Christian Dehnert, Sebastian Junges

Prof. Dr. Ir. Joost-Pieter Katoen

Exercise 1 (Weak Until):

Prove the following theorem: For any finite DTMC it holds that

$$\mathbb{P}_{=1}(\Diamond a) \equiv \forall ((\exists \Diamond a) \mathsf{W} a)$$

where W is the weak until operator defined by $\Phi W \Psi = (\Phi U \Psi) \vee \Box \Phi$.

Exercise 2 (PCTL Equivalences):

Prove or disprove the following *PCTL* equivalences.

- a) $\mathbb{P}_{>0.5}(\bigcirc \mathbb{P}_{>0.5}(\Diamond a)) \equiv \mathbb{P}_{>0.5}(\Diamond \mathbb{P}_{>0.5}(\bigcirc a))$
- **b)** $\mathbb{P}_{=1}(\bigcirc \mathbb{P}_{=1}(\Diamond a)) \equiv \mathbb{P}_{=1}(\Diamond \mathbb{P}_{=1}(\bigcirc a))$

Exercise 3 (PCTL Model Checking):

a) Consider the following DTMC *D*.

- (i) Without any computation, decide whether $D \models \mathbb{P}_{\leq 0.5}(\Diamond s_4)$.
- (ii) Write a PRISM model that precisely captures the above $\mathsf{DTMC}.$
- (iii) Use PRISM to verify or refute your result for $\Phi.$

To document your work, please include your model and the (relevant) output of PRISM. Additionally, explain any remarkable observations.

Hint: PRISM and further documentation can be obtained on www.prismmodelchecker.org.

b) Consider the DTMC D'.

(4 points)

(4 points)

(2 points)

Determine the set $Sat(\Phi)$ where $\Phi = \mathbb{P}_{\leq \frac{3}{4}}(\bigcirc \mathbb{P}_{\geq \frac{1}{3}}(a \ U^{\leq 3} \ (b \lor \neg c)))$ using the algorithm from the lecture. Please give intermediate results and explain your reasoning. A full computation, however, is not needed.