Modeling and Verification of Probabilistic Systems

Joost-Pieter Katoen

Lehrstuhl für Informatik 2 Software Modeling and Verification Group

http://moves.rwth-aachen.de/teaching/ws-1516/movep15/

Oct 27, 2015

Overview

1 What are Discrete-Time Markov Chains?

2 DTMCs and Geometric Distributions

3 Transient Probability Distribution

4 Long Run Probability Distribution

Geometric distribution

Let X be a discrete random variable, natural k > 0 and 0 . The mass function of a*geometric distribution*is given by:

$$Pr\{X = k\} = (1 - p)^{k-1} \cdot p$$

Geometric distribution

Let X be a discrete random variable, natural k > 0 and 0 . The mass function of a*geometric distribution*is given by:

$$Pr\{X = k\} = (1 - p)^{k-1} \cdot p$$

We have $E[X] = \frac{1}{p}$ and $Var[X] = \frac{1-p}{p^2}$ and cdf $Pr\{X \leq k\} = 1 - (1-p)^k$.

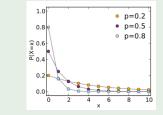
Geometric distribution

Let X be a discrete random variable, natural k > 0 and 0 . The mass function of a*geometric distribution*is given by:

$$Pr\{X = k\} = (1 - p)^{k-1} \cdot p$$

We have $E[X] = \frac{1}{p}$ and $Var[X] = \frac{1-p}{p^2}$ and cdf $Pr\{X \leq k\} = 1 - (1-p)^k$.

Geometric distributions and their cdf's



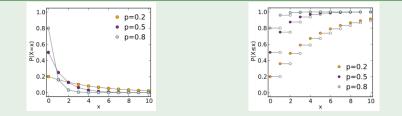
Geometric distribution

Let X be a discrete random variable, natural k > 0 and 0 . The mass function of a*geometric distribution*is given by:

$$Pr\{X = k\} = (1 - p)^{k-1} \cdot p$$

We have $E[X] = \frac{1}{p}$ and $Var[X] = \frac{1-p}{p^2}$ and cdf $Pr\{X \leq k\} = 1 - (1-p)^k$.

Geometric distributions and their cdf's



Memoryless property

Theorem

1. For any random variable X with a geometric distribution:

$$Pr\{X = k + m \mid X > m\} = Pr\{X = k\}$$
 for any $m \in T, k \ge 1$

This is called the memoryless property, and X is a memoryless r.v..

Memoryless property

Theorem

1. For any random variable X with a geometric distribution:

 $Pr\{X = k + m \mid X > m\} = Pr\{X = k\}$ for any $m \in T, k \ge 1$

This is called the memoryless property, and X is a memoryless r.v..

2. Any discrete random variable which is memoryless is geometrically distributed.

Memoryless property

Theorem

1. For any random variable X with a geometric distribution:

 $Pr\{X = k + m \mid X > m\} = Pr\{X = k\}$ for any $m \in T, k \ge 1$

This is called the memoryless property, and X is a memoryless r.v..

2. Any discrete random variable which is memoryless is geometrically distributed.

Proof:

Exercise.

Andrei Andrejewitsch Markow

The conditional probability distribution of future states of a Markov process only depends on the current state and not on its further history.

The conditional probability distribution of future states of a Markov process only depends on the current state and not on its further history.

Markov process

A discrete-time stochastic process $\{X(t) \mid t \in T\}$ over state space $\{d_0, d_1, ...\}$ is a *Markov process* if for any $t_0 < t_1 < ... < t_n < t_{n+1}$:

The conditional probability distribution of future states of a Markov process only depends on the current state and not on its further history.

Markov process

A discrete-time stochastic process $\{X(t) \mid t \in T\}$ over state space $\{d_0, d_1, ...\}$ is a *Markov process* if for any $t_0 < t_1 < ... < t_n < t_{n+1}$:

$$Pr\{X(t_{n+1}) = d_{n+1} \mid X(t_0) = d_0, X(t_1) = d_1, \dots, X(t_n) = d_n\}$$

The conditional probability distribution of future states of a Markov process only depends on the current state and not on its further history.

Markov process

A discrete-time stochastic process $\{X(t) \mid t \in T\}$ over state space $\{d_0, d_1, ...\}$ is a *Markov process* if for any $t_0 < t_1 < ... < t_n < t_{n+1}$:

$$\Pr\{X(t_{n+1}) = d_{n+1} \mid X(t_0) = d_0, X(t_1) = d_1, \dots, X(t_n) = d_n\}$$

$$Pr\{X(t_{n+1}) = d_{n+1} \mid X(t_n) = d_n\}$$

6/29

The conditional probability distribution of future states of a Markov process only depends on the current state and not on its further history.

Markov process

A discrete-time stochastic process $\{X(t) \mid t \in T\}$ over state space $\{d_0, d_1, ...\}$ is a *Markov process* if for any $t_0 < t_1 < ... < t_n < t_{n+1}$:

$$\Pr\{X(t_{n+1}) = d_{n+1} \mid X(t_0) = d_0, X(t_1) = d_1, \dots, \frac{X(t_n) = d_n}{n}\}$$

$$Pr\{X(t_{n+1}) = d_{n+1} \mid X(t_n) = d_n\}$$

The distribution of $X(t_{n+1})$, given the values $X(t_0)$ through $X(t_n)$, only depends on the current state $X(t_n)$.

Invariance to time-shifts

Time homogeneity

Markov process { $X(t) | t \in T$ } is *time-homogeneous* iff for any t' < t:

$$Pr\{X(t) = d \mid X(t') = d'\} = Pr\{X(t - t') = d \mid X(0) = d'\}.$$

Invariance to time-shifts

Time homogeneity

Markov process { $X(t) | t \in T$ } is *time-homogeneous* iff for any t' < t:

$$Pr\{X(t) = d \mid X(t') = d'\} = Pr\{X(t - t') = d \mid X(0) = d'\}.$$

A time-homogeneous stochastic process is invariant to time shifts.

Invariance to time-shifts

Time homogeneity

Markov process { $X(t) | t \in T$ } is *time-homogeneous* iff for any t' < t:

$$Pr\{X(t) = d \mid X(t') = d'\} = Pr\{X(t - t') = d \mid X(0) = d'\}.$$

A time-homogeneous stochastic process is invariant to time shifts.

Discrete-time Markov chain

A *discrete-time Markov chain* (DTMC) is a time-homogeneous Markov process with discrete parameter T and discrete state space.

Discrete-time Markov chain

A *discrete-time Markov chain* (DTMC) is a time-homogeneous Markov process with discrete parameter T and discrete state space S.

Discrete-time Markov chain

A *discrete-time Markov chain* (DTMC) is a time-homogeneous Markov process with discrete parameter T and discrete state space S.

Transition probabilities

The *(one-step) transition probability* from $s \in S$ to $s' \in S$ at epoch $n \in \mathbb{N}$ is given by:

$$p^{(n)}(s,s') = Pr\{X_{n+1} = s' \mid X_n = s\}$$

Discrete-time Markov chain

A *discrete-time Markov chain* (DTMC) is a time-homogeneous Markov process with discrete parameter T and discrete state space S.

Transition probabilities

The *(one-step) transition probability* from $s \in S$ to $s' \in S$ at epoch $n \in \mathbb{N}$ is given by:

$$p^{(n)}(s,s') = Pr\{X_{n+1} = s' \mid X_n = s\} = Pr\{X_1 = s' \mid X_0 = s\}$$

where the last equality is due to time-homogeneity.

Discrete-time Markov chain

A discrete-time Markov chain (DTMC) is a time-homogeneous Markov process with discrete parameter T and discrete state space S.

Transition probabilities

The *(one-step) transition probability* from $s \in S$ to $s' \in S$ at epoch $n \in \mathbb{N}$ is given by:

$$p^{(n)}(s,s') = Pr\{X_{n+1} = s' \mid X_n = s\} = Pr\{X_1 = s' \mid X_0 = s\}$$

where the last equality is due to time-homogeneity.

Since $p^{(n)}(\cdot) = p^{(k)}(\cdot)$, the superscript (n) is omitted, and we write $p(\cdot)$.

Discrete-time Markov chain

A *discrete-time Markov chain* (DTMC) is a time-homogeneous Markov process with discrete parameter T and discrete state space S.

Discrete-time Markov chain

A *discrete-time Markov chain* (DTMC) is a time-homogeneous Markov process with discrete parameter T and discrete state space S.

Transition probability matrix

Let **P** be a function with $\mathbf{P}(s_i, s_j) = p(s_i, s_j)$. For finite state space *S*, function **P** is called the *transition probability matrix* of the DTMC with state space *S*.

Discrete-time Markov chain

A *discrete-time Markov chain* (DTMC) is a time-homogeneous Markov process with discrete parameter T and discrete state space S.

Transition probability matrix

Let **P** be a function with $\mathbf{P}(s_i, s_j) = p(s_i, s_j)$. For finite state space *S*, function **P** is called the *transition probability matrix* of the DTMC with state space *S*.

Properties

1. **P** is a (right) *stochastic* matrix, i.e., it is a square matrix, all its elements are in [0, 1], and each row sum equals one.

Discrete-time Markov chain

A *discrete-time Markov chain* (DTMC) is a time-homogeneous Markov process with discrete parameter T and discrete state space S.

Transition probability matrix

Let **P** be a function with $\mathbf{P}(s_i, s_j) = p(s_i, s_j)$. For finite state space *S*, function **P** is called the *transition probability matrix* of the DTMC with state space *S*.

Properties

- 1. **P** is a (right) *stochastic* matrix, i.e., it is a square matrix, all its elements are in [0, 1], and each row sum equals one.
- 2. **P** has an eigenvalue of one, and all its eigenvalues are at most one.

Discrete-time Markov chain

A *discrete-time Markov chain* (DTMC) is a time-homogeneous Markov process with discrete parameter T and discrete state space S.

Transition probability matrix

Let **P** be a function with $\mathbf{P}(s_i, s_j) = p(s_i, s_j)$. For finite state space *S*, function **P** is called the *transition probability matrix* of the DTMC with state space *S*.

Properties

- 1. **P** is a (right) *stochastic* matrix, i.e., it is a square matrix, all its elements are in [0, 1], and each row sum equals one.
- 2. P has an eigenvalue of one, and all its eigenvalues are at most one.
- 3. For all $n \in \mathbb{N}$, \mathbf{P}^n is a stochastic matrix.

Discrete-time Markov chain

A DTMC D is a tuple (*S*, **P**, ι_{init} , *AP*, *L*) with:

S is a countable nonempty set of states

Discrete-time Markov chain

A DTMC D is a tuple (*S*, **P**, ι_{init} , *AP*, *L*) with:

- S is a countable nonempty set of states
- ▶ $\mathbf{P}: S \times S \rightarrow [0, 1]$, transition probability function s.t. $\sum_{s'} \mathbf{P}(s, s') = 1$

Discrete-time Markov chain

A DTMC D is a tuple (*S*, **P**, ι_{init} , *AP*, *L*) with:

- S is a countable nonempty set of states
- ▶ $\mathbf{P}: S \times S \rightarrow [0, 1]$, transition probability function s.t. $\sum_{s'} \mathbf{P}(s, s') = 1$
- ▶ $\iota_{\text{init}}: S \to [0, 1]$, the initial distribution with $\sum_{s \in S} \iota_{\text{init}}(s) = 1$

Discrete-time Markov chain

A DTMC D is a tuple (S, **P**, ι_{init} , AP, L) with:

- S is a countable nonempty set of states
- ▶ $\mathbf{P}: S \times S \rightarrow [0, 1]$, transition probability function s.t. $\sum_{s'} \mathbf{P}(s, s') = 1$
- ▶ $\iota_{\text{init}}: S \to [0, 1]$, the initial distribution with $\sum_{s \in S} \iota_{\text{init}}(s) = 1$
- *AP* is a set of atomic propositions.

Discrete-time Markov chain

A DTMC D is a tuple $(S, \mathbf{P}, \iota_{init}, AP, L)$ with:

- S is a countable nonempty set of states
- ▶ $\mathbf{P}: S \times S \rightarrow [0, 1]$, transition probability function s.t. $\sum_{s'} \mathbf{P}(s, s') = 1$
- ▶ $\iota_{\text{init}}: S \rightarrow [0, 1]$, the initial distribution with $\sum_{s \in S} \iota_{\text{init}}(s) = 1$
- *AP* is a set of atomic propositions.
- ▶ $L: S \rightarrow 2^{AP}$, the labeling function, assigning to state *s*, the set L(s) of atomic propositions that are valid in *s*.

Discrete-time Markov chain

A DTMC D is a tuple $(S, \mathbf{P}, \iota_{\text{init}}, AP, L)$ with:

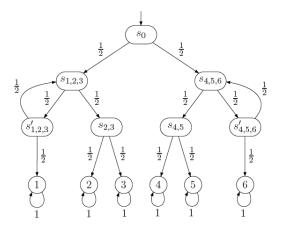
- S is a countable nonempty set of states
- ▶ $\mathbf{P}: S \times S \rightarrow [0, 1]$, transition probability function s.t. $\sum_{s'} \mathbf{P}(s, s') = 1$
- ▶ $\iota_{\text{init}}: S \rightarrow [0, 1]$, the initial distribution with $\sum_{s \in S} \iota_{\text{init}}(s) = 1$
- ► *AP* is a set of atomic propositions.
- ▶ $L: S \rightarrow 2^{AP}$, the labeling function, assigning to state *s*, the set L(s) of atomic propositions that are valid in *s*.

Initial states

- $\iota_{\text{init}}(s)$ is the probability that DTMC \mathcal{D} starts in state s
- ▶ the set $\{ s \in S \mid \iota_{init}(s) > 0 \}$ are the possible initial states.

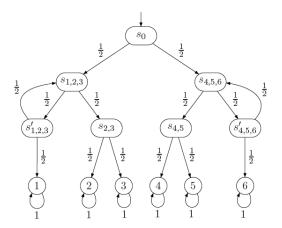
Example: roulette in Monte Carlo, 1913

Simulating a die by a fair coin [Knuth & Yao]



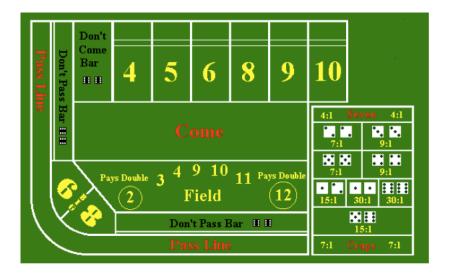
Heads = "go left"; tails = "go right".

Simulating a die by a fair coin [Knuth & Yao]



 $\mathsf{Heads} = \mathsf{``go} \mathsf{ left''}; \mathsf{tails} = \mathsf{``go} \mathsf{ right''}. \mathsf{ Does this DTMC} \mathsf{ adequately model a fair six-sided die?}$

Joost-Pieter Katoen



Roll two dice and bet

- Roll two dice and bet
- Come-out roll ("pass line" wager):
 - outcome 7 or 11: win

- Roll two dice and bet
- Come-out roll ("pass line" wager):
 - outcome 7 or 11: win
 - outcome 2, 3, or 12: lose ("craps")

- Roll two dice and bet
- Come-out roll ("pass line" wager):
 - outcome 7 or 11: win
 - outcome 2, 3, or 12: lose ("craps")
 - any other outcome: roll again (outcome is "point")

- Roll two dice and bet
- Come-out roll ("pass line" wager):
 - outcome 7 or 11: win
 - outcome 2, 3, or 12: lose ("craps")
 - any other outcome: roll again (outcome is "point")
- Repeat until 7 or the "point" is thrown:

- Roll two dice and bet
- Come-out roll ("pass line" wager):
 - outcome 7 or 11: win
 - outcome 2, 3, or 12: lose ("craps")
 - any other outcome: roll again (outcome is "point")
- Repeat until 7 or the "point" is thrown:
 - outcome 7: lose ("seven-out")

- Roll two dice and bet
- Come-out roll ("pass line" wager):
 - outcome 7 or 11: win
 - outcome 2, 3, or 12: lose ("craps")
 - any other outcome: roll again (outcome is "point")
- Repeat until 7 or the "point" is thrown:
 - outcome 7: lose ("seven-out")
 - outcome the point: win

- Roll two dice and bet
- Come-out roll ("pass line" wager):
 - outcome 7 or 11: win
 - outcome 2, 3, or 12: lose ("craps")
 - any other outcome: roll again (outcome is "point")
- Repeat until 7 or the "point" is thrown:
 - outcome 7: lose ("seven-out")
 - outcome the point: win
 - any other outcome: roll again

A DTMC model of Craps

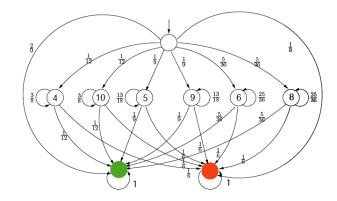
Come-out roll:

- 7 or 11: win
- 2, 3, or 12: lose
- else: roll again
- Next roll(s):
 - 7: lose
 - point: win
 - else: roll again

A DTMC model of Craps

Come-out roll:

- 7 or 11: win
- 2, 3, or 12: lose
- else: roll again
- Next roll(s):
 - 7: lose
 - point: win
 - else: roll again



Overview

What are Discrete-Time Markov Chains?

2 DTMCs and Geometric Distributions

3 Transient Probability Distribution

4 Long Run Probability Distribution

$$Pr\{T_s = 1\} = 1 - \mathbf{P}(s, s)$$

$$Pr\{ T_{s} = 1 \} = 1 - P(s, s)$$
$$Pr\{ T_{s} = 2 \} = P(s, s) \cdot (1 - P(s, s))$$

$$Pr\{T_s = 1\} = 1 - \mathbf{P}(s, s)$$

$$Pr\{T_s = 2\} = \mathbf{P}(s, s) \cdot (1 - \mathbf{P}(s, s))$$
.....

$$Pr\{T_s = n\} = P(s, s)^{n-1} \cdot (1 - P(s, s))$$

Let T_s be the number of epochs of DTMC \mathcal{D} to stay in state s:

$$Pr\{ T_{s} = 1 \} = 1 - P(s, s)$$

$$Pr\{ T_{s} = 2 \} = P(s, s) \cdot (1 - P(s, s))$$
....
$$Pr\{ T_{s} = n \} = P(s, s)^{n-1} \cdot (1 - P(s, s))$$

So, the state residence times in a DTMC obey a *geometric* distribution.

Let T_s be the number of epochs of DTMC \mathcal{D} to stay in state s:

$$Pr\{ T_{s} = 1 \} = 1 - P(s, s)$$

$$Pr\{ T_{s} = 2 \} = P(s, s) \cdot (1 - P(s, s))$$
.....
$$Pr\{ T_{s} = n \} = P(s, s)^{n-1} \cdot (1 - P(s, s))$$

So, the state residence times in a DTMC obey a *geometric* distribution. The expected number of time steps to stay in state *s* equals $E[T_s] = \frac{1}{1-P(s,s)}$.

Let T_s be the number of epochs of DTMC \mathcal{D} to stay in state s:

$$Pr\{ T_{s} = 1 \} = 1 - P(s, s)$$

$$Pr\{ T_{s} = 2 \} = P(s, s) \cdot (1 - P(s, s))$$
.....
$$Pr\{ T_{s} = n \} = P(s, s)^{n-1} \cdot (1 - P(s, s))$$

So, the state residence times in a DTMC obey a *geometric* distribution. The expected number of time steps to stay in state *s* equals $E[T_s] = \frac{1}{1-P(s,s)}$. The variance of the residence time distribution is $Var[T_s] = \frac{P(s,s)}{(1-P(s,s))^2}$.

Let T_s be the number of epochs of DTMC \mathcal{D} to stay in state s:

$$Pr\{ T_{s} = 1 \} = 1 - \mathbf{P}(s, s)$$

$$Pr\{ T_{s} = 2 \} = \mathbf{P}(s, s) \cdot (1 - \mathbf{P}(s, s))$$
.....
$$Pr\{ T_{s} = n \} = \mathbf{P}(s, s)^{n-1} \cdot (1 - \mathbf{P}(s, s))$$

So, the state residence times in a DTMC obey a *geometric* distribution. The expected number of time steps to stay in state *s* equals $E[T_s] = \frac{1}{1-P(s,s)}$. The variance of the residence time distribution is $Var[T_s] = \frac{P(s,s)}{(1-P(s,s))^2}$.

Recall: the geometric distribution is the only discrete probability distribution that is memoryless.

Joost-Pieter Katoen

Overview

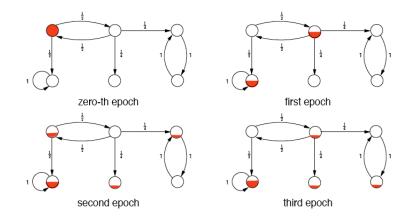
What are Discrete-Time Markov Chains?

2 DTMCs and Geometric Distributions

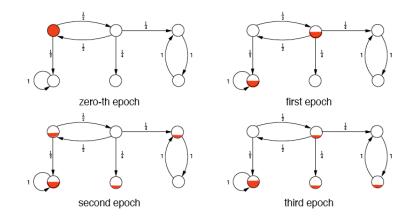
3 Transient Probability Distribution

4 Long Run Probability Distribution

Evolution of an example DTMC



Evolution of an example DTMC



We want to determine $p_{s,s'}(n) = Pr\{X(n) = s' \mid X(0) = s\}$ for $n \in \mathbb{N}$.

n-step transition probabilities

The probability to move from s to s' in $n \in \mathbb{N}$ steps is inductively defined:

 $p_{s,s'}(0) = 1$ if s = s', and 0 otherwise,

n-step transition probabilities

The probability to move from s to s' in $n \in \mathbb{N}$ steps is inductively defined:

 $p_{s,s'}(0) = 1$ if s = s', and 0 otherwise,

 $p_{\mathbf{s},\mathbf{s}'}(1) = \mathbf{P}(\mathbf{s},\mathbf{s}'),$

n-step transition probabilities

The probability to move from s to s' in $n \in \mathbb{N}$ steps is inductively defined:

 $p_{s,s'}(0) = 1$ if s = s', and 0 otherwise,

 $p_{s,s'}(1) = \mathbf{P}(s, s')$, and for n > 1 by the Chapman-Kolmogorov equation:

$$p_{s,s'}(n) = \sum_{s''} p_{s,s''}(l) \cdot p_{s'',s'}(n-l)$$
 for some $0 < l < n$

n-step transition probabilities

The probability to move from s to s' in $n \in \mathbb{N}$ steps is inductively defined:

 $p_{s,s'}(0) = 1$ if s = s', and 0 otherwise,

 $p_{s,s'}(1) = \mathbf{P}(s, s')$, and for n > 1 by the Chapman-Kolmogorov equation:

$$p_{s,s'}(n) = \sum_{s''} p_{s,s''}(l) \cdot p_{s'',s'}(n-l)$$
 for some $0 < l < n$

n-step transition probabilities

The probability to move from s to s' in $n \in \mathbb{N}$ steps is inductively defined:

 $p_{s,s'}(0) = 1$ if s = s', and 0 otherwise,

 $p_{s,s'}(1) = \mathbf{P}(s, s')$, and for n > 1 by the Chapman-Kolmogorov equation:

$$p_{s,s'}(n) = \sum_{s''} p_{s,s''}(l) \cdot p_{s'',s'}(n-l)$$
 for some $0 < l < n$

For
$$l = 1$$
 and $n > 0$ we obtain: $p_{s,s'}(n) = \sum_{s''} p_{s,s''}(1) \cdot p_{s'',s'}(n-1)$

n-step transition probabilities

The probability to move from s to s' in $n \in \mathbb{N}$ steps is inductively defined:

 $p_{s,s'}(0) = 1$ if s = s', and 0 otherwise,

 $p_{s,s'}(1) = \mathbf{P}(s, s')$, and for n > 1 by the Chapman-Kolmogorov equation:

$$p_{s,s'}(n) = \sum_{s''} p_{s,s''}(l) \cdot p_{s'',s'}(n-l)$$
 for some $0 < l < n$

For
$$l = 1$$
 and $n > 0$ we obtain: $p_{s,s'}(n) = \sum_{s''} p_{s,s''}(1) \cdot p_{s'',s'}(n-1)$

$$\mathbf{P}^{(n)} = \mathbf{P}^{(1)} \cdot \mathbf{P}^{(n-1)}$$

n-step transition probabilities

The probability to move from s to s' in $n \in \mathbb{N}$ steps is inductively defined:

 $p_{s,s'}(0) = 1$ if s = s', and 0 otherwise,

 $p_{s,s'}(1) = \mathbf{P}(s, s')$, and for n > 1 by the Chapman-Kolmogorov equation:

$$p_{s,s'}(n) = \sum_{s''} p_{s,s''}(l) \cdot p_{s'',s'}(n-l)$$
 for some $0 < l < n$

Proof: see black board.

For
$$l = 1$$
 and $n > 0$ we obtain: $p_{s,s'}(n) = \sum_{s''} p_{s,s''}(1) \cdot p_{s'',s'}(n-1)$

 $\mathbf{P}^{(n)} = \mathbf{P}^{(1)} \cdot \mathbf{P}^{(n-1)} = \mathbf{P} \cdot \mathbf{P}^{(n-1)}$ is the *n*-step transition probability matrix

20/29

n-step transition probabilities

The probability to move from s to s' in $n \in \mathbb{N}$ steps is inductively defined:

 $p_{s,s'}(0) = 1$ if s = s', and 0 otherwise,

 $p_{s,s'}(1) = \mathbf{P}(s, s')$, and for n > 1 by the Chapman-Kolmogorov equation:

$$p_{s,s'}(n) = \sum_{s''} p_{s,s''}(l) \cdot p_{s'',s'}(n-l)$$
 for some $0 < l < n$

Proof: see black board.

For
$$l = 1$$
 and $n > 0$ we obtain: $p_{s,s'}(n) = \sum_{s''} p_{s,s''}(1) \cdot p_{s'',s'}(n-1)$

 $\mathbf{P}^{(n)} = \mathbf{P}^{(1)} \cdot \mathbf{P}^{(n-1)} = \mathbf{P} \cdot \mathbf{P}^{(n-1)} \text{ is the } n\text{-step transition probability matrix}$ Repeating this scheme: $\mathbf{P}^{(n)} = \mathbf{P} \cdot \mathbf{P}^{(n-1)} = \ldots = \mathbf{P}^{n-1} \cdot \mathbf{P}^{(1)} = \mathbf{P}^{n}.$

Joost-Pieter Katoen

Transient distribution

 $\mathbf{P}^{n}(s, t)$ equals the probability of being in state t after n steps given that the computation starts in s.

Transient distribution

 $\mathbf{P}^{n}(s, t)$ equals the probability of being in state t after n steps given that the computation starts in s.

The probability of DTMC D being in state t after exactly n transitions is:

$$\Theta_n^{\mathcal{D}}(t) = \sum_{s \in S} \iota_{\text{init}}(s) \cdot \mathbf{P}^n(s, t)$$

Transient distribution

 $\mathbf{P}^{n}(s, t)$ equals the probability of being in state t after n steps given that the computation starts in s.

The probability of DTMC D being in state t after exactly n transitions is:

$$\Theta_n^{\mathcal{D}}(t) = \sum_{s \in S} \iota_{\text{init}}(s) \cdot \mathbf{P}^n(s, t)$$

 $\Theta_n^{\mathcal{D}}(t)$ is called the *transient state probability* at epoch *n* for state *t*. The function $\Theta_n^{\mathcal{D}}$ is the *transient state distribution* at epoch *n* of DTMC \mathcal{D} .

Transient distribution

 $\mathbf{P}^{n}(s, t)$ equals the probability of being in state t after n steps given that the computation starts in s.

The probability of DTMC D being in state t after exactly n transitions is:

$$\Theta_n^{\mathcal{D}}(t) = \sum_{s \in S} \iota_{\text{init}}(s) \cdot \mathbf{P}^n(s, t)$$

 $\Theta_n^{\mathcal{D}}(t)$ is called the *transient state probability* at epoch *n* for state *t*. The function $\Theta_n^{\mathcal{D}}$ is the *transient state distribution* at epoch *n* of DTMC \mathcal{D} .

When considering $\Theta_n^{\mathcal{D}}$ as vector $(\Theta_n^{\mathcal{D}})_{t\in S}$ we have:

$$\Theta_n^{\mathcal{D}} = \iota_{\text{init}} \cdot \underbrace{\mathbf{P} \cdot \mathbf{P} \cdot \ldots \cdot \mathbf{P}}_{n \text{ times}} = \iota_{\text{init}} \cdot \mathbf{P}^n.$$

Transient probability distribution: example

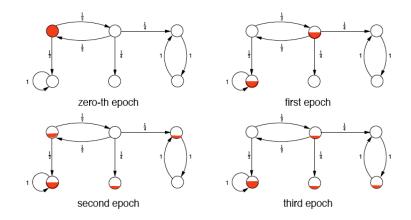
Overview

1 What are Discrete-Time Markov Chains?

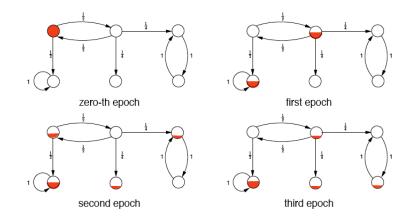
2 DTMCs and Geometric Distributions

3 Transient Probability Distribution

Evolution of an example DTMC

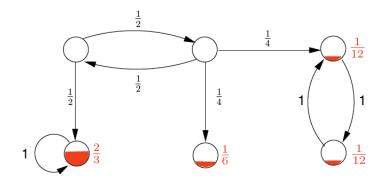


Evolution of an example DTMC

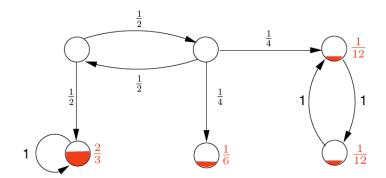


We want to determine the probability to be in a state on the long run.

On the long run



On the long run



The probability mass on the long run is only left in bottom SCCs.

Limiting distribution

Ergodic stochastic matrix

Stochastic matrix **P** is called *ergodic* if:

$$\mathbf{P}^{\infty} = \lim_{n \to \infty} \mathbf{P}^n$$
 exists and has identical rows

Ergodicity theorem

If the transition probability matrix ${\boldsymbol{\mathsf{P}}}$ of a DTMC is ergodic, then:

- 1. p(n) converges to a limiting distribution \underline{v} independent from p(0)
- 2. each row of \mathbf{P}^{∞} equals the limiting distribution

Proof.

$$\lim_{n\to\infty}\underline{p}(0)\cdot\mathbf{P}^{n}=\underline{p}(0)\cdot\underbrace{\lim_{n\to\infty}\mathbf{P}^{n}}_{\mathbf{P}^{\infty}}=\underline{p}(0)\cdot\begin{pmatrix}v_{s_{0}}&\ldots&v_{s_{n}}\\\ldots&\ldots&\ldots\\v_{s_{0}}&\ldots&v_{s_{n}}\end{pmatrix}=\underline{v}$$

Limiting distribution

We also have:

$$\underline{v} = \lim_{n \to \infty} \underline{p}(n+1) = \lim_{n \to \infty} \underline{p}(0) \cdot \mathbf{P}^{n+1} = \left(\lim_{n \to \infty} \underline{p}(0) \cdot \mathbf{P}^n\right) \cdot \mathbf{P} = \underline{v} \cdot \mathbf{P}$$

Thus, limiting probabilities can be obtained by solving the (homogeneous) system of linear equations:

 $\underline{v} = \underline{v} \cdot \mathbf{P}$ or $\underline{v} \cdot (\mathbf{I} - \mathbf{P}) = \underline{0}$ under $\sum_{i} \underline{v}(i) = 1$

- vector \underline{v} is the left Eigenvector of **P** with Eigenvalue 1
- <u>v</u> is called the *limiting* state-probability vector
- Two interpretations of $\underline{v}(s)$:
 - ▶ the long-run proportion of time that the DTMC "spends" in state s
 - the probability the DTMC is in s when making a snapshot after a very long time

Examples

What are Markov chains?

What are Markov chains?

 A discrete-time Markov chain (DTMC) is a time-homogeneous Markov process with discrete parameter T and discrete state space S.

What are Markov chains?

- A discrete-time Markov chain (DTMC) is a time-homogeneous Markov process with discrete parameter T and discrete state space S.
- State residence times are geometrically distributed.

What are Markov chains?

- A discrete-time Markov chain (DTMC) is a time-homogeneous Markov process with discrete parameter T and discrete state space S.
- State residence times are geometrically distributed.
- ▶ Alternative: a DTMC D is a tuple (S, P, ℓ_{init}, AP, L)

What are Markov chains?

- A discrete-time Markov chain (DTMC) is a time-homogeneous Markov process with discrete parameter T and discrete state space S.
- State residence times are geometrically distributed.
- Alternative: a DTMC D is a tuple (*S*, **P**, ι_{init} , *AP*, *L*)

What are transient probabilities?

What are Markov chains?

- A discrete-time Markov chain (DTMC) is a time-homogeneous Markov process with discrete parameter T and discrete state space S.
- State residence times are geometrically distributed.
- Alternative: a DTMC D is a tuple $(S, \mathbf{P}, \iota_{\text{init}}, AP, L)$

What are transient probabilities?

• $\Theta_n^{\mathcal{D}}(s)$ is the probability to be in state s after n steps.

What are Markov chains?

- A discrete-time Markov chain (DTMC) is a time-homogeneous Markov process with discrete parameter T and discrete state space S.
- State residence times are geometrically distributed.
- Alternative: a DTMC D is a tuple (S, P, ι_{init} , AP, L)

What are transient probabilities?

- $\Theta_n^{\mathcal{D}}(s)$ is the probability to be in state s after n steps.
- These transient probabilities satisfy: $\Theta_n^{\mathcal{D}} = \iota_{\text{init}} \cdot \mathbf{P}^n$.

What are Markov chains?

- A discrete-time Markov chain (DTMC) is a time-homogeneous Markov process with discrete parameter T and discrete state space S.
- State residence times are geometrically distributed.
- Alternative: a DTMC D is a tuple (S, P, ι_{init} , AP, L)

What are transient probabilities?

- $\Theta_n^{\mathcal{D}}(s)$ is the probability to be in state s after n steps.
- These transient probabilities satisfy: $\Theta_n^{\mathcal{D}} = \iota_{\text{init}} \cdot \mathbf{P}^n$.

What are long-run probabilities?

What are Markov chains?

- A discrete-time Markov chain (DTMC) is a time-homogeneous Markov process with discrete parameter T and discrete state space S.
- State residence times are geometrically distributed.
- Alternative: a DTMC D is a tuple (S, P, ι_{init} , AP, L)

What are transient probabilities?

- $\Theta_n^{\mathcal{D}}(s)$ is the probability to be in state s after n steps.
- These transient probabilities satisfy: $\Theta_n^{\mathcal{D}} = \iota_{\text{init}} \cdot \mathbf{P}^n$.

What are long-run probabilities?

• $\underline{v}(s)$ is the probability to be in state s after infinitely many steps.

What are Markov chains?

- A discrete-time Markov chain (DTMC) is a time-homogeneous Markov process with discrete parameter T and discrete state space S.
- State residence times are geometrically distributed.
- Alternative: a DTMC D is a tuple (S, P, ι_{init} , AP, L)

What are transient probabilities?

- $\Theta_n^{\mathcal{D}}(s)$ is the probability to be in state s after n steps.
- These transient probabilities satisfy: $\Theta_n^{\mathcal{D}} = \iota_{\text{init}} \cdot \mathbf{P}^n$.

What are long-run probabilities?

- $\underline{v}(s)$ is the probability to be in state s after infinitely many steps.
- ▶ long-run probabilities satisfy: $\underline{v} \cdot (\mathbf{I} \mathbf{P}) = \underline{0}$ under $\sum_{i} \underline{v}(i) = 1$.