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Recap: Hennessy-Milner Logic with Recursion

Outline of Lecture 5

Recap: Hennessy-Milner Logic with Recursion

RWTH

30f20 Concurrency Theory
Winter Semester 2015/16 i
Software Modeling

Lecture 5: Fixed-Point Theory ‘ Il and Verification Chair




Recap: Hennessy-Milner Logic with Recursion

Introducing Recursion
Solution: employ recursion!

e Inv((a)tt) = (a)tt A [a] Inv({a)tt)

e Pos([alff) = [a]ff v (a) Pos([a]ff)
Interpretation: the sets of states X, Y C S satisfying the respective formula should
solve the corresponding equation, i.e.,

o X = (-a)(S)N[a](X)

o Y=[a]@)u(a)(Y)

Open questions

e Do such recursive equations (always) have solutions?
e If so, are they unique?
e How can we compute whether a process satisfies a recursive formula?
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Recap: Hennessy-Milner Logic with Recursion

Syntax of HML with One Recursive Variable

Initially: only one variable
Later: mutual recursion

Definition (Syntax of HML with one variable)

The set HMF x of Hennessy-Milner formulae with one variable X over a set of actions
Act is defined by the following syntax:

F.: =X (variable)
tt (true)
ff (false)
Fi N\ Fs (conjunction)
FiV Fs (disjunction)
(a)F (diamond)
o] F (box)

where o € Act.
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Recap: Hennessy-Milner Logic with Recursion

Semantics of HML with One Recursive Variable |

So far: [F] € Sfor F € HMF and LTS (S, Act, —)
Now: semantics of formula depends on states that (are assumed to) satisfy X

Definition (Semantics of HML with one variable)

Let (S, Act, —) be an LTS and F € HMF x. The semantics of F,

[F] : 25 — 2°,
is defined by
IXI(T) =T
[t](T):=S
[ff)(T) =0
[F1 A R(T) == [R](T) N [F](T)
[F1 v F|(T) = [A](T) U [F](T)
[(a) F](T) := (-a)([F](T))
[a]FI(T) := [-]([F](T))
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Recap: Hennessy-Milner Logic with Recursion

Semantics of HML with One Recursive Variable Il

e |dea underlying the definition of
[]: HMFx — (2° — 25) :
if T C S gives the set of states that satisfy X, then [F](T) will be the set of states that
satisfy F
e How to determine this 77

e According to previous discussion: as solution of recursive equation of the form X = Fy
where Fx € HMF x

e But: solution not unique; therefore write:
XZFx o XZFy

e In the following we will see:

1. Equation X = Fx always solvable
2. Least and greatest solutions are unique and can be obtained by fixed-point iteration
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Complete Lattices

Outline of Lecture 5

Complete Lattices
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Complete Lattices

Partial Orders
Definition 5.1 (Partial order)

A partial order (PO) (D, C) consists of a set D, called domain, and of a relation
[ € D x D such that, for every d;, d>, d5 € D,

reflexivity: dy T d,

transitivity: diy . dband db L d3 = d; L 05

antisymmetry: d-| E d2 and d2 E d1 — d1 = d2

It is called total if, in addition, always d; L. d> or db L d}.
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Complete Lattices

Partial Orders
Definition 5.1 (Partial order)

A partial order (PO) (D, C) consists of a set D, called domain, and of a relation
[ € D x D such that, for every d;, d>, dz € D,

reflexivity: dy T d,

transitivity: d L dhand db L d3 — di L d;

antisymmetry: d-| L d2 and d2 [ d1 — d1 = d2

It is called total if, in addition, always d; L. d> or db L d}.

Example 5.2

1. (N, <) is a total partial order
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Complete Lattices

Partial Orders
Definition 5.1 (Partial order)

A partial order (PO) (D, C) consists of a set D, called domain, and of a relation
[ € D x D such that, for every d;, d>, dz € D,

reflexivity: dy T d,

transitivity: di = dband db L d3 = d; L 05

antisymmetry: d1 L d2 and d2 [ d1 — d1 = d2

It is called total if, in addition, always d; L d» or db L d.

Example 5.2

1. (N, <) is a total partial order
2. (N, <) is not a partial order (since not reflexive)
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Complete Lattices

Partial Orders
Definition 5.1 (Partial order)

A partial order (PO) (D, C) consists of a set D, called domain, and of a relation
[ € D x D such that, for every d;, d>, dz € D,

reflexivity: dy T d,

transitivity: di = dband db L d3 = d; L 05

antisymmetry: d1 L d2 and d2 [ d1 — d1 = d2

It is called total if, in addition, always d; L d» or db L d.

Example 5.2

1. (N, <) is a total partial order
2. (N, <) is not a partial order (since not reflexive)
3. (2%, €) is a (non-total) partial order
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Complete Lattices

Partial Orders
Definition 5.1 (Partial order)

A partial order (PO) (D, C) consists of a set D, called domain, and of a relation
[ € D x D such that, for every d;, d>, dz € D,

reflexivity: dy T d,

transitivity: di = dband db L d3 = d; L 05

antisymmetry: d1 L d2 and d2 [ d1 — d1 = d2

It is called total if, in addition, always d; L d» or db L d.

Example 5.2

1. (N, <) is a total partial order

2. (N, <) is not a partial order (since not reflexive)

3. (2%, €) is a (non-total) partial order

4. (X*,C)is a (non-total) partial order, where ¥ is some alphabet and C denotes prefix
ordering(UC v < dw e X" : uw = v)
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Complete Lattices

Upper and Lower Bounds

Definition 5.3 ((Least) upper bounds and (greatest) lower bounds)

Let (D, C) be a partial order and T C D.

1. An element d € D is called an upper bound of T if t C d for every t € T (notation: T C d).
It is called least upper bound (LUB) (or supremum) of T if additionally d C d’ for every
upper bound d’ of T (notation: d = | | T).
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Complete Lattices

Upper and Lower Bounds

Definition 5.3 ((Least) upper bounds and (greatest) lower bounds)

Let (D, C) be a partial order and T C D.

1. An element d € D is called an upper bound of T if t C d for every t € T (notation: T C d).
It is called least upper bound (LUB) (or supremum) of T if additionally d C d’ for every
upper bound d’ of T (notation: d = | | T).

2. An element d € D is called an lower bound of T if d C ¢ for every t € T (notation: d C T).
It is called greatest lower bound (GLB) (or infimum) of T if @' C d for every lower bound @’
of T (notation: d =[] 7).
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Complete Lattices

Upper and Lower Bounds

Definition 5.3 ((Least) upper bounds and (greatest) lower bounds)

Let (D, C) be a partial order and T C D.

1. An element d € D is called an upper bound of T if t C d for every t € T (notation: T C d).
It is called least upper bound (LUB) (or supremum) of T if additionally d C d’ for every
upper bound d’ of T (notation: d = | | T).

2. An element d € D is called an lower bound of T if d C ¢ for every t € T (notation: d C T).
It is called greatest lower bound (GLB) (or infimum) of T if @' C d for every lower bound @’
of T (notation: d =[] 7).

Example 5.4

1. T € N has a LUB/GLB in (N, <) iff it is finite/non-empty
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Complete Lattices

Upper and Lower Bounds

Definition 5.3 ((Least) upper bounds and (greatest) lower bounds)

Let (D, C) be a partial order and T C D.

1. An element d € D is called an upper bound of T if t C d for every t € T (notation: T C d).
It is called least upper bound (LUB) (or supremum) of T if additionally d C d’ for every
upper bound d’ of T (notation: d = | | T).

2. An element d € D is called an lower bound of T if d C ¢ for every t € T (notation: d C T).
It is called greatest lower bound (GLB) (or infimum) of T if @' C d for every lower bound @’
of T (notation: d =[] 7).

Example 5.4

1. T € N has a LUB/GLB in (N, <) iff it is finite/non-empty
2. In (2V, C), every subset T C 2" has an LUB and GLB:

|_|T:UT and |_|T:ﬂT
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Complete Lattices

Complete Lattices

Definition 5.5 (Complete lattice)

A complete lattice is a partial order (D, C) such that all subsets of D have LUBs and
GLBs. In this case,

J_::|_|@(:|_|D) and T:zl_l@(:LID)

respectively denote the least and greatest element of D.
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Complete Lattices

Complete Lattices

Definition 5.5 (Complete lattice)

A complete lattice is a partial order (D, C) such that all subsets of D have LUBs and
GLBs. In this case,

J_::|_|@(:|_|D) and T::H@(:UD)

respectively denote the least and greatest element of D.

Example 5.6

1. (N, <) is not a complete lattice as, e.g., N does not have a LUB
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Complete Lattices

Complete Lattices

Definition 5.5 (Complete lattice)

A complete lattice is a partial order (D, C) such that all subsets of D have LUBs and
GLBs. In this case,

J_::|_|@(:|_|D) and T::H@(:UD)

respectively denote the least and greatest element of D.

Example 5.6

1. (N, <) is not a complete lattice as, e.g., N does not have a LUB
2. (NU {0}, <) with n < oo for all n € N is a complete lattice

RWTH

11 of 20 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 5: Fixed-Point Theory Il and Verification Chair




Complete Lattices

Complete Lattices

Definition 5.5 (Complete lattice)

A complete lattice is a partial order (D, C) such that all subsets of D have LUBs and
GLBs. In this case,

J_::|_|@(:|_|D) and T::H@(:UD)

respectively denote the least and greatest element of D.

Example 5.6

1. (N, <) is not a complete lattice as, e.g., N does not have a LUB
2. (NU {0}, <) with n < oo for all n € N is a complete lattice
3. (2%, ©) is a complete lattice
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Complete Lattices

Application to HML with Recursion

Lemma 5.7

Let (S, Act,—) be an LTS. Then (2°, C) is a complete lattice with
o | | T=UT =Uses T forall T C2°
e[ NT=NT=ger T forall T C 2°
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Complete Lattices

Application to HML with Recursion

Lemma 5.7

Let (S, Act,—) be an LTS. Then (2°, C) is a complete lattice with
o | | T=UT =Uses T forall T C2°

e[ NT=NT=ger T forall T C 2°

OL:|_|(Z):|_|ZS:Q)

QT:H@:UZS:S
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Complete Lattices

Application to HML with Recursion

Lemma 5.7

Let (S, Act,—) be an LTS. Then (2°, C) is a complete lattice with
o | | T=UT =Uses T forall T C2°

e[ NT=NT=ger T forall T C 2°

OL:|_|(Z):|_|ZS:Q)

QT:H@:UZS:S

Proof.

omitted
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The Fixed-Point Theorem

Outline of Lecture 5

The Fixed-Point Theorem
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The Fixed-Point Theorem

Fixed Points
Definition 5.8 (Fixed point)
Let D be some domain, d € D,and f: D — D. If

f(d) = d

then d is called a fixed point of 7.
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The Fixed-Point Theorem

Fixed Points
Definition 5.8 (Fixed point)
Let D be some domain, d € D,and f: D — D. If

f(d) = d
then d is called a fixed point of 7.

Example 5.9

1. The (only) fixed points of f; : N — N : n — n* are 0 and 1
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The Fixed-Point Theorem

Fixed Points
Definition 5.8 (Fixed point)
Let D be some domain, d € D,and f: D — D. If

f(d) = d
then d is called a fixed point of 7.

Example 5.9

1. The (only) fixed points of f; : N — N : n+ n® are 0 and 1
2. Asubset T C Nis afixed pointof f, : 2% — 2% T TuU{1,2}iff {1,2} C T
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The Fixed-Point Theorem

Monotonicity of Functions

Definition 5.10 (Monotonicity)

Let (D, C) and (D', ') be partial orders. A function f : D — D' is called monotonic
(w.r.t. (D,C) and (D', ")) if, for every d, d> € D,

d L dbh — f(d1) E, f(dg)
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The Fixed-Point Theorem

Monotonicity of Functions

Definition 5.10 (Monotonicity)

Let (D, C) and (D', ') be partial orders. A function f : D — D' is called monotonic
(w.r.t. (D,C) and (D', ")) if, for every d, d> € D,

d L dbh — f(d1) E, f(dg)

Example 5.11

1. fi : N = N : n— n? is monotonic w.r.t. (N, <)
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The Fixed-Point Theorem

Monotonicity of Functions

Definition 5.10 (Monotonicity)

Let (D, C) and (D', ') be partial orders. A function f : D — D' is called monotonic
(w.r.t. (D,C) and (D', ")) if, for every d, d> € D,

d L dbh — f(d1) E, f(dg)

Example 5.11

1. fi : N = N : n— n? is monotonic w.r.t. (N, <)
2. fp: 2% 2N T TU{1,2} is monotonic w.r.t. (2, C)
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The Fixed-Point Theorem

Monotonicity of Functions

Definition 5.10 (Monotonicity)
Let (D, C) and (D', ') be partial orders. A function f : D — D' is called monotonic
(w.r.t. (D,C) and (D', ")) if, for every d, d> € D,

d L dbh — f(d1) E, f(dg)

Example 5.11

1. fi : N = N : n— n? is monotonic w.r.t. (N, <)
2. fp: 2% 2N T TU{1,2} is monotonic w.r.t. (2, C)

3.Let 7 :={T CN| Tfinite}. Thenf3: T — N: T — > __.nis monotonic w.r.t. (2, C)
and (N, <).
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The Fixed-Point Theorem

Monotonicity of Functions

Definition 5.10 (Monotonicity)

Let (D, C) and (D', ') be partial orders. A function f : D — D' is called monotonic
(w.r.t. (D,C) and (D', ")) if, for every d, d> € D,

d L dbh — f(d1) E, f(dg)

Example 5.11

1. f; : N — N : n+ n? is monotonic w.r.t. (N, <)

2. fp: 2% 2N T TU{1,2} is monotonic w.r.t. (2, C)

3.Let 7 :={T CN| Tfinite}. Thenf3: T — N: T — > __.nis monotonic w.r.t. (2, C)
and (N, <).

4. fy - 2N — 2N T N\ T is not monotonic w.r.t. (2, C)
(since, e.g., D € N but f,(0)) = N € £,(N) = ).
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The Fixed-Point Theorem

The Fixed-Point Theorem |

Alfred Tarski (1901-1983)
Theorem 5.12 (Tarski’s fixed-point theorem)

Let (D, C) be a complete lattice and f : D — D monotonic. Then f has a least fixed
pointfix(f) and a greatest fixed point FIX(f) given by

fix(f)=[1]{d € D| f(d) E d}  (GLB of all pre-fixed points of f)
FIX(f)=| {d € D|dC f(d)}  (LUB of all post-fixed points of f)
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The Fixed-Point Theorem

The Fixed-Point Theorem |

Alfred Tarski (1901-1983)
Theorem 5.12 (Tarski’s fixed-point theorem)

Let (D, C) be a complete lattice and f : D — D monotonic. Then f has a least fixed
pointfix(f) and a greatest fixed point FIX(f) given by

fix(f)=[1]{d € D| f(d) E d}  (GLB of all pre-fixed points of f)
FIX(f)=| {d € D|dC f(d)}  (LUB of all post-fixed points of f)

Proof.
on the board []
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The Fixed-Point Theorem

The Fixed-Point Theorem I

Example 5.13 (cf. Example 5.9)

eletf: 2N 2N . T TU{1,2}
e As seen before: f(T) = Tiff {1,2} C T
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The Fixed-Point Theorem

The Fixed-Point Theorem I

Example 5.13 (cf. Example 5.9)

eletf: 2N 2N . T TU{1,2}
e As seen before: f(T) = Tiff {1,2} C T
e Theorem 5.12 for fix:
fix(f)=[1{d € D | f(d) C d}
=(NTCNI[HT)C T}
=(H{TCN|Tu{1,2} C T}
=(HTCN[{1,2} C T}

— { 1, 2}
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The Fixed-Point Theorem

The Fixed-Point Theorem I

Example 5.13 (cf. Example 5.9)

eletf: 2N 2N . T TU{1,2}
e As seen before: f(T) = Tiff {1,2} C T
e Theorem 5.12 for fix:
fix(f)=[|{d € D | f(d) C d}
=({TCN[AT)C T}
=({TCN|TU{1,2} C T}
={TCN[{1,2} C T}
:{172}
e Theorem 5.12 for FIX:
FIX(f)=| {de D|dCf(d)}
= {TCN|TCAT)}
= {TCN|TCTu{1,2}}
:UQN
=N
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The Fixed-Point Theorem for Finite Lattices

Outline of Lecture 5

The Fixed-Point Theorem for Finite Lattices
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The Fixed-Point Theorem for Finite Lattices

The Fixed-Point Theorem for Finite Lattices
Theorem 5.14 (Fixed-point theorem for finite lattices)

Let (D, C) be a finite complete lattice and f : D — D monotonic. Then
fix(f) = f"(L) and FIX(f) = ()
for some m, M € N where f°(d) :=d and *'(d) := f(f*(d)).
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The Fixed-Point Theorem for Finite Lattices

The Fixed-Point Theorem for Finite Lattices
Theorem 5.14 (Fixed-point theorem for finite lattices)

Let (D, C) be a finite complete lattice and f : D — D monotonic. Then
fix(f) = f"(L) and FIX(f) = ()

for some m, M € N where f°(d) :=d and *'(d) := f(f*(d)).

Proof.

on the board
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The Fixed-Point Theorem for Finite Lattices

The Fixed-Point Theorem for Finite Lattices
Theorem 5.14 (Fixed-point theorem for finite lattices)

Let (D, C) be a finite complete lattice and f : D — D monotonic. Then
fix(f) = f"(L) and FIX(f) = ()

for some m, M € N where f°(d) :=d and *'(d) := f(f*(d)).

Proof.

on the board

Example 5.15

o Letf: 2101 5 2001 T TU {0}
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The Fixed-Point Theorem for Finite Lattices

The Fixed-Point Theorem for Finite Lattices
Theorem 5.14 (Fixed-point theorem for finite lattices)

Let (D, C) be a finite complete lattice and f : D — D monotonic. Then
fix(f) = f"(L) and FIX(f) = ()

for some m, M € N where f°(d) :=d and *'(d) := f(f*(d)).

Proof.

on the board

Example 5.15

o Letf: 201 2001 T TU {0}
o (L) =0, fI(L) = {0}, fA(L) = {0} = (L)
—> fix(f) = {0} form =2
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The Fixed-Point Theorem for Finite Lattices

The Fixed-Point Theorem for Finite Lattices
Theorem 5.14 (Fixed-point theorem for finite lattices)

Let (D, C) be a finite complete lattice and f : D — D monotonic. Then
fix(f) = f"(L) and FIX(f) = ()
for some m, M € N where f°(d) :=d and *'(d) := f(f*(d)).

Proof.
on the board

Example 5.15

o Letf: 2101 5 2001 T TU {0}

o (L) =0, fI(L) = {0}, fA(L) = {0} = (L)
—> fix(f) = {0} form =2

o fO(T)={0,1}, f/(T)=1{0,1} = fO(T)
— FIX(f) = {0,1} for M = 1
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The Fixed-Point Theorem for Finite Lattices

Application to HML with Recursion

Lemma 5.16

Let (S, Act,—) be an LTS and F € HMFx. Then
1. [F] : 2° — 2% is monotonic w.r.t. (2°, C)
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The Fixed-Point Theorem for Finite Lattices

Application to HML with Recursion

Lemma 5.16

Let (S, Act,—) be an LTS and F € HMF x. Then
1. [F] : 2° — 2% is monotonic w.r.t. (25, C)

2. fix([F]) = ({T € S|[FI(T) € T}

3. FIX([FI) = AT c S| T < [FI(T)}
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The Fixed-Point Theorem for Finite Lattices

Application to HML with Recursion

Lemma 5.16

Let (S, Act,—) be an LTS and F € HMF x. Then
1. [F] : 2° — 2% is monotonic w.r.t. (25, C)

2. fix([F)) = (T S S|[F](T)C T}

3. FIX([F]) =U{TCS|TCJF|(T)}

If, in addition, S is finite, then

4. fix([F]) = [F]™(D) for some m € N

5. FIX([F]) = [F]M(S) for some M € N
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The Fixed-Point Theorem for Finite Lattices

Application to HML with Recursion

Lemma 5.16

Let (S, Act,—) be an LTS and F € HMF x. Then
1. [F] : 25 — 2% is monotonic w.r.t. (2°, C)

2. fix([F)) = (T S S|[F](T)C T}

3. FIX([F]) =U{TCS|TCJF|(T)}

If, in addition, S is finite, then

4. fix([F]) = [F]™(D) for some m € N

5. FIX([F]) = [F]M(S) for some M € N

Proof.

1. by induction on the structure of F (details omitted)
2. by Lemma 5.7 and Theorem 5.12
3. by Lemma 5.7 and Theorem 5.12
4. by Lemma 5.7 and Theorem 5.14
5. by Lemma 5.7 and Theorem 5.14
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