

Concurrency Theory

- Winter Semester 2015/16
- Lecture 8: Extensions of CCS: Value Passing and Mobility
- Joost-Pieter Katoen and Thomas Noll Software Modeling and Verification Group RWTH Aachen University
- http://moves.rwth-aachen.de/teaching/ws-1516/ct/

Value-Passing CCS

- So far: pure CCS
 - communication = mere synchronisation
 - no (explicit) exchange of data
- But: processes usually do pass around data
- \Rightarrow Value-passing CCS
 - Introduced in Robin Milner: Communication and Concurrency, Prentice-Hall, 1989
 - Assumption (for simplicity): only integers as data type

Example 8.1 (One-place buffer with data (cf. Example 2.5))

One-place buffer that outputs successor of stored value:

B = in(x).B'(x) $B'(x) = \overline{out}(x+1).B$

Syntax of Value-Passing CCS I

Definition 8.2 (Syntax of value-passing CCS)

- Let A, \overline{A} , *Pid* (ranked) as in Definition 2.1.
- Let e and b be integer and Boolean expressions, resp., built from integer variables x, y, \ldots
- The set *Prc*⁺ of value-passing process expressions is defined by:

<i>P</i> ::= nil		(inaction)
	a(x).P	(input prefixing)
	ā(e).P	(output prefixing)
	τ. Ρ	($ au$ prefixing)
	$ P_1 + P_2$	(choice)
	$ P_1 P_2$	(parallel composition)
	$ P \setminus L$	(restriction)
	<i>P</i> [<i>f</i>]	(relabelling)
	if <i>b</i> then <i>P</i>	(conditional)
	$C(e_1,\ldots,e_n)$	(process call)

where $a \in A$, $L \subseteq A$, $C \in Pid$ (of rank $n \in \mathbb{N}$), and $f : A \to A$.

4 of 21

Syntax of Value-Passing CCS II

Definition 8.2 (Syntax of value-passing CCS; continued)

A value-passing process definition is an equation system of the form

$$(C_i(x_1,\ldots,x_{n_i})=P_i\mid 1\leq i\leq k)$$

where

- *k* ≥ 1,
- $C_i \in Pid$ of rank n_i (pairwise distinct),
- $P_i \in Prc^+$ (with process identifiers from $\{C_1, \ldots, C_k\}$), and
- all occurrences of an integer variable *y* in each *P_i* are bound, i.e., *y* ∈ {*x*₁,..., *x_{n_i}*} or *y* is in the scope of an input prefix of the form *a*(*y*) (to ensure well-definedness of values).

Example 8.3

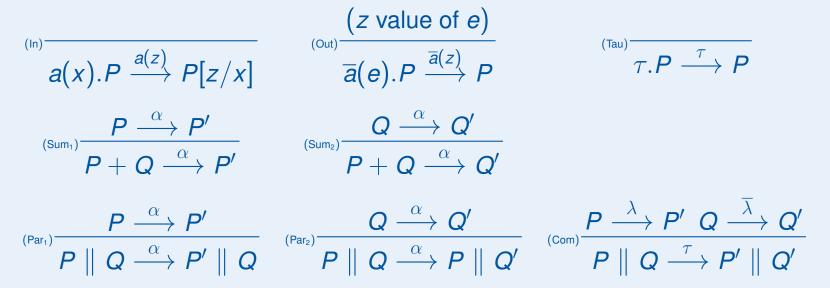
1. $C(x) = \overline{a}(x+1).b(y).C(y)$ is allowed

2. $C(x) = \overline{a}(x+1).\overline{a}(y+2)$.nil is disallowed as y is not bound

Semantics of Value-Passing CCS I

Definition 8.4 (Semantics of value-passing CCS)

A value-passing process definition $(C_i(x_1, \ldots, x_{n_i}) = P_i \mid 1 \le i \le k)$ determines the LTS $(Prc^+, Act, \longrightarrow)$ with $Act := (A \cup \overline{A}) \times \mathbb{Z} \cup \{\tau\}$ whose transitions can be inferred from the following rules $(P, P', Q, Q' \in Prc^+, a \in A, x_i \text{ integer variables, } e_i/b$ integer/Boolean expressions, $z \in \mathbb{Z}, \alpha \in Act, \lambda \in (A \cup \overline{A}) \times \mathbb{Z}$):



Semantics of Value-Passing CCS II

Definition 8.4 (Semantics of value-passing CCS; continued)

$$\frac{P \xrightarrow{\alpha} P'}{P[f] \xrightarrow{f(\alpha)} P'[f]} \xrightarrow{P'(f)} P'[f] \xrightarrow{(\operatorname{Res})} \frac{P \xrightarrow{\alpha} P'(\alpha \notin (L \cup \overline{L}) \times \mathbb{Z})}{P \setminus L \xrightarrow{\alpha} P' \setminus L}$$

$$\stackrel{(\operatorname{Res})}{\xrightarrow{P \setminus L \xrightarrow{\alpha} P' \setminus L}} \xrightarrow{(\operatorname{Res})} \frac{P[z_1/x_1, \dots, z_n/x_n] \xrightarrow{\alpha} P'}{P(C(x_1, \dots, x_n) = P, z_i \text{ value of } e_i)}$$

$$\stackrel{(\operatorname{If})}{\xrightarrow{\text{if } b \text{ then } P \xrightarrow{\alpha} P'}} \xrightarrow{(\operatorname{Call})} \frac{C(e_1, \dots, e_n) \xrightarrow{\alpha} P'}{C(e_1, \dots, e_n) \xrightarrow{\alpha} P'}$$

Remarks:

- P[z₁/x₁,..., z_n/x_n] denotes the substitution of each free (i.e., unbound) occurrence of x_i by z_i (1 ≤ i ≤ n)
- Relabelling functions are extended to actions by letting

f(a(z)) := f(a)(z) and $f(\overline{a}(z)) := \overline{f(a)}(z)$ (and $f(\tau) := \tau$)

Semantics of Value-Passing CCS III

Further remarks:

- The binding restriction ensures that all integer and Boolean expressions have a defined value
- The two-armed conditional if b then P else Q can be defined by

(if b then P) + (if $\neg b$ then Q)

Example 8.5

One-place buffer that outputs non-negative predecessor of stored value:

$$B = in(x).B'(x)$$

$$B'(x) = (\text{if } x = 0 \text{ then } \overline{out}(0).B) + (\text{if } x > 0 \text{ then } \overline{out}(x - 1).B)$$

(on the board)

Translation of Value-Passing into Pure CCS I

- To show: value-passing process definitions can be represented in pure CCS
- Idea: each parametrised construct (a(x), ā(e), C(e₁,..., e_n)) corresponds to a family of constructs in pure CCS, one for each possible integer value
- Requires extension of pure CCS by infinite choices ("∑..."), restrictions, and process definitions

Translation of Value-Passing into Pure CCS

Translation of Value-Passing into Pure CCS II

Definition 8.6 (Translation of value-passing into pure CCS)

For each $P \in Prc^+$ without free variables, its translated form $\widehat{P} \in Prc$ is given by $\widehat{nil} := nil$ $\widehat{\tau.P} := \tau.\widehat{P}$ $\widehat{a(x).P} := \sum_{z \in \mathbb{Z}} a_z.\widehat{P[z/x]}$ $\widehat{P_1 + P_2} := \widehat{P_1} + \widehat{P_2}$ $\widehat{P \setminus L} := \widehat{P} \setminus \{a_z \mid a \in L, z \in \mathbb{Z}\}$ if \widehat{b} then $P := \begin{cases} \widehat{P} & \text{if } b \text{ true} \\ nil & \text{otherwise} \end{cases}$ $\widehat{rP_1 \mid P_2} := \widehat{P_1} \mid \widehat{P_2}$ $\widehat{P[f]} := \widehat{P[f]} \quad (\widehat{f}(a_z) := f(a)_z)$ $\widehat{C(e_1, \dots, e_n)} := C_{z_1, \dots, z_n} \quad (z_i \text{ value of } e_i)$

Moreover, each defining equation $C(x_1, \ldots, x_n) = P$ of a process identifier is translated into the indexed collection of process definitions

$$\left(C_{z_1,\ldots,z_n}=P[z_1/x_1,\ldots,z_n/x_n]\mid v_1,\ldots,v_n\in\mathbb{Z}\right)$$

Translation of Value-Passing into Pure CCS

Translation of Value-Passing into Pure CCS III

Example 8.7 (cf. Example 8.5)

$$B = in(x).B'(x)$$

$$B'(x) = (\text{if } x = 0 \text{ then } \overline{out}(0).B) + (\text{if } x > 0 \text{ then } \overline{out}(x - 1).B)$$

(on the board)

Theorem 8.8 (Correctness of translation)

For all $P, P' \in Prc^+$ and $\alpha \in Act$,

$$\mathbf{P} \stackrel{lpha}{\longrightarrow} \mathbf{P}' \iff \widehat{\mathbf{P}} \stackrel{\widehat{lpha}}{\longrightarrow} \widehat{\mathbf{P}}'$$

where $\widehat{a(z)} := a_z$, $\overline{\overline{a}(z)} := \overline{a}_z$, and $\widehat{\tau} := \tau$.

Proof.

by induction on the structure of *P* (omitted)

 13 of 21
 Concurrency Theory

 Winter Semester 2015/16
 Lecture 8: Extensions of CCS: Value Passing and Mobility

Mobility in Concurrent Systems I

Observation: CCS imposes a static communication structure: if $P, Q \in Prc$ want to communicate, then both must syntactically refer to the same action name

- ⇒ every potential communication partner known beforehand, no dynamic passing of communication links
- \implies lack of modelling capabilities for mobility
- **Goal:** develop calculus in the spirit of CCS which supports mobility

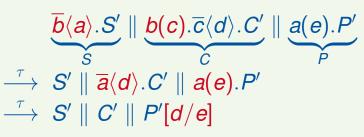
 $\implies \pi$ -Calculus

Modelling Mobile Concurrent Systems

Mobility in Concurrent Systems II

Example 8.9 (Dynamic access to resources)

- Server S controls access to printer P
- Client C wishes to use P
- In CCS: *P* and *C* must share some action name *a*
 - \implies C could access P without being granted it by S
- In π -Calculus:
 - initially only S has access to P (using link a)
 - using another link b, C can request access to P
- Formally:



- a: link to P
- **b**: link between **S** and **C**
- c: "placeholder" for a
- d: data to be printed
- e: "placeholder" for d

Modelling Mobile Concurrent Systems

Mobility in Concurrent Systems III

Example 8.9 (Dynamic access to resources; continued)

- Different rôles of action name a:
 - in interaction between S and C: object transferred from S to C
 - in interaction between C and P: name of communication link
- Intuitively, names represent access rights:
 - a: for P
 - **b**: for **S**
 - d: for data to be printed
- If a is only way to access P
 - \implies *P* "moves" from *S* to *C*

Mobile Clients I

Example 8.10 (Hand-over protocol)

Scenario:

- client devices moving around (phones, PCs, sensors, ...)
- each radio-connected to some base station
- stations wired to central control
- some event (e.g., signal fading) may cause a client to be switched to another station
- essential: specification of switching process ("hand-over protocol")

Simplest case: Client switch₁ two stations, one client talk₁ Station Idle gain₂ *lose*₁ OSe₂ gain Control

Mobile Clients II

Example 8.10 (Hand-over protocol; continued)

- Every station is in one of two modes: *Station* (active; four links) or *Idle* (inactive; two links)
- *Client* can talk via *Station*, and at any time *Control* can request *Station/Idle* to lose/gain *Client*:

Station(talk, switch, gain, lose) = talk.Station(talk, switch, gain, lose) +lose(t, s).switch(t, s).Idle(gain, lose)Idle(gain, lose) = gain(t, s).Station(t, s, gain, lose)

• If *Control* decides *Station* to lose *Client*, it issues a new pair of channels to be shared by *Client* and *Idle*:

 $\begin{array}{l} \textit{Control}_1 = \overline{\textit{lose}_1} \langle \textit{talk}_2, \textit{switch}_2 \rangle . \overline{\textit{gain}_2} \langle \textit{talk}_2, \textit{switch}_2 \rangle . \textit{Control}_2 \\ \textit{Control}_2 = \overline{\textit{lose}_2} \langle \textit{talk}_1, \textit{switch}_1 \rangle . \overline{\textit{gain}_1} \langle \textit{talk}_1, \textit{switch}_1 \rangle . \textit{Control}_1 \end{array}$

• *Client* can either talk or, if requested, switch to a new pair of channels:

Client(talk, switch) = talk.Client(talk, switch) + switch(t, s).Client(t, s)

Mobile Clients III

Example 8.10 (Hand-over protocol; continued)

• As usual, the whole system is a restricted composition of processes:

```
System_1 = \text{new } L(Client_1 \parallel Station_1 \parallel Idle_2 \parallel Control_1)
```

where

 $Client_i := Client(talk_i, switch_i)$ $Station_i := Station(talk_i, switch_i, gain_i, lose_i)$ $Idle_i := Idle(gain_i, lose_i)$ $L := (talk_i, switch_i, gain_i, lose_i | i \in \{1, 2\})$

• After having formally defined the π -Calculus we will see that this protocol is correct, i.e., that the hand-over does indeed occur:

$$System_1 \longrightarrow^* System_2$$

where

 $System_2 = \text{new } L(Client_2 \parallel Idle_1 \parallel Station_2 \parallel Control_2)$

