Prof. Dr. Ir. Joost-Pieter Katoen

Christian Dehnert, Sebastian Junges

Exercise 1 (Sigma Algebras):

(4 points)

Let Ω be a countably infinite set and define \mathfrak{F}_{Ω} as the smallest class of subsets of Ω such that for all $A\subseteq\Omega$

- (i) if A is finite, then $A \in \mathfrak{F}_{\Omega}$, and
- (ii) if $A \in \mathfrak{F}_{\Omega}$, then $A^c \in \mathfrak{F}_{\Omega}$ for $A^c := (\Omega \setminus A)$.
- a) Show that the definition is non-trivial, i.e., in general $\mathfrak{F}_{\Omega} \neq 2^{\Omega}$. (Hint: find a set Ω and a subset $A \subseteq \Omega$ which cannot be in \mathfrak{F}_{Ω} according to the above definition.)
- **b)** Would this change if \mathfrak{F}_{Ω} is defined as the *largest* class of subsets defined as above (instead of the *smallest*)?
- c) Prove or disprove that \mathfrak{F}_{Ω} is a σ -algebra as defined in the lecture for any countably infinite set Ω .

Exercise 2 (Geometric Distribution):

(3 + 3 points)

Recall the definition of a geometric distribution as given in the lecture:

Definition 1. Let X be a discrete random variable, $k \in \mathbb{N}_{>0}$ and 0 . The mass function of a geometric distribution is given by:

$$\Pr\{X = k\} = (1 - p)^{k-1} \cdot p$$

Let X now be geometrically distributed with parameter p.

- a) Show that $E[X] = \frac{1}{p}$ and $Var[X] = \frac{1-p}{p^2}$.
- **b)** Prove that

$$\Pr\{X = k + m \mid X > m\} = \Pr\{X = k\}$$
 for any $m, k \in \mathbb{N}_{>0}$.

Hint: Use properties of probability measures and the geometric distribution as presented in the lecture.