Winter Semester 2015/16

Lecture 9: The m-Calculus

Joost-Pieter Katoen and Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ws-1516/ct/

’ Software Modeling

‘ Il and Verification Chair

http://moves.rwth-aachen.de/teaching/ws-1516/ct/

Recap: Modelling Mobile Concurrent Systems

Mobile Clients |
Example (Hand-over protocol)

Scenario:

e client devices moving around (phones, PCs, sensors, ...)

e each radio-connected to some base station

e stations wired to central control

e some event (e.g., signal fading) may cause a client to be switched to another station
e essential: specification of switching process (“hand-over protocol”)

Simplest case: _ Client
two stations, one client SW’tCW
talk
Station _ Idle
gain,
.Nse/%)sez
gain,
Control

RWTH

30f19 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 9: The 7w-Calculus ‘ Il and Verification Chair

Recap: Modelling Mobile Concurrent Systems

Mobile Clients Il

Example (Hand-over protocol; continued)

e Every station is in one of two modes: Station (active; four links) or /dle (inactive; two links)
e Client can talk via Station, and at any time Control can request Station/Idle to lose/gain
Client:
Station(talk, switch, gain, lose) = talk.Station(talk, switch, gain, lose) +
lose(t, s).switch(t, s).ldle(gain, lose)
Idle(gain, lose) = gain(t, s).Station(t, s, gain, lose)
e If Control decides Station to lose Client, it issues a new pair of channels to be shared by
Client and Idle:
Controly = lose(talky, switch,).gain,(talky, switch,).Control,
Control, = lose;(talky, switchy).gain, (talky, switchy).Control

e Client can either talk or, if requested, switch to a new pair of channels:
Client(talk, switch) = talk.Client(talk, switch) + switch(t, s).Client(t, s)

RWTH

40f 19 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 9: The 7w-Calculus ‘ Il and Verification Chair

Recap: Modelling Mobile Concurrent Systems

Mobile Clients llI

Example (Hand-over protocol; continued)

e As usual, the whole system is a restricted composition of processes:
System, = new L (Client, || Station; || Idle; || Control,)

where
Client; -= Client(talk;, switch;)
Station; := Station(talk;, switch;, gain;, lose;)
Idle; = Idle(gain;, lose;)
L := (talk;, switch;, gain;, lose; | i € {1,2})

e After having formally defined the 7-Calculus we will see that this protocol is correct, i.e., that
the hand-over does indeed occur:

System, —"* System,

where
System, = new L (Client, || Idle; || Station, || Control,)
50f19 Concurrency Theory
Winter Semester 2015/16 o Software Modelin Rm
Lecture 9: The m-Calculus ‘ Ml and Verification caair

Syntax of the Monadic 7-Calculus

Introduction

Literature on 7m-Calculus:

e Initial research paper:
R. Milner, J. Parrow, D. Walker: A calculus of mobile processes, Part l/ll. Journal of Inf. &
Comp., 100:1-77, 1992

e Overview article:

J. Parrow: An introduction to the m-Calculus. Chapter 8 of Handbook of Process Algebra,
479-543, Elsevier, 2001

e Textbook:
R. Milner: Communicating and mobile systems: the m-Calculus. Cambridge University
Press, 1999

To simplify the presentation (as in Milner’'s book):

1. Monadic m-Calculus with replication (message = one hame, no process identifiers)
2. Extension to polyadic calculus

3. Extension by process equations

RWTH

7 0of 19 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 9: The mw-Calculus ‘ Il and Verification Chair

Syntax of the Monadic m-Calculus

Syntax of the Monadic 7-Calculus
Definition 9.1 (Syntax of monadic -Calculus)

eletA={ab,c...,x,y,z, ...} be asetof names.
e The set of action prefixes is given by

= x(y) (receive y along x)
| X(y) (send y along x)
| T (unobservable action)
e The set Prc”™ of m-Calculus process expressions is defined by the following syntax:
P:=> ., m.P (guarded sum)
| Py || P2 (parallel composition)
| newxP (restriction)
| 1P (replication)
(where [finite index set, x € A)
Conventions: nil :=) . m.P;, new xq, ..., X, P := new x (...new x, P)
s s R, | RWNTH
Lecture 9: The m-Calculus ‘ | §3Lt‘\":':r'i?iéwa?ﬂ$'gﬂair

Syntax of the Monadic m-Calculus

Free and Bound Names

Definition 9.2 (Free and bound names)

e The input prefix x(y) and the restriction new y P both bind y.
e Every other occurrence of a name (i.e., x in x(y) and x, y in x(y)) is free.

e The set of bound/free names of a process expressions P € Prc” is respectively denoted by
bn(P)/fn(P).

Remark: bn(P) N fn(P) = () is possible

Example 9.3

P = new x (x(y).nil || Z{y).nil)
—> bn(P) = {x,y}, (P) ={y,z}

RWTH

90f 19 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 9: The 7w-Calculus ‘ Il and Verification Chair

Semantics of the Monadic m-Calculus

Structural Congruence

Goal: simplify definition of operational semantics by ignoring “purely syntactic”
differences between processes

Definition 9.4 (Structural congruence)

P, Q € Prc™ are structurally congruent, written P = Q, if one can be transformed
into the other by applying the following operations and equations:

1. renaming of bound names (a-conversion)
2. reordering of terms in a summation (commutativity of +)
.Pll@=Q| P, P|(Q|R=(P]| Q)| R, P | nil= P (Abelian monoid laws for ||)
4. new x nil = nil, newx, y P=new y, x P,
P || newx Q =newx (P || Q) if x ¢ fn(P) (scope extension)
5. 1P = P ||!P (unfolding)

RWTH

11 0f 19 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 9: The w-Calculus ‘ Il and Verification Chair

Semantics of the Monadic m-Calculus

A Standard Form
Theorem 9.5 (Standard form)

Every process expression is structurally congruent to a process of the standard form
newxi, ..., xk(Py || ... || Pm '@ || ... [|'Qn)
where each P; is a non-empty sum, and each Q; is in standard form.

(If m = n = 0:nil; if k = 0: restriction absent)

Proof.

by induction on the structure of R € Prc” (on the board) []

RWTH

12 0f 19 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 9: The 7w-Calculus Il and Verification Chair

Semantics of the Monadic m-Calculus

The Reaction Relation

Thanks to Theorem 9.5, only processes in standard form need to be considered for
defining the operational semantics:

Definition 9.6
The reaction relation — C Prc™ x Prc” is generated by the rules:

(Tau

TP+Q— P

(x(y)-P+R) || (X(2).Q+S) — Plz/y] || @

P— P - P— P
Pla—FP|Q new x P — new x P’

(React)

(Par

/
se——F_ itp=Qand P = @
Q— Q

e P[z/y]| replaces every free occurrence of y in P by Z.
e In (React), the pair (x(y),x(z)) is called a redex.

RWTH

13 0f 19 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 9: The 7w-Calculus Il and Verification Chair

Semantics of the Monadic m-Calculus

Example: Printer Server
Example 9.7

1. Printer server (cf. Example 8.9):

b(a).S' || a(e).P’ || b(c).c(d).C’' — S’ || a(e).P' || a(d).C’

S P C

S || a(e).P || a(d).C' — S’ || P'[d/e] || C’
(on the board)
2. With scope extension (P || new x Q = new x (P || Q) if x ¢ fn(P)):
new b (new a(b(a).S' || a(e).P’) || b(c).c(d).C’)
—newa,b(S || a(e).P || a(d).C')
(on the board)

14 of 19 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 9: The 7w-Calculus Il and Verification Chair

RWTH

Mobile Clients Revisited

Example: Mobile Clients
Example 9.8

e System specification (cf. Example 8.10):
System, = new L (Client, || Station, || Idles || Controly)

System, = new L (Client, || Idle; || Station, || Control,)
Station(talk, switch, gain, lose) = talk.Station(talk, switch, gain, lose) +
lose(t, s).switch(t, s).Idle(gain, lose)
Idle(gain, lose) = gain(t, s).Station(t, s, gain, lose)
Controly = lose (talky, switchy).gain,(talk,, switchy). Control,
Control, = lose;(talky, switchy).gain, (talky, switchy).Control
Client(talk, switch) = talk.Client(talk, switch) + switch(t, s).Client(t, s)
L = (talk;, switch;, gain;, lose; | i € {1,2})
e Use additional reaction rule for polyadic communication:

)P+ R) | (X(Z).Q+S) — PZ/y]]| Q

e Use additional congruence rule for process calls: if A(X) = Pa, then A(Y) = Pa[y/X]
e Show System, —" System, (on the board)

RWTH

16 of 19 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 9: The 7w-Calculus ‘ Il and Verification Chair

The Polyadic m-Calculus

Polyadic Communication |

e So far: messages with exactly one name
e Now: arbitrary number
e New types of action prefixes:
X(Y1,---,¥n) and X{(Z1,...,2Zn)
where n € N and all y; distinct
e Expected behavior:

(React)

(x(¥).-P+R) || (x(2).Q+S) — P[Z/y] || Q
(replacement of free names)
e Obvious attempt for encoding:

18 of 19 Concurrency Theory
Winter Semester 2015/16

Software Modeling

Lecture 9: The 7w-Calculus ‘ Il and Verification Chair

RWTH

The Polyadic m-Calculus

Polyadic Communication Il

e But consider the following counterexample.
Polyadic representation:
x(y1,¥2)-P || X{z1, 22).Q || X{Z}, z5).Q

N\
Plzi/yr, z2/yol || Q|| X(21,25).Q" Plzi/y1, 2/ o] || X(21, 22) Q|| @
Monadic encoding: P[zi/yi,z2/yo] || ... P[zq/yhzé/};g] | ... V
12 T
x(y1)-x(y2)-P || X{z1) X(22).Q || X{2{) . X{2).Q
12 2
Plzi/yi.zi/ye) | - ¢ Plzi/yi,zi/yo] || ... 4

e Solution: avoid interferences by first introducing a fresh channel:

X(y17 s 7yn)'P — X(W)W(y1) Tt W(yn)P
X{zy,...,zn). Q= neww (X{(w).w(z;) ... w(z,).Q)
where w ¢ fn(Q)
e Correctness: see exercises

19 of 19 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 9: The 7w-Calculus ‘ Il and Verification Chair

RWTH

	Recap: Modelling Mobile Concurrent Systems
	Syntax of the Monadic -Calculus
	Semantics of the Monadic -Calculus
	Mobile Clients Revisited
	The Polyadic -Calculus

