
Concurrency Theory
Winter Semester 2015/16

Lecture 8: Extensions of CCS: Value Passing and Mobility

Joost-Pieter Katoen and Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ws-1516/ct/

http://moves.rwth-aachen.de/teaching/ws-1516/ct/


Syntax of Value-Passing CCS

Value-Passing CCS

• So far: pure CCS
– communication = mere synchronisation
– no (explicit) exchange of data

• But: processes usually do pass around data
⇒ Value-passing CCS
• Introduced in Robin Milner: Communication and Concurrency , Prentice-Hall, 1989
• Assumption (for simplicity): only integers as data type

Example 8.1 (One-place buffer with data (cf. Example 2.5))

One-place buffer that outputs successor of stored value:
B = in(x).B′(x)

B′(x) = out(x + 1).B

3 of 21 Concurrency Theory

Winter Semester 2015/16
Lecture 8: Extensions of CCS: Value Passing and Mobility



Syntax of Value-Passing CCS

Syntax of Value-Passing CCS I

Definition 8.2 (Syntax of value-passing CCS)

• Let A, A, Pid (ranked) as in Definition 2.1.
• Let e and b be integer and Boolean expressions, resp., built from integer variables x , y , . . .
• The set Prc+ of value-passing process expressions is defined by:

P ::= nil (inaction)
| a(x).P (input prefixing)
| a(e).P (output prefixing)
| τ.P (τ prefixing)
| P1 + P2 (choice)
| P1 ‖ P2 (parallel composition)
| P \ L (restriction)
| P[f ] (relabelling)
| if b then P (conditional)
| C(e1, . . . , en) (process call)

where a ∈ A, L ⊆ A, C ∈ Pid (of rank n ∈ N), and f : A→ A.

4 of 21 Concurrency Theory

Winter Semester 2015/16
Lecture 8: Extensions of CCS: Value Passing and Mobility



Syntax of Value-Passing CCS

Syntax of Value-Passing CCS II

Definition 8.2 (Syntax of value-passing CCS; continued)

A value-passing process definition is an equation system of the form

(Ci(x1, . . . , xni) = Pi | 1 ≤ i ≤ k)
where
• k ≥ 1,
• Ci ∈ Pid of rank ni (pairwise distinct),
• Pi ∈ Prc+ (with process identifiers from {C1, . . . ,Ck}), and
• all occurrences of an integer variable y in each Pi are bound, i.e., y ∈ {x1, . . . , xni} or y is in

the scope of an input prefix of the form a(y) (to ensure well-definedness of values).

Example 8.3

1. C(x) = a(x + 1).b(y).C(y) is allowed
2. C(x) = a(x + 1).a(y + 2).nil is disallowed as y is not bound

5 of 21 Concurrency Theory

Winter Semester 2015/16
Lecture 8: Extensions of CCS: Value Passing and Mobility



Semantics of Value-Passing CCS

Semantics of Value-Passing CCS I

Definition 8.4 (Semantics of value-passing CCS)

A value-passing process definition (Ci(x1, . . . , xni) = Pi | 1 ≤ i ≤ k) determines the
LTS (Prc+,Act,−→) with Act := (A ∪ A)× Z ∪ {τ} whose transitions can be
inferred from the following rules (P,P ′,Q,Q′ ∈ Prc+, a ∈ A, xi integer variables, ei /b
integer/Boolean expressions, z ∈ Z, α ∈ Act , λ ∈ (A ∪ A)× Z):

(In)

a(x).P
a(z)−→ P[z/x]

(Out)

(z value of e)

a(e).P
a(z)−→ P

(Tau)

τ.P
τ−→ P

(Sum1)
P

α−→ P ′

P + Q
α−→ P ′

(Sum2)
Q

α−→ Q′

P + Q
α−→ Q′

(Par1)
P

α−→ P ′

P ‖ Q
α−→ P ′ ‖ Q

(Par2)
Q

α−→ Q′

P ‖ Q
α−→ P ‖ Q′

(Com)
P

λ−→ P ′ Q
λ−→ Q′

P ‖ Q
τ−→ P ′ ‖ Q′

7 of 21 Concurrency Theory

Winter Semester 2015/16
Lecture 8: Extensions of CCS: Value Passing and Mobility



Semantics of Value-Passing CCS

Semantics of Value-Passing CCS II

Definition 8.4 (Semantics of value-passing CCS; continued)

(Rel)
P

α−→ P ′

P[f ]
f (α)−→ P ′[f ]

(Res)

P
α−→ P ′ (α /∈ (L ∪ L)× Z)

P \ L
α−→ P ′ \ L

(If)

P
α−→ P ′ (b true)

if b then P
α−→ P ′

(Call)

P[z1/x1, . . . , zn/xn]
α−→ P ′

(C(x1, . . . , xn) = P, zi value of ei)

C(e1, . . . , en)
α−→ P ′

Remarks:
• P[z1/x1, . . . , zn/xn] denotes the substitution of each free (i.e., unbound) occurrence of xi by

zi (1 ≤ i ≤ n)
• Relabelling functions are extended to actions by letting

f (a(z)) := f (a)(z) and f (a(z)) := f (a)(z) (and f (τ ) := τ )

8 of 21 Concurrency Theory

Winter Semester 2015/16
Lecture 8: Extensions of CCS: Value Passing and Mobility



Semantics of Value-Passing CCS

Semantics of Value-Passing CCS III

Further remarks:
• The binding restriction ensures that all integer and Boolean expressions have a defined

value
• The two-armed conditional if b then P else Q can be defined by

(if b then P) + (if ¬b then Q)

Example 8.5

One-place buffer that outputs non-negative predecessor of stored value:
B = in(x).B′(x)

B′(x) = (if x = 0 then out(0).B) + (if x > 0 then out(x − 1).B)
(on the board)

9 of 21 Concurrency Theory

Winter Semester 2015/16
Lecture 8: Extensions of CCS: Value Passing and Mobility



Translation of Value-Passing into Pure CCS

Translation of Value-Passing into Pure CCS I

• To show: value-passing process definitions can be represented in pure CCS
• Idea: each parametrised construct (a(x), a(e), C(e1, . . . , en)) corresponds to a family of

constructs in pure CCS, one for each possible integer value
• Requires extension of pure CCS by infinite choices (“

∑
. . .”), restrictions, and process

definitions

11 of 21 Concurrency Theory

Winter Semester 2015/16
Lecture 8: Extensions of CCS: Value Passing and Mobility



Translation of Value-Passing into Pure CCS

Translation of Value-Passing into Pure CCS II

Definition 8.6 (Translation of value-passing into pure CCS)

For each P ∈ Prc+ without free variables, its translated form P̂ ∈ Prc is given by

n̂il := nil τ̂.P := τ.P̂

â(x).P :=
∑

z∈Z az.P̂[z/x] â(e).P := az.P̂ (z value of e)

P̂1 + P2 := P̂1 + P̂2 P̂1 ‖ P2 := P̂1 ‖ P̂2

P̂ \ L := P̂ \ {az | a ∈ L, z ∈ Z} P̂[f ] := P̂ [̂f ] (̂f (az) := f (a)z)

̂if b then P :=

{
P̂ if b true

nil otherwise
̂C(e1, . . . , en) := Cz1,...,zn (zi value of ei)

Moreover, each defining equation C(x1, . . . , xn) = P of a process identifier is
translated into the indexed collection of process definitions(

Cz1,...,zn =
̂P[z1/x1, . . . , zn/xn] | v1, . . . , vn ∈ Z

)
12 of 21 Concurrency Theory

Winter Semester 2015/16
Lecture 8: Extensions of CCS: Value Passing and Mobility



Translation of Value-Passing into Pure CCS

Translation of Value-Passing into Pure CCS III

Example 8.7 (cf. Example 8.5)

B = in(x).B′(x)
B′(x) = (if x = 0 then out(0).B) + (if x > 0 then out(x − 1).B)

(on the board)

Theorem 8.8 (Correctness of translation)

For all P,P ′ ∈ Prc+ and α ∈ Act,

P
α−→ P ′ ⇐⇒ P̂

α̂−→ P̂ ′

where â(z) := az, â(z) := az, and τ̂ := τ .

Proof.

by induction on the structure of P (omitted)

13 of 21 Concurrency Theory

Winter Semester 2015/16
Lecture 8: Extensions of CCS: Value Passing and Mobility



Modelling Mobile Concurrent Systems

Mobility in Concurrent Systems I

Observation: CCS imposes a static communication structure: if P,Q ∈ Prc want to
communicate, then both must syntactically refer to the same action name

=⇒ every potential communication partner known beforehand,
no dynamic passing of communication links

=⇒ lack of modelling capabilities for mobility

Goal: develop calculus in the spirit of CCS which supports mobility

=⇒ π-Calculus

15 of 21 Concurrency Theory

Winter Semester 2015/16
Lecture 8: Extensions of CCS: Value Passing and Mobility



Modelling Mobile Concurrent Systems

Mobility in Concurrent Systems II

Example 8.9 (Dynamic access to resources)

• Server S controls access to printer P
• Client C wishes to use P
• In CCS: P and C must share some action name a

=⇒ C could access P without being granted it by S
• In π-Calculus:

– initially only S has access to P (using link a)
– using another link b, C can request access to P

• Formally:

b〈a〉.S′︸ ︷︷ ︸
S

‖ b(c).c〈d〉.C′︸ ︷︷ ︸
C

‖ a(e).P ′︸ ︷︷ ︸
P

τ−→ S′ ‖ a〈d〉.C′ ‖ a(e).P ′
τ−→ S′ ‖ C′ ‖ P ′[d/e]

– a: link to P
– b: link between S and C
– c: “placeholder” for a
– d : data to be printed
– e: “placeholder” for d

16 of 21 Concurrency Theory

Winter Semester 2015/16
Lecture 8: Extensions of CCS: Value Passing and Mobility



Modelling Mobile Concurrent Systems

Mobility in Concurrent Systems III

Example 8.9 (Dynamic access to resources; continued)

• Different rôles of action name a:
– in interaction between S and C: object transferred from S to C
– in interaction between C and P: name of communication link

• Intuitively, names represent access rights:
– a: for P
– b: for S
– d : for data to be printed

• If a is only way to access P
=⇒ P “moves” from S to C

17 of 21 Concurrency Theory

Winter Semester 2015/16
Lecture 8: Extensions of CCS: Value Passing and Mobility



Another Example: Mobile Clients

Mobile Clients I

Example 8.10 (Hand-over protocol)

Scenario:
• client devices moving around (phones, PCs, sensors, ...)
• each radio-connected to some base station
• stations wired to central control
• some event (e.g., signal fading) may cause a client to be switched to another station
• essential: specification of switching process (“hand-over protocol”)

Simplest case:
two stations, one client

Client

Station Idle

Control

talk1

switch1

gain1

lose1
gain2

lose2

19 of 21 Concurrency Theory

Winter Semester 2015/16
Lecture 8: Extensions of CCS: Value Passing and Mobility



Another Example: Mobile Clients

Mobile Clients II

Example 8.10 (Hand-over protocol; continued)

• Every station is in one of two modes: Station (active; four links) or Idle (inactive; two links)
• Client can talk via Station, and at any time Control can request Station/Idle to lose/gain

Client :
Station(talk , switch, gain, lose) = talk .Station(talk , switch, gain, lose) +

lose(t , s).switch〈t , s〉.Idle(gain, lose)
Idle(gain, lose) = gain(t , s).Station(t , s, gain, lose)

• If Control decides Station to lose Client , it issues a new pair of channels to be shared by
Client and Idle:

Control1 = lose1〈talk2, switch2〉.gain2〈talk2, switch2〉.Control2
Control2 = lose2〈talk1, switch1〉.gain1〈talk1, switch1〉.Control1

• Client can either talk or, if requested, switch to a new pair of channels:

Client(talk , switch) = talk .Client(talk , switch) + switch(t , s).Client(t , s)

20 of 21 Concurrency Theory

Winter Semester 2015/16
Lecture 8: Extensions of CCS: Value Passing and Mobility



Another Example: Mobile Clients

Mobile Clients III

Example 8.10 (Hand-over protocol; continued)

• As usual, the whole system is a restricted composition of processes:

System1 = new L (Client1 ‖ Station1 ‖ Idle2 ‖ Control1)

where
Client i := Client(talk i , switchi)

Stationi := Station(talk i , switchi , gaini , losei)
Idlei := Idle(gaini , losei)

L := (talk i , switchi , gaini , losei | i ∈ {1, 2})

• After having formally defined the π-Calculus we will see that this protocol is correct, i.e., that
the hand-over does indeed occur:

System1 −→∗ System2

where
System2 = new L (Client2 ‖ Idle1 ‖ Station2 ‖ Control2)

21 of 21 Concurrency Theory

Winter Semester 2015/16
Lecture 8: Extensions of CCS: Value Passing and Mobility


	Syntax of Value-Passing CCS
	Semantics of Value-Passing CCS
	Translation of Value-Passing into Pure CCS
	Modelling Mobile Concurrent Systems
	Another Example: Mobile Clients

