
Concurrency Theory
Winter Semester 2015/16

Lecture 9: The π-Calculus

Joost-Pieter Katoen and Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ws-1516/ct/

http://moves.rwth-aachen.de/teaching/ws-1516/ct/

Recap: Modelling Mobile Concurrent Systems

Mobile Clients I

Example (Hand-over protocol)

Scenario:
• client devices moving around (phones, PCs, sensors, ...)
• each radio-connected to some base station
• stations wired to central control
• some event (e.g., signal fading) may cause a client to be switched to another station
• essential: specification of switching process (“hand-over protocol”)

Simplest case:
two stations, one client

Client

Station Idle

Control

talk1

switch1

gain1

lose1
gain2

lose2

3 of 19 Concurrency Theory

Winter Semester 2015/16
Lecture 9: The π-Calculus

Recap: Modelling Mobile Concurrent Systems

Mobile Clients II

Example (Hand-over protocol; continued)

• Every station is in one of two modes: Station (active; four links) or Idle (inactive; two links)
• Client can talk via Station, and at any time Control can request Station/Idle to lose/gain

Client :
Station(talk , switch, gain, lose) = talk .Station(talk , switch, gain, lose) +

lose(t , s).switch〈t , s〉.Idle(gain, lose)
Idle(gain, lose) = gain(t , s).Station(t , s, gain, lose)

• If Control decides Station to lose Client , it issues a new pair of channels to be shared by
Client and Idle:

Control1 = lose1〈talk2, switch2〉.gain2〈talk2, switch2〉.Control2
Control2 = lose2〈talk1, switch1〉.gain1〈talk1, switch1〉.Control1

• Client can either talk or, if requested, switch to a new pair of channels:

Client(talk , switch) = talk .Client(talk , switch) + switch(t , s).Client(t , s)

4 of 19 Concurrency Theory

Winter Semester 2015/16
Lecture 9: The π-Calculus

Recap: Modelling Mobile Concurrent Systems

Mobile Clients III

Example (Hand-over protocol; continued)

• As usual, the whole system is a restricted composition of processes:

System1 = new L (Client1 ‖ Station1 ‖ Idle2 ‖ Control1)

where
Client i := Client(talk i , switchi)

Stationi := Station(talk i , switchi , gaini , losei)
Idlei := Idle(gaini , losei)

L := (talk i , switchi , gaini , losei | i ∈ {1, 2})
• After having formally defined the π-Calculus we will see that this protocol is correct, i.e., that

the hand-over does indeed occur:

System1 −→∗ System2

where

System2 = new L (Client2 ‖ Idle1 ‖ Station2 ‖ Control2)

5 of 19 Concurrency Theory

Winter Semester 2015/16
Lecture 9: The π-Calculus

Syntax of the Monadic π-Calculus

Introduction

Literature on π-Calculus:
• Initial research paper:

R. Milner, J. Parrow, D. Walker: A calculus of mobile processes, Part I/II. Journal of Inf. &
Comp., 100:1–77, 1992
• Overview article:

J. Parrow: An introduction to the π-Calculus. Chapter 8 of Handbook of Process Algebra,
479–543, Elsevier, 2001
• Textbook:

R. Milner: Communicating and mobile systems: the π-Calculus. Cambridge University
Press, 1999

To simplify the presentation (as in Milner’s book):
1. Monadic π-Calculus with replication (message = one name, no process identifiers)
2. Extension to polyadic calculus
3. Extension by process equations

7 of 19 Concurrency Theory

Winter Semester 2015/16
Lecture 9: The π-Calculus

Syntax of the Monadic π-Calculus

Syntax of the Monadic π-Calculus

Definition 9.1 (Syntax of monadic π-Calculus)

• Let A = {a, b, c . . . , x , y , z, . . .} be a set of names.
• The set of action prefixes is given by

π ::= x(y) (receive y along x)
| x〈y〉 (send y along x)
| τ (unobservable action)

• The set Prcπ of π-Calculus process expressions is defined by the following syntax:

P ::=
∑

i∈I πi .Pi (guarded sum)
| P1 ‖ P2 (parallel composition)
| new x P (restriction)
| !P (replication)

(where I finite index set, x ∈ A)

Conventions: nil :=
∑

i∈∅ πi.Pi , new x1, . . . , xn P := new x1 (. . . new xn P)

8 of 19 Concurrency Theory

Winter Semester 2015/16
Lecture 9: The π-Calculus

Syntax of the Monadic π-Calculus

Free and Bound Names

Definition 9.2 (Free and bound names)

• The input prefix x(y) and the restriction new y P both bind y .
• Every other occurrence of a name (i.e., x in x(y) and x , y in x〈y〉) is free.
• The set of bound/free names of a process expressions P ∈ Prcπ is respectively denoted by

bn(P)/fn(P).

Remark: bn(P) ∩ fn(P) 6= ∅ is possible

Example 9.3

P = new x (x(y).nil ‖ z〈y〉.nil)
=⇒ bn(P) = {x, y}, fn(P) = {y , z}

9 of 19 Concurrency Theory

Winter Semester 2015/16
Lecture 9: The π-Calculus

Semantics of the Monadic π-Calculus

Structural Congruence

Goal: simplify definition of operational semantics by ignoring “purely syntactic”
differences between processes

Definition 9.4 (Structural congruence)

P,Q ∈ Prcπ are structurally congruent, written P ≡ Q, if one can be transformed
into the other by applying the following operations and equations:
1. renaming of bound names (α-conversion)
2. reordering of terms in a summation (commutativity of +)
3. P ‖ Q ≡ Q ‖ P, P ‖ (Q ‖ R) ≡ (P ‖ Q) ‖ R, P ‖ nil ≡ P (Abelian monoid laws for ‖)
4. new x nil ≡ nil, new x , y P ≡ new y , x P,

P ‖ new x Q ≡ new x (P ‖ Q) if x /∈ fn(P) (scope extension)
5. !P ≡ P ‖!P (unfolding)

11 of 19 Concurrency Theory

Winter Semester 2015/16
Lecture 9: The π-Calculus

Semantics of the Monadic π-Calculus

A Standard Form

Theorem 9.5 (Standard form)

Every process expression is structurally congruent to a process of the standard form

new x1, . . . , xk (P1 ‖ . . . ‖ Pm ‖ !Q1 ‖ . . . ‖ !Qn)

where each Pi is a non-empty sum, and each Qj is in standard form.

(If m = n = 0: nil; if k = 0: restriction absent)

Proof.

by induction on the structure of R ∈ Prcπ (on the board)

12 of 19 Concurrency Theory

Winter Semester 2015/16
Lecture 9: The π-Calculus

Semantics of the Monadic π-Calculus

The Reaction Relation

Thanks to Theorem 9.5, only processes in standard form need to be considered for
defining the operational semantics:

Definition 9.6

The reaction relation −→⊆ Prcπ × Prcπ is generated by the rules:
(Tau)

τ.P + Q −→ P
(React)

(x(y).P + R) ‖ (x〈z〉.Q + S) −→ P[z/y] ‖ Q

(Par)
P −→ P ′

P ‖ Q −→ P ′ ‖ Q
(Res)

P → P ′

new x P −→ new x P ′

(Struct)
P −→ P ′

Q −→ Q′
if P ≡ Q and P ′ ≡ Q′

• P[z/y] replaces every free occurrence of y in P by z.
• In (React), the pair (x(y), x〈z〉) is called a redex.

13 of 19 Concurrency Theory

Winter Semester 2015/16
Lecture 9: The π-Calculus

Semantics of the Monadic π-Calculus

Example: Printer Server

Example 9.7

1. Printer server (cf. Example 8.9):
b〈a〉.S′︸ ︷︷ ︸

S

‖ a(e).P ′︸ ︷︷ ︸
P

‖ b(c).c〈d〉.C′︸ ︷︷ ︸
C

−→ S′ ‖ a(e).P ′ ‖ a〈d〉.C′

S′ ‖ a(e).P ′ ‖ a〈d〉.C′ −→ S′ ‖ P ′[d/e] ‖ C′

(on the board)
2. With scope extension (P ‖ new x Q ≡ new x (P ‖ Q) if x /∈ fn(P)):

new b (new a (b〈a〉.S′ ‖ a(e).P ′) ‖ b(c).c〈d〉.C′)
−→ new a, b (S′ ‖ a(e).P ′ ‖ a〈d〉.C′)

(on the board)

14 of 19 Concurrency Theory

Winter Semester 2015/16
Lecture 9: The π-Calculus

Mobile Clients Revisited

Example: Mobile Clients

Example 9.8

• System specification (cf. Example 8.10):
System1 = new L (Client1 ‖ Station1 ‖ Idle2 ‖ Control1)
System2 = new L (Client2 ‖ Idle1 ‖ Station2 ‖ Control2)

Station(talk , switch, gain, lose) = talk .Station(talk , switch, gain, lose) +
lose(t , s).switch〈t , s〉.Idle(gain, lose)

Idle(gain, lose) = gain(t , s).Station(t , s, gain, lose)
Control1 = lose1〈talk2, switch2〉.gain2〈talk2, switch2〉.Control2
Control2 = lose2〈talk1, switch1〉.gain1〈talk1, switch1〉.Control1

Client(talk , switch) = talk .Client(talk , switch) + switch(t , s).Client(t , s)
L = (talk i , switchi , gaini , losei | i ∈ {1, 2})

• Use additional reaction rule for polyadic communication:
(React’)

(x(~y).P + R) ‖ (x〈~z〉.Q + S) −→ P[~z/~y] ‖ Q

• Use additional congruence rule for process calls: if A(~x) = PA, then A(~y) ≡ PA[~y/~x]
• Show System1 −→∗ System2 (on the board)

16 of 19 Concurrency Theory

Winter Semester 2015/16
Lecture 9: The π-Calculus

The Polyadic π-Calculus

Polyadic Communication I

• So far: messages with exactly one name
• Now: arbitrary number
• New types of action prefixes:

x(y1, . . . , yn) and x〈z1, . . . , zn〉
where n ∈ N and all yi distinct
• Expected behavior:

(React’)

(x(~y).P + R) ‖ (x〈~z〉.Q + S) −→ P[~z/~y] ‖ Q
(replacement of free names)
• Obvious attempt for encoding:

x(y1, . . . , yn).P 7→ x(y1) . . . x(yn).P
x〈z1, . . . , zn〉.Q 7→ x〈z1〉 . . . x〈zn〉.Q

18 of 19 Concurrency Theory

Winter Semester 2015/16
Lecture 9: The π-Calculus

The Polyadic π-Calculus

Polyadic Communication II

• But consider the following counterexample.

Polyadic representation:
x(y1, y2).P ‖ x〈z1, z2〉.Q ‖ x〈z ′1, z ′2〉.Q′

↙↘
P[z1/y1, z2/y2] ‖ Q ‖ x〈z ′1, z ′2〉.Q′ P[z ′1/y1, z ′2/y2] ‖ x〈z1, z2〉.Q ‖ Q′

Monadic encoding: P[z1/y1, z2/y2] ‖ . . . X P[z ′1/y1, z ′2/y2] ‖ . . . X
↑2 ↑2

x(y1).x(y2).P ‖ x〈z1〉.x〈z2〉.Q ‖ x〈z ′1〉.x〈z ′2〉.Q′
↓2 ↓2

P[z1/y1, z ′1/y2] ‖ . . . P[z ′1/y1, z1/y2] ‖ . . .

• Solution: avoid interferences by first introducing a fresh channel:
x(y1, . . . , yn).P 7→ x(w).w(y1) . . .w(yn).P
x〈z1, . . . , zn〉.Q 7→ new w (x〈w〉.w〈z1〉 . . .w〈zn〉.Q)

where w /∈ fn(Q)
• Correctness: see exercises

19 of 19 Concurrency Theory

Winter Semester 2015/16
Lecture 9: The π-Calculus

	Recap: Modelling Mobile Concurrent Systems
	Syntax of the Monadic -Calculus
	Semantics of the Monadic -Calculus
	Mobile Clients Revisited
	The Polyadic -Calculus

