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Recap: Hennessy-Milner Logic with Recursion

Introducing Recursion

Solution: employ recursion!

• Inv(〈a〉tt) ≡ 〈a〉tt ∧ [a] Inv(〈a〉tt)
• Pos([a]ff) ≡ [a]ff ∨ 〈a〉Pos([a]ff)

Interpretation: the sets of states X ,Y ⊆ S satisfying the respective formula should
solve the corresponding equation, i.e.,
• X = 〈·a·〉(S) ∩ [·a·](X )

• Y = [·a·](∅) ∪ 〈·a·〉(Y )

Open questions

• Do such recursive equations (always) have solutions?
• If so, are they unique?
• How can we compute whether a process satisfies a recursive formula?
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Recap: Hennessy-Milner Logic with Recursion

Syntax of HML with One Recursive Variable

Initially: only one variable
Later: mutual recursion

Definition (Syntax of HML with one variable)

The set HMF X of Hennessy-Milner formulae with one variable X over a set of actions
Act is defined by the following syntax:

F ::= X (variable)
| tt (true)
| ff (false)
| F1 ∧ F2 (conjunction)
| F1 ∨ F2 (disjunction)
| 〈α〉F (diamond)
| [α]F (box)

where α ∈ Act .
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Recap: Hennessy-Milner Logic with Recursion

Semantics of HML with One Recursive Variable I

So far: JFK ⊆ S for F ∈ HMF and LTS (S,Act,−→)
Now: semantics of formula depends on states that (are assumed to) satisfy X

Definition (Semantics of HML with one variable)

Let (S,Act,−→) be an LTS and F ∈ HMF X . The semantics of F ,

JFK : 2S → 2S,

is defined by
JXK(T ) := T
JttK(T ) := S
JffK(T ) := ∅

JF1 ∧ F2K(T ) := JF1K(T ) ∩ JF2K(T )
JF1 ∨ F2K(T ) := JF1K(T ) ∪ JF2K(T )

J〈α〉FK(T ) := 〈·α·〉(JFK(T ))
J[α]FK(T ) := [·α·](JFK(T ))
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Recap: Hennessy-Milner Logic with Recursion

Semantics of HML with One Recursive Variable II

• Idea underlying the definition of

J.K : HMF X → (2S → 2S) :

if T ⊆ S gives the set of states that satisfy X , then JFK(T ) will be the set of states that
satisfy F
• How to determine this T?
• According to previous discussion: as solution of recursive equation of the form X = FX

where FX ∈ HMF X

• But: solution not unique; therefore write:

X min
= FX or X max

= FX

• In the following we will see:
1. Equation X = FX always solvable
2. Least and greatest solutions are unique and can be obtained by fixed-point iteration
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Complete Lattices

Outline of Lecture 5
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Complete Lattices

Partial Orders

Definition 5.1 (Partial order)

A partial order (PO) (D,v) consists of a set D, called domain, and of a relation
v ⊆ D × D such that, for every d1, d2, d3 ∈ D,
reflexivity: d1 v d1

transitivity: d1 v d2 and d2 v d3 =⇒ d1 v d3

antisymmetry: d1 v d2 and d2 v d1 =⇒ d1 = d2

It is called total if, in addition, always d1 v d2 or d2 v d1.

Example 5.2

1. (N,≤) is a total partial order
2. (N, <) is not a partial order (since not reflexive)
3. (2N,⊆) is a (non-total) partial order
4. (Σ∗,v) is a (non-total) partial order, where Σ is some alphabet and v denotes prefix

ordering (u v v ⇐⇒ ∃w ∈ Σ∗ : uw = v )
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Complete Lattices

Upper and Lower Bounds

Definition 5.3 ((Least) upper bounds and (greatest) lower bounds)

Let (D,v) be a partial order and T ⊆ D.
1. An element d ∈ D is called an upper bound of T if t v d for every t ∈ T (notation: T v d).

It is called least upper bound (LUB) (or supremum) of T if additionally d v d ′ for every
upper bound d ′ of T (notation: d =

⊔
T ).

2. An element d ∈ D is called an lower bound of T if d v t for every t ∈ T (notation: d v T ).
It is called greatest lower bound (GLB) (or infimum) of T if d ′ v d for every lower bound d ′

of T (notation: d =
d

T ).

Example 5.4

1. T ⊆ N has a LUB/GLB in (N,≤) iff it is finite/non-empty
2. In (2N,⊆), every subset T ⊆ 2N has an LUB and GLB:⊔

T =
⋃

T and
l

T =
⋂

T

10 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory



Complete Lattices

Upper and Lower Bounds

Definition 5.3 ((Least) upper bounds and (greatest) lower bounds)

Let (D,v) be a partial order and T ⊆ D.
1. An element d ∈ D is called an upper bound of T if t v d for every t ∈ T (notation: T v d).

It is called least upper bound (LUB) (or supremum) of T if additionally d v d ′ for every
upper bound d ′ of T (notation: d =

⊔
T ).

2. An element d ∈ D is called an lower bound of T if d v t for every t ∈ T (notation: d v T ).
It is called greatest lower bound (GLB) (or infimum) of T if d ′ v d for every lower bound d ′

of T (notation: d =
d

T ).

Example 5.4

1. T ⊆ N has a LUB/GLB in (N,≤) iff it is finite/non-empty
2. In (2N,⊆), every subset T ⊆ 2N has an LUB and GLB:⊔

T =
⋃

T and
l

T =
⋂

T

10 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory



Complete Lattices

Upper and Lower Bounds

Definition 5.3 ((Least) upper bounds and (greatest) lower bounds)

Let (D,v) be a partial order and T ⊆ D.
1. An element d ∈ D is called an upper bound of T if t v d for every t ∈ T (notation: T v d).

It is called least upper bound (LUB) (or supremum) of T if additionally d v d ′ for every
upper bound d ′ of T (notation: d =

⊔
T ).

2. An element d ∈ D is called an lower bound of T if d v t for every t ∈ T (notation: d v T ).
It is called greatest lower bound (GLB) (or infimum) of T if d ′ v d for every lower bound d ′

of T (notation: d =
d

T ).

Example 5.4

1. T ⊆ N has a LUB/GLB in (N,≤) iff it is finite/non-empty

2. In (2N,⊆), every subset T ⊆ 2N has an LUB and GLB:⊔
T =

⋃
T and

l
T =

⋂
T

10 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory



Complete Lattices

Upper and Lower Bounds

Definition 5.3 ((Least) upper bounds and (greatest) lower bounds)

Let (D,v) be a partial order and T ⊆ D.
1. An element d ∈ D is called an upper bound of T if t v d for every t ∈ T (notation: T v d).

It is called least upper bound (LUB) (or supremum) of T if additionally d v d ′ for every
upper bound d ′ of T (notation: d =

⊔
T ).

2. An element d ∈ D is called an lower bound of T if d v t for every t ∈ T (notation: d v T ).
It is called greatest lower bound (GLB) (or infimum) of T if d ′ v d for every lower bound d ′

of T (notation: d =
d

T ).

Example 5.4

1. T ⊆ N has a LUB/GLB in (N,≤) iff it is finite/non-empty
2. In (2N,⊆), every subset T ⊆ 2N has an LUB and GLB:⊔

T =
⋃

T and
l

T =
⋂

T

10 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory



Complete Lattices

Complete Lattices

Definition 5.5 (Complete lattice)

A complete lattice is a partial order (D,v) such that all subsets of D have LUBs and
GLBs. In this case,

⊥ :=
⊔
∅ (=

l
D) and > :=

l
∅ (=

⊔
D)

respectively denote the least and greatest element of D.

Example 5.6

1. (N,≤) is not a complete lattice as, e.g., N does not have a LUB
2. (N ∪ {∞},≤) with n ≤ ∞ for all n ∈ N is a complete lattice
3. (2N,⊆) is a complete lattice

11 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory



Complete Lattices

Complete Lattices

Definition 5.5 (Complete lattice)

A complete lattice is a partial order (D,v) such that all subsets of D have LUBs and
GLBs. In this case,

⊥ :=
⊔
∅ (=

l
D) and > :=

l
∅ (=

⊔
D)

respectively denote the least and greatest element of D.

Example 5.6

1. (N,≤) is not a complete lattice as, e.g., N does not have a LUB

2. (N ∪ {∞},≤) with n ≤ ∞ for all n ∈ N is a complete lattice
3. (2N,⊆) is a complete lattice

11 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory



Complete Lattices

Complete Lattices

Definition 5.5 (Complete lattice)

A complete lattice is a partial order (D,v) such that all subsets of D have LUBs and
GLBs. In this case,

⊥ :=
⊔
∅ (=

l
D) and > :=

l
∅ (=

⊔
D)

respectively denote the least and greatest element of D.

Example 5.6

1. (N,≤) is not a complete lattice as, e.g., N does not have a LUB
2. (N ∪ {∞},≤) with n ≤ ∞ for all n ∈ N is a complete lattice

3. (2N,⊆) is a complete lattice

11 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory



Complete Lattices

Complete Lattices

Definition 5.5 (Complete lattice)

A complete lattice is a partial order (D,v) such that all subsets of D have LUBs and
GLBs. In this case,

⊥ :=
⊔
∅ (=

l
D) and > :=

l
∅ (=

⊔
D)

respectively denote the least and greatest element of D.

Example 5.6

1. (N,≤) is not a complete lattice as, e.g., N does not have a LUB
2. (N ∪ {∞},≤) with n ≤ ∞ for all n ∈ N is a complete lattice
3. (2N,⊆) is a complete lattice

11 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory



Complete Lattices

Application to HML with Recursion

Lemma 5.7

Let (S,Act,−→) be an LTS. Then (2S,⊆) is a complete lattice with
•
⊔
T =

⋃
T =

⋃
T∈T T for all T ⊆ 2S

•
d
T =

⋂
T =

⋂
T∈T T for all T ⊆ 2S

• ⊥ =
⊔
∅ =

d
2S = ∅

• > =
d
∅ =

⊔
2S = S

Proof.

omitted
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The Fixed-Point Theorem

Outline of Lecture 5

Recap: Hennessy-Milner Logic with Recursion

Complete Lattices

The Fixed-Point Theorem

The Fixed-Point Theorem for Finite Lattices

13 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory



The Fixed-Point Theorem

Fixed Points

Definition 5.8 (Fixed point)

Let D be some domain, d ∈ D, and f : D → D. If

f (d) = d

then d is called a fixed point of f .

Example 5.9

1. The (only) fixed points of f1 : N→ N : n 7→ n2 are 0 and 1
2. A subset T ⊆ N is a fixed point of f2 : 2N → 2N : T 7→ T ∪ {1, 2} iff {1, 2} ⊆ T
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The Fixed-Point Theorem

Monotonicity of Functions

Definition 5.10 (Monotonicity)

Let (D,v) and (D′,v′) be partial orders. A function f : D → D′ is called monotonic
(w.r.t. (D,v) and (D′,v′)) if, for every d1, d2 ∈ D,

d1 v d2 =⇒ f (d1) v′ f (d2).

Example 5.11

1. f1 : N→ N : n 7→ n2 is monotonic w.r.t. (N,≤)

2. f2 : 2N → 2N : T 7→ T ∪ {1, 2} is monotonic w.r.t. (2N,⊆)

3. Let T := {T ⊆ N | T finite}. Then f3 : T → N : T 7→
∑

n∈T n is monotonic w.r.t. (2N,⊆)
and (N,≤).

4. f4 : 2N → 2N : T 7→ N \ T is not monotonic w.r.t. (2N,⊆)
(since, e.g., ∅ ⊆ N but f4(∅) = N 6⊆ f4(N) = ∅).
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The Fixed-Point Theorem

The Fixed-Point Theorem I

Alfred Tarski (1901–1983)

Theorem 5.12 (Tarski’s fixed-point theorem)

Let (D,v) be a complete lattice and f : D → D monotonic. Then f has a least fixed
point fix(f ) and a greatest fixed point FIX(f ) given by

fix(f ) =
d
{d ∈ D | f (d) v d} (GLB of all pre-fixed points of f )

FIX(f ) =
⊔
{d ∈ D | d v f (d)} (LUB of all post-fixed points of f )

Proof.

on the board
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The Fixed-Point Theorem

The Fixed-Point Theorem II

Example 5.13 (cf. Example 5.9)

• Let f : 2N → 2N : T 7→ T ∪ {1, 2}
• As seen before: f (T ) = T iff {1, 2} ⊆ T

• Theorem 5.12 for fix:
fix(f ) =

d
{d ∈ D | f (d) v d}

=
⋂
{T ⊆ N | f (T ) ⊆ T}

=
⋂
{T ⊆ N | T ∪ {1, 2} ⊆ T}

=
⋂
{T ⊆ N | {1, 2} ⊆ T}

= {1, 2}
• Theorem 5.12 for FIX:

FIX(f ) =
⊔
{d ∈ D | d v f (d)}

=
⋃
{T ⊆ N | T ⊆ f (T )}

=
⋃
{T ⊆ N | T ⊆ T ∪ {1, 2}}

=
⋃

2N

= N
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The Fixed-Point Theorem for Finite Lattices

Outline of Lecture 5

Recap: Hennessy-Milner Logic with Recursion

Complete Lattices

The Fixed-Point Theorem

The Fixed-Point Theorem for Finite Lattices
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The Fixed-Point Theorem for Finite Lattices

The Fixed-Point Theorem for Finite Lattices

Theorem 5.14 (Fixed-point theorem for finite lattices)

Let (D,v) be a finite complete lattice and f : D → D monotonic. Then

fix(f ) = f m(⊥) and FIX(f ) = f M(>)

for some m,M ∈ N where f 0(d) := d and f k+1(d) := f (f k(d)).

Proof.

on the board

Example 5.15

• Let f : 2{0,1} → 2{0,1} : T 7→ T ∪ {0}
• f 0(⊥) = ∅, f 1(⊥) = {0}, f 2(⊥) = {0} = f 1(⊥)

=⇒ fix(f ) = {0} for m = 2
• f 0(>) = {0, 1}, f 1(>) = {0, 1} = f 0(>)

=⇒ FIX(f ) = {0, 1} for M = 1

19 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory



The Fixed-Point Theorem for Finite Lattices

The Fixed-Point Theorem for Finite Lattices

Theorem 5.14 (Fixed-point theorem for finite lattices)

Let (D,v) be a finite complete lattice and f : D → D monotonic. Then

fix(f ) = f m(⊥) and FIX(f ) = f M(>)

for some m,M ∈ N where f 0(d) := d and f k+1(d) := f (f k(d)).

Proof.

on the board

Example 5.15

• Let f : 2{0,1} → 2{0,1} : T 7→ T ∪ {0}
• f 0(⊥) = ∅, f 1(⊥) = {0}, f 2(⊥) = {0} = f 1(⊥)

=⇒ fix(f ) = {0} for m = 2
• f 0(>) = {0, 1}, f 1(>) = {0, 1} = f 0(>)

=⇒ FIX(f ) = {0, 1} for M = 1

19 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory



The Fixed-Point Theorem for Finite Lattices

The Fixed-Point Theorem for Finite Lattices

Theorem 5.14 (Fixed-point theorem for finite lattices)

Let (D,v) be a finite complete lattice and f : D → D monotonic. Then

fix(f ) = f m(⊥) and FIX(f ) = f M(>)

for some m,M ∈ N where f 0(d) := d and f k+1(d) := f (f k(d)).

Proof.

on the board

Example 5.15

• Let f : 2{0,1} → 2{0,1} : T 7→ T ∪ {0}

• f 0(⊥) = ∅, f 1(⊥) = {0}, f 2(⊥) = {0} = f 1(⊥)
=⇒ fix(f ) = {0} for m = 2

• f 0(>) = {0, 1}, f 1(>) = {0, 1} = f 0(>)
=⇒ FIX(f ) = {0, 1} for M = 1

19 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory



The Fixed-Point Theorem for Finite Lattices

The Fixed-Point Theorem for Finite Lattices

Theorem 5.14 (Fixed-point theorem for finite lattices)

Let (D,v) be a finite complete lattice and f : D → D monotonic. Then

fix(f ) = f m(⊥) and FIX(f ) = f M(>)

for some m,M ∈ N where f 0(d) := d and f k+1(d) := f (f k(d)).

Proof.

on the board

Example 5.15

• Let f : 2{0,1} → 2{0,1} : T 7→ T ∪ {0}
• f 0(⊥) = ∅, f 1(⊥) = {0}, f 2(⊥) = {0} = f 1(⊥)

=⇒ fix(f ) = {0} for m = 2

• f 0(>) = {0, 1}, f 1(>) = {0, 1} = f 0(>)
=⇒ FIX(f ) = {0, 1} for M = 1

19 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory



The Fixed-Point Theorem for Finite Lattices

The Fixed-Point Theorem for Finite Lattices

Theorem 5.14 (Fixed-point theorem for finite lattices)

Let (D,v) be a finite complete lattice and f : D → D monotonic. Then

fix(f ) = f m(⊥) and FIX(f ) = f M(>)

for some m,M ∈ N where f 0(d) := d and f k+1(d) := f (f k(d)).

Proof.

on the board

Example 5.15

• Let f : 2{0,1} → 2{0,1} : T 7→ T ∪ {0}
• f 0(⊥) = ∅, f 1(⊥) = {0}, f 2(⊥) = {0} = f 1(⊥)

=⇒ fix(f ) = {0} for m = 2
• f 0(>) = {0, 1}, f 1(>) = {0, 1} = f 0(>)

=⇒ FIX(f ) = {0, 1} for M = 1

19 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory



The Fixed-Point Theorem for Finite Lattices

Application to HML with Recursion

Lemma 5.16

Let (S,Act,−→) be an LTS and F ∈ HMF X . Then
1. JFK : 2S → 2S is monotonic w.r.t. (2S,⊆)

2. fix(JFK) =
⋂
{T ⊆ S | JFK(T ) ⊆ T}

3. FIX(JFK) =
⋃
{T ⊆ S | T ⊆ JFK(T )}

If, in addition, S is finite, then
4. fix(JFK) = JFKm(∅) for some m ∈ N
5. FIX(JFK) = JFKM(S) for some M ∈ N

Proof.

1. by induction on the structure of F (details omitted)
2. by Lemma 5.7 and Theorem 5.12
3. by Lemma 5.7 and Theorem 5.12
4. by Lemma 5.7 and Theorem 5.14
5. by Lemma 5.7 and Theorem 5.14
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