

Concurrency Theory

Winter Semester 2015/16

Lecture 9: The π -Calculus

Joost-Pieter Katoen and Thomas Noll Software Modeling and Verification Group RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ws-1516/ct/

Outline of Lecture 9

Recap: Modelling Mobile Concurrent Systems

Syntax of the Monadic π -Calculus

Semantics of the Monadic π -Calculus

Mobile Clients Revisited

The Polyadic π -Calculus

Mobile Clients I

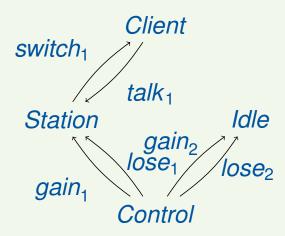
Example (Hand-over protocol)

Scenario:

- client devices moving around (phones, PCs, sensors, ...)
- each radio-connected to some base station
- stations wired to central control
- some event (e.g., signal fading) may cause a client to be switched to another station
- essential: specification of switching process ("hand-over protocol")

Simplest case:

two stations, one client



Mobile Clients II

Example (Hand-over protocol; continued)

- Every station is in one of two modes: *Station* (active; four links) or *Idle* (inactive; two links)
- Client can talk via Station, and at any time Control can request Station/Idle to lose/gain Client:

```
Station(talk, switch, gain, lose) = talk.Station(talk, switch, gain, lose) + lose(t, s).\overline{switch}\langle t, s \rangle.Idle(gain, lose)  Idle(gain, lose) = gain(t, s).Station(t, s, gain, lose)
```

• If *Control* decides *Station* to lose *Client*, it issues a new pair of channels to be shared by *Client* and *Idle*:

```
\begin{aligned} &\textit{Control}_1 = \overline{\textit{lose}_1} \langle \textit{talk}_2, \textit{switch}_2 \rangle. \overline{\textit{gain}_2} \langle \textit{talk}_2, \textit{switch}_2 \rangle. \textit{Control}_2 \\ &\textit{Control}_2 = \overline{\textit{lose}_2} \langle \textit{talk}_1, \textit{switch}_1 \rangle. \overline{\textit{gain}_1} \langle \textit{talk}_1, \textit{switch}_1 \rangle. \textit{Control}_1 \end{aligned}
```

• Client can either talk or, if requested, switch to a new pair of channels:

$$Client(talk, switch) = \overline{talk}.Client(talk, switch) + switch(t, s).Client(t, s)$$

Mobile Clients III

Example (Hand-over protocol; continued)

As usual, the whole system is a restricted composition of processes:

```
System_1 = \text{new } L(Client_1 \parallel Station_1 \parallel Idle_2 \parallel Control_1)
```

where

```
Client_i := Client(talk_i, switch_i)
Station_i := Station(talk_i, switch_i, gain_i, lose_i)
    Idle_i := Idle(gain_i, lose_i)
       L := (talk_i, switch_i, gain_i, lose_i \mid i \in \{1, 2\})
```

• After having formally defined the π -Calculus we will see that this protocol is correct, i.e., that the hand-over does indeed occur:

$$System_1 \longrightarrow^* System_2$$

where

$$System_2 = \text{new } L(Client_2 \parallel Idle_1 \parallel Station_2 \parallel Control_2)$$

Outline of Lecture 9

Recap: Modelling Mobile Concurrent Systems

Syntax of the Monadic π -Calculus

Semantics of the Monadic π -Calculus

Mobile Clients Revisited

The Polyadic π -Calculus

Introduction

Literature on π -Calculus:

- Initial research paper:
 - R. Milner, J. Parrow, D. Walker: *A calculus of mobile processes*, Part I/II. Journal of Inf. & Comp., 100:1–77, 1992
- Overview article:
 - J. Parrow: *An introduction to the* π *-Calculus*. Chapter 8 of *Handbook of Process Algebra*, 479–543, Elsevier, 2001
- Textbook:
 - R. Milner: *Communicating and mobile systems: the* π *-Calculus*. Cambridge University Press, 1999

Introduction

Literature on π -Calculus:

- Initial research paper:
 - R. Milner, J. Parrow, D. Walker: *A calculus of mobile processes*, Part I/II. Journal of Inf. & Comp., 100:1–77, 1992
- Overview article:
 - J. Parrow: *An introduction to the* π *-Calculus*. Chapter 8 of *Handbook of Process Algebra*, 479–543, Elsevier, 2001
- Textbook:
 - R. Milner: *Communicating and mobile systems: the* π *-Calculus*. Cambridge University Press, 1999

To simplify the presentation (as in Milner's book):

- 1. Monadic π -Calculus with replication (message = one name, no process identifiers)
- 2. Extension to polyadic calculus
- 3. Extension by process equations

Syntax of the Monadic π -Calculus

Definition 9.1 (Syntax of monadic π -Calculus)

• Let $A = \{a, b, c \dots, x, y, z, \dots\}$ be a set of names.

Syntax of the Monadic π -Calculus

Definition 9.1 (Syntax of monadic π -Calculus)

- Let $A = \{a, b, c, \ldots, x, y, z, \ldots\}$ be a set of names.
- The set of action prefixes is given by

```
\pi ::= x(y) (receive y along x)
| \overline{x}\langle y \rangle (send y along x)
| \tau (unobservable action)
```


Concurrency Theory

Syntax of the Monadic π -Calculus

Definition 9.1 (Syntax of monadic π -Calculus)

- Let $A = \{a, b, c, \ldots, x, y, z, \ldots\}$ be a set of names.
- The set of action prefixes is given by

```
\pi ::= x(y) (receive y along x)
| \overline{x}\langle y \rangle (send y along x)
| \tau (unobservable action)
```

• The set Prc^{π} of π -Calculus process expressions is defined by the following syntax:

```
P ::= \sum_{i \in I} \pi_i.P_i (guarded sum)

\mid P_1 \mid\mid P_2 (parallel composition)

\mid \text{new } x P (restriction)

\mid !P (replication)
```

(where I finite index set, $x \in A$)

Concurrency Theory

Syntax of the Monadic π -Calculus

Definition 9.1 (Syntax of monadic π -Calculus)

- Let $A = \{a, b, c, \ldots, x, y, z, \ldots\}$ be a set of names.
- The set of action prefixes is given by

$$\pi ::= x(y)$$
 (receive y along x)
$$| \overline{x}\langle y \rangle$$
 (send y along x)
$$| \tau$$
 (unobservable action)

• The set Prc^{π} of π -Calculus process expressions is defined by the following syntax:

$$P ::= \sum_{i \in I} \pi_i.P_i$$
 (guarded sum)
 $\mid P_1 \mid\mid P_2$ (parallel composition)
 $\mid \text{new } x P$ (restriction)
 $\mid !P$ (replication)

(where I finite index set, $x \in A$)

Conventions: nil := $\sum_{i \in \emptyset} \pi_i . P_i$, new $x_1, \ldots, x_n P := \text{new } x_1 (\ldots \text{new } x_n P)$

Free and Bound Names

Definition 9.2 (Free and bound names)

• The input prefix x(y) and the restriction new y P both bind y.

Free and Bound Names

Definition 9.2 (Free and bound names)

- The input prefix x(y) and the restriction new y P both bind y.
- Every other occurrence of a name (i.e., x in x(y) and x, y in $\overline{x}(y)$) is free.

Free and Bound Names

Definition 9.2 (Free and bound names)

- The input prefix x(y) and the restriction new y P both bind y.
- Every other occurrence of a name (i.e., x in x(y) and x, y in $\overline{x}(y)$) is free.
- The set of bound/free names of a process expressions $P \in Prc^{\pi}$ is respectively denoted by bn(P)/fn(P).

Free and Bound Names

Definition 9.2 (Free and bound names)

- The input prefix x(y) and the restriction new y P both bind y.
- Every other occurrence of a name (i.e., x in x(y) and x, y in $\overline{x}(y)$) is free.
- The set of bound/free names of a process expressions P ∈ Prc^π is respectively denoted by bn(P)/fn(P).

Remark: $bn(P) \cap fn(P) \neq \emptyset$ is possible

Concurrency Theory

Free and Bound Names

Definition 9.2 (Free and bound names)

- The input prefix x(y) and the restriction new y P both bind y.
- Every other occurrence of a name (i.e., x in x(y) and x, y in $\overline{x}(y)$) is free.
- The set of bound/free names of a process expressions $P \in Prc^{\pi}$ is respectively denoted by bn(P)/fn(P).

Remark: $bn(P) \cap fn(P) \neq \emptyset$ is possible

Example 9.3

$$P = \text{new } x (x(y).\text{nil } || \overline{z}\langle y \rangle.\text{nil})$$

 $\implies bn(P) = \{x, y\}, fn(P) = \{y, z\}$

Outline of Lecture 9

Recap: Modelling Mobile Concurrent Systems

Syntax of the Monadic π -Calculus

Semantics of the Monadic π -Calculus

Mobile Clients Revisited

The Polyadic π -Calculus

Structural Congruence

Goal: simplify definition of operational semantics by ignoring "purely syntactic" differences between processes

Structural Congruence

Goal: simplify definition of operational semantics by ignoring "purely syntactic" differences between processes

Definition 9.4 (Structural congruence)

 $P, Q \in Prc^{\pi}$ are structurally congruent, written $P \equiv Q$, if one can be transformed into the other by applying the following operations and equations:

1. renaming of bound names (α -conversion)

Structural Congruence

Goal: simplify definition of operational semantics by ignoring "purely syntactic" differences between processes

Definition 9.4 (Structural congruence)

 $P, Q \in Prc^{\pi}$ are structurally congruent, written $P \equiv Q$, if one can be transformed into the other by applying the following operations and equations:

- 1. renaming of bound names (α -conversion)
- 2. reordering of terms in a summation (commutativity of +)

Structural Congruence

Goal: simplify definition of operational semantics by ignoring "purely syntactic" differences between processes

Definition 9.4 (Structural congruence)

 $P, Q \in Prc^{\pi}$ are structurally congruent, written $P \equiv Q$, if one can be transformed into the other by applying the following operations and equations:

- 1. renaming of bound names (α -conversion)
- 2. reordering of terms in a summation (commutativity of +)
- 3. $P \parallel Q \equiv Q \parallel P$, $P \parallel (Q \parallel R) \equiv (P \parallel Q) \parallel R$, $P \parallel \text{nil} \equiv P$ (Abelian monoid laws for \parallel)

Structural Congruence

Goal: simplify definition of operational semantics by ignoring "purely syntactic" differences between processes

Definition 9.4 (Structural congruence)

- $P, Q \in Prc^{\pi}$ are structurally congruent, written $P \equiv Q$, if one can be transformed into the other by applying the following operations and equations:
- 1. renaming of bound names (α -conversion)
- 2. reordering of terms in a summation (commutativity of +)
- 3. $P \parallel Q \equiv Q \parallel P$, $P \parallel (Q \parallel R) \equiv (P \parallel Q) \parallel R$, $P \parallel \text{nil} \equiv P$ (Abelian monoid laws for \parallel)
- 4. $\text{new } x \text{ nil} \equiv \text{nil}, \text{ new } x, y P \equiv \text{new } y, x P,$ $P \parallel \text{new } x Q \equiv \text{new } x (P \parallel Q) \text{ if } x \notin \textit{fn}(P) \text{ (scope extension)}$

Structural Congruence

Goal: simplify definition of operational semantics by ignoring "purely syntactic" differences between processes

Definition 9.4 (Structural congruence)

- $P, Q \in Prc^{\pi}$ are structurally congruent, written $P \equiv Q$, if one can be transformed into the other by applying the following operations and equations:
- 1. renaming of bound names (α -conversion)
- 2. reordering of terms in a summation (commutativity of +)
- 3. $P \parallel Q \equiv Q \parallel P$, $P \parallel (Q \parallel R) \equiv (P \parallel Q) \parallel R$, $P \parallel \text{nil} \equiv P$ (Abelian monoid laws for \parallel)
- 4. $\text{new } x \text{ nil} \equiv \text{nil}, \text{ new } x, y P \equiv \text{new } y, x P,$ $P \parallel \text{new } x Q \equiv \text{new } x (P \parallel Q) \text{ if } x \notin \textit{fn}(P) \text{ (scope extension)}$
- 5. $|P \equiv P||P$ (unfolding)

A Standard Form

Theorem 9.5 (Standard form)

Every process expression is structurally congruent to a process of the standard form

new
$$x_1, \ldots, x_k (P_1 \| \ldots \| P_m \| !Q_1 \| \ldots \| !Q_n)$$

where each P_i is a non-empty sum, and each Q_i is in standard form.

(If m = n = 0: nil; if k = 0: restriction absent)

A Standard Form

Theorem 9.5 (Standard form)

Every process expression is structurally congruent to a process of the standard form

new
$$x_1, \ldots, x_k (P_1 \parallel \ldots \parallel P_m \parallel ! Q_1 \parallel \ldots \parallel ! Q_n)$$

where each P_i is a non-empty sum, and each Q_i is in standard form.

(If m = n = 0: nil; if k = 0: restriction absent)

Proof.

by induction on the structure of $R \in Prc^{\pi}$ (on the board)

The Reaction Relation

Thanks to Theorem 9.5, only processes in standard form need to be considered for defining the operational semantics:

Definition 9.6

The reaction relation $\longrightarrow \subseteq Prc^{\pi} \times Prc^{\pi}$ is generated by the rules:

- P[z/y] replaces every free occurrence of y in P by z.
- In (React), the pair $(x(y), \overline{x}\langle z\rangle)$ is called a redex.

Example: Printer Server

Example 9.7

1. Printer server (cf. Example 8.9):

$$\underbrace{\overline{b}\langle a\rangle.S'}_{S}\parallel\underbrace{a(e).P'}_{P}\parallel\underbrace{b(c).\overline{c}\langle d\rangle.C'}_{C}\longrightarrow S'\parallel a(e).P'\parallel\overline{a}\langle d\rangle.C'$$

$$S' \parallel a(e).P' \parallel \overline{a}\langle d \rangle.C' \longrightarrow S' \parallel P'[d/e] \parallel C'$$

(on the board)

Example: Printer Server

Example 9.7

1. Printer server (cf. Example 8.9):

$$\underbrace{\overline{b}\langle a\rangle.S'}_{S}\parallel\underbrace{a(e).P'}_{P}\parallel\underbrace{b(c).\overline{c}\langle d\rangle.C'}_{C}\longrightarrow S'\parallel a(e).P'\parallel\overline{a}\langle d\rangle.C'$$

$$S' \parallel a(e).P' \parallel \overline{a}\langle d \rangle.C' \longrightarrow S' \parallel P'[d/e] \parallel C'$$

(on the board)

2. With scope extension $(P \parallel \text{new } x \mid Q \equiv \text{new } x \mid P \parallel Q)$ if $x \notin fn(P)$:

new
$$b$$
 (new $a(\overline{b}\langle a\rangle.S' \parallel a(e).P') \parallel b(c).\overline{c}\langle d\rangle.C')$
 \longrightarrow new a, b ($S' \parallel a(e).P' \parallel \overline{a}\langle d\rangle.C'$)

(on the board)

Outline of Lecture 9

Recap: Modelling Mobile Concurrent Systems

Syntax of the Monadic π -Calculus

Semantics of the Monadic π -Calculus

Mobile Clients Revisited

The Polyadic π -Calculus

Example: Mobile Clients

Example 9.8

System specification (cf. Example 8.10):

```
System_1 = \text{new } L(Client_1 \parallel Station_1 \parallel Idle_2 \parallel Control_1)
                              System_2 = \text{new } L(Client_2 \parallel Idle_1 \parallel Station_2 \parallel Control_2)
Station(talk, switch, gain, lose) = talk.Station(talk, switch, gain, lose) +
                                              lose(t, s).switch(t, s).ldle(gain, lose)
                     Idle(gain, lose) = gain(t, s).Station(t, s, gain, lose)
                              Control_1 = lose_1 \langle talk_2, switch_2 \rangle . gain_2 \langle talk_2, switch_2 \rangle . Control_2
                              Control_2 = lose_2 \langle talk_1, switch_1 \rangle . gain_1 \langle talk_1, switch_1 \rangle . Control_1
                Client(talk, switch) = talk.Client(talk, switch) + switch(t, s).Client(t, s)
                                        L = (talk_i, switch_i, gain_i, lose_i \mid i \in \{1, 2\})
```


Example: Mobile Clients

Example 9.8

System specification (cf. Example 8.10):

```
System_1 = \text{new } L(Client_1 \parallel Station_1 \parallel Idle_2 \parallel Control_1)
                               System_2 = \text{new } L(Client_2 \parallel Idle_1 \parallel Station_2 \parallel Control_2)
Station(talk, switch, gain, lose) = talk. Station(talk, switch, gain, lose) +
                                               lose(t, s).switch(t, s).ldle(gain, lose)
                     Idle(gain, lose) = gain(t, s).Station(t, s, gain, lose)
                               Control_1 = lose_1 \langle talk_2, switch_2 \rangle . gain_2 \langle talk_2, switch_2 \rangle . Control_2
                               Control_2 = lose_2 \langle talk_1, switch_1 \rangle . gain_1 \langle talk_1, switch_1 \rangle . Control_1
                Client(talk, switch) = \overline{talk}.Client(talk, switch) + switch(t, s).Client(t, s)
                                         L = (talk_i, switch_i, gain_i, lose_i \mid i \in \{1, 2\})
```

Use additional reaction rule for polyadic communication:

$$\overline{(x(\vec{y}).P+R)\parallel(\overline{x}\langle\vec{z}\rangle.Q+S)\longrightarrow P[\vec{z}/\vec{y}]\parallel Q}$$

• Use additional congruence rule for process calls: if $A(\vec{x}) = P_A$, then $A(\vec{y}) \equiv P_A[\vec{y}/\vec{x}]$

Example: Mobile Clients

Example 9.8

System specification (cf. Example 8.10):

```
System_1 = \text{new } L(Client_1 \parallel Station_1 \parallel Idle_2 \parallel Control_1)
                               System_2 = \text{new } L(Client_2 \parallel Idle_1 \parallel Station_2 \parallel Control_2)
Station(talk, switch, gain, lose) = talk. Station(talk, switch, gain, lose) +
                                                lose(t, s).switch(t, s).ldle(gain, lose)
                      Idle(gain, lose) = gain(t, s).Station(t, s, gain, lose)
                               Control_1 = lose_1 \langle talk_2, switch_2 \rangle .gain_2 \langle talk_2, switch_2 \rangle .Control_2
                               Control_2 = \overline{lose_2} \langle talk_1, switch_1 \rangle. \overline{gain_1} \langle talk_1, switch_1 \rangle. Control_1
                Client(talk, switch) = talk.Client(talk, switch) + switch(t, s).Client(t, s)
                                          L = (talk_i, switch_i, gain_i, lose_i \mid i \in \{1, 2\})
```

Use additional reaction rule for polyadic communication:

$$\overline{\left(x(\vec{y}).P+R\right)\parallel\left(\overline{x}\langle\vec{z}\rangle.Q+S\right)\longrightarrow P[\vec{z}/\vec{y}]\parallel Q}$$

- Use additional congruence rule for process calls: if $A(\vec{x}) = P_A$, then $A(\vec{y}) \equiv P_A[\vec{y}/\vec{x}]$
- Show $System_1 \longrightarrow^* System_2$ (on the board)

Outline of Lecture 9

Recap: Modelling Mobile Concurrent Systems

Syntax of the Monadic π -Calculus

Semantics of the Monadic π -Calculus

Mobile Clients Revisited

The Polyadic π -Calculus

Polyadic Communication I

• So far: messages with exactly one name

• Now: arbitrary number

Polyadic Communication I

- So far: messages with exactly one name
- Now: arbitrary number
- New types of action prefixes:

$$x(y_1,\ldots,y_n)$$
 and $\overline{x}\langle z_1,\ldots,z_n\rangle$

where $n \in \mathbb{N}$ and all y_i distinct

Polyadic Communication I

- So far: messages with exactly one name
- Now: arbitrary number
- New types of action prefixes:

$$x(y_1,\ldots,y_n)$$
 and $\overline{x}\langle z_1,\ldots,z_n\rangle$

where $n \in \mathbb{N}$ and all y_i distinct

Expected behavior:

$$\overline{\left(x(\vec{y}).P+R\right)\parallel\left(\overline{x}\langle\vec{z}\rangle.Q+S\right)\longrightarrow P[\vec{z}/\vec{y}]\parallel Q}$$

(replacement of free names)

Polyadic Communication I

- So far: messages with exactly one name
- Now: arbitrary number
- New types of action prefixes:

$$x(y_1,\ldots,y_n)$$
 and $\overline{x}\langle z_1,\ldots,z_n\rangle$

where $n \in \mathbb{N}$ and all y_i distinct

Expected behavior:

$$\overline{(x(\vec{y}).P+R)\parallel(\overline{x}\langle\vec{z}\rangle.Q+S)\longrightarrow P[\vec{z}/\vec{y}]\parallel Q}$$

(replacement of free names)

Obvious attempt for encoding:

$$x(y_1,\ldots,y_n).P \mapsto x(y_1)\ldots x(y_n).P$$

 $\overline{x}\langle z_1,\ldots,z_n\rangle.Q \mapsto \overline{x}\langle z_1\rangle\ldots\overline{x}\langle z_n\rangle.Q$

Polyadic Communication II

But consider the following counterexample.

Polyadic representation:

$$x(y_1, y_2).P \parallel \overline{x}\langle z_1, z_2 \rangle.Q \parallel \overline{x}\langle z_1', z_2' \rangle.Q'$$

$$P[z_1/y_1, z_2/y_2] \parallel Q \parallel \overline{x}\langle z_1', z_2' \rangle.Q' \quad P[z_1'/y_1, z_2'/y_2] \parallel \overline{x}\langle z_1, z_2 \rangle.Q \parallel Q'$$

Polyadic Communication II

But consider the following counterexample.

Polyadic representation:

$$x(y_1,y_2).P \parallel \overline{x}\langle z_1,z_2\rangle.Q \parallel \overline{x}\langle z_1',z_2'\rangle.Q'$$

$$P[z_1/y_1,z_2/y_2] \parallel Q \parallel \overline{x}\langle z_1',z_2'\rangle.Q' \quad P[z_1'/y_1,z_2'/y_2] \parallel \overline{x}\langle z_1,z_2\rangle.Q \parallel Q'$$
Monadic encoding:
$$P[z_1/y_1,z_2/y_2] \parallel \dots \quad \checkmark \quad P[z_1'/y_1,z_2'/y_2] \parallel \dots \quad \checkmark$$

$$\uparrow^2 \qquad \qquad \uparrow^2 \qquad \qquad \uparrow^2$$

$$x(y_1).x(y_2).P \parallel \overline{x}\langle z_1\rangle.\overline{x}\langle z_2\rangle.Q \parallel \overline{x}\langle z_1'\rangle.\overline{x}\langle z_2'\rangle.Q'$$

$$\downarrow_2 \qquad \qquad \downarrow_2$$

$$P[z_1/y_1,z_1'/y_2] \parallel \dots \quad \checkmark \quad P[z_1'/y_1,z_1/y_2] \parallel \dots \quad \checkmark$$

Polyadic Communication II

But consider the following counterexample.

Polyadic representation:

$$x(y_1,y_2).P \parallel \overline{x}\langle z_1,z_2\rangle.Q \parallel \overline{x}\langle z_1',z_2'\rangle.Q'$$

$$P[z_1/y_1,z_2/y_2] \parallel Q \parallel \overline{x}\langle z_1',z_2'\rangle.Q' \quad P[z_1'/y_1,z_2'/y_2] \parallel \overline{x}\langle z_1,z_2\rangle.Q \parallel Q'$$
Monadic encoding:
$$P[z_1/y_1,z_2/y_2] \parallel \dots \quad \checkmark \quad P[z_1'/y_1,z_2'/y_2] \parallel \dots \quad \checkmark$$

$$\uparrow^2 \qquad \qquad \uparrow^2 \qquad \qquad \uparrow^2$$

$$x(y_1).x(y_2).P \parallel \overline{x}\langle z_1\rangle.\overline{x}\langle z_2\rangle.Q \parallel \overline{x}\langle z_1'\rangle.\overline{x}\langle z_2'\rangle.Q'$$

$$\downarrow_2 \qquad \qquad \downarrow_2$$

$$P[z_1/y_1,z_1'/y_2] \parallel \dots \quad \not \xi \quad P[z_1'/y_1,z_1/y_2] \parallel \dots \quad \not \xi$$

Solution: avoid interferences by first introducing a fresh channel:

$$x(y_1,\ldots,y_n).P\mapsto x(w).w(y_1)\ldots w(y_n).P$$

 $\overline{x}\langle z_1,\ldots,z_n\rangle.Q\mapsto \text{new }w\left(\overline{x}\langle w\rangle.\overline{w}\langle z_1\rangle\ldots\overline{w}\langle z_n\rangle.Q\right)$

where $w \notin fn(Q)$

Polyadic Communication II

But consider the following counterexample.

Polyadic representation:

$$x(y_1,y_2).P \parallel \overline{x}\langle z_1,z_2\rangle.Q \parallel \overline{x}\langle z_1',z_2'\rangle.Q'$$

$$P[z_1/y_1,z_2/y_2] \parallel Q \parallel \overline{x}\langle z_1',z_2'\rangle.Q' \quad P[z_1'/y_1,z_2'/y_2] \parallel \overline{x}\langle z_1,z_2\rangle.Q \parallel Q'$$
Monadic encoding:
$$P[z_1/y_1,z_2/y_2] \parallel \dots \quad \checkmark \quad P[z_1'/y_1,z_2'/y_2] \parallel \dots \quad \checkmark$$

$$\uparrow^2 \qquad \qquad \uparrow^2 \qquad \qquad \uparrow^2$$

$$x(y_1).x(y_2).P \parallel \overline{x}\langle z_1\rangle.\overline{x}\langle z_2\rangle.Q \parallel \overline{x}\langle z_1'\rangle.\overline{x}\langle z_2'\rangle.Q'$$

$$\downarrow_2 \qquad \qquad \downarrow_2$$

$$P[z_1/y_1,z_1'/y_2] \parallel \dots \quad \checkmark \quad P[z_1'/y_1,z_1/y_2] \parallel \dots \quad \checkmark$$

Solution: avoid interferences by first introducing a fresh channel:

$$x(y_1, \ldots, y_n).P \mapsto x(w).w(y_1)...w(y_n).P$$

 $\overline{x}\langle z_1, \ldots, z_n \rangle.Q \mapsto \text{new } w(\overline{x}\langle w \rangle.\overline{w}\langle z_1 \rangle \ldots \overline{w}\langle z_n \rangle.Q)$

where $w \notin fn(Q)$

Correctness: see exercises

