

Concurrency Theory

- Winter Semester 2015/16
- Lecture 3: Hennessy-Milner Logic
- Joost-Pieter Katoen and Thomas Noll Software Modeling and Verification Group RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ws-1516/ct/

Outline of Lecture 3

Recap: Calculus of Communicating Systems

Infinite State Spaces

Process Traces

Hennessy-Milner Logic

Closure under Negation

Syntax of CCS I

Definition (Syntax of CCS)

- Let *A* be a set of (action) names.
- $\overline{A} := {\overline{a} \mid a \in A}$ denotes the set of co-names.
- Act := $A \cup \overline{A} \cup \{\tau\}$ is the set of actions with the silent (or: unobservable) action τ .
- Let *Pid* be a set of process identifiers.
- The set *Prc* of process expressions is defined by the following syntax:

$$P ::= nil$$
(inaction) $| \alpha.P$ (prefixing) $| P_1 + P_2$ (choice) $| P_1 || P_2$ (parallel composition) $| P \setminus L$ (restriction) $| P[f]$ (relabelling) $| C$ (process call)

where $\alpha \in Act$, $L \subseteq A$, $C \in Pid$, and $f : Act \to Act$ such that $f(\tau) = \tau$ and $f(\overline{a}) = f(a)$ for each $a \in A$.

3 of 20

Syntax of CCS II

Definition (continued)

• A (recursive) process definition is an equation system of the form

$$(C_i = P_i \mid 1 \leq i \leq k)$$

where $k \ge 1$, $C_i \in Pid$ (pairwise distinct), and $P_i \in Prc$ (with identifiers from $\{C_1, \ldots, C_k\}$).

Notational Conventions:

- a means a
- $\sum_{i=1}^{n} P_i$ ($n \in \mathbb{N}$) means $P_1 + \ldots + P_n$ (where $\sum_{i=1}^{0} P_i := nil$)
- $P \setminus a$ abbreviates $P \setminus \{a\}$
- $[a_1 \mapsto b_1, \ldots, a_n \mapsto b_n]$ stands for $f : Act \to Act$ with $f(a_i) = b_i$ ($i \in [n]$) and $f(\alpha) = \alpha$ otherwise
- restriction and relabelling bind stronger than prefixing, prefixing stronger than composition, composition stronger than choice:

 $P \setminus a + b.Q \parallel R$ means $(P \setminus a) + ((b.Q) \parallel R)$

Recap: Calculus of Communicating Systems

Labelled Transition Systems

Goal: represent behaviour of system by (infinite) graph

- nodes = system states
- edges = transitions between states

Definition (Labelled transition system)

A (*Act*-)labelled transition system (LTS) is a triple (S, Act, \rightarrow) consisting of

- a set *S* of states
- a set Act of (action) labels
- a transition relation $\longrightarrow \subseteq S \times Act \times S$

For $(s, \alpha, s') \in \longrightarrow$ we write $s \xrightarrow{\alpha} s'$. An LTS is called finite if S is so.

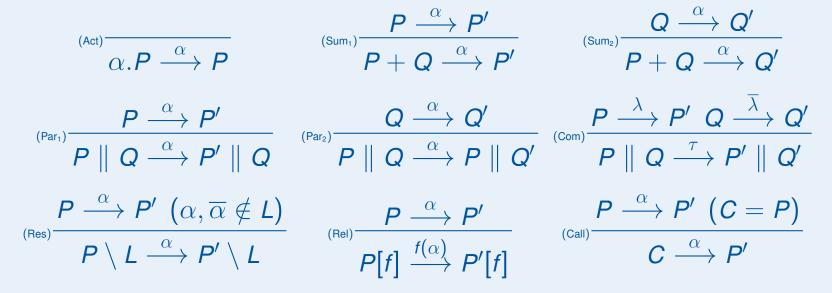
Remarks:

- sometimes an initial state $s_0 \in S$ is distinguished (" $LTS(s_0)$ ")
- (finite) LTSs correspond to (finite) automata without final states

Semantics of CCS I

Definition (Semantics of CCS)

A process definition $(C_i = P_i \mid 1 \le i \le k)$ determines the LTS $(Prc, Act, \longrightarrow)$ whose transitions can be inferred from the following rules $(P, P', Q, Q' \in Prc, \alpha \in Act, \lambda \in A \cup \overline{A}, a \in A)$:

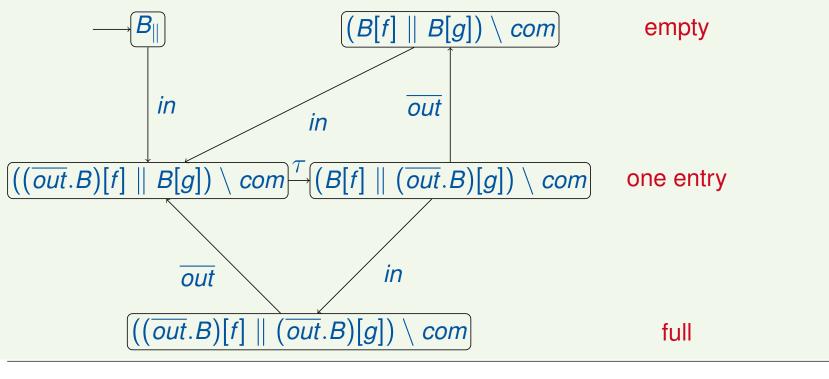


Semantics of CCS II

Example

7 of 20

Parallel two-place buffer: $B_{\parallel} = (B[f] \parallel B[g]) \setminus com, B = in.\overline{out}.B$ where $f := [out \mapsto com]$ and $g := [in \mapsto com]$



Outline of Lecture 3

Recap: Calculus of Communicating Systems

Infinite State Spaces

Process Traces

Hennessy-Milner Logic

Closure under Negation

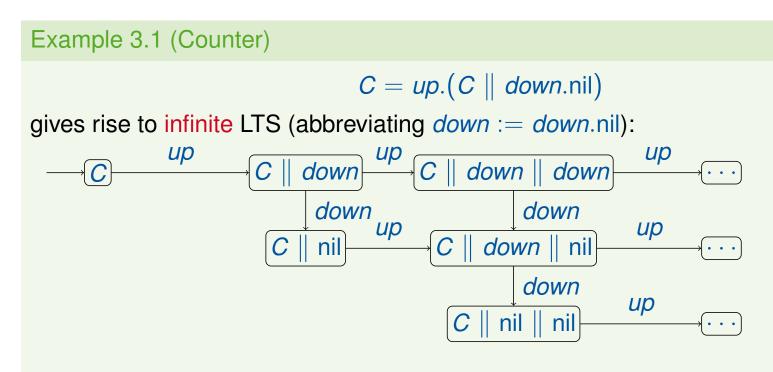
So far: only finite state spaces

So far: only finite state spaces

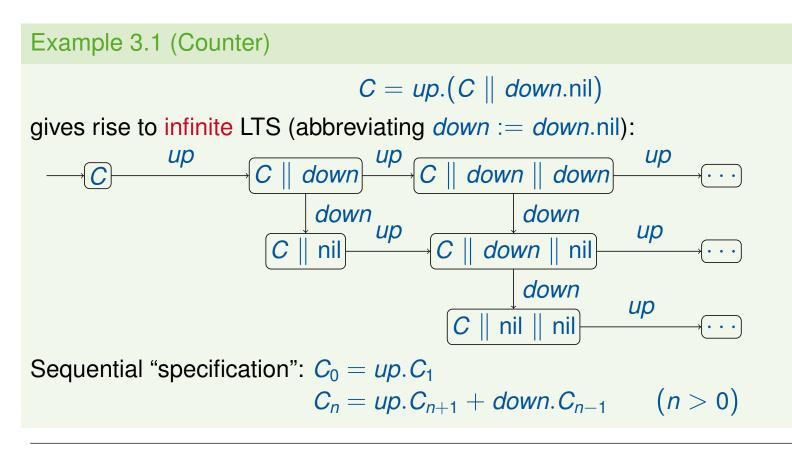
Example 3.1 (Counter)

 $C = up.(C \parallel down.nil)$

So far: only finite state spaces



So far: only finite state spaces



Concurrency Theory Winter Semester 2015/16 Lecture 3: Hennessy-Milner Logic

9 of 20

Outline of Lecture 3

Recap: Calculus of Communicating Systems

Infinite State Spaces

Process Traces

Hennessy-Milner Logic

Closure under Negation

Goal: reduce processes to the action sequences they can perform

```
Definition 3.2 (Trace language)
```

For every $P \in Prc$, let $Tr(P) := \{ w \in Act^* \mid ex. P' \in Prc \text{ such that } P \xrightarrow{w} P' \}$ be the trace language of P(where $\xrightarrow{w} := \xrightarrow{a_1} \circ \ldots \circ \xrightarrow{a_n}$ for $w = a_1 \ldots a_n$). $P, Q \in Prc$ are called trace equivalent if Tr(P) = Tr(Q).

Goal: reduce processes to the action sequences they can perform

```
Definition 3.2 (Trace language)
```

For every $P \in Prc$, let $Tr(P) := \{ w \in Act^* \mid ex. P' \in Prc \text{ such that } P \xrightarrow{w} P' \}$ be the trace language of P(where $\xrightarrow{w} := \xrightarrow{a_1} \circ \ldots \circ \xrightarrow{a_n}$ for $w = a_1 \ldots a_n$). $P, Q \in Prc$ are called trace equivalent if Tr(P) = Tr(Q).

Example 3.3 (One-place buffer)

 $B = in.\overline{out}.B$

$$\implies$$
 Tr(B) = $(in \cdot \overline{out})^* \cdot (in + \varepsilon)$

Remarks:

• The trace language of *P* ∈ *Prc* is accepted by the LTS of *P*, interpreted as a (finite or infinite) automaton with initial state *P* and where every state is final.

Remarks:

- The trace language of *P* ∈ *Prc* is accepted by the LTS of *P*, interpreted as a (finite or infinite) automaton with initial state *P* and where every state is final.
- Trace equivalence is obviously an equivalence relation (i.e., reflexive, symmetric, and transitive).

Remarks:

- The trace language of *P* ∈ *Prc* is accepted by the LTS of *P*, interpreted as a (finite or infinite) automaton with initial state *P* and where every state is final.
- Trace equivalence is obviously an equivalence relation (i.e., reflexive, symmetric, and transitive).
- Trace equivalence identifies processes with identical LTSs: the trace language of a process consists of the (finite) paths in the LTS. Thus:

$$LTS(P) = LTS(Q) \implies Tr(P) = Tr(Q)$$

Remarks:

- The trace language of *P* ∈ *Prc* is accepted by the LTS of *P*, interpreted as a (finite or infinite) automaton with initial state *P* and where every state is final.
- Trace equivalence is obviously an equivalence relation (i.e., reflexive, symmetric, and transitive).
- Trace equivalence identifies processes with identical LTSs: the trace language of a process consists of the (finite) paths in the LTS. Thus:

$$LTS(P) = LTS(Q) \implies Tr(P) = Tr(Q)$$

Later we will see: trace equivalence is too coarse, i.e., identifies too many processes
bisimulation

Outline of Lecture 3

Recap: Calculus of Communicating Systems

Infinite State Spaces

Process Traces

Hennessy-Milner Logic

Closure under Negation

Motivation

Goal: check processes for simple properties

- action *a* is initially enabled
- action *b* is initially disabled
- a deadlock never occurs
- always sends a reply after receiving a request

Motivation

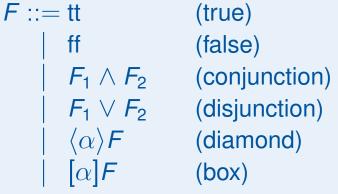
Goal: check processes for simple properties

- action *a* is initially enabled
- action *b* is initially disabled
- a deadlock never occurs
- always sends a reply after receiving a request
- formalisation in Hennessy-Milner Logic (HML)
- M. Hennessy, R. Milner: On Observing Nondeterminism and Concurrency, ICALP 1980, Springer LNCS 85, 299–309
- checking by exploration of state space

Syntax of HML

Definition 3.4 (Syntax of HML)

The set *HMF* of Hennessy-Milner formulae over a set of actions *Act* is defined by the following syntax: E := tt (true)



where $\alpha \in Act$.

Syntax of HML

Definition 3.4 (Syntax of HML)

The set *HMF* of Hennessy-Milner formulae over a set of actions *Act* is defined by the following syntax: F ::= tt (true)

:= tt	(true)
ff	(false)
$ F_1 \wedge F_2$	(conjunction)
$ F_1 \vee F_2$	(disjunction)
$ \langle \alpha \rangle F$	(diamond)
$\mid [\alpha]F$	(box)

where $\alpha \in Act$.

15 of 20

Abbreviations for
$$L = \{\alpha_1, \ldots, \alpha_n\}$$
 $(n \in \mathbb{N})$:

- $\langle L \rangle F := \langle \alpha_1 \rangle F \vee \ldots \vee \langle \alpha_n \rangle F$
- $[L]F := [\alpha_1]F \land \ldots \land [\alpha_n]F$
- In particular, $\langle \emptyset \rangle F := \text{ff and } [\emptyset] F := \text{tt}$

• All processes satisfy tt.

- All processes satisfy tt.
- No process satisfies ff.

- All processes satisfy tt.
- No process satisfies ff.
- A process satisfies $F \wedge G$ iff it satisfies F and G.

- All processes satisfy tt.
- No process satisfies ff.
- A process satisfies $F \wedge G$ iff it satisfies F and G.
- A process satisfies $F \lor G$ iff it satisfies either F or G or both.

- All processes satisfy tt.
- No process satisfies ff.
- A process satisfies $F \wedge G$ iff it satisfies F and G.
- A process satisfies $F \lor G$ iff it satisfies either F or G or both.
- A process satisfies ⟨α⟩ F for some α ∈ Act iff it affords an α-labelled transition to a state satisfying F (possibility).

- All processes satisfy tt.
- No process satisfies ff.
- A process satisfies $F \wedge G$ iff it satisfies F and G.
- A process satisfies $F \lor G$ iff it satisfies either F or G or both.
- A process satisfies ⟨α⟩ F for some α ∈ Act iff it affords an α-labelled transition to a state satisfying F (possibility).
- A process satisfies [α] F for some α ∈ Act iff all its α-labelled transitions lead to a state satisfying F (necessity).

Semantics of HML

Definition 3.5 (Semantics of HML)

Let (S, Act, \rightarrow) be an LTS and $F \in HMF$. The set of processes in S that satisfy F, $\llbracket F \rrbracket \subseteq S$, is defined by: $\llbracket tt \rrbracket := S$ $\llbracket ft \rrbracket := \emptyset$ $\llbracket F_1 \land F_2 \rrbracket := \llbracket F_1 \rrbracket \cap \llbracket F_2 \rrbracket$ $\llbracket F_1 \lor F_2 \rrbracket := \llbracket F_1 \rrbracket \cup \llbracket F_2 \rrbracket$ $\llbracket \langle \alpha \rangle F \rrbracket := \langle \cdot \alpha \cdot \rangle (\llbracket F \rrbracket)$ $\llbracket [\alpha] F \rrbracket := \llbracket \cdot \alpha \cdot] (\llbracket F \rrbracket)$ where $\langle \cdot \alpha \cdot \rangle, [\cdot \alpha \cdot] : 2^S \rightarrow 2^S$ are given by $\langle \cdot \alpha \cdot \rangle (T) := \{s \in S \mid \exists s' \in T : s \xrightarrow{\alpha} s'\}$ $\llbracket \cdot \alpha \cdot] (T) := \{s \in S \mid \forall s' \in S : s \xrightarrow{\alpha} s' \implies s' \in T\}$

We write $s \models F$ iff $s \in [F]$. Two HML formulae are equivalent (written $F \equiv G$) iff they are satisfied by the same processes in every LTS.

Semantics of HML

Definition 3.5 (Semantics of HML)

Let $(S, Act, \longrightarrow)$ be an LTS and $F \in HMF$. The set of processes in S that satisfy F, $\llbracket F \rrbracket \subseteq S$, is defined by: $\llbracket tt \rrbracket := S$ $\llbracket ft \rrbracket := \emptyset$ $\llbracket F_1 \land F_2 \rrbracket := \llbracket F_1 \rrbracket \cap \llbracket F_2 \rrbracket$ $\llbracket F_1 \lor F_2 \rrbracket := \llbracket F_1 \rrbracket \cup \llbracket F_2 \rrbracket$ $\llbracket \langle \alpha \rangle F \rrbracket := \langle \cdot \alpha \cdot \rangle (\llbracket F \rrbracket)$ $\llbracket [\alpha] F \rrbracket := \llbracket \cdot \alpha \cdot] (\llbracket F \rrbracket)$ where $\langle \cdot \alpha \cdot \rangle, [\cdot \alpha \cdot] : 2^S \to 2^S$ are given by $\langle \cdot \alpha \cdot \rangle (T) := \{ s \in S \mid \exists s' \in T : s \xrightarrow{\alpha} s' \}$ $\llbracket \cdot \alpha \cdot] (T) := \{ s \in S \mid \forall s' \in S : s \xrightarrow{\alpha} s' \implies s' \in T \}$

We write $s \models F$ iff $s \in [[F]]$. Two HML formulae are equivalent (written $F \equiv G$) iff they are satisfied by the same processes in every LTS.

Example 3.6 ($\langle \cdot \alpha \cdot \rangle$, [$\cdot \alpha \cdot$] operators)

on the board

17 of 20

Example 3.7

1. action *a* is initially enabled: $\langle a \rangle$ tt

$$\begin{split} \llbracket \langle a \rangle \mathsf{tt} \rrbracket &= \langle \cdot a \cdot \rangle \llbracket \mathsf{tt} \rrbracket = \langle \cdot a \cdot \rangle (S) \\ &= \{ s \in S \mid \exists s' \in S : s \xrightarrow{a} s' \} =: \{ s \in S \mid s \xrightarrow{a} \} \end{split}$$

Example 3.7

18 of 20

1. action *a* is initially enabled: $\langle a \rangle$ tt $\begin{bmatrix} \langle a \rangle \text{tt} \end{bmatrix} = \langle \cdot a \cdot \rangle \llbracket \text{tt} \end{bmatrix} = \langle \cdot a \cdot \rangle (S)$ $= \{ s \in S \mid \exists s' \in S : s \xrightarrow{a} s' \} =: \{ s \in S \mid s \xrightarrow{a} \}$ 2. action *b* is initially disabled: [*b*]ff $\begin{bmatrix} [b] \text{ff} \end{bmatrix} = [\cdot b \cdot] \llbracket \text{ff} \end{bmatrix} = [\cdot b \cdot] (\emptyset)$ $= \{ s \in S \mid \forall s' \in S : s \xrightarrow{b} s' \implies s' \in \emptyset \}$ $= \{ s \in S \mid \nexists s' \in S : s \xrightarrow{b} s' \} =: \{ s \in S \mid s \xrightarrow{b} \}$

Example 3.7

- 1. action *a* is initially enabled: $\langle a \rangle$ tt $\begin{bmatrix} \langle a \rangle \text{tt} \end{bmatrix} = \langle \cdot a \cdot \rangle \llbracket \text{tt} \end{bmatrix} = \langle \cdot a \cdot \rangle (S)$ $= \{ s \in S \mid \exists s' \in S : s \xrightarrow{a} s' \} =: \{ s \in S \mid s \xrightarrow{a} \}$ 2. action *b* is initially disabled: [*b*]ff $\llbracket [b] \text{ff} \rrbracket = \llbracket \cdot b \cdot] \llbracket \text{ff} \rrbracket = \llbracket \cdot b \cdot] (\emptyset)$ $= \{ s \in S \mid \forall s' \in S : s \xrightarrow{b} s' \implies s' \in \emptyset \}$ $= \{ s \in S \mid \nexists s' \in S : s \xrightarrow{b} s' \} =: \{ s \in S \mid s \xrightarrow{b} \}$
- 3. absence of deadlock:
 - initially: $\langle Act \rangle$ tt
 - always: later (requires recursion)

Example 3.7

1. action *a* is initially enabled: $\langle a \rangle$ tt

$$\llbracket \langle a \rangle \mathsf{tt} \rrbracket = \langle \cdot a \cdot \rangle \llbracket \mathsf{tt} \rrbracket = \langle \cdot a \cdot \rangle (S) \\ = \{ s \in S \mid \exists s' \in S : s \xrightarrow{a} s' \} =: \{ s \in S \mid s \xrightarrow{a} \}$$

2. action *b* is initially disabled: [*b*]ff

$$\begin{split} \llbracket [b] \mathsf{ff} \rrbracket &= \llbracket \cdot b \cdot \rrbracket \llbracket \mathsf{ff} \rrbracket = \llbracket \cdot b \cdot \rrbracket (\emptyset) \\ &= \{ s \in S \mid \forall s' \in S : s \xrightarrow{b} s' \implies s' \in \emptyset \} \\ &= \{ s \in S \mid \nexists s' \in S : s \xrightarrow{b} s' \} =: \{ s \in S \mid s \not\xrightarrow{b} \} \end{split}$$

- 3. absence of deadlock:
 - initially: $\langle Act \rangle$ tt
 - always: later (requires recursion)
- 4. responsiveness:
 - initially: $[request]\langle \overline{reply} \rangle$ tt
 - always: later (requires recursion)

Outline of Lecture 3

Recap: Calculus of Communicating Systems

Infinite State Spaces

Process Traces

Hennessy-Milner Logic

Closure under Negation

Observation: negation is *not* one of the HML constructs **Reason:** HML is closed under negation

Observation: negation is *not* one of the HML constructs **Reason:** HML is closed under negation

Lemma 3.8

For every $F \in HMF$ there exists $F^c \in HMF$ such that $\llbracket F^c \rrbracket = S \setminus \llbracket F \rrbracket$ for every LTS $(S, Act, \longrightarrow)$.

Observation: negation is *not* one of the HML constructs **Reason:** HML is closed under negation

Lemma 3.8

For every $F \in HMF$ there exists $F^c \in HMF$ such that $\llbracket F^c \rrbracket = S \setminus \llbracket F \rrbracket$ for every LTS $(S, Act, \longrightarrow)$.

Proof.

Definition of *F^c*:

$$\begin{array}{ll} \operatorname{tt}^{c} := \operatorname{ff} & \operatorname{ff}^{c} := \operatorname{tt} \\ (F_{1} \wedge F_{2})^{c} := F_{1}^{c} \vee F_{2}^{c} & (F_{1} \vee F_{2})^{c} := F_{1}^{c} \wedge F_{2}^{c} \\ (\langle \alpha \rangle F)^{c} := [\alpha] F^{c} & ([\alpha] F)^{c} := \langle \alpha \rangle F^{c} \end{array}$$

Observation: negation is *not* one of the HML constructs **Reason:** HML is closed under negation

Lemma 3.8

For every $F \in HMF$ there exists $F^c \in HMF$ such that $\llbracket F^c \rrbracket = S \setminus \llbracket F \rrbracket$ for every LTS $(S, Act, \longrightarrow)$.

Proof.

20 of 20

Definition of *F^c*:

$$\begin{aligned} \mathsf{tt}^c &:= \mathsf{ff} & \mathsf{ff}^c := \mathsf{tt} \\ (F_1 \wedge F_2)^c &:= F_1^c \vee F_2^c & (F_1 \vee F_2)^c := F_1^c \wedge F_2^c \\ (\langle \alpha \rangle F)^c &:= [\alpha] F^c & ([\alpha] F)^c := \langle \alpha \rangle F^c \end{aligned}$$

 $\llbracket F^c \rrbracket = S \setminus \llbracket F \rrbracket$: on the board

