Winter Semester 2015/16

Lecture 8: Extensions of CCS: Value Passing and Mobility

Joost-Pieter Katoen and Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ws-1516/ct/

’ Software Modeling

‘ Il and Verification Chair

http://moves.rwth-aachen.de/teaching/ws-1516/ct/

Syntax of Value-Passing CCS

Value-Passing CCS
e So far: pure CCS

— communication = mere synchronisation
— no (explicit) exchange of data

e But: processes usually do pass around data

= Value-passing CCS
e Introduced in Robin Milner: Communication and Concurrency, Prentice-Hall, 1989
e Assumption (for simplicity): only integers as data type

Example 8.1 (One-place buffer with data (cf. Example 2.5))

One-place buffer that outputs successor of stored value:
B = in(x).B'(x)
B'(x) = oui(x +1).B

RWTH

3 of 21 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 8: Extensions of CCS: Value Passing and Mobility ‘ B and Verification Chair

Syntax of Value-Passing CCS

Syntax of Value-Passing CCS |

Definition 8.2 (Syntax of value-passing CCS)
e Let A, A, Pid (ranked) as in Definition 2.1.

e Let e and b be integer and Boolean expressions, resp., built from integer variables x. y, . ..

e The set Prc* of value-passing process expressions is defined by:

P ::=nil (inaction)

| a(x).P (input prefixing)

| a(e).P (output prefixing)

| T.P (7 prefixing)

| Pi+ P (choice)

| Py || P2 (parallel composition)

| P\L (restriction)

| P[f] (relabelling)

| if bthen P (conditional)

| C(eq,...,€en) (process call)
whereac A, L C A, C € Pid (ofrank n € N),and f : A — A.

e et 011 R, _ | R\NTH
Lecture 8: Extensions of CCS: Value Passing and Mobility Mmoo G

Syntax of Value-Passing CCS

Syntax of Value-Passing CCS I

Definition 8.2 (Syntax of value-passing CCS; continued)

A value-passing process definition is an equation system of the form
(Ci(x1,...,x,) =P |1 <i<k)

where
e k>1,
e C; € Pid of rank n; (pairwise distinct),
e P; € Prc™ (with process identifiers from {C;, ..., Cx}), and
e all occurrences of an integer variable y in each P; are bound, i.e., ¥y € {xq,..., X, } or yisin

the scope of an input prefix of the form a(y) (to ensure well-definedness of values).

Example 8.3

1. C(x) =a(x +1).b(y).C(y) is allowed

2. C(x) =a(x +1).a(y + 2).nil is disallowed as y is not bound

5 of 21 C?ncurrency Theory Rm
X\gcr:]:j:eszn;?;rsizoor:ssgGCCS: Value Passing and Mobility 2 2.‘:?\',"::%3';:5,?333"

Semantics of Value-Passing CCS

Semantics of Value-Passing CCS |

Definition 8.4 (Semantics of value-passing CCS)

A value-passing process definition (Ci(xy, ..., x,) = P; | 1 < i < k) determines the
LTS (Prc™, Act, —) with Act := (AU A) x Z U {7} whose transitions can be
inferred from the following rules (P, P, Q, Q' € Prc", a € A, x; integer variables, e;/b
integer/Boolean expressions, z € Z, « € Act, A € (AU A) x Z):

(z value of e)

(In) (Out) — (Tau) p
a(x).P 22X plz/x] a(e).p 2 p TP — P
P 5 P wQ — @
P+Q— P P+Q— Q
P P Q-% @ PSP Q5@

(Pary (Pa (Com

) r2)) P
Pla-=PFP|a Pl P| @ PlQ—P| &

RWTH

7 of 21 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 8: Extensions of CCS: Value Passing and Mobility B and Verification Chair

Semantics of Value-Passing CCS

Semantics of Value-Passing CCS II

Definition 8.4 (Semantics of value-passing CCS; continued)

p_% pl PP (a¢(LUL) x 7Z)
(Rel) (Res)
piA 4 Py P\L—= P'\L

Plzi /X1, ... 20/ Xn] — P’

P s P (btrue) (C(xq,...,x,) = P, zvalue of &;)

(1) (Call)
if bthen P — P’ Cler,...,e,) — P
Remarks:
e Plzi/x1,...,2y/X,| denotes the substitution of each free (i.e., unbound) occurrence of x; by
zi(1 <i<n)

e Relabelling functions are extended to actions by letting

fla(z)) :=f(a)(z) and f(a(z)):=f(a)(z) (andf(7):=7)

RWTH

8 of 21 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 8: Extensions of CCS: Value Passing and Mobility B and Verification Chair

Semantics of Value-Passing CCS

Semantics of Value-Passing CCS il

Further remarks:

e The binding restriction ensures that all integer and Boolean expressions have a defined
value
e The two-armed conditional if b then P else Q can be defined by

(if bthen P) + (if b then Q)

Example 8.5

One-place buffer that outputs non-negative predecessor of stored value:
B = in(x).B'(x)
B'(x) = (if x = 0 then out(0).B) + (if x > 0 then out(x — 1).B)
(on the board)

RWTH

9 of 21 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 8: Extensions of CCS: Value Passing and Mobility ‘ B and Verification Chair

Translation of Value-Passing into Pure CCS

Translation of Value-Passing into Pure CCS |

e To show: value-passing process definitions can be represented in pure CCS

e Idea: each parametrised construct (a(x), a(e), C(ey, ..., €,)) corresponds to a family of
constructs in pure CCS, one for each possible integer value

e Requires extension of pure CCS by infinite choices (“> . .."), restrictions, and process
definitions

RWTH

11 of 21 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 8: Extensions of CCS: Value Passing and Mobility ‘ B and Verification Chair

Translation of Value-Passing into Pure CCS

Translation of Value-Passing into Pure CCS i

Definition 8.6 (Translation of value-passing into pure CCS)

For each P € Prc" without free variables, its translated form P € Prcis given by

—_—

nil := nil T.P:=T.P
a(x).P := ZZEZ a,.P[z/x] a(e).P:=a,.P (z value of e)
PitPo=Pit P, Py || Pi= P || Po
P\L:=P\{a,|ac L zcZ} P[f] = P|f] (f(a,) = f(a);)
_— P ifbt ——
if bthen P := 1 RAUe C(es,...,en) :=C,.. . (z valueof g)

nil otherwise

Moreover, each defining equation C(x4, ..., x,) = P of a process identifier is
translated into the indexed collection of process definitions

(021,-..,zn = Plzy/x1, ..., 20/ Xp) | V4, ..o, V0 € Z)

RWTH

12 of 21 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 8: Extensions of CCS: Value Passing and Mobility B and Verification Chair

Translation of Value-Passing into Pure CCS

Translation of Value-Passing into Pure CCS lii
Example 8.7 (cf. Example 8.5)

B = in(x).B'(x)
B'(x) = (if x = 0 then out(0).B) + (if x > 0 then out(x — 1).B)
(on the board)

Theorem 8.8 (Correctness of translation)
Forall P, P' € Prc™ and o € Act,
PP — P-5 P
where a(z) := a,, a(z) = a,, and 7 := 7.
Proof.

by induction on the structure of P (omitted)

RWTH

13 of 21 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 8: Extensions of CCS: Value Passing and Mobility B and Verification Chair

Modelling Mobile Concurrent Systems

Mobility in Concurrent Systems |

Observation: CCS imposes a static communication structure: if P, Q € Prc want to
communicate, then both must syntactically refer to the same action name

——> every potential communication partner known beforehand,
no dynamic passing of communication links

— lack of modelling capabilities for mobility
Goal: develop calculus in the spirit of CCS which supports mobility

— 7m-Calculus

RWTH

15 of 21 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 8: Extensions of CCS: Value Passing and Mobility ‘ B and Verification Chair

Modelling Mobile Concurrent Systems

Mobility in Concurrent Systems Il
Example 8.9 (Dynamic access to resources)

e Server S controls access to printer P
e Client C wishes to use P

e [In CCS: P and C must share some action name a

—> (C could access P without being granted it by S
e In m-Calculus:

— initially only S has access to P (using link a)
— using another link b, C can request access to P

e Formally:
b(a).S" || b(c).c(d).C" | a(e).P’ = & linkito 2
S s s — b link between S and C
— S| ald).C’ || a(e).P — c: “placeholder” for a

a
s g || C| P[d/e — d: data to be printed

— e: “placeholder” for d

[S |

16 of 21 Concurrency Theory

Winter Semester 2015/16 ,

Lecture 8: Extensions of CCS: Value Passing and Mobility ‘

RWTH

Software Modeling
Il and Verification Chair

Modelling Mobile Concurrent Systems

Mobility in Concurrent Systems lii

Example 8.9 (Dynamic access to resources; continued)

e Different roles of action name a:

— in interaction between S and C: object transferred from Sto C
— in interaction between C and P: name of communication link

e Intuitively, names represent access rights:
— a: for P
— b: for S
— d: for data to be printed
e If ais only way to access P
—> P “moves” from Sto C

17 of 21 Concurrency Theory

Winter Semester 2015/16
Lecture 8: Extensions of CCS: Value Passing and Mobility

n

4

Software Modeling
Il and Verification Chair

RWTH

Another Example: Mobile Clients

Mobile Clients |
Example 8.10 (Hand-over protocol)

Scenario:

e client devices moving around (phones, PCs, sensors, ...)
e each radio-connected to some base station

e stations wired to central control

e some event (e.g., signal fading) may cause a client to be switched to another station
e essential: specification of switching process (“hand-over protocol”)

Simplest case: Client
two stations, one client SW’tCW
talk
Station _ Idle
gain,
' /0391 lo Ses
gain,
Control
19 of 21 Concurrency Theor
Winter Sem)(/ester 20y1 5/16 o " Rm
Lecture 8: Extensions of CCS: Value Passing and Mobility ‘ m §§Lt‘\':":rri?izwa?ﬂﬁ:'gﬂair

Another Example: Mobile Clients

Mobile Clients Il

Example 8.10 (Hand-over protocol; continued)

e Every station is in one of two modes: Station (active; four links) or /dle (inactive; two links)
e Client can talk via Station, and at any time Control can request Station/Idle to lose/gain
Client:
Station(talk, switch, gain, lose) = talk.Station(talk, switch, gain, lose) +
lose(t, s).switch(t, s).ldle(gain, lose)
Idle(gain, lose) = gain(t, s).Station(t, s, gain, lose)
e If Control decides Station to lose Client, it issues a new pair of channels to be shared by
Client and Idle:
Controly = lose(talky, switch,).gain,(talky, switch,).Control,
Control, = lose;(talky, switchy).gain, (talky, switchy).Control

e Client can either talk or, if requested, switch to a new pair of channels:
Client(talk, switch) = talk.Client(talk, switch) + switch(t, s).Client(t, s)

RWTH

20 of 21 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 8: Extensions of CCS: Value Passing and Mobility ‘ B and Verification Chair

Another Example: Mobile Clients

Mobile Clients lii
Example 8.10 (Hand-over protocol; continued)

e As usual, the whole system is a restricted composition of processes:
System, = new L (Client; || Station; || Idle || Control)

where
Client; := Client(talk, switch;)

Station; := Station(talk;, switch;, gain;, lose;)
Idle; = Idle(gain;, lose;)
L := (talk;, switch;, gain;, lose; | i € {1,2})

e After having formally defined the w-Calculus we will see that this protocol is correct, i.e., that
the hand-over does indeed occur:

System, —" System,

where
System, = new L (Client, || Idle; || Station, || Controls,)
21 of 21 Concurrency Theory
Winter Semester 2015/16 o Software Modelln Rm
Lecture 8: Extensions of CCS: Value Passing and Mobility ‘ B and Verification caair

	Syntax of Value-Passing CCS
	Semantics of Value-Passing CCS
	Translation of Value-Passing into Pure CCS
	Modelling Mobile Concurrent Systems
	Another Example: Mobile Clients

