

Concurrency Theory

- Winter Semester 2015/16
- Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms
- Joost-Pieter Katoen and Thomas Noll Software Modeling and Verification Group RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ws-1516/ct/

Syntax of Mutually Recursive Equational Systems

Definition (Syntax of mutually recursive equational systems)

Let $\mathcal{X} = \{X_1, \dots, X_n\}$ be a set of variables. The set $HMF_{\mathcal{X}}$ of Hennessy-Milner formulae over \mathcal{X} is defined by the following syntax:

$F ::= X_i$	(variable)
tt	(true)
ff	(false)
$F_1 \wedge F_2$	(conjunction)
$F_1 \vee F_2$	(disjunction)
$ \langle \alpha \rangle F$	(diamond)
$\mid [\alpha]F$	(box)

where $1 \le i \le n$ and $\alpha \in Act$. A mutually recursive equational system has the form

$$(X_i = F_{X_i} \mid 1 \leq i \leq n)$$

where $F_{X_i} \in HMF_{\mathcal{X}}$ for every $1 \leq i \leq n$.

Semantics of Recursive Equational Systems I

As before: semantics of formula depends on states satisfying the variables

Definition (Semantics of mutually recursive equational systems)

Let $(S, Act, \longrightarrow)$ be an LTS and $E = (X_i = F_{X_i} \mid 1 \le i \le n)$ a mutually recursive equational system. The semantics of E, $\llbracket E \rrbracket : (2^S)^n \to (2^S)^n$, is defined by $\llbracket E \rrbracket (T_1, \ldots, T_n) := (\llbracket F_{X_1} \rrbracket (T_1, \ldots, T_n), \ldots, \llbracket F_{X_n} \rrbracket (T_1, \ldots, T_n))$

where

$$\begin{split} & [X_i]](T_1, \dots, T_n) := T_i \\ & [tt]](T_1, \dots, T_n) := S \\ & [ff]](T_1, \dots, T_n) := \emptyset \\ \\ & [F_1 \land F_2](T_1, \dots, T_n) := [F_1]](T_1, \dots, T_n) \cap [F_2]](T_1, \dots, T_n) \\ & [F_1 \lor F_2](T_1, \dots, T_n) := [F_1]](T_1, \dots, T_n) \cup [F_2]](T_1, \dots, T_n) \\ & [[\langle \alpha \rangle F]](T_1, \dots, T_n) := \langle \cdot \alpha \cdot \rangle ([F]](T_1, \dots, T_n)) \\ & [[\alpha] F]](T_1, \dots, T_n) := [\cdot \alpha \cdot] ([F]](T_1, \dots, T_n)) \end{split}$$

Recap: Mutually Recursive Equational Systems

Semantics of Recursive Equational Systems II

Lemma

Let $(S, Act, \longrightarrow)$ be a finite LTS and $E = (X_i = F_{X_i} \mid 1 \le i \le n)$ a mutually recursive equational system. Let (D, \sqsubseteq) be given by $D := (2^S)^n$ and $(T_1, \ldots, T_n) \sqsubseteq (T'_1, \ldots, T'_n)$ iff $T_i \subseteq T'_i$ for every $1 \le i \le n$. 1. (D, \sqsubseteq) is a complete lattice with $\bigsqcup \{(T^i_1, \ldots, T^i_n) \mid i \in I\} = (\bigcup \{T^i_1 \mid i \in I\}, \ldots, \bigcup \{T^i_n \mid i \in I\})$ $\sqcap \{(T^i_1, \ldots, T^i_n) \mid i \in I\} = (\bigcap \{T^i_1 \mid i \in I\}, \ldots, \bigcap \{T^i_n \mid i \in I\})$ 2. $\llbracket E \rrbracket$ is monotonic w.r.t. (D, \sqsubseteq) 3. fix $(\llbracket E \rrbracket) = \llbracket E \rrbracket^m (\emptyset, \ldots, \emptyset)$ for some $m \in \mathbb{N}$ 4. FIX $(\llbracket E \rrbracket) = \llbracket E \rrbracket^M (S, \ldots, S)$ for some $M \in \mathbb{N}$

Proof.

omitted

An Example

A Mutually Recursive Specification

Example 7.1

$$s \stackrel{a}{\underset{b}{\longrightarrow}} s_1 \stackrel{a}{\underset{a}{\longleftarrow}} s_2 \stackrel{a}{\underset{a}{\longrightarrow}} s_3 \supset b$$

Let $S := \{s, s_1, s_2, s_3\}$ and E given by $X \stackrel{max}{=} \langle a \rangle Y \wedge [a] Y \wedge [b]$ ff $Y \stackrel{max}{=} \langle b \rangle X \wedge [b] X \wedge [a]$ ff

Computation of $FIX(\llbracket E \rrbracket)$: on the board

Mixing Least and Greatest Fixed Points

Mixing Least and Greatest Fixed Points I

- So far: least/greatest fixed point of overall system
- But: too restrictive

Example 7.2

```
"It is possible for the system to reach a state which has a livelock (i.e., an infinite sequence of internal steps)."
```

can be specified by

Pos(Livelock)

where

```
Pos(F) \stackrel{\min}{=} F \lor \langle Act \rangle Pos(F) \qquad (cf. Example 4.6)Livelock \stackrel{\max}{=} \langle \tau \rangle Livelock(thus, Livelock \equiv Forever(\tau) [cf. Example 6.3])
```


Mixing Least and Greatest Fixed Points

Mixing Least and Greatest Fixed Points II

Caveat: arbitrary mixing can entail non-monotonic behaviour

Example 7.3

$$E: X \stackrel{\min}{=} Y$$
$$Y \stackrel{\max}{=} X$$

Fixed-point iteration:

$$(\bot, \top) = (\emptyset, S) \stackrel{\llbracket E \rrbracket}{\mapsto} (S, \emptyset) \stackrel{\llbracket E \rrbracket}{\mapsto} (\emptyset, S) \stackrel{\llbracket E \rrbracket}{\mapsto} \dots$$

Solution: nesting of specifications by partitioning equations into a sequence of blocks such that all equations in one block

- are of same type (either *min* or *max*) and
- use only variables defined in the same or subsequent blocks
- ⇒ bottom-up, block-wise evaluation by fixed-point iteration

Mixing Least and Greatest Fixed Points

Mixing Least and Greatest Fixed Points III

Example 7.4 (cf. Example 7.2)

 $\begin{array}{l} \textit{PosLL} \stackrel{\tiny\textit{min}}{=} \textit{Livelock} \lor \langle \textit{Act} \rangle \textit{PosLL} \\ \textit{Livelock} \stackrel{\tiny\textit{max}}{=} \langle \tau \rangle \textit{Livelock} \end{array}$

$$s \xrightarrow{a} p \xrightarrow{\tau} q \xrightarrow{\tau} r$$

$$\bigcup_{\tau} \tau$$

1. Fixed-point iteration for *Livelock* : $T \mapsto \langle \cdot \tau \cdot \rangle(T)$:

$$S = \{s, p, q, r\} \mapsto \{p, q\} \mapsto \{p\} \mapsto \{p\}$$

2. Fixed-point iteration for *PosLL* : $T \mapsto \{p\} \cup \langle \cdot Act \cdot \rangle(T)$:

 $\emptyset \mapsto \{ p \} \mapsto \{ s, p \} \mapsto \{ s, p \}$

The Modal μ -Calculus

- Logic that supports free mixing of least and greatest fixed points:
 - D. Kozen: *Results on the Propositional μ-Calculus*, Theoretical Computer Science 27, 1983, 333–354
- HML variants are fragments thereof
- Expressivity increases with alternation of least and greatest fixed points:
 - J.C. Bradfield: *The Modal Mu-Calculus Alternation Hierarchy is Strict*, Theoretical Computer Science 195(2), 1998, 133–153
- Decidable model-checking problem for finite LTSs (in NP ∩ co-NP; linear for HML with one variable)
- Generally undecidable for infinite LTSs and HML with one variable (CCS, Petri nets, ...)
- Overview paper:
 - O. Burkart, D. Caucal, F. Moller, B. Steffen: *Verification on Infinite Structures*, Chapter 9 of *Handbook of Process Algebra*, Elsevier, 2001, 545–623

Modelling Mutual Exclusion Algorithms

Peterson's Mutual Exclusion Algorithm

- Goal: ensuring exclusive access to non-shared resources
- Here: two competing processes P_1 , P_2 and shared variables
 - b₁, b₂ (Boolean, initially false)
 - -k (in $\{1, 2\}$, arbitrary initial value)
- P_i uses local variable j := 2 i (index of other process)

Algorithm 7.5 (Peterson's algorithm for P_i)

```
while true do

"non-critical section";

b_i := true;

k := j;

while b_j \land k = j do skip;

"critical section";

b_i := false;

end
```


Representing Shared Variables in CCS

- Not directly expressible in CCS (communication by message passing)
- Idea: consider variables as processes that communicate with environment by processing read/write requests

Example 7.6 (Shared variables in Peterson's algorithm)

- Encoding of b_1 with two (process) states B_{1t} (value tt) and B_{1f} (ff)
- Read access along ports b1rt (in state B_{1t}) and b1rf (in state B_{1f})
- Write access along ports *b1wt* and *b1wf* (in both states)
- Possible behaviours: $B_{1f} = \overline{b1rf}.B_{1f} + b1wf.B_{1f} + b1wt.B_{1t}$ $B_{1t} = \overline{b1rt}.B_{1t} + b1wf.B_{1f} + b1wt.B_{1t}$
- Similarly for b_2 and k: $B_{2f} = \overline{b2rf} \cdot B_{2f} + b2wf \cdot B_{2f} + b2wt \cdot B_{2t}$ $B_{2t} = \overline{b2rt} \cdot B_{2t} + b2wf \cdot B_{2f} + b2wt \cdot B_{2t}$

$$K_1 = \overline{kr1}.K_1 + kw1.K_1 + kw2.K_2$$
$$K_2 = \overline{kr2}.K_2 + kw1.K_1 + kw2.K_2$$

Modelling the Processes in CCS

Assumption: P_i cannot fail or terminate within critical section

Peterson's algorithm

```
while true do

"non-critical section";

b_i := true;

k := j;

while b_j \wedge k = j do skip;

"critical section";

b_i := false;

end
```

CCS representation $P_1 = b1wt.kw2.P_{11}$ $P_{11} = b2rf.P_{12} + b2rf.$ $b2rt.(kr1.P_{12} + kr2.P_{11})$ $P_{12} = enter_1.exit_1.b1wf.P_1$ $P_{2} = b2wt.kw1.P_{21}$ $P_{21} = b1rf.P_{22} + b1rf.P_{22}$ $b1rt.(kr1.P_{21} + kr2.P_{22})$ $P_{22} = enter_2.exit_2.b2wf.P_2$ $Peterson = (P_1 \parallel P_2 \parallel B_{1f} \parallel B_{2f} \parallel K_1) \setminus L$ for $L = \{b1rf, b1rt, b1wf, b1wt, b$ b2rf, b2rt, b2wf, b2wt, *kr*1, *kr*2, *kw*1, *kw*2

Obtaining the LTS I

Alternatives:

- By hand (really painful)
- By tools:
 - CAAL (Concurrency Workbench, Aalborg Edition): http://caal.cs.aau.dk
 - smart editor
 - visualisation of generated LTS
 - equivalence checking w.r.t. several bisimulation, simulation and trace equivalences
 - generation of distinguishing formulae for nonequivalent processes
 - model checking of recursive HML formulae
 - (bi)simulation and model checking games.
 - see exercises
 - TAPAs (Tool for the Analysis of Process Algebras): http://rap.dsi.unifi.it/tapas/
 - CCS specification of Peterson's algorithm available as example
 - yields LTS with 115 states (see next slide)
 - CWB (Edinburgh Concurrency Workbench): http://homepages.inf.ed.ac.uk/perdita/cwb/
 - somewhat outdated

Evaluating the CCS Model

Concurrency Theory Winter Semester 2015/16 Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms

19 of 26

The Mutual Exclusion Property

- Done: formal description of Peterson's algorithm
- To do: analysing its behaviour (manually or with tool support)
- Question: what does "ensuring mutual exclusion" formally mean?

Mutual exclusion

At no point in the execution of the algorithm, processes P_1 and P_2 will both be in their critical section at the same time.

Alternatively:

It is always the case that either P_1 or P_2 or both are not in their critical section.

Specifying Mutual Exclusion in HML

Mutual exclusion

It is always the case that either P_1 or P_2 or both are not in their critical section.

Observations:

- Mutual exclusion is an invariance property ("always")
- *P_i* is in its critical section iff action *exit_i* is enabled

Mutual exclusion in HML

 $\begin{aligned} & \textit{MutEx} := \textit{Inv}(F) \\ & \textit{Inv}(F) \stackrel{\text{max}}{=} F \land [\textit{Act}]\textit{Inv}(F) \\ & F := [\textit{exit}_1] \text{ff} \lor [\textit{exit}_2] \text{ff} \end{aligned} (cf. Theorem 6.2) \end{aligned}$

Model Checking Mutual Exclusion

Model Checking Mutual Exclusion

- Using TAPAs Tool
- Supports property specifications in μ -calculus:

```
property MutEx:
max x. (([exit1] false | [exit2] false) & ([*] x))
end
```

● ○ ●		Model Che	cking		
 MutualExclusion.tpj Processes Boolean P P1 P2 	Formulae Enable	Property Name MutEx	Formula v x. (([exit1]fal	Formula v x. (([exit1]false ∨ [exit2]false) ∧ [*]x)	
 Equation P2 Systems B1 B2 K Spec Sys 	Sys MutEx	v x. (([exit1]fals	re ∨ [exit2]false) ∧ [*]x)	Yes	0.155 s
,		Open Check	Reset Clear		
23 of 26 Concurrency Theor Winter Semester 20 Lecture 7: Modellin	015/16	al Exclusion Algorithms	2	Software Modeling and Verification Chair	RWTHAACHEN UNIVERSITY

Alternative Verification Approaches

Verification by Bisimulation Checking

- Alternative to logic-based approaches
- **Idea:** establish equivalence between (concrete) "implementation" and (abstract) "specification"

Example 7.7 (Two-place buffers (cf. Example 2.5))

1. Sequential specification:

$$egin{aligned} &B_0 = in.B_1 \ &B_1 = \overline{out}.B_0 + in.B_2 \ &B_2 = \overline{out}.B_1 \end{aligned}$$

2. Parallel implementation:

$$egin{aligned} B_{\parallel} &= (B[f] \parallel B[g]) \setminus \textit{com} \ B &= \textit{in}. \overline{\textit{out}}.B \end{aligned}$$

where $f := [out \mapsto com]$ and $g := [in \mapsto com]$

Later: (1) and (2) are "weakly bisimilar" (i.e., bisimilar up to τ -transitions)

Alternative Verification Approaches

Specifying Mutual Exclusion in CCS

- Goal: express desired behaviour of mutual exclusion algorithm as an "abstract" CCS process
- Intuitively:
 - 1. initially, either P_1 or P_2 can enter its critical section
 - 2. once this happened, the other process cannot enter the critical section before the first has exited it

Mutual exlusion in CCS

 $MutExSpec = enter_1.exit_1.MutExSpec + enter_2.exit_2.MutExSpec$

Again: Peterson and MutExSpec are "weakly bisimilar"

