial state s.

- Let variable $x_s = Pr(s \models \Diamond G)$ for any state s
 - if **G** is not reachable from *s*, then $x_s = 0$
 - if $s \in G$ then $x_s = 1$
- For any state $s \in Pre^*(G) \setminus G$:

$$x_{s} = \underbrace{\sum_{t \in S \setminus G} \mathbf{P}(s, t) \cdot x_{t}}_{\text{reach } G \text{ via } t \in S \setminus G} + \underbrace{\sum_{u \in G} \mathbf{P}(s, u)}_{\text{reach } G \text{ in one step}}$$

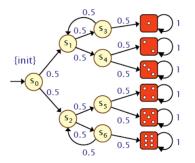
Consider the event
\$\langle 4\$





- Consider the event
 \$\lambda4\$
- Using the previous characterisation we obtain:

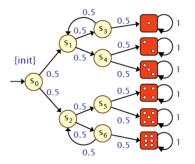
$$x_1 = x_2 = x_3 = x_5 = x_6 = 0$$
 and $x_4 = 1$



- Consider the event
 \$\lambda4\$
- Using the previous characterisation we obtain:

$$x_1 = x_2 = x_3 = x_5 = x_6 = 0$$
 and $x_4 = 1$

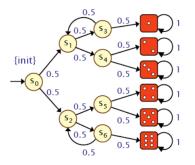
$$x_{s_1} = x_{s_3} = x_{s_4} = 0$$



- Consider the event
 \$\lambda4\$
- Using the previous characterisation we obtain:

$$x_1 = x_2 = x_3 = x_5 = x_6 = 0$$
 and $x_4 = 1$

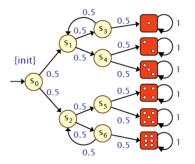
$$x_{s_1} = x_{s_3} = x_{s_4} = 0$$
$$x_{s_0} = \frac{1}{2}x_{s_1} + \frac{1}{2}x_{s_2}$$



- Consider the event
 \$\lambda4\$
- Using the previous characterisation we obtain:

$$x_1 = x_2 = x_3 = x_5 = x_6 = 0$$
 and $x_4 = 1$

$$\begin{aligned} x_{s_1} &= x_{s_3} = x_{s_4} = 0\\ x_{s_0} &= \frac{1}{2}x_{s_1} + \frac{1}{2}x_{s_2}\\ x_{s_2} &= \frac{1}{2}x_{s_5} + \frac{1}{2}x_{s_6} \end{aligned}$$

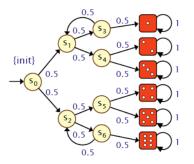


Consider the event
\$\langle 4\$

 $x_{s_5} = \frac{1}{2}x_5 + \frac{1}{2}x_4$

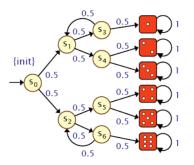
Using the previous characterisation we obtain:

$$\begin{aligned} x_1 &= x_2 = x_3 = x_5 = x_6 = 0 \text{ and } x_4 = 1 \\ x_{s_1} &= x_{s_3} = x_{s_4} = 0 \\ x_{s_0} &= \frac{1}{2}x_{s_1} + \frac{1}{2}x_{s_2} \\ x_{s_2} &= \frac{1}{2}x_{s_5} + \frac{1}{2}x_{s_6} \end{aligned}$$



- Consider the event
 \$\lambda4\$
- Using the previous characterisation we obtain:

$$\begin{split} x_1 &= x_2 = x_3 = x_5 = x_6 = 0 \text{ and } x_4 = 1 \\ x_{s_1} &= x_{s_3} = x_{s_4} = 0 \\ x_{s_0} &= \frac{1}{2} x_{s_1} + \frac{1}{2} x_{s_2} \\ x_{s_2} &= \frac{1}{2} x_{s_5} + \frac{1}{2} x_{s_6} \\ x_{s_5} &= \frac{1}{2} x_5 + \frac{1}{2} x_4 \\ x_{s_6} &= \frac{1}{2} x_{s_2} + \frac{1}{2} x_6 \end{split}$$



- Consider the event
 \$\langle 4\$
- Using the previous characterisation we obtain:

$$x_1 = x_2 = x_3 = x_5 = x_6 = 0$$
 and $x_4 = 1$

$$\begin{aligned} x_{s_1} &= x_{s_3} = x_{s_4} = 0 \\ x_{s_0} &= \frac{1}{2}x_{s_1} + \frac{1}{2}x_{s_2} \\ x_{s_2} &= \frac{1}{2}x_{s_5} + \frac{1}{2}x_{s_6} \\ x_{s_5} &= \frac{1}{2}x_5 + \frac{1}{2}x_4 \\ x_{s_6} &= \frac{1}{2}x_{s_2} + \frac{1}{2}x_6 \end{aligned}$$

Gaussian elimination yields:

$$x_{s_5} = \frac{1}{2}$$
, $x_{s_2} = \frac{1}{3}$, $x_{s_6} = \frac{1}{6}$, and $x_{s_0} = \frac{1}{6}$

Reachability probabilities as linear equation system

Reachability probabilities as linear equation system

• Let $S_{?} = Pre^{*}(G) \setminus G$, the states that can reach G by > 0 steps

Reachability probabilities as linear equation system

- Let $S_{?} = Pre^{*}(G) \setminus G$, the states that can reach G by > 0 steps
- ► **A** = $(\mathbf{P}(s, t))_{s,t \in S_{?}}$, the transition probabilities in $S_{?}$

Reachability probabilities as linear equation system

- Let $S_? = Pre^*(G) \setminus G$, the states that can reach G by > 0 steps
- $\mathbf{A} = (\mathbf{P}(s, t))_{s, t \in S_2}$, the transition probabilities in S_2
- **b** = $(b_s)_{s \in S_7}$, the probes to reach **G** in 1 step, i.e., $b_s = \sum_{u \in G} \mathbf{P}(s, u)$

Reachability probabilities as linear equation system

- Let $S_{?} = Pre^{*}(G) \setminus G$, the states that can reach G by > 0 steps
- $\mathbf{A} = (\mathbf{P}(s, t))_{s, t \in S_2}$, the transition probabilities in S_2
- **b** = $(b_s)_{s \in S_i}$, the probes to reach **G** in 1 step, i.e., $b_s = \sum_{u \in G} \mathbf{P}(s, u)$

Then: $\mathbf{x} = (x_s)_{s \in S_7}$ with $x_s = Pr(s \models \Diamond G)$ is the unique solution of:

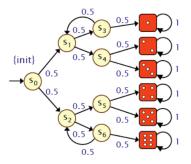
Reachability probabilities as linear equation system

- Let $S_{?} = Pre^{*}(G) \setminus G$, the states that can reach G by > 0 steps
- ► $\mathbf{A} = (\mathbf{P}(s, t))_{s,t \in S_7}$, the transition probabilities in S_7
- **b** = $(b_s)_{s \in S_1}$, the probes to reach **G** in 1 step, i.e., $b_s = \sum_{u \in G} \mathbf{P}(s, u)$

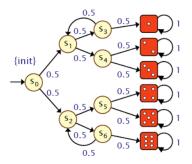
Then: $\mathbf{x} = (x_s)_{s \in S_7}$ with $x_s = Pr(s \models \Diamond G)$ is the unique solution of:

$$\mathbf{x} = \mathbf{A} \cdot \mathbf{x} + \mathbf{b}$$
 or $(\mathbf{I} - \mathbf{A}) \cdot \mathbf{x} = \mathbf{b}$

where **I** is the identity matrix of cardinality $|S_{?}| \times |S_{?}|$.

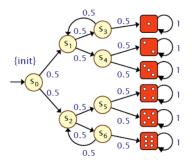


Consider the event
\$\langle 4\$



Consider the event
\$\langle 4\$

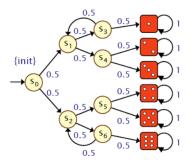
•
$$S_? = \{ s_0, s_2, s_5, s_6 \}$$



Consider the event \U00654

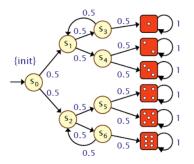
►
$$S_? = \{ s_0, s_2, s_5, s_6 \}$$

$$\left(\begin{array}{ccccc} 1 & -\frac{1}{2} & 0 & 0 \\ 0 & 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 & 0 \\ 0 & -\frac{1}{2} & 0 & 1 \end{array}\right) \cdot \left(\begin{array}{c} x_{s_0} \\ x_{s_2} \\ x_{s_5} \\ x_{s_6} \end{array}\right)$$



► Consider the event ♦4

$$\begin{array}{c} S_{?} = \left\{ s_{0}, s_{2}, s_{5}, s_{6} \right\} \\ \left(\begin{array}{cccc} 1 & -\frac{1}{2} & 0 & 0 \\ 0 & 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 & 0 \\ 0 & -\frac{1}{2} & 0 & 1 \end{array} \right) \cdot \left(\begin{array}{c} x_{s_{0}} \\ x_{s_{2}} \\ x_{s_{5}} \\ x_{s_{6}} \end{array} \right) = \left(\begin{array}{c} 0 \\ 0 \\ \frac{1}{2} \\ 0 \end{array} \right) \end{array}$$



Consider the event \U00654

•
$$S_? = \{ s_0, s_2, s_5, s_6 \}$$

$$\begin{pmatrix} 1 & -\frac{1}{2} & 0 & 0 \\ 0 & 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 & 0 \\ 0 & -\frac{1}{2} & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x_{s_0} \\ x_{s_2} \\ x_{s_5} \\ x_{s_6} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \frac{1}{2} \\ 0 \end{pmatrix}$$

Gaussian elimination yields:

$$x_{s_5} = \frac{1}{2}$$
, $x_{s_2} = \frac{1}{3}$, $x_{s_6} = \frac{1}{6}$, and $x_{s_0} = \frac{1}{6}$

Problem statement

Problem statement

Let \mathcal{D} be a DTMC with finite state space S, $s \in S$ and \overline{F} , $G \subseteq S$.

Problem statement

Let \mathcal{D} be a DTMC with finite state space S, $s \in S$ and \overline{F} , $G \subseteq S$.

$$\mathsf{Aim} \colon \mathit{Pr}(\mathsf{s} \models \overline{\mathsf{F}} \cup \mathsf{G}) \,=\, \mathit{Pr}_{\mathsf{s}}(\overline{\mathsf{F}} \cup \mathsf{G}) \,=\, \mathit{Pr}_{\mathsf{s}}\{\, \pi \in \mathit{Paths}(\mathsf{s}) \mid \pi \models \overline{\mathsf{F}} \cup \mathsf{G} \,\}$$

where Pr_s is the probability measure in \mathcal{D} with single initial state s.

Problem statement

Let \mathcal{D} be a DTMC with finite state space S, $s \in S$ and \overline{F} , $G \subseteq S$.

$$\mathsf{Aim} \colon \mathit{Pr}(\mathsf{s} \models \overline{\mathsf{F}} \cup \mathsf{G}) \,=\, \mathit{Pr}_{\mathsf{s}}(\overline{\mathsf{F}} \cup \mathsf{G}) \,=\, \mathit{Pr}_{\mathsf{s}}\{\, \pi \in \mathit{Paths}(\mathsf{s}) \mid \pi \models \overline{\mathsf{F}} \cup \mathsf{G} \,\}$$

where Pr_s is the probability measure in \mathcal{D} with single initial state s.

• Let variable
$$x_s = Pr(s \models \overline{F} \cup G)$$
 for any state s

Problem statement

Let \mathcal{D} be a DTMC with finite state space S, $s \in S$ and \overline{F} , $G \subseteq S$.

$$\mathsf{Aim} \colon \mathit{Pr}(\mathsf{s} \models \overline{\mathsf{F}} \cup \mathsf{G}) \,=\, \mathit{Pr}_{\mathsf{s}}(\overline{\mathsf{F}} \cup \mathsf{G}) \,=\, \mathit{Pr}_{\mathsf{s}}\{\, \pi \in \mathit{Paths}(\mathsf{s}) \mid \pi \models \overline{\mathsf{F}} \cup \mathsf{G} \,\}$$

where Pr_s is the probability measure in \mathcal{D} with single initial state s.

- Let variable $x_s = Pr(s \models \overline{F} \cup G)$ for any state s
 - if G is not reachable from s via \overline{F} , then $x_s = 0$

Problem statement

Let \mathcal{D} be a DTMC with finite state space S, $s \in S$ and \overline{F} , $G \subseteq S$.

$$\mathsf{Aim} \colon \mathit{Pr}(\mathsf{s} \models \overline{\mathsf{F}} \cup \mathsf{G}) \,=\, \mathit{Pr}_{\mathsf{s}}(\overline{\mathsf{F}} \cup \mathsf{G}) \,=\, \mathit{Pr}_{\mathsf{s}}\{\, \pi \in \mathit{Paths}(\mathsf{s}) \mid \pi \models \overline{\mathsf{F}} \cup \mathsf{G} \,\}$$

where Pr_s is the probability measure in \mathcal{D} with single initial state s.

- Let variable $x_s = Pr(s \models \overline{F} \cup G)$ for any state s
 - if G is not reachable from s via \overline{F} , then $x_s = 0$
 - if $s \in \mathbf{G}$ then $x_s = 1$

Problem statement

Let \mathcal{D} be a DTMC with finite state space S, $s \in S$ and \overline{F} , $G \subseteq S$.

$$\mathsf{Aim} \colon \mathit{Pr}(\mathsf{s} \models \overline{\mathsf{F}} \cup \mathsf{G}) \,=\, \mathit{Pr}_{\mathsf{s}}(\overline{\mathsf{F}} \cup \mathsf{G}) \,=\, \mathit{Pr}_{\mathsf{s}}\{\, \pi \in \mathit{Paths}(\mathsf{s}) \mid \pi \models \overline{\mathsf{F}} \cup \mathsf{G} \,\}$$

where Pr_s is the probability measure in \mathcal{D} with single initial state s.

- Let variable $x_s = Pr(s \models \overline{F} \cup G)$ for any state s
 - if G is not reachable from s via \overline{F} , then $x_s = 0$
 - if $s \in \mathbf{G}$ then $x_s = 1$
- For any state $s \in (Pre^*(G) \cap \overline{F}) \setminus G$:

Problem statement

Let \mathcal{D} be a DTMC with finite state space S, $s \in S$ and \overline{F} , $G \subseteq S$.

$$\mathsf{Aim} \colon \mathit{Pr}(\mathsf{s} \models \overline{\mathsf{F}} \cup \mathsf{G}) \,=\, \mathit{Pr}_{\mathsf{s}}(\overline{\mathsf{F}} \cup \mathsf{G}) \,=\, \mathit{Pr}_{\mathsf{s}}\{\, \pi \in \mathit{Paths}(\mathsf{s}) \mid \pi \models \overline{\mathsf{F}} \cup \mathsf{G} \,\}$$

where Pr_s is the probability measure in \mathcal{D} with single initial state s.

Characterisation of constrained reachability probabilities

- Let variable $x_s = Pr(s \models \overline{F} \cup G)$ for any state s
 - if G is not reachable from s via \overline{F} , then $x_s = 0$
 - if $s \in \mathbf{G}$ then $x_s = 1$
- For any state $s \in (Pre^*(G) \cap \overline{F}) \setminus G$:

$$x_s = \sum_{t \in S \setminus G} \mathbf{P}(s, t) \cdot x_t + \sum_{u \in G} \mathbf{P}(s, u)$$

26/38

►
$$S_{=1} = G$$

►
$$S_{=0} = \{ s \in S \mid Pr(\overline{F} \cup G) = 0 \}$$

$$\blacktriangleright S_? = S \setminus (S_{=0} \cup S_{=1})$$

$$S_{=1} = G$$

►
$$S_{=0} = \{ s \in S \mid Pr(\overline{F} \cup G) = 0 \}$$

$$\bullet S_? = S \setminus (S_{=0} \cup S_{=1})$$

$$S_{=1} = G$$

►
$$S_{=0} = \{ s \in S \mid Pr(\overline{F} \cup G) = 0 \}$$

$$\blacktriangleright S_? = S \setminus (S_{=0} \cup S_{=1})$$

•
$$G \subseteq S_{=1} \subseteq \{ s \in S \mid Pr(\overline{F} \cup G) = 1 \}$$

$$S_{=1} = G$$

►
$$S_{=0} = \{ s \in S \mid Pr(\overline{F} \cup G) = 0 \}$$

$$\blacktriangleright S_? = S \setminus (S_{=0} \cup S_{=1})$$

•
$$G \subseteq S_{=1} \subseteq \{ s \in S \mid Pr(\overline{F} \cup G) = 1 \}$$

▶
$$F \setminus G \subseteq S_{=0} \subseteq \{ s \in S \mid Pr(\overline{F} \cup G) = 0 \}$$

$$S_{=1} = G$$

►
$$S_{=0} = \{ s \in S \mid Pr(\overline{F} \cup G) = 0 \}$$

$$\blacktriangleright S_? = S \setminus (S_{=0} \cup S_{=1})$$

•
$$G \subseteq S_{=1} \subseteq \{ s \in S \mid Pr(\overline{F} \cup G) = 1 \}$$

►
$$F \setminus G \subseteq S_{=0} \subseteq \{ s \in S \mid Pr(\overline{F} \cup G) = 0 \}$$

$$\blacktriangleright S_? = S \setminus (S_{=0} \cup S_{=1})$$

$$S_{=1} = G$$

►
$$S_{=0} = \{ s \in S \mid Pr(\overline{F} \cup G) = 0 \}$$

$$\blacktriangleright S_? = S \setminus (S_{=0} \cup S_{=1})$$

In fact any partition of S satisfying the following constraints will do:

•
$$G \subseteq S_{=1} \subseteq \{ s \in S \mid Pr(\overline{F} \cup G) = 1 \}$$

►
$$F \setminus G \subseteq S_{=0} \subseteq \{ s \in S \mid Pr(\overline{F} \cup G) = 0 \}$$

$$\blacktriangleright S_? = S \setminus (S_{=0} \cup S_{=1})$$

In practice, $S_{=0}$ and $S_{=1}$ should be chosen as large as possible, as then $S_{?}$ is of minimal size, and the smallest linear equation system needs to be solved.

$$S_{=1} = G$$

►
$$S_{=0} = \{ s \in S \mid Pr(\overline{F} \cup G) = 0 \}$$

$$\blacktriangleright S_? = S \setminus (S_{=0} \cup S_{=1})$$

In fact any partition of S satisfying the following constraints will do:

•
$$G \subseteq S_{=1} \subseteq \{ s \in S \mid Pr(\overline{F} \cup G) = 1 \}$$

►
$$F \setminus G \subseteq S_{=0} \subseteq \{ s \in S \mid Pr(\overline{F} \cup G) = 0 \}$$

$$\bullet S_? = S \setminus (S_{=0} \cup S_{=1})$$

In practice, $S_{=0}$ and $S_{=1}$ should be chosen as large as possible, as then $S_{?}$ is of minimal size, and the smallest linear equation system needs to be solved.

Thus
$$S_{=0} = \{ s \in S \mid Pr(\overline{F} \cup G) = 0 \}$$
 and $S_{=1} = \{ s \in S \mid Pr(\overline{F} \cup G) = 1 \}$.

These sets can easily be determined in linear time by a graph analysis.

Theorem

The vector
$$\mathbf{x} = \left(\Pr(s \models \overline{F} \cup G) \right)_{s \in S_7}$$
 is the *unique* solution of:
 $\mathbf{y} = \mathbf{A} \cdot \mathbf{y} + \mathbf{b}$

y

with **A** and **b** as defined before.

Theorem

The vector
$$\mathbf{x} = \left(\Pr(s \models \overline{F} \cup G) \right)_{s \in S_{?}}$$
 is the *unique* solution of:
 $\mathbf{y} = \mathbf{A} \cdot \mathbf{y} + \mathbf{b}$

with **A** and **b** as defined before.

Furthermore, let:

$$\mathbf{x}^{(0)} = \mathbf{0}$$
 and $\mathbf{x}^{(i+1)} = \mathbf{A} \cdot \mathbf{x}^{(i)} + \mathbf{b}$ for $0 \leq i$.

1.
$$\mathbf{x}^{(n)}(s) = Pr(s \models \overline{F} \cup \mathbb{G}^{\leq n} \mathbf{G})$$
 for $s \in S_{?}$

Theorem

The vector
$$\mathbf{x} = \left(\Pr(s \models \overline{F} \cup G) \right)_{s \in S_{?}}$$
 is the *unique* solution of:
 $\mathbf{y} = \mathbf{A} \cdot \mathbf{y} + \mathbf{b}$

with **A** and **b** as defined before.

Furthermore, let:

$$\mathbf{x}^{(0)} = \mathbf{0}$$
 and $\mathbf{x}^{(i+1)} = \mathbf{A} \cdot \mathbf{x}^{(i)} + \mathbf{b}$ for $0 \leq i$.

1.
$$\mathbf{x}^{(n)}(s) = Pr(s \models \overline{F} \cup {}^{\leq n} G)$$
 for $s \in S_{\overline{s}}$
2. $\mathbf{x}^{(0)} \leq \mathbf{x}^{(1)} \leq \mathbf{x}^{(2)} \leq \ldots \leq \mathbf{x}$

Theorem

The vector
$$\mathbf{x} = \left(\Pr(s \models \overline{F} \cup G) \right)_{s \in S_{?}}$$
 is the *unique* solution of:
 $\mathbf{y} = \mathbf{A} \cdot \mathbf{y} + \mathbf{b}$

with **A** and **b** as defined before.

Furthermore, let:

$$\mathbf{x}^{(0)} = \mathbf{0}$$
 and $\mathbf{x}^{(i+1)} = \mathbf{A} \cdot \mathbf{x}^{(i)} + \mathbf{b}$ for $0 \leq i$.

1.
$$\mathbf{x}^{(n)}(s) = Pr(s \models \overline{F} \cup \mathbb{S}^n G)$$
 for $s \in S_?$
2. $\mathbf{x}^{(0)} \leq \mathbf{x}^{(1)} \leq \mathbf{x}^{(2)} \leq \ldots \leq \mathbf{x}$
3. $\mathbf{x} = \lim_{n \to \infty} \mathbf{x}^{(n)}$

Theorem

The vector
$$\mathbf{x} = \left(\Pr(s \models \overline{F} \cup G) \right)_{s \in S_7}$$
 is the *unique* solution of:
 $\mathbf{y} = \mathbf{A} \cdot \mathbf{y} + \mathbf{b}$

with **A** and **b** as defined before.

Furthermore, let:

$$\mathbf{x}^{(0)} = \mathbf{0}$$
 and $\mathbf{x}^{(i+1)} = \mathbf{A} \cdot \mathbf{x}^{(i)} + \mathbf{b}$ for $0 \leq i$.

1.
$$\mathbf{x}^{(n)}(s) = Pr(s \models \overline{F} \cup {}^{\leq n} G)$$
 for $s \in S_{?}$
2. $\mathbf{x}^{(0)} \leq \mathbf{x}^{(1)} \leq \mathbf{x}^{(2)} \leq \ldots \leq \mathbf{x}$
3. $\mathbf{x} = \lim_{n \to \infty} \mathbf{x}^{(n)}$
where $\overline{F} \cup {}^{\leq n} G$ contains those paths that reach G via \overline{F} within n steps.

Reachability Probabilities as Linear Equation Solution

Proof

Iterative algorithms to compute x

Iterative algorithms to compute x

There are various algorithms to compute $\mathbf{x} = \lim_{n \to \infty} \mathbf{x}^{(n)}$ where:

$$\mathbf{x}^{(0)} = \mathbf{0}$$
 and $\mathbf{x}^{(i+1)} = \mathbf{A} \cdot \mathbf{x}^{(i)} + \mathbf{b}$ for $0 \leqslant i$.

Iterative algorithms to compute x

There are various algorithms to compute $\mathbf{x} = \lim_{n \to \infty} \mathbf{x}^{(n)}$ where:

$$\mathbf{x}^{(0)} = \mathbf{0}$$
 and $\mathbf{x}^{(i+1)} = \mathbf{A} \cdot \mathbf{x}^{(i)} + \mathbf{b}$ for $0 \leqslant i$.

1.
$$\mathbf{x}^{(n)}(s) = \Pr(s \models \Diamond^{\leqslant n} \mathbf{G}) \text{ for } s \in S_?$$

Iterative algorithms to compute x

There are various algorithms to compute $\mathbf{x} = \lim_{n \to \infty} \mathbf{x}^{(n)}$ where:

$$\mathbf{x}^{(0)} = \mathbf{0}$$
 and $\mathbf{x}^{(i+1)} = \mathbf{A} \cdot \mathbf{x}^{(i)} + \mathbf{b}$ for $0 \leqslant i$.

1.
$$\mathbf{x}^{(n)}(s) = \Pr(s \models \Diamond^{\leq n} G) \text{ for } s \in S_?$$

2. $\mathbf{x}^{(0)} \leq \mathbf{x}^{(1)} \leq \mathbf{x}^{(2)} \leq \ldots \leq \mathbf{x} \text{ and } \mathbf{x} = \lim_{n \to \infty} \mathbf{x}^{(n)}$

Iterative algorithms to compute x

There are various algorithms to compute $\mathbf{x} = \lim_{n \to \infty} \mathbf{x}^{(n)}$ where:

$$\mathbf{x}^{(0)} = \mathbf{0}$$
 and $\mathbf{x}^{(i+1)} = \mathbf{A} \cdot \mathbf{x}^{(i)} + \mathbf{b}$ for $0 \leqslant i$.

Then:

1.
$$\mathbf{x}^{(n)}(s) = Pr(s \models \Diamond^{\leq n} \mathbf{G}) \text{ for } s \in S_?$$

2. $\mathbf{x}^{(0)} \leq \mathbf{x}^{(1)} \leq \mathbf{x}^{(2)} \leq \ldots \leq \mathbf{x} \text{ and } \mathbf{x} = \lim_{n \to \infty} \mathbf{x}^{(n)}$

The Power method computes vectors $\mathbf{x}^{(0)}, \mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots$ and aborts if:

This technique guarantees convergence.

Iterative algorithms to compute x

There are various algorithms to compute $\mathbf{x} = \lim_{n \to \infty} \mathbf{x}^{(n)}$ where:

$$\mathbf{x}^{(0)} = \mathbf{0}$$
 and $\mathbf{x}^{(i+1)} = \mathbf{A} \cdot \mathbf{x}^{(i)} + \mathbf{b}$ for $0 \leqslant i$.

Then:

1.
$$\mathbf{x}^{(n)}(s) = Pr(s \models \Diamond^{\leq n} \mathbf{G}) \text{ for } s \in S_?$$

2. $\mathbf{x}^{(0)} \leq \mathbf{x}^{(1)} \leq \mathbf{x}^{(2)} \leq \ldots \leq \mathbf{x} \text{ and } \mathbf{x} = \lim_{n \to \infty} \mathbf{x}^{(n)}$

The Power method computes vectors $\mathbf{x}^{(0)}, \mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots$ and aborts if:

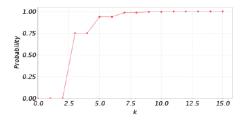
$$\max_{s\in S_7} |x_s^{(n+1)} - x_s^{(n)}| < arepsilon$$
 for some small tolerance $arepsilon$

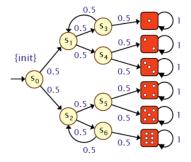
This technique guarantees convergence.

Alternatives: e.g., Jacobi or Gauss-Seidel, successive overrelaxation (SOR).

Example: Knuth's die

- Let $G = \{1, 2, 3, 4, 5, 6\}$
- Then $Pr(s_0 \models \Diamond G) = 1$
- And $Pr(s_0 \models \Diamond^{\leq k} G)$ for $k \in \mathbb{N}$ is given by:





Transient distribution

 $\mathbf{P}^{n}(s, t)$ equals the probability of being in state t after n steps given that the computation starts in s.

Transient distribution

 $\mathbf{P}^{n}(s, t)$ equals the probability of being in state t after n steps given that the computation starts in s.

The probability of DTMC D being in state t after exactly n transitions is:

$$\Theta_n^{\mathcal{D}}(t) = \sum_{s \in S} \iota_{\text{init}}(s) \cdot \mathbf{P}^n(s, t) =$$

Transient distribution

 $\mathbf{P}^{n}(s, t)$ equals the probability of being in state t after n steps given that the computation starts in s.

The probability of DTMC D being in state t after exactly n transitions is:

$$\Theta_n^{\mathcal{D}}(t) = \sum_{s \in S} \iota_{\text{init}}(s) \cdot \mathbf{P}^n(s, t) =$$

The function $\Theta_n^{\mathcal{D}}$ is the *transient state distribution* at epoch *n* of \mathcal{D} .

Transient distribution

 $\mathbf{P}^{n}(s, t)$ equals the probability of being in state t after n steps given that the computation starts in s.

The probability of DTMC D being in state t after exactly n transitions is:

$$\Theta_n^{\mathcal{D}}(t) = \sum_{s \in S} \iota_{\text{init}}(s) \cdot \mathbf{P}^n(s, t) =$$

The function $\Theta_n^{\mathcal{D}}$ is the *transient state distribution* at epoch *n* of \mathcal{D} . When considering $\Theta_n^{\mathcal{D}}$ as vector $(\Theta_n^{\mathcal{D}})_{t\in S}$ we have:

$$\Theta_n^{\mathcal{D}} = \iota_{\text{init}} \cdot \underbrace{\mathbf{P} \cdot \mathbf{P} \cdot \ldots \cdot \mathbf{P}}_{n \text{ times}} = \iota_{\text{init}} \cdot \mathbf{P}^n.$$

 $\text{Computation: } \Theta_0^{\mathcal{D}} = \iota_{\text{init}} \text{ and } \Theta_{n+1}^{\mathcal{D}} = \Theta_n^{\mathcal{D}} \cdot \mathbf{P} \text{ for } n \ge 0.$

Aim

Aim

Compute $Pr(\Diamond^{\leq n}G)$ in DTMC \mathcal{D} .

Aim

Compute $Pr(\Diamond^{\leq n}G)$ in DTMC \mathcal{D} . Observe that once a path π reaches G, then the remaining behaviour along π is not important.

Aim

Compute $Pr(\Diamond^{\leq n}G)$ in DTMC \mathcal{D} . Observe that once a path π reaches G, then the remaining behaviour along π is not important. This suggests to make all states in G absorbing.

Let DTMC $\mathcal{D} = (S, \mathbf{P}, \iota_{\text{init}}, AP, L)$ and $G \subseteq S$.

Aim

Compute $Pr(\Diamond^{\leq n}G)$ in DTMC \mathcal{D} . Observe that once a path π reaches G, then the remaining behaviour along π is not important. This suggests to make all states in G absorbing.

Let DTMC $\mathcal{D} = (S, \mathbf{P}, \iota_{\text{init}}, AP, L)$ and $G \subseteq S$. The DTMC $\mathcal{D}[G] = (S, \mathbf{P}_G, \iota_{\text{init}}, AP, L)$ with $\mathbf{P}_G(s, t) = \mathbf{P}(s, t)$ if $s \notin G$ and $\mathbf{P}_G(s, s) = 1$ if $s \in G$.

Aim

Compute $Pr(\Diamond^{\leq n}G)$ in DTMC \mathcal{D} . Observe that once a path π reaches G, then the remaining behaviour along π is not important. This suggests to make all states in G absorbing.

Let DTMC $\mathcal{D} = (S, \mathbf{P}, \iota_{\text{init}}, AP, L)$ and $G \subseteq S$. The DTMC $\mathcal{D}[G] = (S, \mathbf{P}_G, \iota_{\text{init}}, AP, L)$ with $\mathbf{P}_G(s, t) = \mathbf{P}(s, t)$ if $s \notin G$ and $\mathbf{P}_G(s, s) = 1$ if $s \in G$.

All outgoing transitions of $s \in G$ are replaced by a single self-loop at s.

Aim

Compute $Pr(\Diamond^{\leq n}G)$ in DTMC \mathcal{D} . Observe that once a path π reaches G, then the remaining behaviour along π is not important. This suggests to make all states in G absorbing.

Let DTMC $\mathcal{D} = (S, \mathbf{P}, \iota_{\text{init}}, AP, L)$ and $G \subseteq S$. The DTMC $\mathcal{D}[G] = (S, \mathbf{P}_G, \iota_{\text{init}}, AP, L)$ with $\mathbf{P}_G(s, t) = \mathbf{P}(s, t)$ if $s \notin G$ and $\mathbf{P}_G(s, s) = 1$ if $s \in G$.

All outgoing transitions of $s \in G$ are replaced by a single self-loop at s.

$$\underbrace{\Pr(\Diamond^{\leq n}G)}_{\text{reachability in }\mathcal{D}} =$$

Aim

Compute $Pr(\Diamond^{\leq n}G)$ in DTMC \mathcal{D} . Observe that once a path π reaches G, then the remaining behaviour along π is not important. This suggests to make all states in G absorbing.

Let DTMC $\mathcal{D} = (S, \mathbf{P}, \iota_{\text{init}}, AP, L)$ and $G \subseteq S$. The DTMC $\mathcal{D}[G] = (S, \mathbf{P}_G, \iota_{\text{init}}, AP, L)$ with $\mathbf{P}_G(s, t) = \mathbf{P}(s, t)$ if $s \notin G$ and $\mathbf{P}_G(s, s) = 1$ if $s \in G$.

All outgoing transitions of $s \in G$ are replaced by a single self-loop at s.

$$\underbrace{Pr(\Diamond^{\leq n}G)}_{\text{reachability in }\mathcal{D}} = \underbrace{Pr(\Diamond^{=n}G)}_{\text{reachability in }\mathcal{D}[G]} =$$

Aim

Compute $Pr(\Diamond^{\leq n}G)$ in DTMC \mathcal{D} . Observe that once a path π reaches G, then the remaining behaviour along π is not important. This suggests to make all states in G absorbing.

Let DTMC $\mathcal{D} = (S, \mathbf{P}, \iota_{\text{init}}, AP, L)$ and $G \subseteq S$. The DTMC $\mathcal{D}[G] = (S, \mathbf{P}_G, \iota_{\text{init}}, AP, L)$ with $\mathbf{P}_G(s, t) = \mathbf{P}(s, t)$ if $s \notin G$ and $\mathbf{P}_G(s, s) = 1$ if $s \in G$.

All outgoing transitions of $s \in G$ are replaced by a single self-loop at s.

$$\underbrace{\Pr(\Diamond^{\leq n} G)}_{\text{reachability in } \mathcal{D}} = \underbrace{\Pr(\Diamond^{=n} G)}_{\text{reachability in } \mathcal{D}[G]} = \underbrace{\iota_{\text{init}} \cdot \mathbf{P}_{G}^{n}}_{\text{in } \mathcal{D}[G]} =$$

Aim

Compute $Pr(\Diamond^{\leq n}G)$ in DTMC \mathcal{D} . Observe that once a path π reaches G, then the remaining behaviour along π is not important. This suggests to make all states in G absorbing.

Let DTMC $\mathcal{D} = (S, \mathbf{P}, \iota_{\text{init}}, AP, L)$ and $G \subseteq S$. The DTMC $\mathcal{D}[G] = (S, \mathbf{P}_G, \iota_{\text{init}}, AP, L)$ with $\mathbf{P}_G(s, t) = \mathbf{P}(s, t)$ if $s \notin G$ and $\mathbf{P}_G(s, s) = 1$ if $s \in G$.

All outgoing transitions of $s \in G$ are replaced by a single self-loop at s.

$$\underbrace{\Pr(\Diamond^{\leq n}G)}_{\text{reachability in }\mathcal{D}} = \underbrace{\Pr(\Diamond^{=n}G)}_{\text{reachability in }\mathcal{D}[G]} = \underbrace{\iota_{\text{init}} \cdot \mathbf{P}_{G}^{n}}_{\text{in }\mathcal{D}[G]} = \Theta_{n}^{\mathcal{D}[G]}$$

Reachability Probabilities as Linear Equation Solution

Constrained reachabilities vs. transient probabilities

Aim

Compute $Pr(\overline{F} \cup \mathbb{C}^{\leq n} G)$ in DTMC \mathcal{D} .

Aim

Compute $Pr(\overline{F} \cup \subseteq n G)$ in DTMC \mathcal{D} . Observe (as before) that once a path π reaches G via \overline{F} , then the remaining behaviour along π is not important.

Aim

Compute $Pr(\overline{F} \cup \leq^n G)$ in DTMC \mathcal{D} . Observe (as before) that once a path π reaches G via \overline{F} , then the remaining behaviour along π is not important. Now also observe that once $s \in F \setminus G$ is reached, then the remaining behaviour along π is not important.

Aim

Compute $Pr(\overline{F} \cup \leq^n G)$ in DTMC \mathcal{D} . Observe (as before) that once a path π reaches G via \overline{F} , then the remaining behaviour along π is not important. Now also observe that once $s \in F \setminus G$ is reached, then the remaining behaviour along π is not important. This suggests to make all states in G and $F \setminus G$ absorbing.

Aim

Compute $Pr(\overline{F} \cup {}^{\leq n} G)$ in DTMC \mathcal{D} . Observe (as before) that once a path π reaches G via \overline{F} , then the remaining behaviour along π is not important. Now also observe that once $s \in F \setminus G$ is reached, then the remaining behaviour along π is not important. This suggests to make all states in G and $F \setminus G$ absorbing.

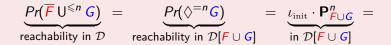
$$\underbrace{Pr(\overline{F} \cup {}^{\leq n} G)}_{\text{reachability in } \mathcal{D}} =$$

Aim

Compute $Pr(\overline{F} \cup {}^{\leq n} G)$ in DTMC \mathcal{D} . Observe (as before) that once a path π reaches G via \overline{F} , then the remaining behaviour along π is not important. Now also observe that once $s \in F \setminus G$ is reached, then the remaining behaviour along π is not important. This suggests to make all states in G and $F \setminus G$ absorbing.

Aim

Compute $Pr(\overline{F} \cup {}^{\leq n} G)$ in DTMC \mathcal{D} . Observe (as before) that once a path π reaches G via \overline{F} , then the remaining behaviour along π is not important. Now also observe that once $s \in F \setminus G$ is reached, then the remaining behaviour along π is not important. This suggests to make all states in G and $F \setminus G$ absorbing.

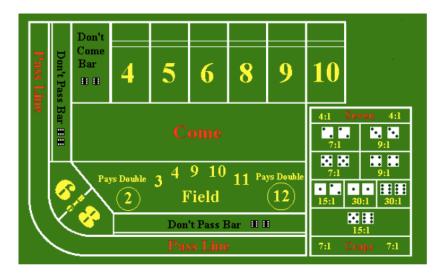


Aim

Compute $Pr(\overline{F} \cup {}^{\leq n} G)$ in DTMC \mathcal{D} . Observe (as before) that once a path π reaches G via \overline{F} , then the remaining behaviour along π is not important. Now also observe that once $s \in F \setminus G$ is reached, then the remaining behaviour along π is not important. This suggests to make all states in G and $F \setminus G$ absorbing.

$$\underbrace{\Pr(\overline{F} \cup^{\leq n} G)}_{\text{reachability in } \mathcal{D}} = \underbrace{\Pr(\Diamond^{=n} G)}_{\text{reachability in } \mathcal{D}[F \cup G]} = \underbrace{\iota_{\text{init}} \cdot \mathbf{P}_{F \cup G}^{n}}_{\text{in } \mathcal{D}[F \cup G]} = \Theta_{n}^{\mathcal{D}[F \cup G]}$$

Spare time tonight? Play Craps!



Roll two dice and bet

- Roll two dice and bet
- Come-out roll ("pass line" wager):
 - outcome 7 or 11: win

- Roll two dice and bet
- Come-out roll ("pass line" wager):
 - outcome 7 or 11: win
 - outcome 2, 3, or 12: lose ("craps")

- Roll two dice and bet
- Come-out roll ("pass line" wager):
 - outcome 7 or 11: win
 - outcome 2, 3, or 12: lose ("craps")
 - any other outcome: roll again (outcome is "point")

- Roll two dice and bet
- Come-out roll ("pass line" wager):
 - outcome 7 or 11: win
 - outcome 2, 3, or 12: lose ("craps")
 - any other outcome: roll again (outcome is "point")
- Repeat until 7 or the "point" is thrown:

- Roll two dice and bet
- Come-out roll ("pass line" wager):
 - outcome 7 or 11: win
 - outcome 2, 3, or 12: lose ("craps")
 - any other outcome: roll again (outcome is "point")
- Repeat until 7 or the "point" is thrown:
 - outcome 7: lose ("seven-out")

- Roll two dice and bet
- Come-out roll ("pass line" wager):
 - outcome 7 or 11: win
 - outcome 2, 3, or 12: lose ("craps")
 - any other outcome: roll again (outcome is "point")
- Repeat until 7 or the "point" is thrown:
 - outcome 7: lose ("seven-out")
 - outcome the point: win

- Roll two dice and bet
- Come-out roll ("pass line" wager):
 - outcome 7 or 11: win
 - outcome 2, 3, or 12: lose ("craps")
 - any other outcome: roll again (outcome is "point")
- Repeat until 7 or the "point" is thrown:
 - outcome 7: lose ("seven-out")
 - outcome the point: win
 - any other outcome: roll again

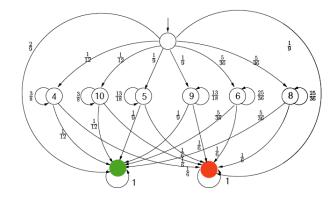
A DTMC model of Craps

Come-out roll:

- 7 or 11: win
- 2, 3, or 12: lose
- else: roll again
- Next roll(s):
 - 7: lose
 - point: win
 - else: roll again

A DTMC model of Craps

- Come-out roll:
 - 7 or 11: win
 - 2, 3, or 12: lose
 - else: roll again
- Next roll(s):
 - 7: lose
 - point: win
 - else: roll again



What is the probability to win the Craps game?

How to determine reachability probabilities?

1. Probabilities of sets of infinite paths defined using cylinders.

- 1. Probabilities of sets of infinite paths defined using cylinders.
- 2. Events $\Diamond G$, $\Box \Diamond G$ and $\overline{F} \cup G$ are measurable.

- 1. Probabilities of sets of infinite paths defined using cylinders.
- 2. Events $\Diamond G$, $\Box \Diamond G$ and $\overline{F} \cup G$ are measurable.
- 3. Reachability probabilities = unique solution of linear equation system.

- 1. Probabilities of sets of infinite paths defined using cylinders.
- 2. Events $\Diamond G$, $\Box \Diamond G$ and $\overline{F} \cup G$ are measurable.
- 3. Reachability probabilities = unique solution of linear equation system.
- 4. Bounded reachabilities = transient probabilities in a modified DTMC.