
Concurrency Theory
Winter Semester 2015/16

Lecture 5: Fixed-Point Theory

Joost-Pieter Katoen and Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ws-1516/ct/

http://moves.rwth-aachen.de/teaching/ws-1516/ct/

GI - Filmaufführungen

▪ 10. Dezember 2015 ▪ 20:00 Uhr
▪ Hauptgebäude: Aula 1
▪ Templergraben 55, 52074 Aachen

GI-, RIA- und REGINA-
Mitglieder

1€

sonstige Besucher

3€

weitere Informtionen unter
▪ http://rg-aachen.gi.de/veranstaltungen.html

INFORMATIK

in Zusammenarbeit mit:Trailer

„John Nash ist ein genialer Mathematiker mit einer großen Breite (Nash-Gleichgewicht in der Spieltheorie, reelle algebraische Mannigfaltigkeiten,
Differentialgeometrie, partielle Differentialgleichungen), ausgebildet und tätig an den Elite-Universitäten im Osten der USA. Er ist aber auch etwas seltsam:
Kommunikationsarm, hochnäsig und mit wenig Empathie. Nach seinem steilen Aufstieg zu Ruhm beginnt eine absonderliche Filmgeschichte, die man auf den
ersten Blick dem üblichen Hollywood-Klamauk zuordnet...“

Recap: Hennessy-Milner Logic with Recursion

Outline of Lecture 5

Recap: Hennessy-Milner Logic with Recursion

Complete Lattices

The Fixed-Point Theorem

The Fixed-Point Theorem for Finite Lattices

3 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory

Recap: Hennessy-Milner Logic with Recursion

Introducing Recursion

Solution: employ recursion!

• Inv(〈a〉tt) ≡ 〈a〉tt ∧ [a] Inv(〈a〉tt)
• Pos([a]ff) ≡ [a]ff ∨ 〈a〉Pos([a]ff)

Interpretation: the sets of states X ,Y ⊆ S satisfying the respective formula should
solve the corresponding equation, i.e.,
• X = 〈·a·〉(S) ∩ [·a·](X)

• Y = [·a·](∅) ∪ 〈·a·〉(Y)

Open questions

• Do such recursive equations (always) have solutions?
• If so, are they unique?
• How can we compute whether a process satisfies a recursive formula?

4 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory

Recap: Hennessy-Milner Logic with Recursion

Syntax of HML with One Recursive Variable

Initially: only one variable
Later: mutual recursion

Definition (Syntax of HML with one variable)

The set HMF X of Hennessy-Milner formulae with one variable X over a set of actions
Act is defined by the following syntax:

F ::= X (variable)
| tt (true)
| ff (false)
| F1 ∧ F2 (conjunction)
| F1 ∨ F2 (disjunction)
| 〈α〉F (diamond)
| [α]F (box)

where α ∈ Act .

5 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory

Recap: Hennessy-Milner Logic with Recursion

Semantics of HML with One Recursive Variable I

So far: JFK ⊆ S for F ∈ HMF and LTS (S,Act,−→)
Now: semantics of formula depends on states that (are assumed to) satisfy X

Definition (Semantics of HML with one variable)

Let (S,Act,−→) be an LTS and F ∈ HMF X . The semantics of F ,

JFK : 2S → 2S,

is defined by
JXK(T) := T
JttK(T) := S
JffK(T) := ∅

JF1 ∧ F2K(T) := JF1K(T) ∩ JF2K(T)
JF1 ∨ F2K(T) := JF1K(T) ∪ JF2K(T)

J〈α〉FK(T) := 〈·α·〉(JFK(T))
J[α]FK(T) := [·α·](JFK(T))

6 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory

Recap: Hennessy-Milner Logic with Recursion

Semantics of HML with One Recursive Variable II

• Idea underlying the definition of

J.K : HMF X → (2S → 2S) :

if T ⊆ S gives the set of states that satisfy X , then JFK(T) will be the set of states that
satisfy F
• How to determine this T?
• According to previous discussion: as solution of recursive equation of the form X = FX

where FX ∈ HMF X

• But: solution not unique; therefore write:

X min
= FX or X max

= FX

• In the following we will see:
1. Equation X = FX always solvable
2. Least and greatest solutions are unique and can be obtained by fixed-point iteration

7 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory

Complete Lattices

Outline of Lecture 5

Recap: Hennessy-Milner Logic with Recursion

Complete Lattices

The Fixed-Point Theorem

The Fixed-Point Theorem for Finite Lattices

8 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory

Complete Lattices

Partial Orders

Definition 5.1 (Partial order)

A partial order (PO) (D,v) consists of a set D, called domain, and of a relation
v ⊆ D × D such that, for every d1, d2, d3 ∈ D,
reflexivity: d1 v d1

transitivity: d1 v d2 and d2 v d3 =⇒ d1 v d3

antisymmetry: d1 v d2 and d2 v d1 =⇒ d1 = d2

It is called total if, in addition, always d1 v d2 or d2 v d1.

Example 5.2

1. (N,≤) is a total partial order
2. (N, <) is not a partial order (since not reflexive)
3. (2N,⊆) is a (non-total) partial order
4. (Σ∗,v) is a (non-total) partial order, where Σ is some alphabet and v denotes prefix

ordering (u v v ⇐⇒ ∃w ∈ Σ∗ : uw = v)

9 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory

Complete Lattices

Partial Orders

Definition 5.1 (Partial order)

A partial order (PO) (D,v) consists of a set D, called domain, and of a relation
v ⊆ D × D such that, for every d1, d2, d3 ∈ D,
reflexivity: d1 v d1

transitivity: d1 v d2 and d2 v d3 =⇒ d1 v d3

antisymmetry: d1 v d2 and d2 v d1 =⇒ d1 = d2

It is called total if, in addition, always d1 v d2 or d2 v d1.

Example 5.2

1. (N,≤) is a total partial order

2. (N, <) is not a partial order (since not reflexive)
3. (2N,⊆) is a (non-total) partial order
4. (Σ∗,v) is a (non-total) partial order, where Σ is some alphabet and v denotes prefix

ordering (u v v ⇐⇒ ∃w ∈ Σ∗ : uw = v)

9 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory

Complete Lattices

Partial Orders

Definition 5.1 (Partial order)

A partial order (PO) (D,v) consists of a set D, called domain, and of a relation
v ⊆ D × D such that, for every d1, d2, d3 ∈ D,
reflexivity: d1 v d1

transitivity: d1 v d2 and d2 v d3 =⇒ d1 v d3

antisymmetry: d1 v d2 and d2 v d1 =⇒ d1 = d2

It is called total if, in addition, always d1 v d2 or d2 v d1.

Example 5.2

1. (N,≤) is a total partial order
2. (N, <) is not a partial order (since not reflexive)

3. (2N,⊆) is a (non-total) partial order
4. (Σ∗,v) is a (non-total) partial order, where Σ is some alphabet and v denotes prefix

ordering (u v v ⇐⇒ ∃w ∈ Σ∗ : uw = v)

9 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory

Complete Lattices

Partial Orders

Definition 5.1 (Partial order)

A partial order (PO) (D,v) consists of a set D, called domain, and of a relation
v ⊆ D × D such that, for every d1, d2, d3 ∈ D,
reflexivity: d1 v d1

transitivity: d1 v d2 and d2 v d3 =⇒ d1 v d3

antisymmetry: d1 v d2 and d2 v d1 =⇒ d1 = d2

It is called total if, in addition, always d1 v d2 or d2 v d1.

Example 5.2

1. (N,≤) is a total partial order
2. (N, <) is not a partial order (since not reflexive)
3. (2N,⊆) is a (non-total) partial order

4. (Σ∗,v) is a (non-total) partial order, where Σ is some alphabet and v denotes prefix
ordering (u v v ⇐⇒ ∃w ∈ Σ∗ : uw = v)

9 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory

Complete Lattices

Partial Orders

Definition 5.1 (Partial order)

A partial order (PO) (D,v) consists of a set D, called domain, and of a relation
v ⊆ D × D such that, for every d1, d2, d3 ∈ D,
reflexivity: d1 v d1

transitivity: d1 v d2 and d2 v d3 =⇒ d1 v d3

antisymmetry: d1 v d2 and d2 v d1 =⇒ d1 = d2

It is called total if, in addition, always d1 v d2 or d2 v d1.

Example 5.2

1. (N,≤) is a total partial order
2. (N, <) is not a partial order (since not reflexive)
3. (2N,⊆) is a (non-total) partial order
4. (Σ∗,v) is a (non-total) partial order, where Σ is some alphabet and v denotes prefix

ordering (u v v ⇐⇒ ∃w ∈ Σ∗ : uw = v)

9 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory

Complete Lattices

Upper and Lower Bounds

Definition 5.3 ((Least) upper bounds and (greatest) lower bounds)

Let (D,v) be a partial order and T ⊆ D.
1. An element d ∈ D is called an upper bound of T if t v d for every t ∈ T (notation: T v d).

It is called least upper bound (LUB) (or supremum) of T if additionally d v d ′ for every
upper bound d ′ of T (notation: d =

⊔
T).

2. An element d ∈ D is called an lower bound of T if d v t for every t ∈ T (notation: d v T).
It is called greatest lower bound (GLB) (or infimum) of T if d ′ v d for every lower bound d ′

of T (notation: d =
d

T).

Example 5.4

1. T ⊆ N has a LUB/GLB in (N,≤) iff it is finite/non-empty
2. In (2N,⊆), every subset T ⊆ 2N has an LUB and GLB:⊔

T =
⋃

T and
l

T =
⋂

T

10 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory

Complete Lattices

Upper and Lower Bounds

Definition 5.3 ((Least) upper bounds and (greatest) lower bounds)

Let (D,v) be a partial order and T ⊆ D.
1. An element d ∈ D is called an upper bound of T if t v d for every t ∈ T (notation: T v d).

It is called least upper bound (LUB) (or supremum) of T if additionally d v d ′ for every
upper bound d ′ of T (notation: d =

⊔
T).

2. An element d ∈ D is called an lower bound of T if d v t for every t ∈ T (notation: d v T).
It is called greatest lower bound (GLB) (or infimum) of T if d ′ v d for every lower bound d ′

of T (notation: d =
d

T).

Example 5.4

1. T ⊆ N has a LUB/GLB in (N,≤) iff it is finite/non-empty
2. In (2N,⊆), every subset T ⊆ 2N has an LUB and GLB:⊔

T =
⋃

T and
l

T =
⋂

T

10 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory

Complete Lattices

Upper and Lower Bounds

Definition 5.3 ((Least) upper bounds and (greatest) lower bounds)

Let (D,v) be a partial order and T ⊆ D.
1. An element d ∈ D is called an upper bound of T if t v d for every t ∈ T (notation: T v d).

It is called least upper bound (LUB) (or supremum) of T if additionally d v d ′ for every
upper bound d ′ of T (notation: d =

⊔
T).

2. An element d ∈ D is called an lower bound of T if d v t for every t ∈ T (notation: d v T).
It is called greatest lower bound (GLB) (or infimum) of T if d ′ v d for every lower bound d ′

of T (notation: d =
d

T).

Example 5.4

1. T ⊆ N has a LUB/GLB in (N,≤) iff it is finite/non-empty

2. In (2N,⊆), every subset T ⊆ 2N has an LUB and GLB:⊔
T =

⋃
T and

l
T =

⋂
T

10 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory

Complete Lattices

Upper and Lower Bounds

Definition 5.3 ((Least) upper bounds and (greatest) lower bounds)

Let (D,v) be a partial order and T ⊆ D.
1. An element d ∈ D is called an upper bound of T if t v d for every t ∈ T (notation: T v d).

It is called least upper bound (LUB) (or supremum) of T if additionally d v d ′ for every
upper bound d ′ of T (notation: d =

⊔
T).

2. An element d ∈ D is called an lower bound of T if d v t for every t ∈ T (notation: d v T).
It is called greatest lower bound (GLB) (or infimum) of T if d ′ v d for every lower bound d ′

of T (notation: d =
d

T).

Example 5.4

1. T ⊆ N has a LUB/GLB in (N,≤) iff it is finite/non-empty
2. In (2N,⊆), every subset T ⊆ 2N has an LUB and GLB:⊔

T =
⋃

T and
l

T =
⋂

T

10 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory

Complete Lattices

Complete Lattices

Definition 5.5 (Complete lattice)

A complete lattice is a partial order (D,v) such that all subsets of D have LUBs and
GLBs. In this case,

⊥ :=
⊔
∅ (=

l
D) and > :=

l
∅ (=

⊔
D)

respectively denote the least and greatest element of D.

Example 5.6

1. (N,≤) is not a complete lattice as, e.g., N does not have a LUB
2. (N ∪ {∞},≤) with n ≤ ∞ for all n ∈ N is a complete lattice
3. (2N,⊆) is a complete lattice

11 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory

Complete Lattices

Complete Lattices

Definition 5.5 (Complete lattice)

A complete lattice is a partial order (D,v) such that all subsets of D have LUBs and
GLBs. In this case,

⊥ :=
⊔
∅ (=

l
D) and > :=

l
∅ (=

⊔
D)

respectively denote the least and greatest element of D.

Example 5.6

1. (N,≤) is not a complete lattice as, e.g., N does not have a LUB

2. (N ∪ {∞},≤) with n ≤ ∞ for all n ∈ N is a complete lattice
3. (2N,⊆) is a complete lattice

11 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory

Complete Lattices

Complete Lattices

Definition 5.5 (Complete lattice)

A complete lattice is a partial order (D,v) such that all subsets of D have LUBs and
GLBs. In this case,

⊥ :=
⊔
∅ (=

l
D) and > :=

l
∅ (=

⊔
D)

respectively denote the least and greatest element of D.

Example 5.6

1. (N,≤) is not a complete lattice as, e.g., N does not have a LUB
2. (N ∪ {∞},≤) with n ≤ ∞ for all n ∈ N is a complete lattice

3. (2N,⊆) is a complete lattice

11 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory

Complete Lattices

Complete Lattices

Definition 5.5 (Complete lattice)

A complete lattice is a partial order (D,v) such that all subsets of D have LUBs and
GLBs. In this case,

⊥ :=
⊔
∅ (=

l
D) and > :=

l
∅ (=

⊔
D)

respectively denote the least and greatest element of D.

Example 5.6

1. (N,≤) is not a complete lattice as, e.g., N does not have a LUB
2. (N ∪ {∞},≤) with n ≤ ∞ for all n ∈ N is a complete lattice
3. (2N,⊆) is a complete lattice

11 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory

Complete Lattices

Application to HML with Recursion

Lemma 5.7

Let (S,Act,−→) be an LTS. Then (2S,⊆) is a complete lattice with
•
⊔
T =

⋃
T =

⋃
T∈T T for all T ⊆ 2S

•
d
T =

⋂
T =

⋂
T∈T T for all T ⊆ 2S

• ⊥ =
⊔
∅ =

d
2S = ∅

• > =
d
∅ =

⊔
2S = S

Proof.

omitted

12 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory

Complete Lattices

Application to HML with Recursion

Lemma 5.7

Let (S,Act,−→) be an LTS. Then (2S,⊆) is a complete lattice with
•
⊔
T =

⋃
T =

⋃
T∈T T for all T ⊆ 2S

•
d
T =

⋂
T =

⋂
T∈T T for all T ⊆ 2S

• ⊥ =
⊔
∅ =

d
2S = ∅

• > =
d
∅ =

⊔
2S = S

Proof.

omitted

12 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory

Complete Lattices

Application to HML with Recursion

Lemma 5.7

Let (S,Act,−→) be an LTS. Then (2S,⊆) is a complete lattice with
•
⊔
T =

⋃
T =

⋃
T∈T T for all T ⊆ 2S

•
d
T =

⋂
T =

⋂
T∈T T for all T ⊆ 2S

• ⊥ =
⊔
∅ =

d
2S = ∅

• > =
d
∅ =

⊔
2S = S

Proof.

omitted

12 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory

The Fixed-Point Theorem

Outline of Lecture 5

Recap: Hennessy-Milner Logic with Recursion

Complete Lattices

The Fixed-Point Theorem

The Fixed-Point Theorem for Finite Lattices

13 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory

The Fixed-Point Theorem

Fixed Points

Definition 5.8 (Fixed point)

Let D be some domain, d ∈ D, and f : D → D. If

f (d) = d

then d is called a fixed point of f .

Example 5.9

1. The (only) fixed points of f1 : N→ N : n 7→ n2 are 0 and 1
2. A subset T ⊆ N is a fixed point of f2 : 2N → 2N : T 7→ T ∪ {1, 2} iff {1, 2} ⊆ T

14 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory

The Fixed-Point Theorem

Fixed Points

Definition 5.8 (Fixed point)

Let D be some domain, d ∈ D, and f : D → D. If

f (d) = d

then d is called a fixed point of f .

Example 5.9

1. The (only) fixed points of f1 : N→ N : n 7→ n2 are 0 and 1

2. A subset T ⊆ N is a fixed point of f2 : 2N → 2N : T 7→ T ∪ {1, 2} iff {1, 2} ⊆ T

14 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory

The Fixed-Point Theorem

Fixed Points

Definition 5.8 (Fixed point)

Let D be some domain, d ∈ D, and f : D → D. If

f (d) = d

then d is called a fixed point of f .

Example 5.9

1. The (only) fixed points of f1 : N→ N : n 7→ n2 are 0 and 1
2. A subset T ⊆ N is a fixed point of f2 : 2N → 2N : T 7→ T ∪ {1, 2} iff {1, 2} ⊆ T

14 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory

The Fixed-Point Theorem

Monotonicity of Functions

Definition 5.10 (Monotonicity)

Let (D,v) and (D′,v′) be partial orders. A function f : D → D′ is called monotonic
(w.r.t. (D,v) and (D′,v′)) if, for every d1, d2 ∈ D,

d1 v d2 =⇒ f (d1) v′ f (d2).

Example 5.11

1. f1 : N→ N : n 7→ n2 is monotonic w.r.t. (N,≤)

2. f2 : 2N → 2N : T 7→ T ∪ {1, 2} is monotonic w.r.t. (2N,⊆)

3. Let T := {T ⊆ N | T finite}. Then f3 : T → N : T 7→
∑

n∈T n is monotonic w.r.t. (2N,⊆)
and (N,≤).

4. f4 : 2N → 2N : T 7→ N \ T is not monotonic w.r.t. (2N,⊆)
(since, e.g., ∅ ⊆ N but f4(∅) = N 6⊆ f4(N) = ∅).

15 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory

The Fixed-Point Theorem

Monotonicity of Functions

Definition 5.10 (Monotonicity)

Let (D,v) and (D′,v′) be partial orders. A function f : D → D′ is called monotonic
(w.r.t. (D,v) and (D′,v′)) if, for every d1, d2 ∈ D,

d1 v d2 =⇒ f (d1) v′ f (d2).

Example 5.11

1. f1 : N→ N : n 7→ n2 is monotonic w.r.t. (N,≤)

2. f2 : 2N → 2N : T 7→ T ∪ {1, 2} is monotonic w.r.t. (2N,⊆)

3. Let T := {T ⊆ N | T finite}. Then f3 : T → N : T 7→
∑

n∈T n is monotonic w.r.t. (2N,⊆)
and (N,≤).

4. f4 : 2N → 2N : T 7→ N \ T is not monotonic w.r.t. (2N,⊆)
(since, e.g., ∅ ⊆ N but f4(∅) = N 6⊆ f4(N) = ∅).

15 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory

The Fixed-Point Theorem

Monotonicity of Functions

Definition 5.10 (Monotonicity)

Let (D,v) and (D′,v′) be partial orders. A function f : D → D′ is called monotonic
(w.r.t. (D,v) and (D′,v′)) if, for every d1, d2 ∈ D,

d1 v d2 =⇒ f (d1) v′ f (d2).

Example 5.11

1. f1 : N→ N : n 7→ n2 is monotonic w.r.t. (N,≤)

2. f2 : 2N → 2N : T 7→ T ∪ {1, 2} is monotonic w.r.t. (2N,⊆)

3. Let T := {T ⊆ N | T finite}. Then f3 : T → N : T 7→
∑

n∈T n is monotonic w.r.t. (2N,⊆)
and (N,≤).

4. f4 : 2N → 2N : T 7→ N \ T is not monotonic w.r.t. (2N,⊆)
(since, e.g., ∅ ⊆ N but f4(∅) = N 6⊆ f4(N) = ∅).

15 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory

The Fixed-Point Theorem

Monotonicity of Functions

Definition 5.10 (Monotonicity)

Let (D,v) and (D′,v′) be partial orders. A function f : D → D′ is called monotonic
(w.r.t. (D,v) and (D′,v′)) if, for every d1, d2 ∈ D,

d1 v d2 =⇒ f (d1) v′ f (d2).

Example 5.11

1. f1 : N→ N : n 7→ n2 is monotonic w.r.t. (N,≤)

2. f2 : 2N → 2N : T 7→ T ∪ {1, 2} is monotonic w.r.t. (2N,⊆)

3. Let T := {T ⊆ N | T finite}. Then f3 : T → N : T 7→
∑

n∈T n is monotonic w.r.t. (2N,⊆)
and (N,≤).

4. f4 : 2N → 2N : T 7→ N \ T is not monotonic w.r.t. (2N,⊆)
(since, e.g., ∅ ⊆ N but f4(∅) = N 6⊆ f4(N) = ∅).

15 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory

The Fixed-Point Theorem

Monotonicity of Functions

Definition 5.10 (Monotonicity)

Let (D,v) and (D′,v′) be partial orders. A function f : D → D′ is called monotonic
(w.r.t. (D,v) and (D′,v′)) if, for every d1, d2 ∈ D,

d1 v d2 =⇒ f (d1) v′ f (d2).

Example 5.11

1. f1 : N→ N : n 7→ n2 is monotonic w.r.t. (N,≤)

2. f2 : 2N → 2N : T 7→ T ∪ {1, 2} is monotonic w.r.t. (2N,⊆)

3. Let T := {T ⊆ N | T finite}. Then f3 : T → N : T 7→
∑

n∈T n is monotonic w.r.t. (2N,⊆)
and (N,≤).

4. f4 : 2N → 2N : T 7→ N \ T is not monotonic w.r.t. (2N,⊆)
(since, e.g., ∅ ⊆ N but f4(∅) = N 6⊆ f4(N) = ∅).

15 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory

The Fixed-Point Theorem

The Fixed-Point Theorem I

Alfred Tarski (1901–1983)

Theorem 5.12 (Tarski’s fixed-point theorem)

Let (D,v) be a complete lattice and f : D → D monotonic. Then f has a least fixed
point fix(f) and a greatest fixed point FIX(f) given by

fix(f) =
d
{d ∈ D | f (d) v d} (GLB of all pre-fixed points of f)

FIX(f) =
⊔
{d ∈ D | d v f (d)} (LUB of all post-fixed points of f)

Proof.

on the board

16 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory

The Fixed-Point Theorem

The Fixed-Point Theorem I

Alfred Tarski (1901–1983)

Theorem 5.12 (Tarski’s fixed-point theorem)

Let (D,v) be a complete lattice and f : D → D monotonic. Then f has a least fixed
point fix(f) and a greatest fixed point FIX(f) given by

fix(f) =
d
{d ∈ D | f (d) v d} (GLB of all pre-fixed points of f)

FIX(f) =
⊔
{d ∈ D | d v f (d)} (LUB of all post-fixed points of f)

Proof.

on the board

16 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory

The Fixed-Point Theorem

The Fixed-Point Theorem II

Example 5.13 (cf. Example 5.9)

• Let f : 2N → 2N : T 7→ T ∪ {1, 2}
• As seen before: f (T) = T iff {1, 2} ⊆ T

• Theorem 5.12 for fix:
fix(f) =

d
{d ∈ D | f (d) v d}

=
⋂
{T ⊆ N | f (T) ⊆ T}

=
⋂
{T ⊆ N | T ∪ {1, 2} ⊆ T}

=
⋂
{T ⊆ N | {1, 2} ⊆ T}

= {1, 2}
• Theorem 5.12 for FIX:

FIX(f) =
⊔
{d ∈ D | d v f (d)}

=
⋃
{T ⊆ N | T ⊆ f (T)}

=
⋃
{T ⊆ N | T ⊆ T ∪ {1, 2}}

=
⋃

2N

= N

17 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory

The Fixed-Point Theorem

The Fixed-Point Theorem II

Example 5.13 (cf. Example 5.9)

• Let f : 2N → 2N : T 7→ T ∪ {1, 2}
• As seen before: f (T) = T iff {1, 2} ⊆ T
• Theorem 5.12 for fix:

fix(f) =
d
{d ∈ D | f (d) v d}

=
⋂
{T ⊆ N | f (T) ⊆ T}

=
⋂
{T ⊆ N | T ∪ {1, 2} ⊆ T}

=
⋂
{T ⊆ N | {1, 2} ⊆ T}

= {1, 2}

• Theorem 5.12 for FIX:
FIX(f) =

⊔
{d ∈ D | d v f (d)}

=
⋃
{T ⊆ N | T ⊆ f (T)}

=
⋃
{T ⊆ N | T ⊆ T ∪ {1, 2}}

=
⋃

2N

= N

17 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory

The Fixed-Point Theorem

The Fixed-Point Theorem II

Example 5.13 (cf. Example 5.9)

• Let f : 2N → 2N : T 7→ T ∪ {1, 2}
• As seen before: f (T) = T iff {1, 2} ⊆ T
• Theorem 5.12 for fix:

fix(f) =
d
{d ∈ D | f (d) v d}

=
⋂
{T ⊆ N | f (T) ⊆ T}

=
⋂
{T ⊆ N | T ∪ {1, 2} ⊆ T}

=
⋂
{T ⊆ N | {1, 2} ⊆ T}

= {1, 2}
• Theorem 5.12 for FIX:

FIX(f) =
⊔
{d ∈ D | d v f (d)}

=
⋃
{T ⊆ N | T ⊆ f (T)}

=
⋃
{T ⊆ N | T ⊆ T ∪ {1, 2}}

=
⋃

2N

= N

17 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory

The Fixed-Point Theorem for Finite Lattices

Outline of Lecture 5

Recap: Hennessy-Milner Logic with Recursion

Complete Lattices

The Fixed-Point Theorem

The Fixed-Point Theorem for Finite Lattices

18 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory

The Fixed-Point Theorem for Finite Lattices

The Fixed-Point Theorem for Finite Lattices

Theorem 5.14 (Fixed-point theorem for finite lattices)

Let (D,v) be a finite complete lattice and f : D → D monotonic. Then

fix(f) = f m(⊥) and FIX(f) = f M(>)

for some m,M ∈ N where f 0(d) := d and f k+1(d) := f (f k(d)).

Proof.

on the board

Example 5.15

• Let f : 2{0,1} → 2{0,1} : T 7→ T ∪ {0}
• f 0(⊥) = ∅, f 1(⊥) = {0}, f 2(⊥) = {0} = f 1(⊥)

=⇒ fix(f) = {0} for m = 2
• f 0(>) = {0, 1}, f 1(>) = {0, 1} = f 0(>)

=⇒ FIX(f) = {0, 1} for M = 1

19 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory

The Fixed-Point Theorem for Finite Lattices

The Fixed-Point Theorem for Finite Lattices

Theorem 5.14 (Fixed-point theorem for finite lattices)

Let (D,v) be a finite complete lattice and f : D → D monotonic. Then

fix(f) = f m(⊥) and FIX(f) = f M(>)

for some m,M ∈ N where f 0(d) := d and f k+1(d) := f (f k(d)).

Proof.

on the board

Example 5.15

• Let f : 2{0,1} → 2{0,1} : T 7→ T ∪ {0}
• f 0(⊥) = ∅, f 1(⊥) = {0}, f 2(⊥) = {0} = f 1(⊥)

=⇒ fix(f) = {0} for m = 2
• f 0(>) = {0, 1}, f 1(>) = {0, 1} = f 0(>)

=⇒ FIX(f) = {0, 1} for M = 1

19 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory

The Fixed-Point Theorem for Finite Lattices

The Fixed-Point Theorem for Finite Lattices

Theorem 5.14 (Fixed-point theorem for finite lattices)

Let (D,v) be a finite complete lattice and f : D → D monotonic. Then

fix(f) = f m(⊥) and FIX(f) = f M(>)

for some m,M ∈ N where f 0(d) := d and f k+1(d) := f (f k(d)).

Proof.

on the board

Example 5.15

• Let f : 2{0,1} → 2{0,1} : T 7→ T ∪ {0}

• f 0(⊥) = ∅, f 1(⊥) = {0}, f 2(⊥) = {0} = f 1(⊥)
=⇒ fix(f) = {0} for m = 2

• f 0(>) = {0, 1}, f 1(>) = {0, 1} = f 0(>)
=⇒ FIX(f) = {0, 1} for M = 1

19 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory

The Fixed-Point Theorem for Finite Lattices

The Fixed-Point Theorem for Finite Lattices

Theorem 5.14 (Fixed-point theorem for finite lattices)

Let (D,v) be a finite complete lattice and f : D → D monotonic. Then

fix(f) = f m(⊥) and FIX(f) = f M(>)

for some m,M ∈ N where f 0(d) := d and f k+1(d) := f (f k(d)).

Proof.

on the board

Example 5.15

• Let f : 2{0,1} → 2{0,1} : T 7→ T ∪ {0}
• f 0(⊥) = ∅, f 1(⊥) = {0}, f 2(⊥) = {0} = f 1(⊥)

=⇒ fix(f) = {0} for m = 2

• f 0(>) = {0, 1}, f 1(>) = {0, 1} = f 0(>)
=⇒ FIX(f) = {0, 1} for M = 1

19 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory

The Fixed-Point Theorem for Finite Lattices

The Fixed-Point Theorem for Finite Lattices

Theorem 5.14 (Fixed-point theorem for finite lattices)

Let (D,v) be a finite complete lattice and f : D → D monotonic. Then

fix(f) = f m(⊥) and FIX(f) = f M(>)

for some m,M ∈ N where f 0(d) := d and f k+1(d) := f (f k(d)).

Proof.

on the board

Example 5.15

• Let f : 2{0,1} → 2{0,1} : T 7→ T ∪ {0}
• f 0(⊥) = ∅, f 1(⊥) = {0}, f 2(⊥) = {0} = f 1(⊥)

=⇒ fix(f) = {0} for m = 2
• f 0(>) = {0, 1}, f 1(>) = {0, 1} = f 0(>)

=⇒ FIX(f) = {0, 1} for M = 1

19 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory

The Fixed-Point Theorem for Finite Lattices

Application to HML with Recursion

Lemma 5.16

Let (S,Act,−→) be an LTS and F ∈ HMF X . Then
1. JFK : 2S → 2S is monotonic w.r.t. (2S,⊆)

2. fix(JFK) =
⋂
{T ⊆ S | JFK(T) ⊆ T}

3. FIX(JFK) =
⋃
{T ⊆ S | T ⊆ JFK(T)}

If, in addition, S is finite, then
4. fix(JFK) = JFKm(∅) for some m ∈ N
5. FIX(JFK) = JFKM(S) for some M ∈ N

Proof.

1. by induction on the structure of F (details omitted)
2. by Lemma 5.7 and Theorem 5.12
3. by Lemma 5.7 and Theorem 5.12
4. by Lemma 5.7 and Theorem 5.14
5. by Lemma 5.7 and Theorem 5.14

20 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory

The Fixed-Point Theorem for Finite Lattices

Application to HML with Recursion

Lemma 5.16

Let (S,Act,−→) be an LTS and F ∈ HMF X . Then
1. JFK : 2S → 2S is monotonic w.r.t. (2S,⊆)
2. fix(JFK) =

⋂
{T ⊆ S | JFK(T) ⊆ T}

3. FIX(JFK) =
⋃
{T ⊆ S | T ⊆ JFK(T)}

If, in addition, S is finite, then
4. fix(JFK) = JFKm(∅) for some m ∈ N
5. FIX(JFK) = JFKM(S) for some M ∈ N

Proof.

1. by induction on the structure of F (details omitted)
2. by Lemma 5.7 and Theorem 5.12
3. by Lemma 5.7 and Theorem 5.12
4. by Lemma 5.7 and Theorem 5.14
5. by Lemma 5.7 and Theorem 5.14

20 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory

The Fixed-Point Theorem for Finite Lattices

Application to HML with Recursion

Lemma 5.16

Let (S,Act,−→) be an LTS and F ∈ HMF X . Then
1. JFK : 2S → 2S is monotonic w.r.t. (2S,⊆)
2. fix(JFK) =

⋂
{T ⊆ S | JFK(T) ⊆ T}

3. FIX(JFK) =
⋃
{T ⊆ S | T ⊆ JFK(T)}

If, in addition, S is finite, then
4. fix(JFK) = JFKm(∅) for some m ∈ N
5. FIX(JFK) = JFKM(S) for some M ∈ N

Proof.

1. by induction on the structure of F (details omitted)
2. by Lemma 5.7 and Theorem 5.12
3. by Lemma 5.7 and Theorem 5.12
4. by Lemma 5.7 and Theorem 5.14
5. by Lemma 5.7 and Theorem 5.14

20 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory

The Fixed-Point Theorem for Finite Lattices

Application to HML with Recursion

Lemma 5.16

Let (S,Act,−→) be an LTS and F ∈ HMF X . Then
1. JFK : 2S → 2S is monotonic w.r.t. (2S,⊆)
2. fix(JFK) =

⋂
{T ⊆ S | JFK(T) ⊆ T}

3. FIX(JFK) =
⋃
{T ⊆ S | T ⊆ JFK(T)}

If, in addition, S is finite, then
4. fix(JFK) = JFKm(∅) for some m ∈ N
5. FIX(JFK) = JFKM(S) for some M ∈ N

Proof.

1. by induction on the structure of F (details omitted)
2. by Lemma 5.7 and Theorem 5.12
3. by Lemma 5.7 and Theorem 5.12
4. by Lemma 5.7 and Theorem 5.14
5. by Lemma 5.7 and Theorem 5.14

20 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory

	Recap: Hennessy-Milner Logic with Recursion
	Complete Lattices
	The Fixed-Point Theorem
	The Fixed-Point Theorem for Finite Lattices

