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Software Consulting – Praxis-Workshop 

Dienstag, 15.12.2015, 09.00-16.00 Uhr 

RWTH Aachen, Informatik E3, Ahornstraße 55, 2. OG, Raumnr. 222 

Melden Sie sich unter Angabe Ihres Semesters bis zum 07.12.2015 an.  
Wir freuen uns auf Sie!  

Kontakt: Anne-Kristin Hauk (hauk@itestra.de) – www.itestra.com 

Bringen Sie Informatik zur Wirkung! 

Ein erheblicher Teil der Informatiker arbeitet im Beratungsumfeld. In der Beratung lösen Sie kontinuierlich neue 
Fragestellungen bei verschiedenen Kunden und erlangen in den Projekten breites Wissen. Erfahren Sie aus erster 
Hand, welche spannenden Möglichkeiten Software-Beratung bietet, und probieren Sie aus, ob dieses Berufsfeld zu 
Ihnen passt! 

 
Inhalte des Workshops: 

§  Wir diskutieren mit Ihnen, was ein Software Consultant genau macht und warum es sich lohnt, Berater zu sein. 

§  Sie bearbeiten im Team eine anspruchsvolle IT-Fallaufgabe im Rahmen eines realen Software-
Migrationsprojektes unter Berücksichtigung der technischen, ökonomischen und organisatorischen 
Rahmenbedingungen. Bei der Lösung unterstützen Sie unsere erfahrenen Kollegen. 
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Recap: Hennessy-Milner Logic

Syntax of HML

Definition (Syntax of HML)

The set HMF of Hennessy-Milner formulae over a set of actions Act is defined by the
following syntax: F ::= tt (true)

| ff (false)
| F1 ∧ F2 (conjunction)
| F1 ∨ F2 (disjunction)
| 〈α〉F (diamond)
| [α]F (box)

where α ∈ Act .

Abbreviations for L = {α1, . . . , αn} (n ∈ N):
• 〈L〉F := 〈α1〉F ∨ . . . ∨ 〈αn〉F
• [L]F := [α1]F ∧ . . . ∧ [αn]F
• In particular, 〈∅〉F := ff and [∅]F := tt
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Recap: Hennessy-Milner Logic

Semantics of HML

Definition (Semantics of HML)

Let (S,Act,−→) be an LTS and F ∈ HMF . The set of processes in S that satisfy F ,
JFK ⊆ S, is defined by: JttK := S JffK := ∅

JF1 ∧ F2K := JF1K ∩ JF2K JF1 ∨ F2K := JF1K ∪ JF2K
J〈α〉FK := 〈·α·〉(JFK) J[α]FK := [·α·](JFK)

where 〈·α·〉, [·α·] : 2S → 2S are given by

〈·α·〉(T ) := {s ∈ S | ∃s′ ∈ T : s
α−→ s′}

[·α·](T ) := {s ∈ S | ∀s′ ∈ S : s
α−→ s′ =⇒ s′ ∈ T}

We write s |= F iff s ∈ JFK. Two HML formulae are equivalent (written F ≡ G) iff
they are satisfied by the same processes in every LTS.
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Recap: Hennessy-Milner Logic

Process Traces

Goal: reduce processes to the action sequences they can perform

Definition (Trace language)

For every P ∈ Prc, let

Tr(P) := {w ∈ Act∗ | ex. P ′ ∈ Prc such that P
w−→ P ′}

be the trace language of P (where
w−→ :=

a1−→ ◦ . . . ◦ an−→ for w = a1 . . . an).

P,Q ∈ Prc are called trace equivalent if Tr(P) = Tr(Q).

Example (One-place buffer)

B = in.out.B

=⇒ Tr(B) = (in · out)∗ · (in + ε)
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HML and Process Traces

HML and Process Traces

Lemma 4.1

Let (Prc,Act,−→) be an LTS, and let P,Q ∈ Prc satisfy the same HMF (i.e.,
∀F ∈ HMF : P |= F ⇐⇒ Q |= F). Then Tr(P) = Tr(Q).

Proof.

on the board

Remark: the converse does not hold.
Example 4.2

• Let P := a.(b.nil + c.nil) ∈ Prc, Q := a.b.nil + a.c.nil ∈ Prc
• Then Tr(P) = Tr(Q) = {ε, a, ab, ac}
• Let F := [a](〈b〉tt ∧ 〈c〉tt) ∈ HMF
• Then P |= F but Q 6|= F
• [Later: P,Q ∈ Prc HML-equivalent iff bismilar]
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Adding Recursion to HML

Finiteness of HML

Observation: HML formulae only describe finite part of process behaviour
• each modal operator ([.], 〈.〉) talks about one step
• only finite nesting of operators (modal depth)

Example 4.3

• F := (〈a〉[a]ff) ∨ 〈b〉tt ∈ HMF has modal depth 2
• Checking F involves analysis of all behaviours of length ≤ 2

But: sometimes necessary to refer to arbitrarily long computations
(e.g., “no deadlock state reachable”)
• possible solution: support infinite conjunctions and disjunctions
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Adding Recursion to HML

Infinite Conjunctions

Example 4.4

• Let C = a.C, D = a.D + a.nil
• Then C |= [a]〈a〉tt but D 6|= [a]〈a〉tt

• Now redefine D as Dn = a.Dn + a.En where n ∈ N, Ek = a.Ek−1 (1 ≤ k ≤ n), E0 = nil
• Then (for [α]kF := [α] . . . [α]︸ ︷︷ ︸

k times

F where F ∈ HMF ):

– C |= [a]k〈a〉tt for all k ∈ N
– Dn |= [a]k〈a〉tt for all 0 ≤ k ≤ n
– Dn 6|= [a]k〈a〉tt for all k > n

• Conclusion: no single HML formula can distinguish C and all Dn

• Generally: invariant property “always 〈a〉tt” not expressible
• Requires infinite conjunction:

Inv(〈a〉tt) = 〈a〉tt ∧ [a]〈a〉tt ∧ [a][a]〈a〉tt ∧ . . . =
∧
k∈N

[a]k〈a〉tt
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Adding Recursion to HML

Infinite Disjunctions

Dually: possibility properties expressible by infinite disjunctions

Example 4.5

• Let C = a.C, D = a.D + a.nil as before
• C has no possibility to terminate
• D has the option to terminate (i.e., to eventually satisfy [a]ff) at any time by choosing the

a.nil branch

• Representable by infinite disjunction:

Pos([a]ff) = [a]ff ∨ 〈a〉[a]ff ∨ 〈a〉〈a〉[a]ff ∨ . . . =
∨
k∈N

〈a〉k [a]ff

Problem: infinite formulae not easy to handle
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Adding Recursion to HML

Introducing Recursion

Solution: employ recursion!

• Inv(〈a〉tt) ≡ 〈a〉tt ∧ [a] Inv(〈a〉tt)
• Pos([a]ff) ≡ [a]ff ∨ 〈a〉Pos([a]ff)

Interpretation: the sets of states X ,Y ⊆ S satisfying the respective formula should
solve the corresponding equation, i.e.,
• X = 〈·a·〉(S) ∩ [·a·](X )

• Y = [·a·](∅) ∪ 〈·a·〉(Y )

Open questions

• Do such recursive equations (always) have solutions?
• If so, are they unique?
• How can we compute whether a process satisfies a recursive formula?
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Adding Recursion to HML

Existence of Solutions

Example 4.6

• Consider again C = a.C, D = a.D + a.nil

• Invariant: X ≡ 〈a〉tt ∧ [a]X
– X = ∅ is a solution (as no process can satisfy both 〈a〉tt and [a]ff)
– but we expect C ∈ X (as C can perform a invariantly)
– in fact, X = {C} also solves the equation (and is the greatest solution w.r.t.⊆)

=⇒ write X
max
= 〈a〉tt ∧ [a]X

• Possibility: Y ≡ [a]ff ∨ 〈a〉Y
– greatest solution: Y = {C,D, nil}
– but we expect C /∈ Y (as C cannot terminate at all)
– here: least solution w.r.t.⊆: Y = {D, nil}

=⇒ write Y
min
= [a]ff ∨ 〈a〉Y
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Adding Recursion to HML

Uniqueness of Solutions
Uniqueness of solutions

• Use greatest solutions for properties that hold unless the process has a finite computation
that disproves it.
• Use least solutions for properties that hold if the process has a finite computation that

proves it.

Example 4.7

Let (S,Act,−→) be an LTS, s ∈ S, and F ∈ HMF .
• Invariant: Inv(F ) ≡ X for X max

= F ∧ [Act ]X
– s |= Inv(F) if all states reachable from s satisfy F

• Possibility: Pos(F ) ≡ Y for Y min
= F ∨ 〈Act〉Y

– s |= Pos(F) if a state satisfying F is reachable from s
• Safety: Safe(F ) ≡ X for X max

= F ∧ ([Act ]ff ∨ 〈Act〉X )
– s |= Safe(F) if s has a complete (i.e., infinite or terminating) transition sequence where each state

satisfies F
• Eventuality: Evt(F ) ≡ Y for Y min

= F ∨ (〈Act〉tt ∧ [Act ]Y )
– s |= Evt(F) if each complete transition sequence starting in s contains a state satisfying F
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Adding Recursion to HML

Uniqueness of Solutions
Uniqueness of solutions
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proves it.
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HML with One Recursive Variable

Outline of Lecture 4

Recap: Hennessy-Milner Logic

HML and Process Traces

Adding Recursion to HML

HML with One Recursive Variable
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HML with One Recursive Variable

Syntax of HML with One Recursive Variable

Initially: only one variable
Later: mutual recursion

Definition 4.8 (Syntax of HML with one variable)

The set HMF X of Hennessy-Milner formulae with one variable X over a set of actions
Act is defined by the following syntax:

F ::= X (variable)
| tt (true)
| ff (false)
| F1 ∧ F2 (conjunction)
| F1 ∨ F2 (disjunction)
| 〈α〉F (diamond)
| [α]F (box)

where α ∈ Act .
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HML with One Recursive Variable

Semantics of HML with One Recursive Variable I

So far: JFK ⊆ S for F ∈ HMF and LTS (S,Act,−→)
Now: semantics of formula depends on states that (are assumed to) satisfy X

Definition 4.9 (Semantics of HML with one variable)

Let (S,Act,−→) be an LTS and F ∈ HMF X . The semantics of F ,

JFK : 2S → 2S,

is defined by
JXK(T ) := T
JttK(T ) := S
JffK(T ) := ∅

JF1 ∧ F2K(T ) := JF1K(T ) ∩ JF2K(T )
JF1 ∨ F2K(T ) := JF1K(T ) ∪ JF2K(T )

J〈α〉FK(T ) := 〈·α·〉(JFK(T ))
J[α]FK(T ) := [·α·](JFK(T ))

19 of 21 Concurrency Theory

Winter Semester 2015/16
Lecture 4: Hennessy-Milner Logic with Recursion



HML with One Recursive Variable

Semantics of HML with One Recursive Variable I

So far: JFK ⊆ S for F ∈ HMF and LTS (S,Act,−→)
Now: semantics of formula depends on states that (are assumed to) satisfy X

Definition 4.9 (Semantics of HML with one variable)

Let (S,Act,−→) be an LTS and F ∈ HMF X . The semantics of F ,

JFK : 2S → 2S,

is defined by
JXK(T ) := T
JttK(T ) := S
JffK(T ) := ∅

JF1 ∧ F2K(T ) := JF1K(T ) ∩ JF2K(T )
JF1 ∨ F2K(T ) := JF1K(T ) ∪ JF2K(T )

J〈α〉FK(T ) := 〈·α·〉(JFK(T ))
J[α]FK(T ) := [·α·](JFK(T ))

19 of 21 Concurrency Theory

Winter Semester 2015/16
Lecture 4: Hennessy-Milner Logic with Recursion



HML with One Recursive Variable

Semantics of HML with One Recursive Variable II

Example 4.10

s1

s2 s3

a ba

a

Let S := {s1, s2, s3}.

• J〈a〉XK({s1}) = {s3}
• J〈a〉XK({s1, s2}) = {s1, s3}
• J[b]XK({s2}) = {s2, s3}
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HML with One Recursive Variable

Semantics of HML with One Recursive Variable III

• Idea underlying the definition of

J.K : HMF X → (2S → 2S) :

if T ⊆ S gives the set of states that satisfy X , then JFK(T ) will be the set of states that
satisfy F

• How to determine this T?
• According to previous discussion: as solution of recursive equation of the form X = FX

where FX ∈ HMF X

• But: solution not unique; therefore write:

X min
= FX or X max

= FX

• In the following we will see:
1. Equation X = FX always solvable
2. Least and greatest solutions are unique and can be obtained by fixed-point iteration
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