

Concurrency Theory

Winter Semester 2015/16

Lecture 6: Mutually Recursive Equational Systems

Joost-Pieter Katoen and Thomas Noll Software Modeling and Verification Group RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ws-1516/ct/

Partial Orders

Definition (Partial order)

A partial order (PO) (D, \sqsubseteq) consists of a set D, called domain, and of a relation $\sqsubseteq \subseteq D \times D$ such that, for every $d_1, d_2, d_3 \in D$,

reflexivity: $d_1 \sqsubseteq d_1$

transitivity: $d_1 \sqsubseteq d_2$ and $d_2 \sqsubseteq d_3 \implies d_1 \sqsubseteq d_3$

antisymmetry: $d_1 \sqsubseteq d_2$ and $d_2 \sqsubseteq d_1 \implies d_1 = d_2$

It is called total if, in addition, always $d_1 \sqsubseteq d_2$ or $d_2 \sqsubseteq d_1$.

Example

- 1. (\mathbb{N}, \leq) is a total partial order
- 2. $(\mathbb{N}, <)$ is not a partial order (since not reflexive)
- 3. $(2^{\mathbb{N}}, \subseteq)$ is a (non-total) partial order
- 4. (Σ^*, \sqsubseteq) is a (non-total) partial order, where Σ is some alphabet and \sqsubseteq denotes prefix ordering ($u \sqsubseteq v \iff \exists w \in \Sigma^* : uw = v$)

Upper and Lower Bounds

Definition ((Least) upper bounds and (greatest) lower bounds)

Let (D, \sqsubseteq) be a partial order and $T \subseteq D$.

- 1. An element $d \in D$ is called an upper bound of T if $t \sqsubseteq d$ for every $t \in T$ (notation: $T \sqsubseteq d$). It is called least upper bound (LUB) (or supremum) of T if additionally $d \sqsubseteq d'$ for every upper bound d' of T (notation: $d = \bigcup T$).
- 2. An element $d \in D$ is called an lower bound of T if $d \sqsubseteq t$ for every $t \in T$ (notation: $d \sqsubseteq T$). It is called greatest lower bound (GLB) (or infimum) of T if $d' \sqsubseteq d$ for every lower bound d' of T (notation: $d = \bigcap T$).

Example

- 1. $T \subseteq \mathbb{N}$ has a LUB/GLB in (\mathbb{N}, \leq) iff it is finite/non-empty
- 2. In $(2^{\mathbb{N}}, \subseteq)$, every subset $T \subseteq 2^{\mathbb{N}}$ has an LUB and GLB:

$$\coprod T = \bigcup T$$
 and $\prod T = \bigcap T$

Complete Lattices

Definition (Complete lattice)

A complete lattice is a partial order (D, \sqsubseteq) such that all subsets of D have LUBs and GLBs. In this case,

$$\bot := [\ \]\emptyset \ (= \ \ D)$$
 and $\top := [\ \]\emptyset \ (= \ \ D)$

respectively denote the least and greatest element of D.

Example

- 1. (\mathbb{N}, \leq) is not a complete lattice as, e.g., \mathbb{N} does not have a LUB
- 2. $(\mathbb{N} \cup \{\infty\}, \leq)$ with $n \leq \infty$ for all $n \in \mathbb{N}$ is a complete lattice
- 3. $(2^{\mathbb{N}}, \subseteq)$ is a complete lattice

Application to HML with Recursion

Lemma

Let $(S, Act, \longrightarrow)$ be an LTS. Then $(2^S, \subseteq)$ is a complete lattice with

- ullet $\mathcal{T} = \bigcup \mathcal{T} = \bigcup_{\mathcal{T} \in \mathcal{T}} T$ for all $\mathcal{T} \subseteq 2^S$
- $\prod \mathcal{T} = \bigcap \mathcal{T} = \bigcap_{T \in \mathcal{T}} T$ for all $\mathcal{T} \subseteq 2^{S}$
- $\perp = | |\emptyset = | 2^S = \emptyset$
- $\bullet \ \top = \prod \emptyset = \bigsqcup 2^{\mathcal{S}} = \mathcal{S}$

Proof.

omitted

Monotonicity of Functions

Definition (Monotonicity)

Let (D, \sqsubseteq) and (D', \sqsubseteq') be partial orders. A function $f: D \to D'$ is called monotonic (w.r.t. (D, \sqsubseteq) and (D', \sqsubseteq')) if, for every $d_1, d_2 \in D$,

$$d_1 \sqsubseteq d_2 \implies f(d_1) \sqsubseteq' f(d_2).$$

Example

- 1. $f_1: \mathbb{N} \to \mathbb{N}: n \mapsto n^2$ is monotonic w.r.t. (\mathbb{N}, \leq)
- 2. $f_2: 2^{\mathbb{N}} \to 2^{\mathbb{N}}: T \mapsto T \cup \{1,2\}$ is monotonic w.r.t. $(2^{\mathbb{N}},\subseteq)$
- 3. Let $\mathcal{T} := \{ T \subseteq \mathbb{N} \mid T \text{ finite} \}$. Then $f_3 : \mathcal{T} \to \mathbb{N} : T \mapsto \sum_{n \in T} n \text{ is monotonic w.r.t. } (2^{\mathbb{N}}, \subseteq) \text{ and } (\mathbb{N}, \leq).$
- 4. $f_4: 2^{\mathbb{N}} \to 2^{\mathbb{N}}: T \mapsto \mathbb{N} \setminus T$ is not monotonic w.r.t. $(2^{\mathbb{N}}, \subseteq)$ (since, e.g., $\emptyset \subseteq \mathbb{N}$ but $f_4(\emptyset) = \mathbb{N} \not\subseteq f_4(\mathbb{N}) = \emptyset$).

The Fixed-Point Theorem

Alfred Tarski (1901–1983)

Theorem (Tarski's fixed-point theorem)

Let (D, \sqsubseteq) be a complete lattice and $f: D \to D$ monotonic. Then f has a least fixed point fix(f) and a greatest fixed point FIX(f) given by

$$fix(f) = \prod \{d \in D \mid f(d) \sqsubseteq d\}$$
 (GLB of all pre-fixed points of f)

$$FIX(f) = \bigsqcup \{d \in D \mid d \sqsubseteq f(d)\}$$
 (LUB of all post-fixed points of f)

Proof.

on the board

The Fixed-Point Theorem for Finite Lattices

Theorem (Fixed-point theorem for finite lattices)

Let (D, \sqsubseteq) be a finite complete lattice and $f: D \to D$ monotonic. Then

$$fix(f) = f^m(\bot)$$
 and $FIX(f) = f^M(\top)$

for some $m, M \in \mathbb{N}$ where $f^0(d) := d$ and $f^{k+1}(d) := f(f^k(d))$.

Proof.

on the board

Example

- Let $f: 2^{\{0,1\}} \to 2^{\{0,1\}}: T \mapsto T \cup \{0\}$
- $f^0(\bot) = \emptyset$, $f^1(\bot) = \{0\}$, $f^2(\bot) = \{0\} = f^1(\bot)$ $\implies \text{fix}(f) = \{0\} \text{ for } m = 2$
- $f^0(\top) = \{0, 1\}, f^1(\top) = \{0, 1\} = f^0(\top)$ $\implies \mathsf{FIX}(f) = \{0, 1\} \text{ for } M = 1$

Application to HML with Recursion

Lemma

Let $(S, Act, \longrightarrow)$ be an LTS and $F \in HMF_X$. Then

- 1. $\llbracket F \rrbracket : 2^S \to 2^S$ is monotonic w.r.t. $(2^S, \subseteq)$
- 2. $fix(\llbracket F \rrbracket) = \bigcap \{T \subseteq S \mid \llbracket F \rrbracket(T) \subseteq T\}$
- 3. $FIX(\llbracket F \rrbracket) = \bigcup \{ T \subseteq S \mid T \subseteq \llbracket F \rrbracket(T) \}$

If, in addition, S is finite, then

- 4. $\operatorname{fix}(\llbracket F \rrbracket) = \llbracket F \rrbracket^m(\emptyset)$ for some $m \in \mathbb{N}$
- 5. $\mathsf{FIX}(\llbracket F \rrbracket) = \llbracket F \rrbracket^M(S) \text{ for some } M \in \mathbb{N}$

Proof.

- 1. by induction on the structure of *F* (details omitted)
- 2. by Lemma 5.7 and Theorem 5.12
- 3. by Lemma 5.7 and Theorem 5.12
- 4. by Lemma 5.7 and Theorem 5.14
- 5. by Lemma 5.7 and Theorem 5.14

Applying the Fixed-Point Theorem for Finite Lattices

Applying the Fixed-Point Theorem for Finite Lattices

Example 6.1

$$egin{array}{cccc} s & & t & & t & & & \downarrow a & & & \downarrow a &$$

Let
$$S := \{s, s_1, s_2, t, t_1\}.$$

- 1. Solution of $X \stackrel{\text{\tiny max}}{=} \langle b \rangle \text{tt} \wedge [b] X$: on the board
- 2. Solution of $Y \stackrel{min}{=} \langle b \rangle tt \vee \langle \{a, b\} \rangle Y$: on the board

Largest Fixed Points and Invariants

Largest Fixed Points and Invariants

- Remember (Example 4.7):
 - Invariant: $Inv(F) \equiv X$ for $F \in HMF$ and $X \stackrel{\text{max}}{=} F \land [Act]X$
 - $-s \models Inv(F)$ if all states reachable from s satisfy F
- Now: formalize argument and prove its correctness (for arbitrary LTSs)
- Let $inv : 2^S \to 2^S : T \mapsto \llbracket F \rrbracket \cap [\cdot Act \cdot] T$ be the corresponding semantic function
- By Theorem 5.12, $FIX(inv) = \bigcup \{T \subseteq S \mid T \subseteq inv(T)\}$
- Direct formulation of invariance property:

$$\mathit{Inv} = \{ s \in S \mid \forall w \in \mathit{Act}^*, s' \in S : s \overset{w}{\longrightarrow} s' \implies s' \in \llbracket F \rrbracket \}$$

Theorem 6.2

For every LTS $(S, Act, \longrightarrow)$, Inv = FIX(inv) holds.

Proof.

on the board

Introducing Several Variables

Sometimes useful: using more than one variable

Example 6.3

"It is always the case that a process can perform an a-labelled transition leading to a state where b-transitions can be executed forever."

can be specified by

$$Inv(\langle a \rangle Forever(b))$$

where

$$Inv(F) \stackrel{max}{=} F \wedge [Act]F$$
 (cf. Theorem 6.2)
 $Forever(b) \stackrel{max}{=} \langle b \rangle Forever(b)$

Syntax of Mutually Recursive Equational Systems

Definition 6.4 (Syntax of mutually recursive equational systems)

Let $\mathcal{X} = \{X_1, \dots, X_n\}$ be a set of variables. The set $HMF_{\mathcal{X}}$ of Hennessy-Milner formulae over \mathcal{X} is defined by the following syntax:

$$F ::= X_i$$
 (variable)
| tt (true)
| ff (false)
| $F_1 \wedge F_2$ (conjunction)
| $F_1 \vee F_2$ (disjunction)
| $\langle \alpha \rangle F$ (diamond)
| $[\alpha] F$ (box)

where $1 \le i \le n$ and $\alpha \in Act$. A mutually recursive equational system has the form

$$(X_i = F_{X_i} \mid 1 \leq i \leq n)$$

where $F_{X_i} \in HMF_{\mathcal{X}}$ for every $1 \leq i \leq n$.

Semantics of Recursive Equational Systems I

As before: semantics of formula depends on states satisfying the variables

Definition 6.5 (Semantics of mutually recursive equational systems)

Let $(S, Act, \longrightarrow)$ be an LTS and $E = (X_i = F_{X_i} \mid 1 \le i \le n)$ a mutually recursive equational system. The semantics of E, $[E] : (2^S)^n \to (2^S)^n$, is defined by

$$[\![E]\!](T_1,\ldots,T_n):=([\![F_{X_1}]\!](T_1,\ldots,T_n),\ldots,[\![F_{X_n}]\!](T_1,\ldots,T_n))$$

where

Semantics of Recursive Equational Systems II

Lemma 6.6

Let $(S, Act, \longrightarrow)$ be a finite LTS and $E = (X_i = F_{X_i} \mid 1 \le i \le n)$ a mutually recursive equational system. Let (D, \sqsubseteq) be given by $D := (2^S)^n$ and

$$(T_1,\ldots,T_n)\sqsubseteq (T'_1,\ldots,T'_n)$$

iff $T_i \subseteq T'_i$ for every $1 \le i \le n$.

1. (D, \sqsubseteq) is a complete lattice with

$$\bigsqcup\{(T_1^i, \dots, T_n^i) \mid i \in I\} = (\bigcup\{T_1^i \mid i \in I\}, \dots, \bigcup\{T_n^i \mid i \in I\})
\sqcap\{(T_1^i, \dots, T_n^i) \mid i \in I\} = (\bigcap\{T_1^i \mid i \in I\}, \dots, \bigcap\{T_n^i \mid i \in I\})$$

- 2. [E] is monotonic w.r.t. (D, \sqsubseteq)
- 3. $\operatorname{fix}(\llbracket E \rrbracket) = \llbracket E \rrbracket^m(\emptyset, \dots, \emptyset)$ for some $m \in \mathbb{N}$
- 4. $\mathsf{FIX}(\llbracket E \rrbracket) = \llbracket E \rrbracket^M(S, \ldots, S)$ for some $M \in \mathbb{N}$

Proof.

omitted

