

Concurrency Theory

Winter Semester 2015/16

Lecture 5: Fixed-Point Theory

Joost-Pieter Katoen and Thomas Noll Software Modeling and Verification Group RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ws-1516/ct/

GI - Filmaufführungen

"John Nash ist ein genialer Mathematiker mit einer großen Breite (Nash-Gleichgewicht in der Spieltheorie, reelle algebraische Mannigfaltigkeiten, Differentialgeometrie, partielle Differentialgleichungen), ausgebildet und tätig an den Elite-Universitäten im Osten der USA. Er ist aber auch etwas seltsam: Kommunikationsarm, hochnäsig und mit wenig Empathie. Nach seinem stellen Aufstieg zu Ruhm beginnt eine absonderliche Filmgeschichte, die man auf den ersten Blick dem üblichen Hollywood-Klamauk zuordnet..."

Outline of Lecture 5

Recap: Hennessy-Milner Logic with Recursion

Complete Lattices

The Fixed-Point Theorem

The Fixed-Point Theorem for Finite Lattices

Introducing Recursion

Solution: employ recursion!

- $Inv(\langle a \rangle tt) \equiv \langle a \rangle tt \wedge [a] Inv(\langle a \rangle tt)$
- $Pos([a]ff) \equiv [a]ff \lor \langle a \rangle Pos([a]ff)$

Interpretation: the sets of states $X, Y \subseteq S$ satisfying the respective formula should solve the corresponding equation, i.e.,

- $X = \langle \cdot a \cdot \rangle(S) \cap [\cdot a \cdot](X)$
- $Y = [\cdot a \cdot](\emptyset) \cup \langle \cdot a \cdot \rangle(Y)$

Open questions

- Do such recursive equations (always) have solutions?
- If so, are they unique?
- How can we compute whether a process satisfies a recursive formula?

Syntax of HML with One Recursive Variable

Initially: only one variable

Later: mutual recursion

Definition (Syntax of HML with one variable)

The set HMF_X of Hennessy-Milner formulae with one variable X over a set of actions Act is defined by the following syntax:

$$F ::= X \qquad \text{(variable)}$$

$$\mid \text{ tt} \qquad \text{(true)}$$

$$\mid \text{ ff} \qquad \text{(false)}$$

$$\mid F_1 \wedge F_2 \qquad \text{(conjunction)}$$

$$\mid F_1 \vee F_2 \qquad \text{(disjunction)}$$

$$\mid \langle \alpha \rangle F \qquad \text{(diamond)}$$

$$\mid [\alpha] F \qquad \text{(box)}$$

where $\alpha \in Act$.

Semantics of HML with One Recursive Variable I

So far: $\llbracket F \rrbracket \subseteq S$ for $F \in HMF$ and LTS $(S, Act, \longrightarrow)$

Now: semantics of formula depends on states that (are assumed to) satisfy X

Definition (Semantics of HML with one variable)

Let $(S, Act, \longrightarrow)$ be an LTS and $F \in HMF_X$. The semantics of F,

$$\llbracket F \rrbracket : 2^S \to 2^S,$$

is defined by

Semantics of HML with One Recursive Variable II

Idea underlying the definition of

$$\llbracket .
rbracket$$
: $HMF_X
ightarrow (2^S
ightarrow 2^S)$:

if $T \subseteq S$ gives the set of states that satisfy X, then $[\![F]\!](T)$ will be the set of states that satisfy F

- How to determine this T?
- According to previous discussion: as solution of recursive equation of the form $X = F_X$ where $F_X \in HMF_X$
- But: solution not unique; therefore write:

$$X \stackrel{\min}{=} F_X$$
 or $X \stackrel{\max}{=} F_X$

- In the following we will see:
 - 1. Equation $X = F_X$ always solvable
 - 2. Least and greatest solutions are unique and can be obtained by fixed-point iteration

Outline of Lecture 5

Recap: Hennessy-Milner Logic with Recursion

Complete Lattices

The Fixed-Point Theorem

The Fixed-Point Theorem for Finite Lattices

Partial Orders

Definition 5.1 (Partial order)

A partial order (PO) (D, \sqsubseteq) consists of a set D, called domain, and of a relation $\sqsubseteq \subseteq D \times D$ such that, for every $d_1, d_2, d_3 \in D$,

reflexivity: $d_1 \sqsubseteq d_1$

transitivity: $d_1 \sqsubseteq d_2$ and $d_2 \sqsubseteq d_3 \implies d_1 \sqsubseteq d_3$

antisymmetry: $d_1 \sqsubseteq d_2$ and $d_2 \sqsubseteq d_1 \implies d_1 = d_2$

It is called total if, in addition, always $d_1 \sqsubseteq d_2$ or $d_2 \sqsubseteq d_1$.

Partial Orders

Definition 5.1 (Partial order)

A partial order (PO) (D, \sqsubseteq) consists of a set D, called domain, and of a relation $\sqsubseteq \subseteq D \times D$ such that, for every $d_1, d_2, d_3 \in D$,

reflexivity: $d_1 \sqsubseteq d_1$

transitivity: $d_1 \sqsubseteq d_2$ and $d_2 \sqsubseteq d_3 \implies d_1 \sqsubseteq d_3$

antisymmetry: $d_1 \sqsubseteq d_2$ and $d_2 \sqsubseteq d_1 \implies d_1 = d_2$

It is called total if, in addition, always $d_1 \sqsubseteq d_2$ or $d_2 \sqsubseteq d_1$.

Example 5.2

1. (\mathbb{N}, \leq) is a total partial order

Partial Orders

Definition 5.1 (Partial order)

A partial order (PO) (D, \sqsubseteq) consists of a set D, called domain, and of a relation $\sqsubseteq \subseteq D \times D$ such that, for every $d_1, d_2, d_3 \in D$,

reflexivity: $d_1 \sqsubseteq d_1$

transitivity: $d_1 \sqsubseteq d_2$ and $d_2 \sqsubseteq d_3 \implies d_1 \sqsubseteq d_3$

antisymmetry: $d_1 \sqsubseteq d_2$ and $d_2 \sqsubseteq d_1 \implies d_1 = d_2$

It is called total if, in addition, always $d_1 \sqsubseteq d_2$ or $d_2 \sqsubseteq d_1$.

Example 5.2

- 1. (\mathbb{N}, \leq) is a total partial order
- 2. $(\mathbb{N}, <)$ is not a partial order (since not reflexive)

Partial Orders

Definition 5.1 (Partial order)

A partial order (PO) (D, \sqsubseteq) consists of a set D, called domain, and of a relation $\sqsubseteq \subseteq D \times D$ such that, for every $d_1, d_2, d_3 \in D$,

reflexivity: $d_1 \sqsubseteq d_1$

transitivity: $d_1 \sqsubseteq d_2$ and $d_2 \sqsubseteq d_3 \implies d_1 \sqsubseteq d_3$

antisymmetry: $d_1 \sqsubseteq d_2$ and $d_2 \sqsubseteq d_1 \implies d_1 = d_2$

It is called total if, in addition, always $d_1 \sqsubseteq d_2$ or $d_2 \sqsubseteq d_1$.

Example 5.2

- 1. (\mathbb{N}, \leq) is a total partial order
- 2. $(\mathbb{N}, <)$ is not a partial order (since not reflexive)
- 3. $(2^{\mathbb{N}}, \subseteq)$ is a (non-total) partial order

Partial Orders

Definition 5.1 (Partial order)

A partial order (PO) (D, \sqsubseteq) consists of a set D, called domain, and of a relation $\sqsubseteq \subseteq D \times D$ such that, for every $d_1, d_2, d_3 \in D$,

reflexivity: $d_1 \sqsubseteq d_1$

transitivity: $d_1 \sqsubseteq d_2$ and $d_2 \sqsubseteq d_3 \implies d_1 \sqsubseteq d_3$

antisymmetry: $d_1 \sqsubseteq d_2$ and $d_2 \sqsubseteq d_1 \implies d_1 = d_2$

It is called total if, in addition, always $d_1 \sqsubseteq d_2$ or $d_2 \sqsubseteq d_1$.

Example 5.2

- 1. (\mathbb{N}, \leq) is a total partial order
- 2. $(\mathbb{N}, <)$ is not a partial order (since not reflexive)
- 3. $(2^{\mathbb{N}}, \subseteq)$ is a (non-total) partial order
- 4. (Σ^*, \sqsubseteq) is a (non-total) partial order, where Σ is some alphabet and \sqsubseteq denotes prefix ordering ($u \sqsubseteq v \iff \exists w \in \Sigma^* : uw = v$)

Upper and Lower Bounds

Definition 5.3 ((Least) upper bounds and (greatest) lower bounds)

Let (D, \sqsubseteq) be a partial order and $T \subseteq D$.

1. An element $d \in D$ is called an upper bound of T if $t \sqsubseteq d$ for every $t \in T$ (notation: $T \sqsubseteq d$). It is called least upper bound (LUB) (or supremum) of T if additionally $d \sqsubseteq d'$ for every upper bound d' of T (notation: d = | T|).

Lecture 5: Fixed-Point Theory

Upper and Lower Bounds

Definition 5.3 ((Least) upper bounds and (greatest) lower bounds)

Let (D, \sqsubseteq) be a partial order and $T \subseteq D$.

- 1. An element $d \in D$ is called an upper bound of T if $t \sqsubseteq d$ for every $t \in T$ (notation: $T \sqsubseteq d$). It is called least upper bound (LUB) (or supremum) of T if additionally $d \sqsubseteq d'$ for every upper bound d' of T (notation: $d = \bigcup T$).
- 2. An element $d \in D$ is called an lower bound of T if $d \sqsubseteq t$ for every $t \in T$ (notation: $d \sqsubseteq T$). It is called greatest lower bound (GLB) (or infimum) of T if $d' \sqsubseteq d$ for every lower bound d' of T (notation: $d = \bigcap T$).

Upper and Lower Bounds

Definition 5.3 ((Least) upper bounds and (greatest) lower bounds)

Let (D, \sqsubseteq) be a partial order and $T \subseteq D$.

- 1. An element $d \in D$ is called an upper bound of T if $t \sqsubseteq d$ for every $t \in T$ (notation: $T \sqsubseteq d$). It is called least upper bound (LUB) (or supremum) of T if additionally $d \sqsubseteq d'$ for every upper bound d' of T (notation: $d = \bigcup T$).
- 2. An element $d \in D$ is called an lower bound of T if $d \sqsubseteq t$ for every $t \in T$ (notation: $d \sqsubseteq T$). It is called greatest lower bound (GLB) (or infimum) of T if $d' \sqsubseteq d$ for every lower bound d' of T (notation: $d = \bigcap T$).

Example 5.4

1. $T \subseteq \mathbb{N}$ has a LUB/GLB in (\mathbb{N}, \leq) iff it is finite/non-empty

Upper and Lower Bounds

Definition 5.3 ((Least) upper bounds and (greatest) lower bounds)

Let (D, \sqsubseteq) be a partial order and $T \subseteq D$.

- 1. An element $d \in D$ is called an upper bound of T if $t \sqsubseteq d$ for every $t \in T$ (notation: $T \sqsubseteq d$). It is called least upper bound (LUB) (or supremum) of T if additionally $d \sqsubseteq d'$ for every upper bound d' of T (notation: $d = \bigcup T$).
- 2. An element $d \in D$ is called an lower bound of T if $d \sqsubseteq t$ for every $t \in T$ (notation: $d \sqsubseteq T$). It is called greatest lower bound (GLB) (or infimum) of T if $d' \sqsubseteq d$ for every lower bound d' of T (notation: $d = \bigcap T$).

Example 5.4

- 1. $T \subseteq \mathbb{N}$ has a LUB/GLB in (\mathbb{N}, \leq) iff it is finite/non-empty
- 2. In $(2^{\mathbb{N}}, \subseteq)$, every subset $T \subseteq 2^{\mathbb{N}}$ has an LUB and GLB:

$$\coprod T = \bigcup T$$
 and $\prod T = \bigcap T$

Complete Lattices

Definition 5.5 (Complete lattice)

A complete lattice is a partial order (D, \sqsubseteq) such that all subsets of D have LUBs and GLBs. In this case,

$$\bot := \bigsqcup \emptyset \ (= \bigcap D)$$
 and $\top := \bigcap \emptyset \ (= \bigsqcup D)$

respectively denote the least and greatest element of *D*.

Complete Lattices

Definition 5.5 (Complete lattice)

A complete lattice is a partial order (D, \sqsubseteq) such that all subsets of D have LUBs and GLBs. In this case,

$$\perp := | \mid \emptyset (= \mid D) \quad \text{and} \quad \top := \mid \emptyset (= \mid D)$$

respectively denote the least and greatest element of D.

Example 5.6

1. (\mathbb{N}, \leq) is not a complete lattice as, e.g., \mathbb{N} does not have a LUB

Complete Lattices

Definition 5.5 (Complete lattice)

A complete lattice is a partial order (D, \sqsubseteq) such that all subsets of D have LUBs and GLBs. In this case,

$$\perp := | \mid \emptyset (= \mid D) \quad \text{and} \quad \top := \mid \emptyset (= \mid D)$$

respectively denote the least and greatest element of D.

Example 5.6

- 1. (\mathbb{N}, \leq) is not a complete lattice as, e.g., \mathbb{N} does not have a LUB
- 2. $(\mathbb{N} \cup \{\infty\}, \leq)$ with $n \leq \infty$ for all $n \in \mathbb{N}$ is a complete lattice

Complete Lattices

Definition 5.5 (Complete lattice)

A complete lattice is a partial order (D, \sqsubseteq) such that all subsets of D have LUBs and GLBs. In this case,

$$\perp := | \mid \emptyset (= \mid D) \quad \text{and} \quad \top := \mid \emptyset (= \mid D)$$

respectively denote the least and greatest element of D.

Example 5.6

- 1. (\mathbb{N}, \leq) is not a complete lattice as, e.g., \mathbb{N} does not have a LUB
- 2. $(\mathbb{N} \cup \{\infty\}, \leq)$ with $n \leq \infty$ for all $n \in \mathbb{N}$ is a complete lattice
- 3. $(2^{\mathbb{N}}, \subseteq)$ is a complete lattice

Application to HML with Recursion

Lemma 5.7

Let $(S, Act, \longrightarrow)$ be an LTS. Then $(2^S, \subseteq)$ is a complete lattice with

•
$$\coprod \mathcal{T} = \bigcup \mathcal{T} = \bigcup_{\mathcal{T} \in \mathcal{T}} T$$
 for all $\mathcal{T} \subseteq 2^{\mathcal{S}}$

•
$$\prod \mathcal{T} = \bigcap \mathcal{T} = \bigcap_{T \in \mathcal{T}} T$$
 for all $\mathcal{T} \subseteq 2^S$

Application to HML with Recursion

Lemma 5.7

Let $(S, Act, \longrightarrow)$ be an LTS. Then $(2^S, \subseteq)$ is a complete lattice with

- $\coprod \mathcal{T} = \bigcup \mathcal{T} = \bigcup_{\mathcal{T} \in \mathcal{T}} T$ for all $\mathcal{T} \subseteq 2^{\mathcal{S}}$
- $\prod \mathcal{T} = \bigcap \mathcal{T} = \bigcap_{T \in \mathcal{T}} T$ for all $\mathcal{T} \subseteq 2^S$
- $\perp = | |\emptyset = \square 2^S = \emptyset$
- $\bullet \top = \prod \emptyset = \bigsqcup 2^{\mathcal{S}} = \mathcal{S}$

Application to HML with Recursion

Lemma 5.7

Let $(S, Act, \longrightarrow)$ be an LTS. Then $(2^S, \subseteq)$ is a complete lattice with

- ullet $\mathcal{T} = \bigcup \mathcal{T} = \bigcup_{\mathcal{T} \in \mathcal{T}} T$ for all $\mathcal{T} \subseteq 2^S$
- $\prod \mathcal{T} = \bigcap \mathcal{T} = \bigcap_{T \in \mathcal{T}} T$ for all $\mathcal{T} \subseteq 2^{S}$
- $\perp = | |\emptyset = \square 2^S = \emptyset$
- $\bullet \ \top = \prod \emptyset = \bigsqcup 2^{\mathcal{S}} = \mathcal{S}$

Proof.

omitted

Outline of Lecture 5

Recap: Hennessy-Milner Logic with Recursion

Complete Lattices

The Fixed-Point Theorem

The Fixed-Point Theorem for Finite Lattices

Fixed Points

Definition 5.8 (Fixed point)

Let *D* be some domain, $d \in D$, and $f : D \rightarrow D$. If

$$f(d) = d$$

then *d* is called a fixed point of *f*.

Fixed Points

Definition 5.8 (Fixed point)

Let D be some domain, $d \in D$, and $f : D \rightarrow D$. If

$$f(d) = d$$

then *d* is called a fixed point of *f*.

Example 5.9

1. The (only) fixed points of $f_1: \mathbb{N} \to \mathbb{N}: n \mapsto n^2$ are 0 and 1

Fixed Points

Definition 5.8 (Fixed point)

Let *D* be some domain, $d \in D$, and $f : D \rightarrow D$. If

$$f(d) = d$$

then *d* is called a fixed point of *f*.

Example 5.9

- 1. The (only) fixed points of $f_1: \mathbb{N} \to \mathbb{N}: n \mapsto n^2$ are 0 and 1
- 2. A subset $T \subseteq \mathbb{N}$ is a fixed point of $f_2 : 2^{\mathbb{N}} \to 2^{\mathbb{N}} : T \mapsto T \cup \{1,2\}$ iff $\{1,2\} \subseteq T$

Monotonicity of Functions

Definition 5.10 (Monotonicity)

Let (D, \sqsubseteq) and (D', \sqsubseteq') be partial orders. A function $f: D \to D'$ is called monotonic (w.r.t. (D, \sqsubseteq) and (D', \sqsubseteq')) if, for every $d_1, d_2 \in D$,

$$d_1 \sqsubseteq d_2 \implies f(d_1) \sqsubseteq' f(d_2).$$

Monotonicity of Functions

Definition 5.10 (Monotonicity)

Let (D, \sqsubseteq) and (D', \sqsubseteq') be partial orders. A function $f: D \to D'$ is called monotonic (w.r.t. (D, \sqsubseteq) and (D', \sqsubseteq')) if, for every $d_1, d_2 \in D$,

$$d_1 \sqsubseteq d_2 \implies f(d_1) \sqsubseteq' f(d_2).$$

Example 5.11

1. $f_1: \mathbb{N} \to \mathbb{N}: n \mapsto n^2$ is monotonic w.r.t. (\mathbb{N}, \leq)

Monotonicity of Functions

Definition 5.10 (Monotonicity)

Let (D, \sqsubseteq) and (D', \sqsubseteq') be partial orders. A function $f: D \to D'$ is called monotonic (w.r.t. (D, \sqsubseteq) and (D', \sqsubseteq')) if, for every $d_1, d_2 \in D$,

$$d_1 \sqsubseteq d_2 \implies f(d_1) \sqsubseteq' f(d_2).$$

Example 5.11

- 1. $f_1: \mathbb{N} \to \mathbb{N}: n \mapsto n^2$ is monotonic w.r.t. (\mathbb{N}, \leq)
- 2. $f_2: 2^{\mathbb{N}} \to 2^{\mathbb{N}}: T \mapsto T \cup \{1,2\}$ is monotonic w.r.t. $(2^{\mathbb{N}},\subseteq)$

Monotonicity of Functions

Definition 5.10 (Monotonicity)

Let (D, \sqsubseteq) and (D', \sqsubseteq') be partial orders. A function $f: D \to D'$ is called monotonic (w.r.t. (D, \sqsubseteq) and (D', \sqsubseteq')) if, for every $d_1, d_2 \in D$,

$$d_1 \sqsubseteq d_2 \implies f(d_1) \sqsubseteq' f(d_2).$$

Example 5.11

- 1. $f_1: \mathbb{N} \to \mathbb{N}: n \mapsto n^2$ is monotonic w.r.t. (\mathbb{N}, \leq)
- 2. $f_2: 2^{\mathbb{N}} \to 2^{\mathbb{N}}: T \mapsto T \cup \{1,2\}$ is monotonic w.r.t. $(2^{\mathbb{N}},\subseteq)$
- 3. Let $\mathcal{T} := \{ T \subseteq \mathbb{N} \mid T \text{ finite} \}$. Then $f_3 : \mathcal{T} \to \mathbb{N} : T \mapsto \sum_{n \in T} n \text{ is monotonic w.r.t. } (2^{\mathbb{N}}, \subseteq) \text{ and } (\mathbb{N}, \leq).$

Monotonicity of Functions

Definition 5.10 (Monotonicity)

Let (D, \sqsubseteq) and (D', \sqsubseteq') be partial orders. A function $f: D \to D'$ is called monotonic (w.r.t. (D, \sqsubseteq) and (D', \sqsubseteq')) if, for every $d_1, d_2 \in D$,

$$d_1 \sqsubseteq d_2 \implies f(d_1) \sqsubseteq' f(d_2).$$

Example 5.11

- 1. $f_1: \mathbb{N} \to \mathbb{N}: n \mapsto n^2$ is monotonic w.r.t. (\mathbb{N}, \leq)
- 2. $f_2: 2^{\mathbb{N}} \to 2^{\mathbb{N}}: T \mapsto T \cup \{1,2\}$ is monotonic w.r.t. $(2^{\mathbb{N}},\subseteq)$
- 3. Let $\mathcal{T} := \{ T \subseteq \mathbb{N} \mid T \text{ finite} \}$. Then $f_3 : \mathcal{T} \to \mathbb{N} : T \mapsto \sum_{n \in T} n \text{ is monotonic w.r.t. } (2^{\mathbb{N}}, \subseteq) \text{ and } (\mathbb{N}, \leq).$
- 4. $f_4: 2^{\mathbb{N}} \to 2^{\mathbb{N}}: T \mapsto \mathbb{N} \setminus T$ is not monotonic w.r.t. $(2^{\mathbb{N}}, \subseteq)$ (since, e.g., $\emptyset \subseteq \mathbb{N}$ but $f_4(\emptyset) = \mathbb{N} \not\subseteq f_4(\mathbb{N}) = \emptyset$).

The Fixed-Point Theorem I

Alfred Tarski (1901–1983)

Theorem 5.12 (Tarski's fixed-point theorem)

Let (D, \sqsubseteq) be a complete lattice and $f: D \to D$ monotonic. Then f has a least fixed point fix(f) and a greatest fixed point FIX(f) given by

$$fix(f) = \prod \{d \in D \mid f(d) \sqsubseteq d\}$$
 (GLB of all pre-fixed points of f)

$$FIX(f) = \bigsqcup \{d \in D \mid d \sqsubseteq f(d)\} \qquad (LUB \ of \ all \ post-fixed \ points \ of \ f)$$

The Fixed-Point Theorem I

Alfred Tarski (1901–1983)

Theorem 5.12 (Tarski's fixed-point theorem)

Let (D, \sqsubseteq) be a complete lattice and $f: D \to D$ monotonic. Then f has a least fixed point fix(f) and a greatest fixed point FIX(f) given by

$$fix(f) = \prod \{d \in D \mid f(d) \sqsubseteq d\}$$
 (GLB of all pre-fixed points of f)

$$FIX(f) = \bigsqcup \{d \in D \mid d \sqsubseteq f(d)\}$$
 (LUB of all post-fixed points of f)

Proof.

on the board

The Fixed-Point Theorem II

Example 5.13 (cf. Example 5.9)

- Let $f: 2^{\mathbb{N}} \to 2^{\mathbb{N}}: T \mapsto T \cup \{1,2\}$
- As seen before: f(T) = T iff $\{1, 2\} \subseteq T$

The Fixed-Point Theorem

The Fixed-Point Theorem II

Example 5.13 (cf. Example 5.9)

- Let $f: 2^{\mathbb{N}} \to 2^{\mathbb{N}}: T \mapsto T \cup \{1,2\}$
- As seen before: f(T) = T iff $\{1, 2\} \subseteq T$
- Theorem 5.12 for fix:

```
fix(f) = \bigcap \{d \in D \mid f(d) \sqsubseteq d\}
= \bigcap \{T \subseteq \mathbb{N} \mid f(T) \subseteq T\}
= \bigcap \{T \subseteq \mathbb{N} \mid T \cup \{1, 2\} \subseteq T\}
= \bigcap \{T \subseteq \mathbb{N} \mid \{1, 2\} \subseteq T\}
= \{1, 2\}
```


The Fixed-Point Theorem

The Fixed-Point Theorem II

Example 5.13 (cf. Example 5.9)

- Let $f: 2^{\mathbb{N}} \to 2^{\mathbb{N}}: T \mapsto T \cup \{1, 2\}$
- As seen before: f(T) = T iff $\{1, 2\} \subseteq T$
- Theorem 5.12 for fix:

$$fix(f) = \bigcap \{d \in D \mid f(d) \sqsubseteq d\}$$

$$= \bigcap \{T \subseteq \mathbb{N} \mid f(T) \subseteq T\}$$

$$= \bigcap \{T \subseteq \mathbb{N} \mid T \cup \{1, 2\} \subseteq T\}$$

$$= \bigcap \{T \subseteq \mathbb{N} \mid \{1, 2\} \subseteq T\}$$

$$= \{1, 2\}$$

Theorem 5.12 for FIX:

$$FIX(f) = \bigcup \{d \in D \mid d \sqsubseteq f(d)\}$$

$$= \bigcup \{T \subseteq \mathbb{N} \mid T \subseteq f(T)\}$$

$$= \bigcup \{T \subseteq \mathbb{N} \mid T \subseteq T \cup \{1, 2\}\}$$

$$= \bigcup 2^{\mathbb{N}}$$

$$= \mathbb{N}$$

Outline of Lecture 5

Recap: Hennessy-Milner Logic with Recursion

Complete Lattices

The Fixed-Point Theorem

The Fixed-Point Theorem for Finite Lattices

The Fixed-Point Theorem for Finite Lattices

Theorem 5.14 (Fixed-point theorem for finite lattices)

Let (D, \sqsubseteq) be a finite complete lattice and $f: D \to D$ monotonic. Then

$$fix(f) = f^m(\bot)$$
 and $FIX(f) = f^M(\top)$

for some $m, M \in \mathbb{N}$ where $f^0(d) := d$ and $f^{k+1}(d) := f(f^k(d))$.

The Fixed-Point Theorem for Finite Lattices

Theorem 5.14 (Fixed-point theorem for finite lattices)

Let (D, \sqsubseteq) be a finite complete lattice and $f: D \to D$ monotonic. Then

$$fix(f) = f^m(\bot)$$
 and $FIX(f) = f^M(\top)$

for some $m, M \in \mathbb{N}$ where $f^0(d) := d$ and $f^{k+1}(d) := f(f^k(d))$.

Proof.

on the board

The Fixed-Point Theorem for Finite Lattices

Theorem 5.14 (Fixed-point theorem for finite lattices)

Let (D, \sqsubseteq) be a finite complete lattice and $f: D \to D$ monotonic. Then

$$fix(f) = f^m(\bot)$$
 and $FIX(f) = f^M(\top)$

for some $m, M \in \mathbb{N}$ where $f^0(d) := d$ and $f^{k+1}(d) := f(f^k(d))$.

Proof.

on the board

Example 5.15

• Let $f: 2^{\{0,1\}} \to 2^{\{0,1\}}: T \mapsto T \cup \{0\}$

The Fixed-Point Theorem for Finite Lattices

Theorem 5.14 (Fixed-point theorem for finite lattices)

Let (D, \sqsubseteq) be a finite complete lattice and $f: D \to D$ monotonic. Then

$$fix(f) = f^m(\bot)$$
 and $FIX(f) = f^M(\top)$

for some $m, M \in \mathbb{N}$ where $f^0(d) := d$ and $f^{k+1}(d) := f(f^k(d))$.

Proof.

on the board

Example 5.15

- Let $f: 2^{\{0,1\}} \to 2^{\{0,1\}}: T \mapsto T \cup \{0\}$
- $f^0(\bot) = \emptyset$, $f^1(\bot) = \{0\}$, $f^2(\bot) = \{0\} = f^1(\bot)$ $\implies \text{fix}(f) = \{0\} \text{ for } m = 2$

The Fixed-Point Theorem for Finite Lattices

Theorem 5.14 (Fixed-point theorem for finite lattices)

Let (D, \sqsubseteq) be a finite complete lattice and $f: D \to D$ monotonic. Then

$$fix(f) = f^m(\bot)$$
 and $FIX(f) = f^M(\top)$

for some $m, M \in \mathbb{N}$ where $f^0(d) := d$ and $f^{k+1}(d) := f(f^k(d))$.

Proof.

on the board

Example 5.15

- Let $f: 2^{\{0,1\}} \to 2^{\{0,1\}}: T \mapsto T \cup \{0\}$
- $f^0(\bot) = \emptyset$, $f^1(\bot) = \{0\}$, $f^2(\bot) = \{0\} = f^1(\bot)$ \implies fix $(f) = \{0\}$ for m = 2
- $f^0(\top) = \{0, 1\}, f^1(\top) = \{0, 1\} = f^0(\top)$ \implies FIX $(f) = \{0, 1\}$ for M = 1

Lecture 5: Fixed-Point Theory

Application to HML with Recursion

Lemma 5.16

Let $(S, Act, \longrightarrow)$ be an LTS and $F \in HMF_X$. Then

1. $\llbracket F \rrbracket : 2^S \to 2^S$ is monotonic w.r.t. $(2^S, \subseteq)$

Application to HML with Recursion

Lemma 5.16

Let $(S, Act, \longrightarrow)$ be an LTS and $F \in HMF_X$. Then

- 1. $\llbracket F \rrbracket : 2^S \to 2^S$ is monotonic w.r.t. $(2^S, \subseteq)$
- 2. $fix(\llbracket F \rrbracket) = \bigcap \{T \subseteq S \mid \llbracket F \rrbracket(T) \subseteq T\}$
- 3. $FIX(\llbracket F \rrbracket) = \bigcup \{T \subseteq S \mid T \subseteq \llbracket F \rrbracket(T)\}$

Application to HML with Recursion

Lemma 5.16

Let $(S, Act, \longrightarrow)$ be an LTS and $F \in HMF_X$. Then

- 1. $\llbracket F \rrbracket : 2^S \to 2^S$ is monotonic w.r.t. $(2^S, \subseteq)$
- 2. $fix(\llbracket F \rrbracket) = \bigcap \{T \subseteq S \mid \llbracket F \rrbracket(T) \subseteq T\}$
- 3. $FIX(\llbracket F \rrbracket) = \bigcup \{ T \subseteq S \mid T \subseteq \llbracket F \rrbracket(T) \}$

If, in addition, S is finite, then

- 4. $\operatorname{fix}(\llbracket F \rrbracket) = \llbracket F \rrbracket^m(\emptyset)$ for some $m \in \mathbb{N}$
- 5. $\mathsf{FIX}(\llbracket F \rrbracket) = \llbracket F \rrbracket^M(S) \text{ for some } M \in \mathbb{N}$

Application to HML with Recursion

Lemma 5.16

Let $(S, Act, \longrightarrow)$ be an LTS and $F \in HMF_X$. Then

- 1. $\llbracket F \rrbracket : 2^S \to 2^S$ is monotonic w.r.t. $(2^S, \subseteq)$
- 2. $fix(\llbracket F \rrbracket) = \bigcap \{T \subseteq S \mid \llbracket F \rrbracket(T) \subseteq T\}$
- 3. $FIX(\llbracket F \rrbracket) = \bigcup \{ T \subseteq S \mid T \subseteq \llbracket F \rrbracket(T) \}$

If, in addition, S is finite, then

- 4. $\operatorname{fix}(\llbracket F \rrbracket) = \llbracket F \rrbracket^m(\emptyset)$ for some $m \in \mathbb{N}$
- 5. $\mathsf{FIX}(\llbracket F \rrbracket) = \llbracket F \rrbracket^M(S) \text{ for some } M \in \mathbb{N}$

Proof.

- 1. by induction on the structure of *F* (details omitted)
- 2. by Lemma 5.7 and Theorem 5.12
- 3. by Lemma 5.7 and Theorem 5.12
- 4. by Lemma 5.7 and Theorem 5.14
- 5. by Lemma 5.7 and Theorem 5.14

