Winter Semester 2015/16

Lecture 5: Fixed-Point Theory

Joost-Pieter Katoen and Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ws-1516/ct/

’ Software Modeling

‘ Il and Verification Chair

http://moves.rwth-aachen.de/teaching/ws-1516/ct/

Recap: Hennessy-Milner Logic with Recursion

Outline of Lecture 5

Recap: Hennessy-Milner Logic with Recursion

RWTH

30f20 Concurrency Theory
Winter Semester 2015/16 i
Software Modeling

Lecture 5: Fixed-Point Theory ‘ Il and Verification Chair

Recap: Hennessy-Milner Logic with Recursion

Introducing Recursion
Solution: employ recursion!

e Inv((a)tt) = (a)tt A [a] Inv({a)tt)

e Pos([alff) = [a]ff v (a) Pos([a]ff)
Interpretation: the sets of states X, Y C S satisfying the respective formula should
solve the corresponding equation, i.e.,

o X = (-a)(S)N[a](X)

o Y=[a]@)u(a)(Y)

Open questions

e Do such recursive equations (always) have solutions?
e If so, are they unique?
e How can we compute whether a process satisfies a recursive formula?

RWTH

4 of 20 Concurrency Theory
Winter Semester 2015/16 i
Software Modeling

Lecture 5: Fixed-Point Theory ‘ Il and Verification Chair

Recap: Hennessy-Milner Logic with Recursion

Syntax of HML with One Recursive Variable

Initially: only one variable
Later: mutual recursion

Definition (Syntax of HML with one variable)

The set HMF x of Hennessy-Milner formulae with one variable X over a set of actions
Act is defined by the following syntax:

F.: =X (variable)
tt (true)
ff (false)
Fi N\ Fs (conjunction)
FiV Fs (disjunction)
(a)F (diamond)
o] F (box)

where o € Act.

RWTH

50f 20 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 5: Fixed-Point Theory

Il and Verification Chair

Recap: Hennessy-Milner Logic with Recursion

Semantics of HML with One Recursive Variable |

So far: [F] € Sfor F € HMF and LTS (S, Act, —)
Now: semantics of formula depends on states that (are assumed to) satisfy X

Definition (Semantics of HML with one variable)

Let (S, Act, —) be an LTS and F € HMF x. The semantics of F,

[F] : 25 — 2°,
is defined by
IXI(T) =T
[t](T):=S
[ff)(T) =0
[F1 A R(T) == [R](T) N [F](T)
[F1 v F|(T) = [A](T) U [F](T)
[(a) F](T) := (-a)([F](T))
[a]FI(T) := [-]([F](T))

6 of 20 Concurrency Theory o Rm
Winter Semester 2015/16 Software Modeling

Lecture 5: Fixed-Point Theory Bl and Verification Chair

Recap: Hennessy-Milner Logic with Recursion

Semantics of HML with One Recursive Variable Il

e |dea underlying the definition of
[]: HMFx — (2° — 25) :
if T C S gives the set of states that satisfy X, then [F](T) will be the set of states that
satisfy F
e How to determine this 77

e According to previous discussion: as solution of recursive equation of the form X = Fy
where Fx € HMF x

e But: solution not unique; therefore write:
XZFx o XZFy

e In the following we will see:

1. Equation X = Fx always solvable
2. Least and greatest solutions are unique and can be obtained by fixed-point iteration

RWTH

7 of 20 Concurrency Theory
Winter Semester 2015/16 i
Software Modeling

Lecture 5: Fixed-Point Theory ‘ Hl and Verification Chair

Complete Lattices

Outline of Lecture 5

Complete Lattices

8 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory

)

4

Software Modeling
Il and Verification Chair

RWTH

Complete Lattices

Partial Orders
Definition 5.1 (Partial order)

A partial order (PO) (D, C) consists of a set D, called domain, and of a relation
[€ D x D such that, for every d;, d>, d5 € D,

reflexivity: dy T d,

transitivity: diy . dband db L d3 = d; L 05

antisymmetry: d-| E d2 and d2 E d1 — d1 = d2

It is called total if, in addition, always d; L. d> or db L d}.

RWTH

9 of 20 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 5: Fixed-Point Theory Hl and Verification Chair

Complete Lattices

Partial Orders
Definition 5.1 (Partial order)

A partial order (PO) (D, C) consists of a set D, called domain, and of a relation
[€ D x D such that, for every d;, d>, dz € D,

reflexivity: dy T d,

transitivity: d L dhand db L d3 — di L d;

antisymmetry: d-| L d2 and d2 [d1 — d1 = d2

It is called total if, in addition, always d; L. d> or db L d}.

Example 5.2

1. (N, <) is a total partial order

RWTH

9 of 20 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 5: Fixed-Point Theory Hl and Verification Chair

Complete Lattices

Partial Orders
Definition 5.1 (Partial order)

A partial order (PO) (D, C) consists of a set D, called domain, and of a relation
[€ D x D such that, for every d;, d>, dz € D,

reflexivity: dy T d,

transitivity: di = dband db L d3 = d; L 05

antisymmetry: d1 L d2 and d2 [d1 — d1 = d2

It is called total if, in addition, always d; L d» or db L d.

Example 5.2

1. (N, <) is a total partial order
2. (N, <) is not a partial order (since not reflexive)

RWTH

9 of 20 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 5: Fixed-Point Theory Hl and Verification Chair

Complete Lattices

Partial Orders
Definition 5.1 (Partial order)

A partial order (PO) (D, C) consists of a set D, called domain, and of a relation
[€ D x D such that, for every d;, d>, dz € D,

reflexivity: dy T d,

transitivity: di = dband db L d3 = d; L 05

antisymmetry: d1 L d2 and d2 [d1 — d1 = d2

It is called total if, in addition, always d; L d» or db L d.

Example 5.2

1. (N, <) is a total partial order
2. (N, <) is not a partial order (since not reflexive)
3. (2%, €) is a (non-total) partial order

RWTH

9 of 20 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 5: Fixed-Point Theory Hl and Verification Chair

Complete Lattices

Partial Orders
Definition 5.1 (Partial order)

A partial order (PO) (D, C) consists of a set D, called domain, and of a relation
[€ D x D such that, for every d;, d>, dz € D,

reflexivity: dy T d,

transitivity: di = dband db L d3 = d; L 05

antisymmetry: d1 L d2 and d2 [d1 — d1 = d2

It is called total if, in addition, always d; L d» or db L d.

Example 5.2

1. (N, <) is a total partial order

2. (N, <) is not a partial order (since not reflexive)

3. (2%, €) is a (non-total) partial order

4. (X*,C)is a (non-total) partial order, where ¥ is some alphabet and C denotes prefix
ordering(UC v < dw e X" : uw = v)

RWTH

9 of 20 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 5: Fixed-Point Theory ‘ Bl and Verification Chair

Complete Lattices

Upper and Lower Bounds

Definition 5.3 ((Least) upper bounds and (greatest) lower bounds)

Let (D, C) be a partial order and T C D.

1. An element d € D is called an upper bound of T if t C d for every t € T (notation: T C d).
It is called least upper bound (LUB) (or supremum) of T if additionally d C d’ for every
upper bound d’ of T (notation: d = | | T).

RWTH

10 of 20 Concurrency Theory
Winter Semester 2015/16

Lecture 5: Fixed-Point Theory ‘

Software Modeling
Il and Verification Chair

Complete Lattices

Upper and Lower Bounds

Definition 5.3 ((Least) upper bounds and (greatest) lower bounds)

Let (D, C) be a partial order and T C D.

1. An element d € D is called an upper bound of T if t C d for every t € T (notation: T C d).
It is called least upper bound (LUB) (or supremum) of T if additionally d C d’ for every
upper bound d’ of T (notation: d = | | T).

2. An element d € D is called an lower bound of T if d C ¢ for every t € T (notation: d C T).
It is called greatest lower bound (GLB) (or infimum) of T if @' C d for every lower bound @’
of T (notation: d =[] 7).

RWTH

10 of 20 Concurrency Theory
Winter Semester 2015/16

Lecture 5: Fixed-Point Theory ‘

Software Modeling
Il and Verification Chair

Complete Lattices

Upper and Lower Bounds

Definition 5.3 ((Least) upper bounds and (greatest) lower bounds)

Let (D, C) be a partial order and T C D.

1. An element d € D is called an upper bound of T if t C d for every t € T (notation: T C d).
It is called least upper bound (LUB) (or supremum) of T if additionally d C d’ for every
upper bound d’ of T (notation: d = | | T).

2. An element d € D is called an lower bound of T if d C ¢ for every t € T (notation: d C T).
It is called greatest lower bound (GLB) (or infimum) of T if @' C d for every lower bound @’
of T (notation: d =[] 7).

Example 5.4

1. T € N has a LUB/GLB in (N, <) iff it is finite/non-empty

RWTH

10 of 20 Concurrency Theory
Winter Semester 2015/16

Lecture 5: Fixed-Point Theory ‘

Software Modeling
Il and Verification Chair

Complete Lattices

Upper and Lower Bounds

Definition 5.3 ((Least) upper bounds and (greatest) lower bounds)

Let (D, C) be a partial order and T C D.

1. An element d € D is called an upper bound of T if t C d for every t € T (notation: T C d).
It is called least upper bound (LUB) (or supremum) of T if additionally d C d’ for every
upper bound d’ of T (notation: d = | | T).

2. An element d € D is called an lower bound of T if d C ¢ for every t € T (notation: d C T).
It is called greatest lower bound (GLB) (or infimum) of T if @' C d for every lower bound @’
of T (notation: d =[] 7).

Example 5.4

1. T € N has a LUB/GLB in (N, <) iff it is finite/non-empty
2. In (2V, C), every subset T C 2" has an LUB and GLB:

|_|T:UT and |_|T:ﬂT

RWTH

10 of 20 Concurrency Theory
Winter Semester 2015/16

Lecture 5: Fixed-Point Theory ‘

Software Modeling
Il and Verification Chair

Complete Lattices

Complete Lattices

Definition 5.5 (Complete lattice)

A complete lattice is a partial order (D, C) such that all subsets of D have LUBs and
GLBs. In this case,

J_::|_|@(:|_|D) and T:zl_l@(:LID)

respectively denote the least and greatest element of D.

RWTH

11 of 20 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 5: Fixed-Point Theory Il and Verification Chair

Complete Lattices

Complete Lattices

Definition 5.5 (Complete lattice)

A complete lattice is a partial order (D, C) such that all subsets of D have LUBs and
GLBs. In this case,

J_::|_|@(:|_|D) and T::H@(:UD)

respectively denote the least and greatest element of D.

Example 5.6

1. (N, <) is not a complete lattice as, e.g., N does not have a LUB

RWTH

11 of 20 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 5: Fixed-Point Theory Il and Verification Chair

Complete Lattices

Complete Lattices

Definition 5.5 (Complete lattice)

A complete lattice is a partial order (D, C) such that all subsets of D have LUBs and
GLBs. In this case,

J_::|_|@(:|_|D) and T::H@(:UD)

respectively denote the least and greatest element of D.

Example 5.6

1. (N, <) is not a complete lattice as, e.g., N does not have a LUB
2. (NU {0}, <) with n < oo for all n € N is a complete lattice

RWTH

11 of 20 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 5: Fixed-Point Theory Il and Verification Chair

Complete Lattices

Complete Lattices

Definition 5.5 (Complete lattice)

A complete lattice is a partial order (D, C) such that all subsets of D have LUBs and
GLBs. In this case,

J_::|_|@(:|_|D) and T::H@(:UD)

respectively denote the least and greatest element of D.

Example 5.6

1. (N, <) is not a complete lattice as, e.g., N does not have a LUB
2. (NU {0}, <) with n < oo for all n € N is a complete lattice
3. (2%, ©) is a complete lattice

RWTH

11 of 20 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 5: Fixed-Point Theory Bl and Verification Chair

Complete Lattices

Application to HML with Recursion

Lemma 5.7

Let (S, Act,—) be an LTS. Then (2°, C) is a complete lattice with
o | | T=UT =Uses T forall T C2°
e[NT=NT=ger T forall T C 2°

RWTH

12 of 20 Concurrency Theory
Winter Semester 2015/16 Software Modeling

Lecture 5: Fixed-Point Theory Il and Verification Chair

Complete Lattices

Application to HML with Recursion

Lemma 5.7

Let (S, Act,—) be an LTS. Then (2°, C) is a complete lattice with
o | | T=UT =Uses T forall T C2°

e[NT=NT=ger T forall T C 2°

OL:|_|(Z):|_|ZS:Q)

QT:H@:UZS:S

RWTH

12 of 20 Concurrency Theory
Winter Semester 2015/16 Software Modeling

Lecture 5: Fixed-Point Theory Bl and Verification Chair

Complete Lattices

Application to HML with Recursion

Lemma 5.7

Let (S, Act,—) be an LTS. Then (2°, C) is a complete lattice with
o | | T=UT =Uses T forall T C2°

e[NT=NT=ger T forall T C 2°

OL:|_|(Z):|_|ZS:Q)

QT:H@:UZS:S

Proof.

omitted

12 of 20 Concurrency Theory o Rm
Winter Semester 2015/16 Software Modeling
Lecture 5: Fixed-Point Theory Hl and Verification Chair

The Fixed-Point Theorem

Outline of Lecture 5

The Fixed-Point Theorem

13 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory

)

4

Software Modeling
Il and Verification Chair

RWTH

The Fixed-Point Theorem

Fixed Points
Definition 5.8 (Fixed point)
Let D be some domain, d € D,and f: D — D. If

f(d) = d

then d is called a fixed point of 7.

14 of 20 Concurrency Theory
Winter Semester 2015/16 o Software Modeling Rm
Lecture 5: Fixed-Point Theory Bl and Verification Chair

The Fixed-Point Theorem

Fixed Points
Definition 5.8 (Fixed point)
Let D be some domain, d € D,and f: D — D. If

f(d) = d
then d is called a fixed point of 7.

Example 5.9

1. The (only) fixed points of f; : N — N : n — n* are 0 and 1

RWTH

14 of 20 Concurrency Theory
Winter Semester 2015/16

Lecture 5: Fixed-Point Theory

Software Modeling
Il and Verification Chair

The Fixed-Point Theorem

Fixed Points
Definition 5.8 (Fixed point)
Let D be some domain, d € D,and f: D — D. If

f(d) = d
then d is called a fixed point of 7.

Example 5.9

1. The (only) fixed points of f; : N — N : n+ n® are 0 and 1
2. Asubset T C Nis afixed pointof f, : 2% — 2% T TuU{1,2}iff {1,2} C T

RWTH

14 of 20 Concurrency Theory
Winter Semester 2015/16

Lecture 5: Fixed-Point Theory ‘

Software Modeling
Il and Verification Chair

The Fixed-Point Theorem

Monotonicity of Functions

Definition 5.10 (Monotonicity)

Let (D, C) and (D', ') be partial orders. A function f : D — D' is called monotonic
(w.r.t. (D,C) and (D', ")) if, for every d, d> € D,

d L dbh — f(d1) E, f(dg)

RWTH

15 of 20 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 5: Fixed-Point Theory

Il and Verification Chair

The Fixed-Point Theorem

Monotonicity of Functions

Definition 5.10 (Monotonicity)

Let (D, C) and (D', ') be partial orders. A function f : D — D' is called monotonic
(w.r.t. (D,C) and (D', ")) if, for every d, d> € D,

d L dbh — f(d1) E, f(dg)

Example 5.11

1. fi : N = N : n— n? is monotonic w.r.t. (N, <)

RWTH

15 of 20 Concurrency Theory
Winter Semester 2015/16

Lecture 5: Fixed-Point Theory

Software Modeling
Il and Verification Chair

The Fixed-Point Theorem

Monotonicity of Functions

Definition 5.10 (Monotonicity)

Let (D, C) and (D', ') be partial orders. A function f : D — D' is called monotonic
(w.r.t. (D,C) and (D', ")) if, for every d, d> € D,

d L dbh — f(d1) E, f(dg)

Example 5.11

1. fi : N = N : n— n? is monotonic w.r.t. (N, <)
2. fp: 2% 2N T TU{1,2} is monotonic w.r.t. (2, C)

RWTH

15 of 20 Concurrency Theory
Winter Semester 2015/16

Lecture 5: Fixed-Point Theory

Software Modeling
Il and Verification Chair

The Fixed-Point Theorem

Monotonicity of Functions

Definition 5.10 (Monotonicity)
Let (D, C) and (D', ') be partial orders. A function f : D — D' is called monotonic
(w.r.t. (D,C) and (D', ")) if, for every d, d> € D,

d L dbh — f(d1) E, f(dg)

Example 5.11

1. fi : N = N : n— n? is monotonic w.r.t. (N, <)
2. fp: 2% 2N T TU{1,2} is monotonic w.r.t. (2, C)

3.Let 7 :={T CN| Tfinite}. Thenf3: T — N: T — > __.nis monotonic w.r.t. (2, C)
and (N, <).

RWTH

15 of 20 Concurrency Theory
Winter Semester 2015/16

Lecture 5: Fixed-Point Theory

Software Modeling
Il and Verification Chair

The Fixed-Point Theorem

Monotonicity of Functions

Definition 5.10 (Monotonicity)

Let (D, C) and (D', ') be partial orders. A function f : D — D' is called monotonic
(w.r.t. (D,C) and (D', ")) if, for every d, d> € D,

d L dbh — f(d1) E, f(dg)

Example 5.11

1. f; : N — N : n+ n? is monotonic w.r.t. (N, <)

2. fp: 2% 2N T TU{1,2} is monotonic w.r.t. (2, C)

3.Let 7 :={T CN| Tfinite}. Thenf3: T — N: T — > __.nis monotonic w.r.t. (2, C)
and (N, <).

4. fy - 2N — 2N T N\ T is not monotonic w.r.t. (2, C)
(since, e.g., D € N but f,(0)) = N € £,(N) =).

RWTH

15 of 20 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 5: Fixed-Point Theory Hl and Verification Chair

The Fixed-Point Theorem

The Fixed-Point Theorem |

Alfred Tarski (1901-1983)
Theorem 5.12 (Tarski’s fixed-point theorem)

Let (D, C) be a complete lattice and f : D — D monotonic. Then f has a least fixed
pointfix(f) and a greatest fixed point FIX(f) given by

fix(f)=[1]{d € D| f(d) E d} (GLB of all pre-fixed points of f)
FIX(f)=| {d € D|dC f(d)} (LUB of all post-fixed points of f)

RWTH

16 of 20 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 5: Fixed-Point Theory Bl and Verification Chair

The Fixed-Point Theorem

The Fixed-Point Theorem |

Alfred Tarski (1901-1983)
Theorem 5.12 (Tarski’s fixed-point theorem)

Let (D, C) be a complete lattice and f : D — D monotonic. Then f has a least fixed
pointfix(f) and a greatest fixed point FIX(f) given by

fix(f)=[1]{d € D| f(d) E d} (GLB of all pre-fixed points of f)
FIX(f)=| {d € D|dC f(d)} (LUB of all post-fixed points of f)

Proof.
on the board []
16 of 20 Concurrency Theory ‘nm I

Winter Semester 2015/16 , Software Modeling R

Lecture 5: Fixed-Point Theory Hl and Verification Chair

The Fixed-Point Theorem

The Fixed-Point Theorem I

Example 5.13 (cf. Example 5.9)

eletf: 2N 2N . T TU{1,2}
e As seen before: f(T) = Tiff {1,2} C T

RWTH

17 of 20 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 5: Fixed-Point Theory ‘ Il and Verification Chair

The Fixed-Point Theorem

The Fixed-Point Theorem I

Example 5.13 (cf. Example 5.9)

eletf: 2N 2N . T TU{1,2}
e As seen before: f(T) = Tiff {1,2} C T
e Theorem 5.12 for fix:
fix(f)=[1{d € D | f(d) C d}
=(NTCNI[HT)C T}
=(H{TCN|Tu{1,2} C T}
=(HTCN[{1,2} C T}

— { 1, 2}
17 of 20 Concurrency Theory o nm
Winter Semester 2015/16 Software Modeling
Lecture 5: Fixed-Point Theory ‘ Il and Verification Chair

The Fixed-Point Theorem

The Fixed-Point Theorem I

Example 5.13 (cf. Example 5.9)

eletf: 2N 2N . T TU{1,2}
e As seen before: f(T) = Tiff {1,2} C T
e Theorem 5.12 for fix:
fix(f)=[|{d € D | f(d) C d}
=({TCN[AT)C T}
=({TCN|TU{1,2} C T}
={TCN[{1,2} C T}
:{172}
e Theorem 5.12 for FIX:
FIX(f)=| {de D|dCf(d)}
= {TCN|TCAT)}
= {TCN|TCTu{1,2}}
:UQN
=N

RWTH

17 of 20 Concurrency Theory
Winter Semester 2015/16 i
Software Modeling

Lecture 5: Fixed-Point Theory Hl and Verification Chair

The Fixed-Point Theorem for Finite Lattices

Outline of Lecture 5

The Fixed-Point Theorem for Finite Lattices

RWTH

18 of 20 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 5: Fixed-Point Theory ‘ Il and Verification Chair

The Fixed-Point Theorem for Finite Lattices

The Fixed-Point Theorem for Finite Lattices
Theorem 5.14 (Fixed-point theorem for finite lattices)

Let (D, C) be a finite complete lattice and f : D — D monotonic. Then
fix(f) = f"(L) and FIX(f) = ()
for some m, M € N where f°(d) :=d and *'(d) := f(f*(d)).

RWTH

19 of 20 Concurrency Theory
Winter Semester 2015/16 Software Modeling

Lecture 5: Fixed-Point Theory Bl and Verification Chair

The Fixed-Point Theorem for Finite Lattices

The Fixed-Point Theorem for Finite Lattices
Theorem 5.14 (Fixed-point theorem for finite lattices)

Let (D, C) be a finite complete lattice and f : D — D monotonic. Then
fix(f) = f"(L) and FIX(f) = ()

for some m, M € N where f°(d) :=d and *'(d) := f(f*(d)).

Proof.

on the board

RWTH

19 of 20 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 5: Fixed-Point Theory

Il and Verification Chair

The Fixed-Point Theorem for Finite Lattices

The Fixed-Point Theorem for Finite Lattices
Theorem 5.14 (Fixed-point theorem for finite lattices)

Let (D, C) be a finite complete lattice and f : D — D monotonic. Then
fix(f) = f"(L) and FIX(f) = ()

for some m, M € N where f°(d) :=d and *'(d) := f(f*(d)).

Proof.

on the board

Example 5.15

o Letf: 2101 5 2001 T TU {0}

RWTH

19 of 20 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 5: Fixed-Point Theory

Il and Verification Chair

The Fixed-Point Theorem for Finite Lattices

The Fixed-Point Theorem for Finite Lattices
Theorem 5.14 (Fixed-point theorem for finite lattices)

Let (D, C) be a finite complete lattice and f : D — D monotonic. Then
fix(f) = f"(L) and FIX(f) = ()

for some m, M € N where f°(d) :=d and *'(d) := f(f*(d)).

Proof.

on the board

Example 5.15

o Letf: 201 2001 T TU {0}
o (L) =0, fI(L) = {0}, fA(L) = {0} = (L)
—> fix(f) = {0} form =2

RWTH

19 of 20 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 5: Fixed-Point Theory

Il and Verification Chair

The Fixed-Point Theorem for Finite Lattices

The Fixed-Point Theorem for Finite Lattices
Theorem 5.14 (Fixed-point theorem for finite lattices)

Let (D, C) be a finite complete lattice and f : D — D monotonic. Then
fix(f) = f"(L) and FIX(f) = ()
for some m, M € N where f°(d) :=d and *'(d) := f(f*(d)).

Proof.
on the board

Example 5.15

o Letf: 2101 5 2001 T TU {0}

o (L) =0, fI(L) = {0}, fA(L) = {0} = (L)
—> fix(f) = {0} form =2

o fO(T)={0,1}, f/(T)=1{0,1} = fO(T)
— FIX(f) = {0,1} for M = 1

RWTH

19 of 20 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 5: Fixed-Point Theory

Il and Verification Chair

The Fixed-Point Theorem for Finite Lattices

Application to HML with Recursion

Lemma 5.16

Let (S, Act,—) be an LTS and F € HMFx. Then
1. [F] : 2° — 2% is monotonic w.r.t. (2°, C)

20 of 20 Concurrency Theory o Rm
Winter Semester 2015/16 Software Modeling
Lecture 5: Fixed-Point Theory ‘ Il and Verification Chair

The Fixed-Point Theorem for Finite Lattices

Application to HML with Recursion

Lemma 5.16

Let (S, Act,—) be an LTS and F € HMF x. Then
1. [F] : 2° — 2% is monotonic w.r.t. (25, C)

2. fix([F]) = ({T € S|[FI(T) € T}

3. FIX([FI) = AT c S| T < [FI(T)}

RWTH

20 of 20 Concurrency Theory
Winter Semester 2015/16 Software Modeling

Lecture 5: Fixed-Point Theory

Il and Verification Chair

The Fixed-Point Theorem for Finite Lattices

Application to HML with Recursion

Lemma 5.16

Let (S, Act,—) be an LTS and F € HMF x. Then
1. [F] : 2° — 2% is monotonic w.r.t. (25, C)

2. fix([F)) = (T S S|[F](T)C T}

3. FIX([F]) =U{TCS|TCJF|(T)}

If, in addition, S is finite, then

4. fix([F]) = [F]™(D) for some m € N

5. FIX([F]) = [F]M(S) for some M € N

20 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory

: Software Modeling

Il and Verification Chair

RWTH

The Fixed-Point Theorem for Finite Lattices

Application to HML with Recursion

Lemma 5.16

Let (S, Act,—) be an LTS and F € HMF x. Then
1. [F] : 25 — 2% is monotonic w.r.t. (2°, C)

2. fix([F)) = (T S S|[F](T)C T}

3. FIX([F]) =U{TCS|TCJF|(T)}

If, in addition, S is finite, then

4. fix([F]) = [F]™(D) for some m € N

5. FIX([F]) = [F]M(S) for some M € N

Proof.

1. by induction on the structure of F (details omitted)
2. by Lemma 5.7 and Theorem 5.12
3. by Lemma 5.7 and Theorem 5.12
4. by Lemma 5.7 and Theorem 5.14
5. by Lemma 5.7 and Theorem 5.14

20 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 5: Fixed-Point Theory

: Software Modeling

‘ Il and Verification Chair

RWTH

	Recap: Hennessy-Milner Logic with Recursion
	Complete Lattices
	The Fixed-Point Theorem
	The Fixed-Point Theorem for Finite Lattices

