

Concurrency Theory

- Winter Semester 2015/16
- Lecture 6: Mutually Recursive Equational Systems
- Joost-Pieter Katoen and Thomas Noll Software Modeling and Verification Group RWTH Aachen University
- http://moves.rwth-aachen.de/teaching/ws-1516/ct/

Outline of Lecture 6

Recap: Fixed-Point Theory

Applying the Fixed-Point Theorem for Finite Lattices

Largest Fixed Points and Invariants

Mutually Recursive Equational Systems

Partial Orders

Definition (Partial order)

A partial order (PO) (D, \sqsubseteq) consists of a set D, called domain, and of a relation $\Box \subseteq D \times D$ such that, for every $d_1, d_2, d_3 \in D$, reflexivity: $d_1 \sqsubseteq d_1$ transitivity: $d_1 \sqsubseteq d_2$ and $d_2 \sqsubseteq d_3 \implies d_1 \sqsubseteq d_3$ antisymmetry: $d_1 \sqsubseteq d_2$ and $d_2 \sqsubseteq d_1 \implies d_1 = d_2$ It is called total if, in addition, always $d_1 \sqsubseteq d_2$ or $d_2 \sqsubseteq d_1$.

Example

3 of 19

- 1. (\mathbb{N}, \leq) is a total partial order
- 2. $(\mathbb{N}, <)$ is not a partial order (since not reflexive)
- 3. $(2^{\mathbb{N}}, \subseteq)$ is a (non-total) partial order
- 4. (Σ^*, \sqsubseteq) is a (non-total) partial order, where Σ is some alphabet and \sqsubseteq denotes prefix ordering ($u \sqsubseteq v \iff \exists w \in \Sigma^* : uw = v$)

Upper and Lower Bounds

Definition ((Least) upper bounds and (greatest) lower bounds)

Let (D, \sqsubseteq) be a partial order and $T \subseteq D$.

- 1. An element $d \in D$ is called an upper bound of T if $t \sqsubseteq d$ for every $t \in T$ (notation: $T \sqsubseteq d$). It is called least upper bound (LUB) (or supremum) of T if additionally $d \sqsubseteq d'$ for every upper bound d' of T (notation: $d = \bigsqcup T$).
- 2. An element $d \in D$ is called an lower bound of T if $d \sqsubseteq t$ for every $t \in T$ (notation: $d \sqsubseteq T$). It is called greatest lower bound (GLB) (or infimum) of T if $d' \sqsubseteq d$ for every lower bound d' of T (notation: $d = \bigcap T$).

Example

- 1. $T \subseteq \mathbb{N}$ has a LUB/GLB in (\mathbb{N}, \leq) iff it is finite/non-empty
- **2**. In $(2^{\mathbb{N}}, \subseteq)$, every subset $T \subseteq 2^{\mathbb{N}}$ has an LUB and GLB:

 $\Box T = \bigcup T$ and $\Box T = \bigcap T$

Complete Lattices

Definition (Complete lattice)

A complete lattice is a partial order (D, \sqsubseteq) such that all subsets of D have LUBs and GLBs. In this case,

$$\bot := \bigsqcup \emptyset \ (= \bigsqcup D) \qquad \text{and} \qquad \top := \bigsqcup \emptyset \ (= \bigsqcup D)$$

respectively denote the least and greatest element of D.

Example

1. (\mathbb{N}, \leq) is not a complete lattice as, e.g., \mathbb{N} does not have a LUB 2. $(\mathbb{N} \cup \{\infty\}, \leq)$ with $n \leq \infty$ for all $n \in \mathbb{N}$ is a complete lattice 3. $(2^{\mathbb{N}}, \subseteq)$ is a complete lattice

Recap: Fixed-Point Theory

Application to HML with Recursion

Lemma

Let
$$(S, Act, \longrightarrow)$$
 be an LTS. Then $(2^{S}, \subseteq)$ is a complete lattice with
• $\bigsqcup T = \bigcup T = \bigcup_{T \in T} T$ for all $T \subseteq 2^{S}$
• $\bigsqcup T = \bigcap T = \bigcap_{T \in T} T$ for all $T \subseteq 2^{S}$
• $\bot = \bigsqcup \emptyset = \bigsqcup 2^{S} = \emptyset$
• $\top = \bigsqcup \emptyset = \bigsqcup 2^{S} = S$

Proof.

omitted

Monotonicity of Functions

Definition (Monotonicity)

Let (D, \sqsubseteq) and (D', \sqsubseteq') be partial orders. A function $f : D \to D'$ is called monotonic (w.r.t. (D, \sqsubseteq) and (D', \sqsubseteq')) if, for every $d_1, d_2 \in D$, $d_1 \sqsubseteq d_2 \implies f(d_1) \sqsubseteq' f(d_2)$.

Example

7 of 19

- 1. $f_1 : \mathbb{N} \to \mathbb{N} : n \mapsto n^2$ is monotonic w.r.t. (\mathbb{N}, \leq)
- 2. $f_2 : 2^{\mathbb{N}} \to 2^{\mathbb{N}} : T \mapsto T \cup \{1, 2\}$ is monotonic w.r.t. $(2^{\mathbb{N}}, \subseteq)$
- 3. Let $\mathcal{T} := \{T \subseteq \mathbb{N} \mid T \text{ finite}\}$. Then $f_3 : \mathcal{T} \to \mathbb{N} : T \mapsto \sum_{n \in T} n \text{ is monotonic w.r.t. } (2^{\mathbb{N}}, \subseteq) \text{ and } (\mathbb{N}, \leq).$
- 4. $f_4 : 2^{\mathbb{N}} \to 2^{\mathbb{N}} : T \mapsto \mathbb{N} \setminus T$ is not monotonic w.r.t. $(2^{\mathbb{N}}, \subseteq)$ (since, e.g., $\emptyset \subseteq \mathbb{N}$ but $f_4(\emptyset) = \mathbb{N} \not\subseteq f_4(\mathbb{N}) = \emptyset$).

The Fixed-Point Theorem

Alfred Tarski (1901–1983)

Theorem (Tarski's fixed-point theorem)

Let (D, \sqsubseteq) be a complete lattice and $f : D \rightarrow D$ monotonic. Then f has a least fixed point fix(f) and a greatest fixed point FIX(f) given by

 $fix(f) = \bigcap \{ d \in D \mid f(d) \sqsubseteq d \}$ (GLB of all pre-fixed points of f)

 $FIX(f) = \bigsqcup \{ d \in D \mid d \sqsubseteq f(d) \}$ (LUB of all post-fixed points of f)

Proof.

8 of 19

on the board

The Fixed-Point Theorem for Finite Lattices

Theorem (Fixed-point theorem for finite lattices)

Let (D, \sqsubseteq) be a finite complete lattice and $f : D \to D$ monotonic. Then $fix(f) = f^m(\bot)$ and $FIX(f) = f^M(\top)$

for some $m, M \in \mathbb{N}$ where $f^0(d) := d$ and $f^{k+1}(d) := f(f^k(d))$.

Proof.

on the board

Example

• Let
$$f : 2^{\{0,1\}} \to 2^{\{0,1\}} : T \mapsto T \cup \{0\}$$

• $f^0(\bot) = \emptyset, f^1(\bot) = \{0\}, f^2(\bot) = \{0\} = f^1(\bot)$
 $\implies \text{fix}(f) = \{0\} \text{ for } m = 2$
• $f^0(\top) = \{0,1\}, f^1(\top) = \{0,1\} = f^0(\top)$
 $\implies \text{FIX}(f) = \{0,1\} \text{ for } M = 1$

Application to HML with Recursion

Lemma

```
Let (S, Act, \longrightarrow) be an LTS and F \in HMF_X. Then

1. \llbracket F \rrbracket : 2^S \to 2^S is monotonic w.r.t. (2^S, \subseteq)

2. fix(\llbracket F \rrbracket) = \bigcap \{T \subseteq S \mid \llbracket F \rrbracket(T) \subseteq T\}

3. FIX(\llbracket F \rrbracket) = \bigcup \{T \subseteq S \mid T \subseteq \llbracket F \rrbracket(T)\}

If, in addition, S is finite, then

4. fix(\llbracket F \rrbracket) = \llbracket F \rrbracket^m(\emptyset) for some m \in \mathbb{N}

5. FIX(\llbracket F \rrbracket) = \llbracket F \rrbracket^m(S) for some M \in \mathbb{N}
```

Proof.

- 1. by induction on the structure of *F* (details omitted)
- 2. by Lemma 5.7 and Theorem 5.12
- 3. by Lemma 5.7 and Theorem 5.12
- 4. by Lemma 5.7 and Theorem 5.14
- 5. by Lemma 5.7 and Theorem 5.14

Outline of Lecture 6

Recap: Fixed-Point Theory

Applying the Fixed-Point Theorem for Finite Lattices

Largest Fixed Points and Invariants

Mutually Recursive Equational Systems

Applying the Fixed-Point Theorem for Finite Lattices

Applying the Fixed-Point Theorem for Finite Lattices

Example 6.1

Let
$$S := \{s, s_1, s_2, t, t_1\}.$$

Applying the Fixed-Point Theorem for Finite Lattices

Applying the Fixed-Point Theorem for Finite Lattices

Example 6.1

Let
$$S := \{s, s_1, s_2, t, t_1\}$$
.
1. Solution of $X \stackrel{max}{=} \langle b \rangle$ tt $\land [b]X$: on the board

Applying the Fixed-Point Theorem for Finite Lattices

Applying the Fixed-Point Theorem for Finite Lattices

Example 6.1

Let
$$S := \{s, s_1, s_2, t, t_1\}$$
.
1. Solution of $X \stackrel{max}{=} \langle b \rangle$ tt $\land [b]X$: on the board
2. Solution of $Y \stackrel{min}{=} \langle b \rangle$ tt $\lor \langle \{a, b\} \rangle Y$: on the board

Outline of Lecture 6

Recap: Fixed-Point Theory

Applying the Fixed-Point Theorem for Finite Lattices

Largest Fixed Points and Invariants

Mutually Recursive Equational Systems

Largest Fixed Points and Invariants

• Remember (Example 4.7):

14 of 19

- Invariant: $Inv(F) \equiv X$ for $F \in HMF$ and $X \stackrel{\text{max}}{=} F \wedge [Act]X$
- $-s \models Inv(F)$ if all states reachable from s satisfy F

Largest Fixed Points and Invariants

- Remember (Example 4.7):
 - Invariant: $Inv(F) \equiv X$ for $F \in HMF$ and $X \stackrel{\text{max}}{=} F \wedge [Act]X$
 - $-s \models Inv(F)$ if all states reachable from s satisfy F
- Now: formalize argument and prove its correctness (for arbitrary LTSs)

Largest Fixed Points and Invariants

- Remember (Example 4.7):
 - Invariant: $Inv(F) \equiv X$ for $F \in HMF$ and $X \stackrel{max}{=} F \wedge [Act]X$
 - $-s \models Inv(F)$ if all states reachable from s satisfy F
- Now: formalize argument and prove its correctness (for arbitrary LTSs)
- Let $inv : 2^S \to 2^S : T \mapsto \llbracket F \rrbracket \cap [Act \cdot] T$ be the corresponding semantic function
- By Theorem 5.12, $FIX(inv) = \bigcup \{T \subseteq S \mid T \subseteq inv(T)\}$

Largest Fixed Points and Invariants

- Remember (Example 4.7):
 - Invariant: $Inv(F) \equiv X$ for $F \in HMF$ and $X \stackrel{max}{=} F \wedge [Act]X$
 - $-s \models Inv(F)$ if all states reachable from s satisfy F
- Now: formalize argument and prove its correctness (for arbitrary LTSs)
- Let $inv : 2^S \rightarrow 2^S : T \mapsto \llbracket F \rrbracket \cap [\cdot Act \cdot] T$ be the corresponding semantic function
- By Theorem 5.12, $FIX(inv) = \bigcup \{T \subseteq S \mid T \subseteq inv(T)\}$
- Direct formulation of invariance property:

$$\mathit{Inv} = \{ s \in S \mid \forall w \in \mathit{Act}^*, s' \in S : s \xrightarrow{w} s' \implies s' \in \llbracket F \rrbracket \}$$

Largest Fixed Points and Invariants

- Remember (Example 4.7):
 - Invariant: $Inv(F) \equiv X$ for $F \in HMF$ and $X \stackrel{max}{=} F \wedge [Act]X$
 - $-s \models Inv(F)$ if all states reachable from s satisfy F
- Now: formalize argument and prove its correctness (for arbitrary LTSs)
- Let $inv : 2^S \to 2^S : T \mapsto [[F]] \cap [Act] T$ be the corresponding semantic function
- By Theorem 5.12, $FIX(inv) = \bigcup \{T \subseteq S \mid T \subseteq inv(T)\}$
- Direct formulation of invariance property:

$$\mathit{Inv} = \{ s \in S \mid \forall w \in \mathit{Act}^*, s' \in S : s \xrightarrow{w} s' \implies s' \in \llbracket F \rrbracket \}$$

Theorem 6.2

For every LTS (S, Act, \rightarrow), Inv = FIX(inv) holds.

Largest Fixed Points and Invariants

- Remember (Example 4.7):
 - Invariant: $Inv(F) \equiv X$ for $F \in HMF$ and $X \stackrel{max}{=} F \wedge [Act]X$
 - $-s \models Inv(F)$ if all states reachable from s satisfy F
- Now: formalize argument and prove its correctness (for arbitrary LTSs)
- Let $inv : 2^S \rightarrow 2^S : T \mapsto \llbracket F \rrbracket \cap [\cdot Act \cdot] T$ be the corresponding semantic function
- By Theorem 5.12, $FIX(inv) = \bigcup \{T \subseteq S \mid T \subseteq inv(T)\}$
- Direct formulation of invariance property:

$$\mathit{Inv} = \{ s \in S \mid \forall w \in \mathit{Act}^*, s' \in S : s \xrightarrow{w} s' \implies s' \in \llbracket F \rrbracket \}$$

Theorem 6.2

For every LTS (S, Act, \rightarrow), Inv = FIX(inv) holds.

Proof.

on the board

Outline of Lecture 6

Recap: Fixed-Point Theory

Applying the Fixed-Point Theorem for Finite Lattices

Largest Fixed Points and Invariants

Mutually Recursive Equational Systems

Introducing Several Variables

Sometimes useful: using more than one variable

Example 6.3

"It is always the case that a process can perform an a-labelled transition leading to a state where b-transitions can be executed forever."

Introducing Several Variables

Sometimes useful: using more than one variable

Example 6.3

"It is always the case that a process can perform an a-labelled transition leading to a state where b-transitions can be executed forever."

can be specified by

 $Inv(\langle a \rangle Forever(b))$

where

 $Inv(F) \stackrel{\text{max}}{=} F \land [Act]F \quad (cf. \text{ Theorem 6.2})$ Forever(b) $\stackrel{\text{max}}{=} \langle b \rangle Forever(b)$

Syntax of Mutually Recursive Equational Systems

Definition 6.4 (Syntax of mutually recursive equational systems)

Let $\mathcal{X} = \{X_1, \dots, X_n\}$ be a set of variables. The set $HMF_{\mathcal{X}}$ of Hennessy-Milner formulae over \mathcal{X} is defined by the following syntax:

$F ::= X_i$	(variable)
tt	(true)
ff	(false)
$ F_1 \wedge F_2$	(conjunction)
$ F_1 \vee F_2$	(disjunction)
$ \langle \alpha \rangle F$	(diamond)
$\mid [\alpha]F$	(box)

where $1 \le i \le n$ and $\alpha \in Act$. A mutually recursive equational system has the form

$$(X_i = F_{X_i} \mid 1 \leq i \leq n)$$

where $F_{X_i} \in HMF_{\mathcal{X}}$ for every $1 \leq i \leq n$.

As before: semantics of formula depends on states satisfying the variables

Definition 6.5 (Semantics of mutually recursive equational systems)

Let $(S, Act, \longrightarrow)$ be an LTS and $E = (X_i = F_{X_i} \mid 1 \le i \le n)$ a mutually recursive equational system. The semantics of E, $\llbracket E \rrbracket : (2^S)^n \to (2^S)^n$, is defined by $\llbracket E \rrbracket (T_1, \ldots, T_n) := (\llbracket F_{X_1} \rrbracket (T_1, \ldots, T_n), \ldots, \llbracket F_{X_n} \rrbracket (T_1, \ldots, T_n))$

where

18 of 19

$$\begin{split} & [X_i]](T_1, \dots, T_n) := T_i \\ & [[tt]](T_1, \dots, T_n) := S \\ & [[ff]](T_1, \dots, T_n) := \emptyset \\ \\ & [F_1 \wedge F_2](T_1, \dots, T_n) := [F_1]](T_1, \dots, T_n) \cap [F_2]](T_1, \dots, T_n) \\ & [F_1 \vee F_2]](T_1, \dots, T_n) := [F_1]](T_1, \dots, T_n) \cup [F_2]](T_1, \dots, T_n) \\ & [[\langle \alpha \rangle F]](T_1, \dots, T_n) := \langle \cdot \alpha \cdot \rangle ([[F]](T_1, \dots, T_n)) \\ & [[\alpha] F]](T_1, \dots, T_n) := [\cdot \alpha \cdot] ([[F]](T_1, \dots, T_n)) \end{split}$$

Mutually Recursive Equational Systems

Semantics of Recursive Equational Systems II

Lemma 6.6

Let $(S, Act, \longrightarrow)$ be a finite LTS and $E = (X_i = F_{X_i} \mid 1 \le i \le n)$ a mutually recursive equational system. Let (D, \sqsubseteq) be given by $D := (2^S)^n$ and $(T_1, \ldots, T_n) \sqsubseteq (T'_1, \ldots, T'_n)$

iff $T_i \subseteq T'_i$ for every $1 \le i \le n$.

Lemma 6.6

Let (S, Act, \rightarrow) be a finite LTS and $E = (X_i = F_{X_i} \mid 1 \le i \le n)$ a mutually recursive equational system. Let (D, \sqsubseteq) be given by $D := (2^S)^n$ and $(T_1, \ldots, T_n) \sqsubseteq (T'_1, \ldots, T'_n)$ iff $T_i \subseteq T'_i$ for every $1 \le i \le n$. 1. (D, \sqsubseteq) is a complete lattice with $\bigsqcup\{(T^i_1, \ldots, T^i_n) \mid i \in I\} = (\bigcup\{T^i_1 \mid i \in I\}, \ldots, \bigcup\{T^i_n \mid i \in I\})$ $\sqcap\{(T^i_1, \ldots, T^i_n) \mid i \in I\} = (\bigcap\{T^i_1 \mid i \in I\}, \ldots, \bigcap\{T^i_n \mid i \in I\})$

Lemma 6.6

Let $(S, Act, \longrightarrow)$ be a finite LTS and $E = (X_i = F_{X_i} \mid 1 \le i \le n)$ a mutually recursive equational system. Let (D, \sqsubseteq) be given by $D := (2^S)^n$ and $(T_1, \ldots, T_n) \sqsubseteq (T'_1, \ldots, T'_n)$ iff $T_i \subseteq T'_i$ for every $1 \le i \le n$. 1. (D, \sqsubseteq) is a complete lattice with $\bigsqcup\{(T_1^i, \ldots, T_n^i) \mid i \in I\} = (\bigcup\{T_1^i \mid i \in I\}, \ldots, \bigcup\{T_n^i \mid i \in I\})$ $\bigsqcup\{(T_1^i, \ldots, T_n^i) \mid i \in I\} = (\bigcap\{T_1^i \mid i \in I\}, \ldots, \bigcap\{T_n^i \mid i \in I\})$ 2. $\llbracket E \rrbracket$ is monotonic w.r.t. (D, \sqsubseteq)

Lemma 6.6

Let $(S, Act, \longrightarrow)$ be a finite LTS and $E = (X_i = F_{X_i} \mid 1 \le i \le n)$ a mutually recursive equational system. Let (D, \sqsubseteq) be given by $D := (2^S)^n$ and $(T_1, \ldots, T_n) \sqsubseteq (T'_1, \ldots, T'_n)$ iff $T_i \subseteq T'_i$ for every $1 \le i \le n$. 1. (D, \sqsubseteq) is a complete lattice with $\bigsqcup \{(T^i_1, \ldots, T^i_n) \mid i \in I\} = (\bigcup \{T^i_1 \mid i \in I\}, \ldots, \bigcup \{T^i_n \mid i \in I\})$ $\sqcap \{(T^i_1, \ldots, T^i_n) \mid i \in I\} = (\bigcap \{T^i_1 \mid i \in I\}, \ldots, \bigcap \{T^i_n \mid i \in I\})$ 2. $\llbracket E \rrbracket$ is monotonic w.r.t. (D, \sqsubseteq) 3. fix $(\llbracket E \rrbracket) = \llbracket E \rrbracket^m(\emptyset, \ldots, \emptyset)$ for some $m \in \mathbb{N}$ 4. FIX $(\llbracket E \rrbracket) = \llbracket E \rrbracket^M(S, \ldots, S)$ for some $M \in \mathbb{N}$

Lemma 6.6

Let $(S, Act, \longrightarrow)$ be a finite LTS and $E = (X_i = F_{X_i} \mid 1 \le i \le n)$ a mutually recursive equational system. Let (D, \sqsubseteq) be given by $D := (2^S)^n$ and $(T_1, \ldots, T_n) \sqsubseteq (T'_1, \ldots, T'_n)$ iff $T_i \subseteq T'_i$ for every $1 \le i \le n$. 1. (D, \sqsubseteq) is a complete lattice with $\bigsqcup \{(T^i_1, \ldots, T^i_n) \mid i \in I\} = (\bigcup \{T^i_1 \mid i \in I\}, \ldots, \bigcup \{T^i_n \mid i \in I\})$ $\sqcap \{(T^i_1, \ldots, T^i_n) \mid i \in I\} = (\bigcap \{T^i_1 \mid i \in I\}, \ldots, \bigcap \{T^i_n \mid i \in I\})$ 2. $\llbracket E \rrbracket$ is monotonic w.r.t. (D, \sqsubseteq) 3. fix $(\llbracket E \rrbracket) = \llbracket E \rrbracket^m(\emptyset, \ldots, \emptyset)$ for some $m \in \mathbb{N}$ 4. FIX $(\llbracket E \rrbracket) = \llbracket E \rrbracket^M(S, \ldots, S)$ for some $M \in \mathbb{N}$

Proof.

omitted

 19 of 19
 Concurrency Theory

 Winter Semester 2015/16
 Lecture 6: Mutually Recursive Equational Systems

