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What are Discrete-Time Markov Chains?

Overview
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What are Discrete-Time Markov Chains?

Geometric distribution

Let X be a discrete random variable, natural Kk >0 and 0 < p < 1. The

mass function of a geometric distribution is given by:

Pr{X=k}=(1-p)tp
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Geometric distribution

Let X be a discrete random variable, natural kK > 0 and 0 < p <
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mass function of a geometric distribution is given by:
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What are Discrete-Time Markov Chains?

Geometric distribution

Geometric distribution

Let X be a discrete random variable, natural k > 0 and 0 < p <

1. The
mass function of a geometric distribution is given by:
Pr{X=k}=(1-p)tp
We have E[X] = ; and VarlX] = =2 and cdf P{ X < k} =1 (1-p).

Geometric distributions and their cdf’s
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What are Discrete-Time Markov Chains?

Geometric distribution

Geometric distribution

Let X be a discrete random variable, natural kK > 0 and 0 < p <

1. The
mass function of a geometric distribution is given by:
Pr{X=k}=(1-p)klp
We have E[X] = and VarlX] = &£ and cdf Pr{ X < k} =1~ (1-p)*

Geometric distributions and their cdf’s
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Memoryless property

1. For any random variable X with a geometric distribution:
P{X=k+m|X>m} = P{X =k} forany meT k=>1

This is called the memoryless property, and X is a memoryless r.v..
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Memoryless property

1. For any random variable X with a geometric distribution:
P{X=k+m|X>m} = P{X =k} forany meT k=>1

This is called the memoryless property, and X is a memoryless r.v..

2. Any discrete random variable which is memoryless is geometrically
distributed.
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Memoryless property

1. For any random variable X with a geometric distribution:
P{X=k+m|X>m} = P{X =k} forany meT k=>1

This is called the memoryless property, and X is a memoryless r.v..

2. Any discrete random variable which is memoryless is geometrically
distributed.

Exercise.
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Markov property

|
The conditional probability distribution of future states of a Markov process only
depends on the current state and not on its further history.
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Markov property

The conditional probability distribution of future states of a Markov process only
depends on the current state and not on its further history.

Markov process

A discrete-time stochastic process { X(t) | t € T } over state space
{do, di,...} is a Markov process if for any to < t1 < ... < tp < tpy1:
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What are Discrete-Time Markov Chains?

Markov property

The conditional probability distribution of future states of a Markov process only
depends on the current state and not on its further history.

Markov process

A discrete-time stochastic process { X(t) | t € T } over state space
{do, di,...} is a Markov process if for any to < t1 < ... < tp < tpy1:

Pr{X(tn+1) = dnt1 | X(t0) = do, X(t1) = d1,..., X(ts) = dp }
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Markov property

|
The conditional probability distribution of future states of a Markov process only
depends on the current state and not on its further history.

Markov process

A discrete-time stochastic process { X(t) | t € T } over state space
{do, di,...} is a Markov process if for any to < t1 < ... < tp < tpy1:

Pr{X(tn+1) = dnt1 | X(t0) = do, X(t1) = d1,..., X(ts) = dp }

Pr{ X(tnt1) = dnt1 | X(tn) = dn }
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What are Discrete-Time Markov Chains?

Markov property

The conditional probability distribution of future states of a Markov process only
depends on the current state and not on its further history.

Markov process

A discrete-time stochastic process { X(t) | t € T } over state space
{do, di,...} is a Markov process if for any to < t1 < ... < tp < tpy1:

Pr{X(tn+1) = dnt1 | X(t0) = do, X(t1) = d1,..., X(ts) = dp }

Pr{ X(tnt1) = dnt1 | X(tn) = dn }

The distribution of X(t,+1), given the values X(ty) through X(t,), only
depends on the current state X(t,).
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Invariance to time-shifts

Time homogeneity

Markov process { X(t) | t € T } is time-homogeneous iff for any t' < t:

PHX(t)=d|X(t)=d'} = P{X(t—t)=d|X(0)=d}.
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What are Discrete-Time Markov Chains?

Invariance to time-shifts

Time homogeneity
Markov process { X(t) | t € T } is time-homogeneous iff for any t' < t:

PHX(t)=d|X(t)=d'} = P{X(t—t)=d|X(0)=d}.

A time-homogeneous stochastic process is invariant to time shifts.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems



What are Discrete-Time Markov Chains?

Invariance to time-shifts

Time homogeneity

Markov process { X(t) | t € T } is time-homogeneous iff for any t' < t:
Pr{X(t)=d | X(tY=d'} = P{X(t—t)=d|X(0)=d}.
A time-homogeneous stochastic process is invariant to time shifts.

Discrete-time Markov chain

A discrete-time Markov chain (DTMC) is a time-homogeneous Markov
process with discrete parameter T and discrete state space.
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What are Discrete-Time Markov Chains?

Discrete-time Markov chain

Discrete-time Markov chain

A discrete-time Markov chain (DTMC) is a time-homogeneous Markov
process with discrete parameter T and discrete state space S.
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What are Discrete-Time Markov Chains?

Discrete-time Markov chain

Discrete-time Markov chain

A discrete-time Markov chain (DTMC) is a time-homogeneous Markov
process with discrete parameter T and discrete state space S.

Transition probabilities

The (one-step) transition probability from s € S to s’ € S at epoch n € N
is given by:

pM(s s") = P{Xpp1=5|X,=5s}
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What are Discrete-Time Markov Chains?

Discrete-time Markov chain

Discrete-time Markov chain

A discrete-time Markov chain (DTMC) is a time-homogeneous Markov
process with discrete parameter T and discrete state space S.

Transition probabilities

The (one-step) transition probability from s € S to s’ € S at epoch n € N
is given by:

pM(s,s") = P{Xpp1=5|Xp=s} = P{Xy =5 | Xo=s5}

where the last equality is due to time-homogeneity.
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What are Discrete-Time Markov Chains?

Discrete-time Markov chain

Discrete-time Markov chain

A discrete-time Markov chain (DTMC) is a time-homogeneous Markov
process with discrete parameter T and discrete state space S.

Transition probabilities

The (one-step) transition probability from s € S to s’ € S at epoch n € N
is given by:

pM(s,s") = P{Xpp1=5|Xp=s} = P{Xy =5 | Xo=s5}

where the last equality is due to time-homogeneity.

Since p("(-) = p(k)(.), the superscript (n) is omitted, and we write p(-).
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Transition probability matrix

Discrete-time Markov chain

A discrete-time Markov chain (DTMC) is a time-homogeneous Markov
process with discrete parameter T and discrete state space S.
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Transition probability matrix

Discrete-time Markov chain

A discrete-time Markov chain (DTMC) is a time-homogeneous Markov
process with discrete parameter T and discrete state space S.

Transition probability matrix

Let P be a function with P(s;, s;) = p(s;, s;). For finite state space S,
function P is called the transition probability matrix of the DTMC with
state space S.
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What are Discrete-Time Markov Chains?

Transition probability matrix

Discrete-time Markov chain

A discrete-time Markov chain (DTMC) is a time-homogeneous Markov
process with discrete parameter T and discrete state space S.

Transition probability matrix

Let P be a function with P(s;, s;) = p(s;, s;). For finite state space S,
function P is called the transition probability matrix of the DTMC with

state space S.

Properties

1. P is a (right) stochastic matrix, i.e., it is a square matrix, all its
elements are in [0, 1], and each row sum equals one.
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What are Discrete-Time Markov Chains?

Transition probability matrix

Discrete-time Markov chain

A discrete-time Markov chain (DTMC) is a time-homogeneous Markov
process with discrete parameter T and discrete state space S.

Transition probability matrix

Let P be a function with P(s;, s;) = p(s;, s;). For finite state space S,
function P is called the transition probability matrix of the DTMC with

state space S.

Properties

1. P is a (right) stochastic matrix, i.e., it is a square matrix, all its
elements are in [0, 1], and each row sum equals one.

2. P has an eigenvalue of one, and all its eigenvalues are at most one.
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What are Discrete-Time Markov Chains?

Transition probability matrix

Discrete-time Markov chain

A discrete-time Markov chain (DTMC) is a time-homogeneous Markov
process with discrete parameter T and discrete state space S.

Transition probability matrix

Let P be a function with P(s;, s;) = p(s;, s;). For finite state space S,
function P is called the transition probability matrix of the DTMC with

state space S.

Properties

1. P is a (right) stochastic matrix, i.e., it is a square matrix, all its
elements are in [0, 1], and each row sum equals one.

2. P has an eigenvalue of one, and all its eigenvalues are at most one.

3. For all n € N, P" is a stochastic matrix.
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DTMCs — A transition system perspective

Discrete-time Markov chain

A DTMC D is a tuple (S, P, ti, AP, L) with:

» S is a countable nonempty set of states
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DTMCs — A transition system perspective

Discrete-time Markov chain

A DTMC D is a tuple (S, P, i, AP, L) with:
» S is a countable nonempty set of states
» P:SxS — [0,1], transition probability function s.t. >, P(s,s’) =1
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DTMCs — A transition system perspective

Discrete-time Markov chain
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» S is a countable nonempty set of states
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> L - S — [0, 1], the initial distribution with >~ ;,(s) =1
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DTMCs — A transition system perspective

Discrete-time Markov chain

A DTMC D is a tuple (S, P, i, AP, L) with:
» S is a countable nonempty set of states
» P:SxS — [0,1], transition probability function s.t. >, P(s,s’) =1

> L - S — [0, 1], the initial distribution with >~ ;,(s) =1
seS

» AP is a set of atomic propositions.

» L:S — 2AP, the labeling function, assigning to state s, the set L(s)
of atomic propositions that are valid in s.
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DTMCs — A transition system perspective

Discrete-time Markov chain

A DTMC D is a tuple (S, P, i, AP, L) with:
» S is a countable nonempty set of states
» P:SxS — [0,1], transition probability function s.t. >, P(s,s’) =1

> L - S — [0, 1], the initial distribution with >~ ;,(s) =1
seS

» AP is a set of atomic propositions.

» L:S — 2AP, the labeling function, assigning to state s, the set L(s)
of atomic propositions that are valid in s.

Initial states

> L:.(S) is the probability that DTMC D starts in state s
> the set {s € S| ti(s) > 0} are the possible initial states.
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Example: roulette in Monte Carlo, 1913
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What are Discrete-Time Markov Chains?

Simulating a die by a fair coin [Knuth & Yao]

Heads = “go left”; tails = “go right”.
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What are Discrete-Time Markov Chains?

Simulating a die by a fair coin [Knuth & Yao]

Heads = “go left”; tails = “go right”. Does this DTMC adequately model a fair
six-sided die?
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What are Discrete-Time Markov Chains?

PaysDo_uhlc 3 4 9 10 11 Pa}'s/lll!lﬂl]e
(2) Field (12)
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Craps

» Roll two dice and bet
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Craps

» Roll two dice and bet

» Come-out roll (“pass line"” wager):
» outcome 7 or 11: win
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Craps

» Roll two dice and bet

» Come-out roll (“pass line"” wager):

» outcome 7 or 11: win
» outcome 2, 3, or 12: lose (“craps”)
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Craps

» Roll two dice and bet

» Come-out roll (“pass line"” wager):

» outcome 7 or 11: win
» outcome 2, 3, or 12: lose (“craps”)
» any other outcome: roll again (outcome is “point”)
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Craps

» Roll two dice and bet

» Come-out roll (“pass line"” wager):

» outcome 7 or 11: win
» outcome 2, 3, or 12: lose (“craps”)
» any other outcome: roll again (outcome is “point”)

» Repeat until 7 or the “point” is thrown:
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Craps

» Roll two dice and bet

» Come-out roll (“pass line"” wager):

» outcome 7 or 11: win
» outcome 2, 3, or 12: lose (“craps”)
» any other outcome: roll again (outcome is “point”)

» Repeat until 7 or the “point” is thrown:
» outcome 7: lose (“seven-out™)
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Craps

» Roll two dice and bet

» Come-out roll (“pass line"” wager):

» outcome 7 or 11: win
» outcome 2, 3, or 12: lose (“craps”)
» any other outcome: roll again (outcome is “point”)

» Repeat until 7 or the “point” is thrown:

» outcome 7: lose (“seven-out™)
» outcome the point: win
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Craps

RAPS GAMBIy, -

» Roll two dice and bet &

» Come-out roll (“pass line"” wager):
» outcome 7 or 11: win
» outcome 2, 3, or 12: lose (“craps”)
» any other outcome: roll again (outcome is “point”)

» Repeat until 7 or the “point” is thrown:
» outcome 7: lose (“seven-out™)
» outcome the point: win
> any other outcome: roll again
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What are Discrete-Time Markov Chains?

A DTMC model of Craps

» Come-out roll:

» 7 or 11: win

» 2,3, 0r12:
lose

> else: roll
again

> Next roll(s):
> 7: lose
> point: win
> else: roll
again
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What are Discrete-Time Markov Chains?

A DTMC model of Craps

» Come-out roll:

» 7 or 11: win

» 2,3, 0r12:
lose

> else: roll
again

> Next roll(s):
> 7: lose
> point: win
> else: roll
again
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DTMCs and Geometric Distributions

Overview

© DTMCs and Geometric Distributions
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DTMCs and Geometric Distributions

State residence time distribution

|
Let 75 be the number of epochs of DTMC D to stay in state s:
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DTMCs and Geometric Distributions

State residence time distribution

|
Let 75 be the number of epochs of DTMC D to stay in state s:

P{Ts=1} = 1-P(s,5s)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems



DTMCs and Geometric Distributions

State residence time distribution
|
Let 75 be the number of epochs of DTMC D to stay in state s:
P{Ts=1} = 1-P(s,5s)
P{Ts=2} = P(s,s)-(1-P(s,s))
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DTMCs and Geometric Distributions

State residence time distribution

|
Let 75 be the number of epochs of DTMC D to stay in state s:

P{Ts=1} = 1-P(s,5s)
P{Ts=2} = P(s,s)-(1-P(s,s))
P{Ts=n} = P(s, s)”_1 (1—=P(s,s))
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DTMCs and Geometric Distributions

State residence time distribution

|
Let 75 be the number of epochs of DTMC D to stay in state s:

P{Ts=1} = 1-P(s,5s)
P{Ts=2} = P(s,s)-(1-P(s,s))
P{Ts=n} = P(s, s)”_1 (1 —=P(s,s))

So, the state residence times in a DTMC obey a geometric distribution.
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DTMCs and Geometric Distributions

State residence time distribution

|
Let 75 be the number of epochs of DTMC D to stay in state s:

P{Ts=1} = 1-P(s,5s)
P{Ts=2} = P(s,s)-(1-P(s,s))
P{Ts=n} = P(s, s)”_1 (1 —=P(s,s))

So, the state residence times in a DTMC obey a geometric distribution.

The expected number of time steps to stay in state s equals E[T] = ﬁ(ss).
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DTMCs and Geometric Distributions

State residence time distribution

|
Let 75 be the number of epochs of DTMC D to stay in state s:

P{Ts=1} = 1-P(s,5s)
P{Ts=2} = P(s,s)-(1-P(s,s))
P{Ts=n} = P(s, s)”_1 (1 —=P(s,s))

So, the state residence times in a DTMC obey a geometric distribution.

The expected number of time steps to stay in state s equals E[T] = ﬁ(ss).

The variance of the residence time distribution is Var[T5] = %.
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DTMCs and Geometric Distributions

State residence time distribution

|
Let 75 be the number of epochs of DTMC D to stay in state s:

P{Ts=1} = 1-P(s,5s)
P{Ts=2} = P(s,s)-(1-P(s,s))
P{Ts=n} = P(s, s)”_1 (1 —=P(s,s))

So, the state residence times in a DTMC obey a geometric distribution.

The expected number of time steps to stay in state s equals E[T] = ﬁ(ss).

The variance of the residence time distribution is Var[T5] = %.

|
Recall: the geometric distribution is the only discrete probability distribution that
is memoryless.
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Transient Probability Distribution

Overview

© Transient Probability Distribution
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Transient Probability Distribution

Evolution of an example DTMC

q 1
% i
: } 1 1 H i 1 1
1 1
zero-th epoch first epoch
% L
H i
% i
: } 1 1 H i 1 1
1 1
second epoch third epoch
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Transient Probability Distribution

Evolution of an example DTMC

i
.

zero-th epoch first epoch

1 L
F]

i
=
wim

second epoch third epoch

We want to determine ps o(n) = Pr{ X(n) =s" | X(0) =s} for n € N.
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Determining n-step transition probabilities

n-step transition probabilities

The probability to move from s to s’ in n € N steps is inductively defined:

ps<(0) = 1 if s=5s', and 0 otherwise,
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Transient Probability Distribution

Determining n-step transition probabilities

n-step transition probabilities

The probability to move from s to s’ in n € N steps is inductively defined:
ps<(0) = 1 if s=5s', and 0 otherwise,

pss' (1) = P(s,s),
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Transient Probability Distribution

Determining n-step transition probabilities
n-step transition probabilities

The probability to move from s to s’ in n € N steps is inductively defined:
pss(0) = 1 ifs=5s', and 0 otherwise,
ps,s'(1) = P(s,s"), and for n > 1 by the Chapman-Kolmogorov equation:

ps,s(n) = Zps s/(1) - psr s/(n—1) forsome 0 </ <n

s//

Proof: see black board.
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Transient Probability Distribution

Determining n-step transition probabilities
n-step transition probabilities

The probability to move from s to s’ in n € N steps is inductively defined:
pss(0) = 1 ifs=5s', and 0 otherwise,
ps,s'(1) = P(s,s"), and for n > 1 by the Chapman-Kolmogorov equation:

ps,s(n) = Zps s/(1) - psr s/(n—1) forsome 0 </ <n

s//

Proof: see black board.
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Transient Probability Distribution

Determining n-step transition probabilities
n-step transition probabilities

The probability to move from s to s’ in n € N steps is inductively defined:
pss(0) = 1 ifs=5s', and 0 otherwise,
ps,s'(1) = P(s,s"), and for n > 1 by the Chapman-Kolmogorov equation:

ps,s(n) = Zps s/(1) - psr s/(n—1) forsome 0 </ <n

s//

Proof: see black board.

For I =1 and n > 0 we obtain: ps «( Zps s(1) - psr.or(n—1)
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Transient Probability Distribution

Determining n-step transition probabilities
n-step transition probabilities

The probability to move from s to s’ in n € N steps is inductively defined:
pss(0) = 1 ifs=5s', and 0 otherwise,
ps,s'(1) = P(s,s"), and for n > 1 by the Chapman-Kolmogorov equation:

ps,s(n) = Zps s/(1) - psr s/(n—1) forsome 0 </ <n

s//

Proof: see black board.

For I =1 and n > 0 we obtain: ps «( Zps s(1) - psr.or(n—1)

p(m — p() , p(n-1)
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Transient Probability Distribution

Determining n-step transition probabilities
n-step transition probabilities

The probability to move from s to s’ in n € N steps is inductively defined:
pss(0) = 1 ifs=5s', and 0 otherwise,
ps,s'(1) = P(s,s"), and for n > 1 by the Chapman-Kolmogorov equation:

ps,s(n) = Zps s/(1) - psr s/(n—1) forsome 0 </ <n

s//

Proof: see black board.

For I =1 and n > 0 we obtain: ps «( Zps s(1) - psr.or(n—1)

P = p() . p(n=1) — p. p("=1) is the n-step transition probability matrix
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Transient Probability Distribution

Determining n-step transition probabilities
n-step transition probabilities

The probability to move from s to s’ in n € N steps is inductively defined:
pss(0) = 1 ifs=5s', and 0 otherwise,

ps,s'(1) = P(s,s"), and for n > 1 by the Chapman-Kolmogorov equation:

ps,s(n) = Zps s/(1) - psr s/(n—1) forsome 0 </ <n

s//
Proof: see black board.

For I =1 and n > 0 we obtain: ps «( Zps s(1) - psr.or(n—1)
P = p() . p(n=1) — p. p("=1) is the n-step transition probability matrix
Repeating this scheme: P(" = p.pn-1) = —pr-1.p) = pn,
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Transient probability distribution

Transient distribution

P"(s, t) equals the probability of being in state t after n steps given that
the computation starts in s.
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Transient probability distribution

Transient distribution

P"(s, t) equals the probability of being in state t after n steps given that
the computation starts in s.

The probability of DTMC D being in state t after exactly n transitions is:

melt -P"(s, t)

seS
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Transient probability distribution

Transient distribution

P"(s, t) equals the probability of being in state t after n steps given that
the computation starts in s.

The probability of DTMC D being in state t after exactly n transitions is:

melt -P"(s, t)

seS

O©P(t) is called the transient state probability at epoch n for state t. The
function @7 is the transient state distribution at epoch n of DTMC D.
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Transient Probability Distribution

Transient probability distribution

P"(s, t) equals the probability of being in state t after n steps given that
the computation starts in s.

The probability of DTMC D being in state t after exactly n transitions is:

melt -P"(s, t)

seS

O©P(t) is called the transient state probability at epoch n for state t. The
function @7 is the transient state distribution at epoch n of DTMC D.
When considering ©F as vector (©7);cs we have:

@,nD - 1n1t P P P — Linit'Pn'
ﬁ_/

n times
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Transient probability distribution: example
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Long Run Probability Distribution

Overview

@ Long Run Probability Distribution
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Long Run Probability Distribution

Evolution of an example DTMC

1
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1 1
zero-th epoch first epoch
; 1
i i
H H
: } 1 1 H i 1 1
1 1
second epoch third epoch

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems



Long Run Probability Distribution

Evolution of an example DTMC

q 1
H H
: } 1 1 H i 1 1
1 1
zero-th epoch first epoch
i E
i i
H H
: } 1 1 H i 1 1
1 1
second epoch third epoch

We want to determine the probability to be in a state on the long run.
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Long Run Probability Distribution

On the long run
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Long Run Probability Distribution

On the long run

b=

Y
O

bo| =

ko=
I
N
N

—y
Lo
=
r—'|’_‘
[2v]

The probability mass on the long run is only left in bottom SCCs.
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Limiting distribution

Ergodic stochastic matrix

Stochastic matrix P is called ergodic if:

P> = Ilim P"” exists and has identical rows
n—00

Ergodicity theorem

If the transition probability matrix P of a DTMC is ergodic, then:
1. p(n) converges to a limiting distribution v independent from p(0)
2. each row of P*° equals the limiting distribution

Ve, --- Vs,
e Vso Vs,
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Long Run Probability Distribution

Limiting distribution

> We also have:
T T . pnt+l — . . pn) . — .
v= Jim p(nt1) = lim p(0)-P"*" = (Jim p(0) -P")-P=v-P
» Thus, limiting probabilities can be obtained by solving the
(homogeneous) system of linear equations:

P or v-(I-P)=0 ‘under };v(i)=1

Vv=yv-

» vector v is the left Eigenvector of P with Eigenvalue 1
» v is called the limiting state-probability vector

Two interpretations of v(s):
» the long-run proportion of time that the DTMC "spends” in state s

> the probability the DTMC is in s when making a snapshot after a

very long time

Modeling and Verification of Probabilistic Systems
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Examples




Summary

What are Markov chains?
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What are Markov chains?

» A discrete-time Markov chain (DTMC) is a time-homogeneous
Markov process with discrete parameter T and discrete state space S.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems



Summary

What are Markov chains?

» A discrete-time Markov chain (DTMC) is a time-homogeneous
Markov process with discrete parameter T and discrete state space S.

» State residence times are geometrically distributed.
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Long Run Probability Distribution

Summary

What are Markov chains?

» A discrete-time Markov chain (DTMC) is a time-homogeneous
Markov process with discrete parameter T and discrete state space S.

» State residence times are geometrically distributed.
» Alternative: a DTMC D is a tuple (S, P, ¢y, AP, L)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems



Summary

What are Markov chains?

» A discrete-time Markov chain (DTMC) is a time-homogeneous
Markov process with discrete parameter T and discrete state space S.

» State residence times are geometrically distributed.
» Alternative: a DTMC D is a tuple (S, P, ¢y, AP, L)

What are transient probabilities?

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 29/29



Long Run Probability Distribution

Summary

What are Markov chains?

» A discrete-time Markov chain (DTMC) is a time-homogeneous
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What are transient probabilities?

» OP(s) is the probability to be in state s after n steps.
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Summary

What are Markov chains?

» A discrete-time Markov chain (DTMC) is a time-homogeneous
Markov process with discrete parameter T and discrete state space S.

» State residence times are geometrically distributed.
» Alternative: a DTMC D is a tuple (S, P, ¢y, AP, L)

What are transient probabilities?

» OP(s) is the probability to be in state s after n steps.

» These transient probabilities satisfy: @f = iy - P

What are long-run probabilities?
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Long Run Probability Distribution

Summary
What are Markov chains?

» A discrete-time Markov chain (DTMC) is a time-homogeneous
Markov process with discrete parameter T and discrete state space S.

» State residence times are geometrically distributed.
» Alternative: a DTMC D is a tuple (S, P, ¢y, AP, L)

What are transient probabilities?

» OP(s) is the probability to be in state s after n steps.

» These transient probabilities satisfy: @f = iy - P

What are long-run probabilities?

» v(s) is the probability to be in state s after infinitely many steps.
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Long Run Probability Distribution

Summary

What are Markov chains?

» A discrete-time Markov chain (DTMC) is a time-homogeneous
Markov process with discrete parameter T and discrete state space S.

» State residence times are geometrically distributed.
» Alternative: a DTMC D is a tuple (S, P, ¢y, AP, L)

What are transient probabilities?

» OP(s) is the probability to be in state s after n steps.

» These transient probabilities satisfy: @f = iy - P

What are long-run probabilities?

» v(s) is the probability to be in state s after infinitely many steps.

» long-run probabilities satisfy: v - (I — P) =0 under >, v(i) = 1.
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