Winter Semester 2015/16

Lecture 3: Hennessy-Milner Logic

Joost-Pieter Katoen and Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ws-1516/ct/

’ Software Modeling

‘ Il and Verification Chair

http://moves.rwth-aachen.de/teaching/ws-1516/ct/

Recap: Calculus of Communicating Systems

Syntax of CCS |
Definition (Syntax of CCS)

e Let Abe a set of (action) names.

e A:={a| a c A} denotes the set of co-names.

o Act := AU AU {7} is the set of actions with the silent (or: unobservable) action .
e Let Pid be a set of process identifiers.

e The set Prc of process expressions is defined by the following syntax:

P ::=nil (inaction)
| a.P (prefixing)
| Py + P> (choice)
| Pi|| P, (parallel composition)
| P\ L (restriction)
| P[f] (relabelling)
| C

(process call)

where o € Act, L C A, C € Pid, and f : Act — Act such that f(7) = 7 and f(a) = f(a) for
each a € A.

RWTH

30f 20 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 3: Hennessy-Milner Logic ‘ Bl and Verification Chair

Recap: Calculus of Communicating Systems

Syntax of CCS Il
Definition (continued)

e A (recursive) process definition is an equation system of the form
(Ci=Pi|1<i<k)
where k > 1, C; € Pid (pairwise distinct), and P; € Prc (with identifiers from {Cy, ..., Cx}).

Notational Conventions:
e 2means a
e> " P (neN)means P, + ...+ P, (where >, P; := nil)
e P\ aabbreviates P\ {a}
e [a; > by, ..., a, — by| stands for f : Act — Act with f(a;) = b; (i € [n]) and f(a) = «
otherwise
e restriction and relabelling bind stronger than prefixing, prefixing stronger than composition,

composition stronger than choice:
P\a+b.Q| R means (P\a)-+((h.Q)l R)

RWTH

4 of 20 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 3: Hennessy-Milner Logic ‘ Bl and Verification Chair

Recap: Calculus of Communicating Systems

Labelled Transition Systems

Goal: represent behaviour of system by (infinite) graph
e nodes = system states
e edges = transitions between states

Definition (Labelled transition system)

A (Act-)labelled transition system (LTS) is a triple (S, Act, —) consisting of
e a set S of states
e a set Act of (action) labels
e a transition relation — C S x Act x S

For (s, r,s') € — we write s — s'. An LTS is called finite if S is so.

Remarks:
e sometimes an initial state sy € S is distinguished (“LTS(sp)”)
e (finite) LTSs correspond to (finite) automata without final states

RWTH

50f 20 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 3: Hennessy-Milner Logic ‘ Bl and Verification Chair

Recap: Calculus of Communicating Systems

Semantics of CCS |

Definition (Semantics of CCS)

A process definition (C; = P; | 1 < i < k) determines the LTS (Prc, Act, —)
whose transitions can be inferred from the following rules (P, P, Q, @' € Pre,
a € Act, \€E AUA, ac A):

. - P— P - Q- Q@
a.P 5 P P+Q— P P+Q— Q@
P P Q-5 PP O

Com

(Pa (Pa

)
PlQ—FP|Q

rv) r2)
PlQ-—=PFP|Q PlQ@-=P| &

P— P (a,a ¢ L) p_“y p P— P (C=P)
(Res) (Rel) (Call)
P\ L P\ L P[] X4 P C— P

RWTH

6 of 20 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 3: Hennessy-Milner Logic Bl and Verification Chair

Recap: Calculus of Communicating Systems

Semantics of CCS I
Example

Parallel two-place buffer: B = (B[f] || B[g]) \ com, B = in.out.B
where f := [out — com] and g := [in — com]

B (BIA T Blal) \com] empty

n . out
in

((out.B)[] || Blgl) \ com[{(BIf] || (out.B)[g]) \ com] ~one entry

out in

((out.B)[1] || (out.B)[g]) \ com) full

RWTH

7 of 20 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 3: Hennessy-Milner Logic Bl and Verification Chair

Infinite State Spaces

The Power of Recursive Definitions

So far: only finite state spaces

Example 3.1 (Counter)

C = up.(C || down.nil)
gives rise to infinite LTS (abbreviating down := down.nil):

u u u
(C) P [C | down]—p{C | down || down]—p{Z]

downup down .
@—{C | down || nil)
down
C || nil || nill o

Sequential “specification”: Cy = up. C;
C,= up.C,.1 + down.C,_ (n > 0)

RWTH

9 of 20 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 3: Hennessy-Milner Logic Bl and Verification Chair

Process Traces

Process Traces |

Goal: reduce processes to the action sequences they can perform
Definition 3.2 (Trace language)

For every P € Prc, let

Tr(P) := {w € Act* | ex. P € Prc such that P —— P’}

be the trace language of P
(Wherelw:a%o...o @forW:aL..an).

P, Q € Prc are called trace equivalent if Tr(P) = Tr(Q).

Example 3.3 (One-place buffer)
B = in.out.B
—> Tr(B) = (in- out)" - (in+ ¢)

RWTH

11 of 20 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 3: Hennessy-Milner Logic Bl and Verification Chair

Process Traces

Process Traces Il

Remarks:

e The trace language of P € Prc is accepted by the LTS of P, interpreted as a (finite or
infinite) automaton with initial state P and where every state is final.

e Trace equivalence is obviously an equivalence relation
(i.e., reflexive, symmetric, and transitive).

e Trace equivalence identifies processes with identical LTSs: the trace language of a process
consists of the (finite) paths in the LTS. Thus:

LTS(P) = LTS(Q) = Tr(P) = Tr(Q)

e Later we will see: trace equivalence is too coarse, i.e., identifies too many processes
— bisimulation

RWTH

12 of 20 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 3: Hennessy-Milner Logic ‘ Bl and Verification Chair

Hennessy-Milner Logic

Motivation

Goal: check processes for simple properties
e action ais initially enabled
e action b is initially disabled
e a deadlock never occurs
e always sends a reply after receiving a request

e formalisation in Hennessy-Milner Logic (HML)

e M. Hennessy, R. Milner: On Observing Nondeterminism and Concurrency, ICALP 1980,
Springer LNCS 85, 299-309

e checking by exploration of state space

RWTH

14 of 20 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 3: Hennessy-Milner Logic ‘ Bl and Verification Chair

Hennessy-Milner Logic

Syntax of HML
Definition 3.4 (Syntax of HML)

The set HMF of Hennessy-Milner formulae over a set of actions Act is defined by the
following syntax: £

=1t true)
ff false)
Fi N\ Fs conjunction)

(a)F diamond)

(

(

(

FiV Fs (disjunction)
(

[a]F (box)

where o € Act.

Abbreviations for L = {a4, ..., a,} (n € N):
o (L)F :={(aq)FV ...V {apF
o [L]F :=[a1]F A ... A[ap]F
e In particular, ())F := ff and [(]F := tt

RWTH

15 of 20 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 3: Hennessy-Milner Logic Bl and Verification Chair

Hennessy-Milner Logic

Meaning of HML Constructs

e All processes satisfy ftt.

e No process satisfies ff.

e A process satisfies F A G iff it satisfies F and G.

e A process satisfies F vV G iff it satisfies either F or G or both.

e A process satisfies («)F for some « € Act iff it affords an a-labelled transition to a state
satisfying F (possibility).

e A process satisfies [«]F for some a € Act iff all its a-labelled transitions lead to a state
satisfying F (necessity).

RWTH

16 of 20 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 3: Hennessy-Milner Logic ‘ Bl and Verification Chair

Hennessy-Milner Logic

Semantics of HML

Definition 3.5 (Semantics of HML)
Let (S, Act, —) be an LTS and F € HMF. The set of processes in S that satisfy F,

[F] C S, is defined by: [tt] :== S [i] :== 0
[Fi A R] =R N [F] [Fi V R] = [FR] U |[F]
[(a) F] := (-a-)([F]) [[a]F] := [-a]([F])

where (-a-), [-a-] : 2° — 25 are given by
(a)(T)={s€S|IcT:s 5}
[a](T):={s€S|Vsée€S:s—d = scT}
We write s = F iff s € [F]. Two HML formulae are equivalent (written F = G) iff
they are satisfied by the same processes in every LTS.

Example 3.6 ({-a-), [-a-] operators)

on the board

Winter Semester 2015/16
Lecture 3: Hennessy-Milner Logic Bl and Verification Chair

17 of 20 Concurrency Theory o Rm
Software Modeling

Hennessy-Milner Logic

Simple Properties Revisited
Example 3.7

1. action ais initially enabled: (a)tt
[{a)tt] = (-a)[tt] = (-a)(S)
—{sc€S8|3ecS:s- L)= {scS|s-D)}
2. action b is initially disabled: [b]ff

[[b]ff] = [-b-][ff] = [-b:](0)
—{seS|VseS:s—5 — s}
—{seS|fgeS:s-2 g} ={seS|s/>)

3. absence of deadlock:

— initially: (Act)tt

— always: later (requires recursion)
4. responsiveness:

— initially: [request|(reply)t

— always: later (requires recursion)

RWTH

18 of 20 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 3: Hennessy-Milner Logic ‘ Bl and Verification Chair

Closure under Negation

Closure under Negation

Observation: negation is not one of the HML constructs
Reason: HML is closed under negation

Lemma 3.8

For every F € HMF there exists F° € HMF such that [F°]| = S\ [F] for every LTS
(S, Act, —>).

Proof.
Definition of F€:
(FAFR) =FVF (FVFR) =FAF
(()F)® == [a]F° ([a]F)e := () F°
[F] = S\ [F]: on the board -

Lecture 3: Hennessy-Milner Logic

20 of 20 Concurrency Theory Rm
Winter Semester 2015/16 Software Modeling

Il and Verification Chair

	Recap: Calculus of Communicating Systems
	Infinite State Spaces
	Process Traces
	Hennessy-Milner Logic
	Closure under Negation

