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Recap: Mutually Recursive Equational Systems

Syntax of Mutually Recursive Equational Systems

Definition (Syntax of mutually recursive equational systems)

Let X = {X1, . . . ,Xn} be a set of variables. The set HMFX of Hennessy-Milner
formulae over X is defined by the following syntax:

F ::= Xi (variable)
| tt (true)
| ff (false)
| F1 ∧ F2 (conjunction)
| F1 ∨ F2 (disjunction)
| 〈α〉F (diamond)
| [α]F (box)

where 1 ≤ i ≤ n and α ∈ Act . A mutually recursive equational system has the form

(Xi = FXi | 1 ≤ i ≤ n)

where FXi ∈ HMFX for every 1 ≤ i ≤ n.
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Recap: Mutually Recursive Equational Systems

Semantics of Recursive Equational Systems I

As before: semantics of formula depends on states satisfying the variables

Definition (Semantics of mutually recursive equational systems)

Let (S,Act,−→) be an LTS and E = (Xi = FXi | 1 ≤ i ≤ n) a mutually recursive
equational system. The semantics of E , JEK : (2S)n → (2S)n, is defined by

JEK(T1, . . . , Tn) := (JFX1K(T1, . . . , Tn), . . . , JFXnK(T1, . . . , Tn))

where
JXiK(T1, . . . , Tn) := Ti

JttK(T1, . . . , Tn) := S
JffK(T1, . . . , Tn) := ∅

JF1 ∧ F2K(T1, . . . , Tn) := JF1K(T1, . . . , Tn) ∩ JF2K(T1, . . . , Tn)
JF1 ∨ F2K(T1, . . . , Tn) := JF1K(T1, . . . , Tn) ∪ JF2K(T1, . . . , Tn)

J〈α〉FK(T1, . . . , Tn) := 〈·α·〉(JFK(T1, . . . , Tn))
J[α]FK(T1, . . . , Tn) := [·α·](JFK(T1, . . . , Tn))
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Recap: Mutually Recursive Equational Systems

Semantics of Recursive Equational Systems II

Lemma

Let (S,Act,−→) be a finite LTS and E = (Xi = FXi | 1 ≤ i ≤ n) a mutually
recursive equational system. Let (D,v) be given by D := (2S)n and

(T1, . . . , Tn) v (T ′1, . . . , T
′
n)

iff Ti ⊆ T ′i for every 1 ≤ i ≤ n.
1. (D,v) is a complete lattice with⊔

{(T i
1, . . . ,T

i
n) | i ∈ I} =

(⋃
{T i

1 | i ∈ I}, . . . ,
⋃
{T i

n | i ∈ I}
)

d
{(T i

1, . . . ,T
i
n) | i ∈ I} =

(⋂
{T i

1 | i ∈ I}, . . . ,
⋂
{T i

n | i ∈ I}
)

2. JEK is monotonic w.r.t. (D,v)
3. fix(JEK) = JEKm(∅, . . . , ∅) for some m ∈ N
4. FIX(JEK) = JEKM(S, . . . ,S) for some M ∈ N

Proof.

omitted
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An Example

A Mutually Recursive Specification

Example 7.1

s s1 s2 s3

a

b a
a

b

Let S := {s, s1, s2, s3} and E given by

X
max
= 〈a〉Y ∧ [a]Y ∧ [b]ff

Y
max
= 〈b〉X ∧ [b]X ∧ [a]ff

Computation of FIX(JEK): on the board
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Mixing Least and Greatest Fixed Points

Outline of Lecture 7

Recap: Mutually Recursive Equational Systems

An Example

Mixing Least and Greatest Fixed Points

Modelling Mutual Exclusion Algorithms

Evaluating the CCS Model

Model Checking Mutual Exclusion

Alternative Verification Approaches

8 of 26 Concurrency Theory

Winter Semester 2015/16
Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms



Mixing Least and Greatest Fixed Points

Mixing Least and Greatest Fixed Points I

• So far: least/greatest fixed point of overall system
• But: too restrictive

Example 7.2

“It is possible for the system to reach a state which has a livelock (i.e., an
infinite sequence of internal steps).”

can be specified by

Pos(Livelock)

where
Pos(F)

min
= F ∨ 〈Act〉Pos(F) (cf. Example 4.6)

Livelock
max
= 〈τ〉Livelock

(thus, Livelock ≡ Forever(τ ) [cf. Example 6.3])
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Mixing Least and Greatest Fixed Points

Mixing Least and Greatest Fixed Points II

Caveat: arbitrary mixing can entail non-monotonic behaviour

Example 7.3

E : X
min
= Y

Y
max
= X

Fixed-point iteration:

(⊥,>) = (∅,S) JEK7→ (S, ∅) JEK7→ (∅,S) JEK7→ . . .

Solution: nesting of specifications by partitioning equations into a sequence of
blocks such that all equations in one block
• are of same type (either min or max) and
• use only variables defined in the same or subsequent blocks

=⇒ bottom-up, block-wise evaluation by fixed-point iteration
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Mixing Least and Greatest Fixed Points

Mixing Least and Greatest Fixed Points III

Example 7.4 (cf. Example 7.2)

PosLL
min
= Livelock ∨ 〈Act〉PosLL

Livelock
max
= 〈τ〉Livelock

s p q r
a τ τ

τ

1. Fixed-point iteration for Livelock : T 7→ 〈·τ ·〉(T ):

S = {s, p, q, r} 7→ {p, q} 7→ {p} 7→ {p}

2. Fixed-point iteration for PosLL : T 7→ {p} ∪ 〈·Act ·〉(T ):

∅ 7→ {p} 7→ {s, p} 7→ {s, p}
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Mixing Least and Greatest Fixed Points

The Modal µ-Calculus

• Logic that supports free mixing of least and greatest fixed points:
– D. Kozen: Results on the Propositional µ-Calculus, Theoretical Computer Science 27, 1983,

333–354

• HML variants are fragments thereof
• Expressivity increases with alternation of least and greatest fixed points:

– J.C. Bradfield: The Modal Mu-Calculus Alternation Hierarchy is Strict , Theoretical Computer Science
195(2), 1998, 133–153

• Decidable model-checking problem for finite LTSs
(in NP ∩ co-NP; linear for HML with one variable)
• Generally undecidable for infinite LTSs and HML with one variable (CCS, Petri nets, ...)
• Overview paper:

– O. Burkart, D. Caucal, F. Moller, B. Steffen: Verification on Infinite Structures, Chapter 9 of
Handbook of Process Algebra, Elsevier, 2001, 545–623
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Modelling Mutual Exclusion Algorithms
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Modelling Mutual Exclusion Algorithms

Peterson’s Mutual Exclusion Algorithm

• Goal: ensuring exclusive access to non-shared resources
• Here: two competing processes P1,P2 and shared variables

– b1, b2 (Boolean, initially false)
– k (in {1, 2}, arbitrary initial value)

• Pi uses local variable j := 2− i (index of other process)

Algorithm 7.5 (Peterson’s algorithm for Pi)

while true do
“non-critical section”;
bi := true;
k := j;
while bj ∧ k = j do skip;
“critical section”;
bi := false;

end
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Modelling Mutual Exclusion Algorithms

Representing Shared Variables in CCS

• Not directly expressible in CCS (communication by message passing)
• Idea: consider variables as processes that communicate with environment by processing

read/write requests

Example 7.6 (Shared variables in Peterson’s algorithm)

• Encoding of b1 with two (process) states B1t (value tt) and B1f (ff)
• Read access along ports b1rt (in state B1t) and b1rf (in state B1f )
• Write access along ports b1wt and b1wf (in both states)
• Possible behaviours: B1f = b1rf .B1f + b1wf .B1f + b1wt .B1t

B1t = b1rt .B1t + b1wf .B1f + b1wt .B1t

• Similarly for b2 and k : B2f = b2rf .B2f + b2wf .B2f + b2wt .B2t

B2t = b2rt .B2t + b2wf .B2f + b2wt .B2t

K1 = kr1.K1 + kw1.K1 + kw2.K2

K2 = kr2.K2 + kw1.K1 + kw2.K2
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K1 = kr1.K1 + kw1.K1 + kw2.K2

K2 = kr2.K2 + kw1.K1 + kw2.K2
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Modelling Mutual Exclusion Algorithms

Modelling the Processes in CCS
Assumption: Pi cannot fail or terminate within critical section

Peterson’s algorithm

while true do
“non-critical section”;
bi := true;
k := j;
while bj ∧ k = j do skip;
“critical section”;
bi := false;

end

CCS representation

P1 = b1wt.kw2.P11

P11 = b2rf .P12 +
b2rt.(kr1.P12 + kr2.P11)

P12 = enter1.exit1.b1wf .P1

P2 = b2wt.kw1.P21

P21 = b1rf .P22 +
b1rt.(kr1.P21 + kr2.P22)

P22 = enter2.exit2.b2wf .P2

Peterson = (P1 ‖ P2 ‖ B1f ‖ B2f ‖ K1) \ L

for L = {b1rf , b1rt, b1wf , b1wt,
b2rf , b2rt, b2wf , b2wt,
kr1, kr2, kw1, kw2}
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Evaluating the CCS Model

Outline of Lecture 7

Recap: Mutually Recursive Equational Systems

An Example

Mixing Least and Greatest Fixed Points

Modelling Mutual Exclusion Algorithms

Evaluating the CCS Model

Model Checking Mutual Exclusion

Alternative Verification Approaches
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Evaluating the CCS Model

Obtaining the LTS I

Alternatives:
• By hand (really painful)
• By tools:

– CAAL (Concurrency Workbench, Aalborg Edition): http://caal.cs.aau.dk
� smart editor
� visualisation of generated LTS
� equivalence checking w.r.t. several bisimulation, simulation and trace equivalences
� generation of distinguishing formulae for nonequivalent processes
� model checking of recursive HML formulae
� (bi)simulation and model checking games.
� see exercises

– TAPAs (Tool for the Analysis of Process Algebras): http://rap.dsi.unifi.it/tapas/
� CCS specification of Peterson’s algorithm available as example
� yields LTS with 115 states (see next slide)

– CWB (Edinburgh Concurrency Workbench):
http://homepages.inf.ed.ac.uk/perdita/cwb/

� somewhat outdated
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Evaluating the CCS Model

Obtaining the LTS II

19 of 26 Concurrency Theory

Winter Semester 2015/16
Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms



Model Checking Mutual Exclusion

Outline of Lecture 7

Recap: Mutually Recursive Equational Systems

An Example

Mixing Least and Greatest Fixed Points

Modelling Mutual Exclusion Algorithms

Evaluating the CCS Model

Model Checking Mutual Exclusion

Alternative Verification Approaches
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Model Checking Mutual Exclusion

The Mutual Exclusion Property

• Done: formal description of Peterson’s algorithm
• To do: analysing its behaviour (manually or with tool support)
• Question: what does “ensuring mutual exclusion” formally mean?

Mutual exclusion

At no point in the execution of the algorithm, processes P1 and P2 will both be in their
critical section at the same time.

Alternatively:
It is always the case that either P1 or P2 or both are not in their critical section.
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Model Checking Mutual Exclusion

Specifying Mutual Exclusion in HML

Mutual exclusion

It is always the case that either P1 or P2 or both are not in their critical section.

Observations:
• Mutual exclusion is an invariance property (“always”)
• Pi is in its critical section iff action exiti is enabled

Mutual exclusion in HML

MutEx := Inv(F)
Inv(F)

max
= F ∧ [Act]Inv(F) (cf. Theorem 6.2)

F := [exit1]ff ∨ [exit2]ff
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Model Checking Mutual Exclusion

Model Checking Mutual Exclusion

• Using TAPAs Tool
• Supports property specifications in µ-calculus:
property MutEx:

max x. (([exit1] false | [exit2] false) & ([*] x))

end
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Alternative Verification Approaches

Outline of Lecture 7

Recap: Mutually Recursive Equational Systems

An Example

Mixing Least and Greatest Fixed Points

Modelling Mutual Exclusion Algorithms

Evaluating the CCS Model

Model Checking Mutual Exclusion

Alternative Verification Approaches
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Alternative Verification Approaches

Verification by Bisimulation Checking

• Alternative to logic-based approaches
• Idea: establish equivalence between (concrete) “implementation” and (abstract)

“specification”

Example 7.7 (Two-place buffers (cf. Example 2.5))

1. Sequential specification:
B0 = in.B1

B1 = out .B0 + in.B2

B2 = out .B1

2. Parallel implementation:
B‖ = (B[f ] ‖ B[g]) \ com
B = in.out .B

where f := [out 7→ com] and g := [in 7→ com]

Later: (1) and (2) are “weakly bisimilar” (i.e., bisimilar up to τ -transitions)
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Alternative Verification Approaches

Specifying Mutual Exclusion in CCS

• Goal: express desired behaviour of mutual exclusion algorithm as an “abstract” CCS
process

• Intuitively:
1. initially, either P1 or P2 can enter its critical section
2. once this happened, the other process cannot enter the critical section before the first has exited it

Mutual exlusion in CCS

MutExSpec = enter1.exit1.MutExSpec + enter2.exit2.MutExSpec

Again: Peterson and MutExSpec are “weakly bisimilar”
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