Introduction

Modeling and Verification of Probabilistic Systems

Joost-Pieter Katoen

Lehrstuhl für Informatik 2 Software Modeling and Verification Group

http://moves.rwth-aachen.de/teaching/ws-1516/movep15/

October 21, 2015

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

1/51

Introduction

Theme of the course

The theory of modelling and verification of probabilistic systems

Overview

- Introduction
- 2 The Relevance of Probabilities
- 3 Course details
- 4 Probability refresher
 - Probability spaces
 - Random variables
 - Stochastic processes

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

2/51

The Relevance of Probabilities

Overview

- Introduction
- 2 The Relevance of Probabilities
- Course details
- 4 Probability refresher
 - Probability spaces
 - Random variables
 - Stochastic processes

More than five reasons for probabilities

- 1. Randomised Algorithms
- 2. Reducing Complexity
- 3. Probabilistic Programming
- 4. Reliability
- 5. Performance
- 6. Optimization
- 7. Systems Biology

Modeling and Verification of Probabilistic System

The Relevance of Probabilities

Distributed computing

FLP impossibility result

[Fischer et al., 1985]

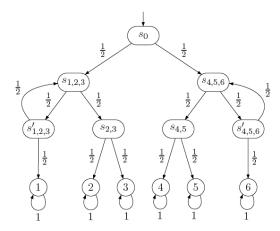
In an asynchronous setting, where only one processor might crash, there is no distributed algorithm that solves the consensus problem—getting a distributed network of processors to agree on a common value.

Ben-Or's possibility result

[Ben-Or, 1983]

If a process can make a decision based on its internal state, the message state, and some probabilistic state, consensus in an asynchronous setting is almost surely possible.

Randomised algorithms: Simulating a die [Knuth & Yao, 1976]



Heads = "go left"; tails = "go right". Does this model a six-sided die?

loost-Pieter Katoen

The Relevance of Probabilities

Reducing complexity: Matrix multiplication 1977]

Input: three $\mathcal{O}(N^2)$ square matrices A, B, and C

Output: yes, if $A \times B = C$; no, otherwise

Deterministic: compute $A \times B$ and compare with C

Complexity: in $\mathcal{O}(N^3)$, best known complexity $\mathcal{O}(N^{2.37})$

1. take a random bit-vector \vec{x} of size N Randomised:

2. compute $A \times (B\vec{x}) - C\vec{x}$

3. output yes if this yields the null vector; no otherwise

4. repeat these steps *k* times

Complexity: in $\mathcal{O}(k \cdot N^2)$, with false positive with probability $\leq 2^{-k}$

Big data analytics

How Statisticians Found Air France Flight 447 Two Years After It Crashed Into Atlantic

[MIT Technology Review, May 2014]

loost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

Modeling and Verification of Probabilistic Systems

10/51

The Relevance of Probabilities

AF447: Failed search attempts

June 7, 2009

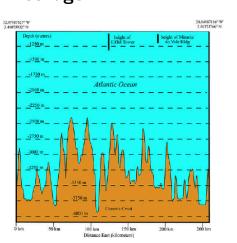
[Stone, et al., Statistical Science, 2013]

Air France flight AF-447

Airbus A-330 flight AF-447

June 1, 2009

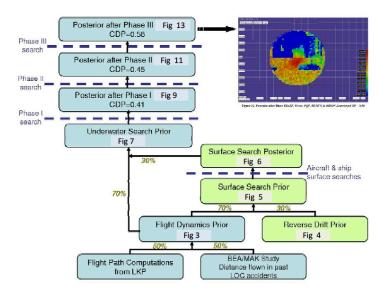
Where is the wreckage?



East-west cross section Atlantic

 $70,000 \text{ km}^2$ were searched, up to 4500 m depth

How statisticians came into the play



Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

Reverse drift prior (ocean and wind drift) ^a

^aCurrents are hard to estimate close to equator and in

Joost-Pieter Katoen

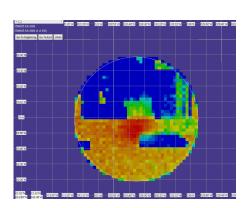
Joost-Pieter Katoen

The priors

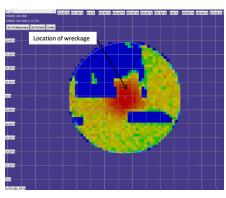
Modeling and Verification of Probabilistic Systems

The Relevance of Probabilities

Two posteriors for location wreckage



Posterior after sonar and UAV search (2010) assuming pingers black boxes function



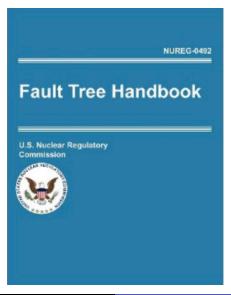
Posterior pdf assuming pingers of black boxes failed

Reliability engineering

Fraction of impact locations within

distance D of beginning of emergency

Fraction of Impact Locations within Distance D of Beginning of Emergency



Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

Modeling and Verification of Probabilistic Systems

Reliability: (Dynamic) Fault Trees [Dugan et al., 1990] output output output inputs inputs inputs (a) OR (b) AND (c) VOTING output dummy output output trigger → Primary **Spares** Dependent events

Joost-Pieter Katoen

Modeling and Verification of Probabilistic System

(f) FDEP

The Relevance of Probabilities

Probabilities help

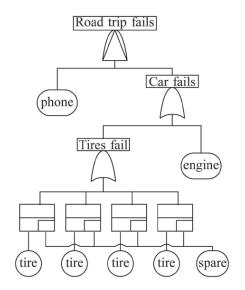
(d) PAND

▶ When modelling and analysing dependability and reliability

(e) SPARE

- ▶ to quantify arrivals, message loss, waiting times, time between failure, QoS, ...
- ▶ When building protocols for networked embedded systems
 - ► randomized algorithms
- ► When problems are undecidable
 - ▶ repeated reachability of lossy channel systems, ...
- ► For obtaining a better performance
 - ▶ Freivald's matrix-mulitplication, random Quicksort . . .

A fault tree example

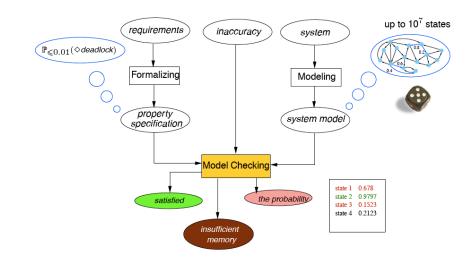


Joost-Pieter Katoen

(D)FTs: one of —if not the— most prominent models for risk analysis

The Relevance of Probabilities

What is probabilistic model checking?



Probabilistic models

	Nondeterminism no	Nondeterminism yes
Discrete time	discrete-time Markov chain (DTMC)	Markov decision process (MDP)
Continuous time	СТМС	CTMDP

Some other models: probabilistic variants of (priced) timed automata

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

21/51

Course details

Overview

- 1 Introduction
- 2 The Relevance of Probabilities
- 3 Course details
- 4 Probability refresher
 - Probability spaces
 - Random variables
 - Stochastic processes

Properties

	Logic	Monitors
Discrete time	probabilistic CTL	deterministic automata (safety and LTL)
Continuous time	probabilistic timed CTL	deterministic timed automata

Core problem: computing (timed) reachability probabilities

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

22 /5

Course detai

Course topics

A probability theory refrehser

- \blacktriangleright measurable spaces, σ -algebra, measurable functions
- ▶ geometric, exponential and binomial distributions
- Markov and memoryless property
- limiting and stationary distributions

What are probabilistic models?

- discrete-time Markov chains
- continuous-time Markov chains
- extensions of these models with rewards
- Markov decision processes (or: probabilistic automata)
- ▶ interactive Markov chains

Joost-Pieter Katoen

Course topics

What are properties?

- ightharpoonup reachability probabilities, i.e., $\Diamond G$
- ▶ long-run properties
- ► linear temporal logic
- probabilistic computation tree logic

How to check temporal logic properties?

- graph analysis, solving systems of linear equations
- deterministic Rabin automata, product construction
- ▶ linear programming, integral equations
- uniformization, Volterra integral equations

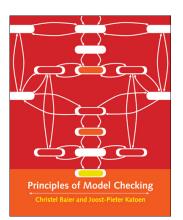
Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

25/51

Course details

Course material



Ch. 10, Principles of Model Checking

CHRISTEL BAIER

TU Dresden, Germany

JOOST-PIETER KATOEN

RWTH Aachen University, Germany, and University of Twente, the Netherlands

Course topics

How to make probabilistic models smaller?

- ► Equivalences and pre-orders
- ▶ Which properties are preserved?

How to model probabilistic models?

- parallel composition and hiding
- compositional modelling and minimisation

Joost-Pieter Katoei

Modeling and Verification of Probabilistic Systems

26/51

Course details

Other literature

- ► H.C. Tijms: A First Course in Stochastic Models. Wiley, 2003.
- ► H. Hermanns: Interactive Markov Chains: The Quest for Quantified Quality. LNCS 2428, Springer-Verlag, 2002.
- ► J.-P. Katoen. Model Checking Meets Probability: A Gentle Introduction. IOS Press, 2013. (see course web-page for download)
- ► M. Stoelinga. An Introduction to Probabilistic Automata. Bull. of the ETACS, 2002.
- ► M. Kwiatkowska *et al.*. Stochastic Model Checking. LNCS 4486, Springer-Verlag, 2007.

Lectures

Lecture

- ► Tue 14:15–15:45 (9U10), Wed 10:15–11:45 (5052)
- ▶ Oct 21, 27, 28
- Nov 3, 4, 10, 11, 17, 18, 24, 25
- ▶ Dec 2, 8, 9, 15, 16
- ▶ January 12,
- ► Check regularly course web page for possible "no shows"

Material

- ▶ Lecture slides (with gaps) are made available on web page
- ► Copies of the books are available in the CS library

Website

http://moves.rwth-aachen.de/teaching/ws-1516/movep15/

Joost-Pieter Katoe

Modeling and Verification of Probabilistic Systems

29/5

Course details

Course embedding

Aim of the course

It's about the foundations of verifying and modelling probabilistic systems

Prerequisites

- ► Automata and language theory
- ► Algorithms and data structures
- Probability theory
- ▶ Introduction to model checking

Some related courses

- Advanced Model Checking (Katoen)
- ▶ Modelling and Verification of Hybrid Systems (Abráhám)

Exercises and exam

Exercise classes

- ▶ Wed 14:15 15:45 in AH 6 (start: Oct 28)
- ▶ Instructors: Christian Dehnert and Sebastian Junges

Weekly exercise series

- ▶ Intended for groups of 2 students
- ▶ New series: every Wed on course web page (start: Oct 21)
- ► Solutions: Wed (before 14:15) one week later

Exam:

- unknown date (written or oral exam)
- ▶ participation if ≥ 40% of all exercise points are gathered

loost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

30/5

Course detai

Questions?

Overview

- 1 Introduction
- 2 The Relevance of Probabilities
- 3 Course details
- Probability refresher
 - Probability spaces
 - Random variables
 - Stochastic processes

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

33/51

Probability refresher

Measurable space

Sample space

A sample space Ω of a chance experiment is a set of elements that have a 1-to-1 relationship to the possible outcomes of the experiment.

σ -algebra

A σ -algebra is a pair (Ω, \mathcal{F}) with $\Omega \neq \emptyset$ and $\mathcal{F} \subseteq 2^{\Omega}$ a collection of subsets of sample space Ω such that:

- 1. $\Omega \in \mathcal{F}$
- 2. $A \in \mathcal{F} \Rightarrow \Omega A \in \mathcal{F}$

complement

3. $(\forall i \geq 0. \ A_i \in \mathcal{F}) \Rightarrow \bigcup_{i \geq 0} A_i \in \mathcal{F}$

countable union

The elements in $\mathcal F$ of a σ -algebra $(\Omega,\mathcal F)$ are called *events*.

The pair (Ω, \mathcal{F}) is called a *measurable space*.

Let Ω be a set. $\mathcal{F}=\{\varnothing,\Omega\}$ yields the smallest σ -algebra; $\mathcal{F}=2^\Omega$ yields the largest one.

Probability theory is simple, isn't it?

In no other branch of mathematics is it so easy to make mistakes as in probability theory

Henk Tijms, "Understanding Probability" (2004)

Joost-Pieter Katoen

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

34/5

Probability refresher

Probabilities



Probability space

Probability space

A *probability space* \mathcal{P} is a structure $(\Omega, \mathcal{F}, Pr)$ with:

- \blacktriangleright (Ω, \mathcal{F}) is a σ -algebra, and
- ▶ $Pr: \mathcal{F} \rightarrow [0, 1]$ is a *probability measure*, i.e.:
 - 1. $Pr(\Omega) = 1$, i.e., Ω is the certain event
 - 2. $Pr\left(\bigcup_{i\in I}A_i\right)=\sum_{i\in I}Pr(A_i)$ for any $A_i\in\mathcal{F}$ with $A_i\cap A_j=\varnothing$ for $i\neq j$, where $\{A_i\}_{i\in I}$ is finite or countably infinite.

The elements in \mathcal{F} of a probability space $(\Omega, \mathcal{F}, Pr)$ are called *measurable* events.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

37/5

Probability refresher

Discrete probability space

Discrete probability space

Pr is a *discrete* probability measure on (Ω, \mathcal{F}) if

▶ there is a countable set $A \subseteq \Omega$ such that for $a \in A$:

$$\{a\} \in \mathcal{F} \quad \text{ and } \quad \sum_{a \in A} \Pr(\{a\}) = 1$$

• e.g., a probability measure on $(\Omega, 2^{\Omega})$

 $(\Omega, \mathcal{F}, Pr)$ is then called a *discrete* probability space; otherwise, it is a *continuous probability* space.

Example

Example discrete probability space: throwing a die, number of customers in a shop,

Example

Some lemmas

Properties of probabilities

For measurable events A, B and A_i and probability measure Pr.

- $Pr(A) = 1 Pr(\Omega A)$
- $ightharpoonup Pr(A \cup B) = Pr(A) + Pr(B) Pr(A \cap B)$
- $ightharpoonup Pr(A \cap B) = Pr(A \mid B) \cdot Pr(B)$
- ▶ $A \subseteq B$ implies $Pr(A) \leqslant Pr(B)$
- $ightharpoonup Pr(\bigcup_{n\geq 1} A_n) = \sum_{n\geq 1} Pr(A_n)$ provided A_n are pairwise disjoint

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

38/5

Probability refresh

Random variable

Measurable function

Let (Ω, \mathcal{F}) and (Ω', \mathcal{F}') be measurable spaces. Function $f: \Omega \to \Omega'$ is a measurable function if

$$f^{-1}(A) = \{ a \mid f(a) \in A \} \in \mathcal{F} \quad \text{ for all } A \in \mathcal{F}'$$

Random variable

Measurable function $X : \Omega \to \mathbb{R}$ is a *random variable*.

The *probability distribution* of X is $Pr_X = Pr \circ X^{-1}$ where Pr is a probability measure on (Ω, \mathcal{F}) .

Example: rolling a pair of fair dice

loost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

41/51

Probability refresher

Discrete / continuous random variables

Distribution function

The *distribution function* F_X of random variable X is defined for $d \in \mathbb{R}$ by:

$$F_X(d) = Pr_X(X \in (-\infty, d]) = Pr(\{a \in \Omega \mid X(a) \leq d\})$$

In the continuous case, F_X is called the *cumulative density function*.

Distribution function

▶ For discrete random variable X, F_X can be written as:

$$F_X(d) = \sum_{d_i \leq d} Pr_X(X = d_i)$$

 \blacktriangleright For continuous random variable X, F_X can be written as:

$$F_X(d) = \int_{-\infty}^d f_X(u) \ du$$
 with f the density function

Distribution function

Distribution function

The *distribution function* F_X of random variable X is defined by:

$$F_X(d) = Pr_X((-\infty, d]) = Pr(\underbrace{\{a \in \Omega \mid X(a) \leqslant d\}})$$
 for real d

Properties

- \triangleright F_X is monotonic and right-continuous
- ▶ $0 \leqslant F_X(d) \leqslant 1$
- ▶ $\lim_{d\to -\infty} F_X(d) = 0$ and
- $\blacktriangleright \lim_{d\to\infty} F_X(d) = 1.$

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

42/5

Probability refresh

Expectation and variance

Expectation

The expectation of discrete r.v. X with range I is defined by

$$E[X] = \sum_{x_i \in I} x_i \cdot Pr_X(X = x_i)$$

provided that this series converges absolutely, i.e., the sum must remain finite on replacing all x_i 's with their absolute values.

The expectation is the weighted average of all possible values that X can take on.

Variance

The *variance* of discrete r.v. X is given by $Var[X] = E[X^2] - (E[X])^2$.

Stochastic process

Stochastic process

A *stochastic process* is a collection of random variables $\{X_t \mid t \in T\}$.

- ightharpoonup casual notation X(t) instead of X_t
- with all X_t defined on probability space \mathcal{P}
- ▶ parameter t (mostly interpreted as "time") takes values in the set T

 X_t is a random variable whose values are called *states*. The set of all possible values of X_t is the *state space* of the stochastic process.

	Parameter space <i>T</i>		
State space	Discrete	Continuous	
Discrete	# jobs at k-th job departure	# jobs at time t	
Continuous	waiting time of <i>k</i> -th job	total service time at time t	

loost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

4E /E1

Probability refresher

Bernouilli process

Bernouilli random variable

Random variable X on state space $\{0,1\}$ defined by:

$$Pr(X = 1) = p$$
 and $Pr(X = 0) = 1-p$

is a Bernouilli random variable.

The mass function is given by $f(k; p) = p^k \cdot (1-p)^{1-k}$ for $k \in \{0, 1\}$.

Expectation E[X] = p; variance $Var[X] = E[X^2] - (E[X])^2 = p \cdot (1-p)$.

Bernouilli process

A *Bernouilli process* is a sequence of independent and identically distributed Bernouilli random variables X_1, X_2, \ldots

Example stochastic processes

- ► Waiting times of customers in a shop
- ▶ Interarrival times of jobs at a production lines
- ► Service times of a sequence of jobs
- ► Files sizes that are downloaded via the Internet
- ▶ Number of occupied channels in a wireless network

.

Joost-Pieter Katoe

Modeling and Verification of Probabilistic Systems

4.C. /F

Probability refres

Binomial process

Binomial process

Let $X_1, X_2, ...$ be a Bernouilli process. The *binomial* process S_n is defined by $S_0 = 0$ and $S_n = \sum_{i=1}^n X_i$. The probability distribution of "counting process" S_n is given by:

$$Pr\{S_n = k\} = \binom{n}{k} p^k \cdot (1-p)^{n-k} \quad \text{for } 0 \leqslant k \leqslant n$$

Moments: $E[S_n] = n \cdot p$ and $Var[S_n] = n \cdot p \cdot (1-p)$.

Geometric distribution

Joost-Pieter Katoen

Let r.v. T_i be the number of steps between increments of counting process S_n . Then:

$$Pr\{ T_i = k \} = (1-p)^{k-1} \cdot p \quad \text{for } k \geqslant 1$$

This is a *geometric distribution*. We have $E[T_i] = \frac{1}{p}$ and $Var[T_i] = \frac{1-p}{p^2}$. Intuition: Geometric distribution = number of Bernoulli trials needed for one success.

Geometric distribution

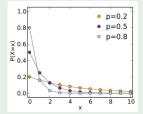
Geometric distribution

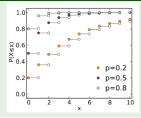
Let X be a discrete random variable, natural k > 0 and 0 . The mass function of a*geometric distribution*is given by:

$$Pr\{X = k\} = (1 - p)^{k-1} \cdot p$$

We have $E[X] = \frac{1}{p}$ and $Var[X] = \frac{1-p}{p^2}$ and cdf $Pr\{X \leqslant k\} = 1 - (1-p)^k$.

Geometric distributions and their cdf's





Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

Joost-Pie

Probability refresh

Memoryless property

Theorem

1. For any random variable X with a geometric distribution:

$$Pr\{X = k + m \mid X > m\} = Pr\{X = k\}$$
 for any $m \in T, k \geqslant 1$

This is called the memoryless property, and X is a memoryless r.v..

2. Any discrete random variable which is memoryless is geometrically distributed.

Proof:

On the black board.

st-Pieter Katoen

Modeling and Verification of Probabilistic Systems

EO /E1

Joint distribution function

Joint distribution function

The *joint* distribution function of stochastic process $X = \{ X_t \mid t \in T \}$ is given for $n, t_1, \ldots, t_n \in T$ and d_1, \ldots, d_n by:

$$F_X(d_1,\ldots,d_n;t_1,\ldots,t_n) = Pr\{X(t_1) \leq d_1,\ldots,X(t_n) \leq d_n\}$$

The shape of F_X depends on the stochastic dependency between $X(t_i)$.

Stochastic independence

Random variables X_i on probability space \mathcal{P} are *independent* if:

$$F_X(d_1,\ldots,d_n;t_1,\ldots,t_n) = \prod_{i=1}^n F_X(d_i;t_i) = \prod_{i=1}^n Pr\{X(t_i) \leqslant d_i\}.$$

A renewal process is a discrete-time stochastic process where $X(t_1), X(t_2), \ldots$ are independent, identically distributed, non-negative random variables.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

51/51