
Concurrency Theory
Winter Semester 2015/16

Lecture 3: Hennessy-Milner Logic

Joost-Pieter Katoen and Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ws-1516/ct/

http://moves.rwth-aachen.de/teaching/ws-1516/ct/

Recap: Calculus of Communicating Systems

Outline of Lecture 3

Recap: Calculus of Communicating Systems

Infinite State Spaces

Process Traces

Hennessy-Milner Logic

Closure under Negation

2 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 3: Hennessy-Milner Logic

Recap: Calculus of Communicating Systems

Syntax of CCS I

Definition (Syntax of CCS)

• Let A be a set of (action) names.
• A := {a | a ∈ A} denotes the set of co-names.
• Act := A ∪ A ∪ {τ} is the set of actions with the silent (or: unobservable) action τ .
• Let Pid be a set of process identifiers.
• The set Prc of process expressions is defined by the following syntax:

P ::= nil (inaction)
| α.P (prefixing)
| P1 + P2 (choice)
| P1 ‖ P2 (parallel composition)
| P \ L (restriction)
| P[f] (relabelling)
| C (process call)

where α ∈ Act , L ⊆ A, C ∈ Pid , and f : Act → Act such that f (τ) = τ and f (a) = f (a) for
each a ∈ A.

3 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 3: Hennessy-Milner Logic

Recap: Calculus of Communicating Systems

Syntax of CCS II

Definition (continued)

• A (recursive) process definition is an equation system of the form

(Ci = Pi | 1 ≤ i ≤ k)

where k ≥ 1, Ci ∈ Pid (pairwise distinct), and Pi ∈ Prc (with identifiers from {C1, . . . ,Ck}).

Notational Conventions:
• a means a
•
∑n

i=1 Pi (n ∈ N) means P1 + . . . + Pn (where
∑0

i=1 Pi := nil)
• P \ a abbreviates P \ {a}
• [a1 7→ b1, . . . , an 7→ bn] stands for f : Act → Act with f (ai) = bi (i ∈ [n]) and f (α) = α

otherwise
• restriction and relabelling bind stronger than prefixing, prefixing stronger than composition,

composition stronger than choice:
P \ a + b.Q ‖ R means (P \ a) + ((b.Q) ‖ R)

4 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 3: Hennessy-Milner Logic

Recap: Calculus of Communicating Systems

Labelled Transition Systems

Goal: represent behaviour of system by (infinite) graph
• nodes = system states
• edges = transitions between states

Definition (Labelled transition system)

A (Act-)labelled transition system (LTS) is a triple (S,Act,−→) consisting of
• a set S of states
• a set Act of (action) labels
• a transition relation −→ ⊆ S × Act × S

For (s, α, s′) ∈ −→ we write s
α−→ s′. An LTS is called finite if S is so.

Remarks:
• sometimes an initial state s0 ∈ S is distinguished (“LTS(s0)”)
• (finite) LTSs correspond to (finite) automata without final states

5 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 3: Hennessy-Milner Logic

Recap: Calculus of Communicating Systems

Semantics of CCS I

Definition (Semantics of CCS)

A process definition (Ci = Pi | 1 ≤ i ≤ k) determines the LTS (Prc,Act,−→)
whose transitions can be inferred from the following rules (P,P ′,Q,Q′ ∈ Prc,
α ∈ Act , λ ∈ A ∪ A, a ∈ A):

(Act)

α.P
α−→ P

(Sum1)
P

α−→ P ′

P + Q
α−→ P ′

(Sum2)
Q

α−→ Q′

P + Q
α−→ Q′

(Par1)
P

α−→ P ′

P ‖ Q
α−→ P ′ ‖ Q

(Par2)
Q

α−→ Q′

P ‖ Q
α−→ P ‖ Q′

(Com)
P

λ−→ P ′ Q
λ−→ Q′

P ‖ Q
τ−→ P ′ ‖ Q′

(Res)

P
α−→ P ′ (α, α /∈ L)

P \ L
α−→ P ′ \ L

(Rel)
P

α−→ P ′

P[f]
f (α)−→ P ′[f]

(Call)

P
α−→ P ′ (C = P)

C
α−→ P ′

6 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 3: Hennessy-Milner Logic

Recap: Calculus of Communicating Systems

Semantics of CCS II

Example

Parallel two-place buffer: B‖ = (B[f] ‖ B[g]) \ com, B = in.out.B
where f := [out 7→ com] and g := [in 7→ com]

B‖

((out.B)[f] ‖ B[g]) \ com

((out.B)[f] ‖ (out.B)[g]) \ com

(B[f] ‖ (out.B)[g]) \ com

(B[f] ‖ B[g]) \ com empty

one entry

full

in
in

τ

out

inout

7 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 3: Hennessy-Milner Logic

Infinite State Spaces

Outline of Lecture 3

Recap: Calculus of Communicating Systems

Infinite State Spaces

Process Traces

Hennessy-Milner Logic

Closure under Negation

8 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 3: Hennessy-Milner Logic

Infinite State Spaces

The Power of Recursive Definitions

So far: only finite state spaces

Example 3.1 (Counter)

C = up.(C ‖ down.nil)

gives rise to infinite LTS (abbreviating down := down.nil):

C C ‖ down C ‖ down ‖ down . . .

C ‖ nil C ‖ down ‖ nil . . .

C ‖ nil ‖ nil . . .

up up up

up up

up

down down

down

Sequential “specification”: C0 = up.C1

Cn = up.Cn+1 + down.Cn−1 (n > 0)

9 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 3: Hennessy-Milner Logic

Infinite State Spaces

The Power of Recursive Definitions

So far: only finite state spaces

Example 3.1 (Counter)

C = up.(C ‖ down.nil)

gives rise to infinite LTS (abbreviating down := down.nil):

C C ‖ down C ‖ down ‖ down . . .

C ‖ nil C ‖ down ‖ nil . . .

C ‖ nil ‖ nil . . .

up up up

up up

up

down down

down

Sequential “specification”: C0 = up.C1

Cn = up.Cn+1 + down.Cn−1 (n > 0)

9 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 3: Hennessy-Milner Logic

Infinite State Spaces

The Power of Recursive Definitions

So far: only finite state spaces

Example 3.1 (Counter)

C = up.(C ‖ down.nil)

gives rise to infinite LTS (abbreviating down := down.nil):

C C ‖ down C ‖ down ‖ down . . .

C ‖ nil C ‖ down ‖ nil . . .

C ‖ nil ‖ nil . . .

up up up

up up

up

down down

down

Sequential “specification”: C0 = up.C1

Cn = up.Cn+1 + down.Cn−1 (n > 0)

9 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 3: Hennessy-Milner Logic

Infinite State Spaces

The Power of Recursive Definitions

So far: only finite state spaces

Example 3.1 (Counter)

C = up.(C ‖ down.nil)

gives rise to infinite LTS (abbreviating down := down.nil):

C C ‖ down C ‖ down ‖ down . . .

C ‖ nil C ‖ down ‖ nil . . .

C ‖ nil ‖ nil . . .

up up up

up up

up

down down

down

Sequential “specification”: C0 = up.C1

Cn = up.Cn+1 + down.Cn−1 (n > 0)

9 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 3: Hennessy-Milner Logic

Process Traces

Outline of Lecture 3

Recap: Calculus of Communicating Systems

Infinite State Spaces

Process Traces

Hennessy-Milner Logic

Closure under Negation

10 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 3: Hennessy-Milner Logic

Process Traces

Process Traces I

Goal: reduce processes to the action sequences they can perform

Definition 3.2 (Trace language)

For every P ∈ Prc, let

Tr(P) := {w ∈ Act∗ | ex. P ′ ∈ Prc such that P
w−→ P ′}

be the trace language of P
(where

w−→ :=
a1−→ ◦ . . . ◦ an−→ for w = a1 . . . an).

P,Q ∈ Prc are called trace equivalent if Tr(P) = Tr(Q).

Example 3.3 (One-place buffer)

B = in.out.B

=⇒ Tr(B) = (in · out)∗ · (in + ε)

11 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 3: Hennessy-Milner Logic

Process Traces

Process Traces I

Goal: reduce processes to the action sequences they can perform

Definition 3.2 (Trace language)

For every P ∈ Prc, let

Tr(P) := {w ∈ Act∗ | ex. P ′ ∈ Prc such that P
w−→ P ′}

be the trace language of P
(where

w−→ :=
a1−→ ◦ . . . ◦ an−→ for w = a1 . . . an).

P,Q ∈ Prc are called trace equivalent if Tr(P) = Tr(Q).

Example 3.3 (One-place buffer)

B = in.out.B

=⇒ Tr(B) = (in · out)∗ · (in + ε)

11 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 3: Hennessy-Milner Logic

Process Traces

Process Traces II

Remarks:
• The trace language of P ∈ Prc is accepted by the LTS of P, interpreted as a (finite or

infinite) automaton with initial state P and where every state is final.

• Trace equivalence is obviously an equivalence relation
(i.e., reflexive, symmetric, and transitive).
• Trace equivalence identifies processes with identical LTSs: the trace language of a process

consists of the (finite) paths in the LTS. Thus:

LTS(P) = LTS(Q) =⇒ Tr(P) = Tr(Q)

• Later we will see: trace equivalence is too coarse, i.e., identifies too many processes
=⇒ bisimulation

12 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 3: Hennessy-Milner Logic

Process Traces

Process Traces II

Remarks:
• The trace language of P ∈ Prc is accepted by the LTS of P, interpreted as a (finite or

infinite) automaton with initial state P and where every state is final.
• Trace equivalence is obviously an equivalence relation

(i.e., reflexive, symmetric, and transitive).

• Trace equivalence identifies processes with identical LTSs: the trace language of a process
consists of the (finite) paths in the LTS. Thus:

LTS(P) = LTS(Q) =⇒ Tr(P) = Tr(Q)

• Later we will see: trace equivalence is too coarse, i.e., identifies too many processes
=⇒ bisimulation

12 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 3: Hennessy-Milner Logic

Process Traces

Process Traces II

Remarks:
• The trace language of P ∈ Prc is accepted by the LTS of P, interpreted as a (finite or

infinite) automaton with initial state P and where every state is final.
• Trace equivalence is obviously an equivalence relation

(i.e., reflexive, symmetric, and transitive).
• Trace equivalence identifies processes with identical LTSs: the trace language of a process

consists of the (finite) paths in the LTS. Thus:

LTS(P) = LTS(Q) =⇒ Tr(P) = Tr(Q)

• Later we will see: trace equivalence is too coarse, i.e., identifies too many processes
=⇒ bisimulation

12 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 3: Hennessy-Milner Logic

Process Traces

Process Traces II

Remarks:
• The trace language of P ∈ Prc is accepted by the LTS of P, interpreted as a (finite or

infinite) automaton with initial state P and where every state is final.
• Trace equivalence is obviously an equivalence relation

(i.e., reflexive, symmetric, and transitive).
• Trace equivalence identifies processes with identical LTSs: the trace language of a process

consists of the (finite) paths in the LTS. Thus:

LTS(P) = LTS(Q) =⇒ Tr(P) = Tr(Q)

• Later we will see: trace equivalence is too coarse, i.e., identifies too many processes
=⇒ bisimulation

12 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 3: Hennessy-Milner Logic

Hennessy-Milner Logic

Outline of Lecture 3

Recap: Calculus of Communicating Systems

Infinite State Spaces

Process Traces

Hennessy-Milner Logic

Closure under Negation

13 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 3: Hennessy-Milner Logic

Hennessy-Milner Logic

Motivation

Goal: check processes for simple properties
• action a is initially enabled
• action b is initially disabled
• a deadlock never occurs
• always sends a reply after receiving a request

• formalisation in Hennessy-Milner Logic (HML)
• M. Hennessy, R. Milner: On Observing Nondeterminism and Concurrency , ICALP 1980,

Springer LNCS 85, 299–309
• checking by exploration of state space

14 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 3: Hennessy-Milner Logic

Hennessy-Milner Logic

Motivation

Goal: check processes for simple properties
• action a is initially enabled
• action b is initially disabled
• a deadlock never occurs
• always sends a reply after receiving a request

• formalisation in Hennessy-Milner Logic (HML)
• M. Hennessy, R. Milner: On Observing Nondeterminism and Concurrency , ICALP 1980,

Springer LNCS 85, 299–309
• checking by exploration of state space

14 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 3: Hennessy-Milner Logic

Hennessy-Milner Logic

Syntax of HML

Definition 3.4 (Syntax of HML)

The set HMF of Hennessy-Milner formulae over a set of actions Act is defined by the
following syntax: F ::= tt (true)

| ff (false)
| F1 ∧ F2 (conjunction)
| F1 ∨ F2 (disjunction)
| 〈α〉F (diamond)
| [α]F (box)

where α ∈ Act .

Abbreviations for L = {α1, . . . , αn} (n ∈ N):
• 〈L〉F := 〈α1〉F ∨ . . . ∨ 〈αn〉F
• [L]F := [α1]F ∧ . . . ∧ [αn]F
• In particular, 〈∅〉F := ff and [∅]F := tt

15 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 3: Hennessy-Milner Logic

Hennessy-Milner Logic

Syntax of HML

Definition 3.4 (Syntax of HML)

The set HMF of Hennessy-Milner formulae over a set of actions Act is defined by the
following syntax: F ::= tt (true)

| ff (false)
| F1 ∧ F2 (conjunction)
| F1 ∨ F2 (disjunction)
| 〈α〉F (diamond)
| [α]F (box)

where α ∈ Act .

Abbreviations for L = {α1, . . . , αn} (n ∈ N):
• 〈L〉F := 〈α1〉F ∨ . . . ∨ 〈αn〉F
• [L]F := [α1]F ∧ . . . ∧ [αn]F
• In particular, 〈∅〉F := ff and [∅]F := tt

15 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 3: Hennessy-Milner Logic

Hennessy-Milner Logic

Meaning of HML Constructs

• All processes satisfy tt.

• No process satisfies ff.
• A process satisfies F ∧ G iff it satisfies F and G.
• A process satisfies F ∨ G iff it satisfies either F or G or both.
• A process satisfies 〈α〉F for some α ∈ Act iff it affords an α-labelled transition to a state

satisfying F (possibility).
• A process satisfies [α]F for some α ∈ Act iff all its α-labelled transitions lead to a state

satisfying F (necessity).

16 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 3: Hennessy-Milner Logic

Hennessy-Milner Logic

Meaning of HML Constructs

• All processes satisfy tt.
• No process satisfies ff.

• A process satisfies F ∧ G iff it satisfies F and G.
• A process satisfies F ∨ G iff it satisfies either F or G or both.
• A process satisfies 〈α〉F for some α ∈ Act iff it affords an α-labelled transition to a state

satisfying F (possibility).
• A process satisfies [α]F for some α ∈ Act iff all its α-labelled transitions lead to a state

satisfying F (necessity).

16 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 3: Hennessy-Milner Logic

Hennessy-Milner Logic

Meaning of HML Constructs

• All processes satisfy tt.
• No process satisfies ff.
• A process satisfies F ∧ G iff it satisfies F and G.

• A process satisfies F ∨ G iff it satisfies either F or G or both.
• A process satisfies 〈α〉F for some α ∈ Act iff it affords an α-labelled transition to a state

satisfying F (possibility).
• A process satisfies [α]F for some α ∈ Act iff all its α-labelled transitions lead to a state

satisfying F (necessity).

16 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 3: Hennessy-Milner Logic

Hennessy-Milner Logic

Meaning of HML Constructs

• All processes satisfy tt.
• No process satisfies ff.
• A process satisfies F ∧ G iff it satisfies F and G.
• A process satisfies F ∨ G iff it satisfies either F or G or both.

• A process satisfies 〈α〉F for some α ∈ Act iff it affords an α-labelled transition to a state
satisfying F (possibility).
• A process satisfies [α]F for some α ∈ Act iff all its α-labelled transitions lead to a state

satisfying F (necessity).

16 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 3: Hennessy-Milner Logic

Hennessy-Milner Logic

Meaning of HML Constructs

• All processes satisfy tt.
• No process satisfies ff.
• A process satisfies F ∧ G iff it satisfies F and G.
• A process satisfies F ∨ G iff it satisfies either F or G or both.
• A process satisfies 〈α〉F for some α ∈ Act iff it affords an α-labelled transition to a state

satisfying F (possibility).

• A process satisfies [α]F for some α ∈ Act iff all its α-labelled transitions lead to a state
satisfying F (necessity).

16 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 3: Hennessy-Milner Logic

Hennessy-Milner Logic

Meaning of HML Constructs

• All processes satisfy tt.
• No process satisfies ff.
• A process satisfies F ∧ G iff it satisfies F and G.
• A process satisfies F ∨ G iff it satisfies either F or G or both.
• A process satisfies 〈α〉F for some α ∈ Act iff it affords an α-labelled transition to a state

satisfying F (possibility).
• A process satisfies [α]F for some α ∈ Act iff all its α-labelled transitions lead to a state

satisfying F (necessity).

16 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 3: Hennessy-Milner Logic

Hennessy-Milner Logic

Semantics of HML

Definition 3.5 (Semantics of HML)

Let (S,Act,−→) be an LTS and F ∈ HMF . The set of processes in S that satisfy F ,
JFK ⊆ S, is defined by: JttK := S JffK := ∅

JF1 ∧ F2K := JF1K ∩ JF2K JF1 ∨ F2K := JF1K ∪ JF2K
J〈α〉FK := 〈·α·〉(JFK) J[α]FK := [·α·](JFK)

where 〈·α·〉, [·α·] : 2S → 2S are given by

〈·α·〉(T) := {s ∈ S | ∃s′ ∈ T : s
α−→ s′}

[·α·](T) := {s ∈ S | ∀s′ ∈ S : s
α−→ s′ =⇒ s′ ∈ T}

We write s |= F iff s ∈ JFK. Two HML formulae are equivalent (written F ≡ G) iff
they are satisfied by the same processes in every LTS.

Example 3.6 (〈·α·〉, [·α·] operators)

on the board

17 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 3: Hennessy-Milner Logic

Hennessy-Milner Logic

Semantics of HML

Definition 3.5 (Semantics of HML)

Let (S,Act,−→) be an LTS and F ∈ HMF . The set of processes in S that satisfy F ,
JFK ⊆ S, is defined by: JttK := S JffK := ∅

JF1 ∧ F2K := JF1K ∩ JF2K JF1 ∨ F2K := JF1K ∪ JF2K
J〈α〉FK := 〈·α·〉(JFK) J[α]FK := [·α·](JFK)

where 〈·α·〉, [·α·] : 2S → 2S are given by

〈·α·〉(T) := {s ∈ S | ∃s′ ∈ T : s
α−→ s′}

[·α·](T) := {s ∈ S | ∀s′ ∈ S : s
α−→ s′ =⇒ s′ ∈ T}

We write s |= F iff s ∈ JFK. Two HML formulae are equivalent (written F ≡ G) iff
they are satisfied by the same processes in every LTS.

Example 3.6 (〈·α·〉, [·α·] operators)

on the board

17 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 3: Hennessy-Milner Logic

Hennessy-Milner Logic

Simple Properties Revisited

Example 3.7

1. action a is initially enabled: 〈a〉tt
J〈a〉ttK = 〈·a·〉JttK = 〈·a·〉(S)

= {s ∈ S | ∃s′ ∈ S : s a−→ s′} =: {s ∈ S | s a−→}

2. action b is initially disabled: [b]ff

J[b]ffK = [·b·]JffK = [·b·](∅)
= {s ∈ S | ∀s′ ∈ S : s b−→ s′ =⇒ s′ ∈ ∅}
= {s ∈ S | @s′ ∈ S : s b−→ s′} =: {s ∈ S | s 6 b−→}

3. absence of deadlock:
– initially: 〈Act〉tt
– always: later (requires recursion)

4. responsiveness:
– initially: [request]〈reply〉tt
– always: later (requires recursion)

18 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 3: Hennessy-Milner Logic

Hennessy-Milner Logic

Simple Properties Revisited

Example 3.7

1. action a is initially enabled: 〈a〉tt
J〈a〉ttK = 〈·a·〉JttK = 〈·a·〉(S)

= {s ∈ S | ∃s′ ∈ S : s a−→ s′} =: {s ∈ S | s a−→}
2. action b is initially disabled: [b]ff

J[b]ffK = [·b·]JffK = [·b·](∅)
= {s ∈ S | ∀s′ ∈ S : s b−→ s′ =⇒ s′ ∈ ∅}
= {s ∈ S | @s′ ∈ S : s b−→ s′} =: {s ∈ S | s 6 b−→}

3. absence of deadlock:
– initially: 〈Act〉tt
– always: later (requires recursion)

4. responsiveness:
– initially: [request]〈reply〉tt
– always: later (requires recursion)

18 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 3: Hennessy-Milner Logic

Hennessy-Milner Logic

Simple Properties Revisited

Example 3.7

1. action a is initially enabled: 〈a〉tt
J〈a〉ttK = 〈·a·〉JttK = 〈·a·〉(S)

= {s ∈ S | ∃s′ ∈ S : s a−→ s′} =: {s ∈ S | s a−→}
2. action b is initially disabled: [b]ff

J[b]ffK = [·b·]JffK = [·b·](∅)
= {s ∈ S | ∀s′ ∈ S : s b−→ s′ =⇒ s′ ∈ ∅}
= {s ∈ S | @s′ ∈ S : s b−→ s′} =: {s ∈ S | s 6 b−→}

3. absence of deadlock:
– initially: 〈Act〉tt
– always: later (requires recursion)

4. responsiveness:
– initially: [request]〈reply〉tt
– always: later (requires recursion)

18 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 3: Hennessy-Milner Logic

Hennessy-Milner Logic

Simple Properties Revisited

Example 3.7

1. action a is initially enabled: 〈a〉tt
J〈a〉ttK = 〈·a·〉JttK = 〈·a·〉(S)

= {s ∈ S | ∃s′ ∈ S : s a−→ s′} =: {s ∈ S | s a−→}
2. action b is initially disabled: [b]ff

J[b]ffK = [·b·]JffK = [·b·](∅)
= {s ∈ S | ∀s′ ∈ S : s b−→ s′ =⇒ s′ ∈ ∅}
= {s ∈ S | @s′ ∈ S : s b−→ s′} =: {s ∈ S | s 6 b−→}

3. absence of deadlock:
– initially: 〈Act〉tt
– always: later (requires recursion)

4. responsiveness:
– initially: [request]〈reply〉tt
– always: later (requires recursion)

18 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 3: Hennessy-Milner Logic

Closure under Negation

Outline of Lecture 3

Recap: Calculus of Communicating Systems

Infinite State Spaces

Process Traces

Hennessy-Milner Logic

Closure under Negation

19 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 3: Hennessy-Milner Logic

Closure under Negation

Closure under Negation

Observation: negation is not one of the HML constructs
Reason: HML is closed under negation

Lemma 3.8

For every F ∈ HMF there exists F c ∈ HMF such that JF cK = S \ JFK for every LTS
(S,Act,−→).

Proof.

Definition of F c:
ttc := ff ffc := tt

(F1 ∧ F2)
c := F c

1 ∨ F c
2 (F1 ∨ F2)

c := F c
1 ∧ F c

2
(〈α〉F)c := [α]F c ([α]F)c := 〈α〉F c

JF cK = S \ JFK: on the board

20 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 3: Hennessy-Milner Logic

Closure under Negation

Closure under Negation

Observation: negation is not one of the HML constructs
Reason: HML is closed under negation

Lemma 3.8

For every F ∈ HMF there exists F c ∈ HMF such that JF cK = S \ JFK for every LTS
(S,Act,−→).

Proof.

Definition of F c:
ttc := ff ffc := tt

(F1 ∧ F2)
c := F c

1 ∨ F c
2 (F1 ∨ F2)

c := F c
1 ∧ F c

2
(〈α〉F)c := [α]F c ([α]F)c := 〈α〉F c

JF cK = S \ JFK: on the board

20 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 3: Hennessy-Milner Logic

Closure under Negation

Closure under Negation

Observation: negation is not one of the HML constructs
Reason: HML is closed under negation

Lemma 3.8

For every F ∈ HMF there exists F c ∈ HMF such that JF cK = S \ JFK for every LTS
(S,Act,−→).

Proof.

Definition of F c:
ttc := ff ffc := tt

(F1 ∧ F2)
c := F c

1 ∨ F c
2 (F1 ∨ F2)

c := F c
1 ∧ F c

2
(〈α〉F)c := [α]F c ([α]F)c := 〈α〉F c

JF cK = S \ JFK: on the board

20 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 3: Hennessy-Milner Logic

Closure under Negation

Closure under Negation

Observation: negation is not one of the HML constructs
Reason: HML is closed under negation

Lemma 3.8

For every F ∈ HMF there exists F c ∈ HMF such that JF cK = S \ JFK for every LTS
(S,Act,−→).

Proof.

Definition of F c:
ttc := ff ffc := tt

(F1 ∧ F2)
c := F c

1 ∨ F c
2 (F1 ∨ F2)

c := F c
1 ∧ F c

2
(〈α〉F)c := [α]F c ([α]F)c := 〈α〉F c

JF cK = S \ JFK: on the board

20 of 20 Concurrency Theory

Winter Semester 2015/16
Lecture 3: Hennessy-Milner Logic

	Recap: Calculus of Communicating Systems
	Infinite State Spaces
	Process Traces
	Hennessy-Milner Logic
	Closure under Negation

