Winter Semester 2015/16

Lecture 12: Strong Bisimulation

Joost-Pieter Katoen and Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ws-1516/ct/

’ Software Modeling

‘ Il and Verification Chair

http://moves.rwth-aachen.de/teaching/ws-1516/ct/

Recap: Trace Equivalence

Outline of Lecture 12

Recap: Trace Equivalence

RWTH

20of 23 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 12: Strong Bisimulation ‘ Bl and Verification Chair

Recap: Trace Equivalence

Trace Equivalence

e Trace equivalence is a possible behavioural equivalence, is a congruence, but does not
preserve deadlocks.

RWTH

30f 23 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 12: Strong Bisimulation ‘ Bl and Verification Chair

Recap: Trace Equivalence

Trace Equivalence

e Trace equivalence is a possible behavioural equivalence, is a congruence, but does not
preserve deadlocks.

e Main problem:
a.(P+ Q) = a.P+ a.Q,
whereas their deadlock behaviour in a context can differ.

RWTH

30f 23 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 12: Strong Bisimulation ‘ Bl and Verification Chair

Recap: Trace Equivalence

Trace Equivalence

e Trace equivalence is a possible behavioural equivalence, is a congruence, but does not
preserve deadlocks.

e Main problem:
a.(P+ Q) = a.P+ a.Q,
whereas their deadlock behaviour in a context can differ.
e Solution: consider finer behavioural equivalences such that:

a(P+Q) # a.P+a.Q

RWTH

30f 23 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 12: Strong Bisimulation ‘ Bl and Verification Chair

Recap: Trace Equivalence

Trace Equivalence

e Trace equivalence is a possible behavioural equivalence, is a congruence, but does not
preserve deadlocks.

e Main problem:
a.(P+ Q) = a.P+ a.Q,
whereas their deadlock behaviour in a context can differ.
e Solution: consider finer behavioural equivalences such that:
a(P+Q) # a.P+a.Q
e Our (serious) attempt today: Milner’s strong bisimulation.

Robin Milner (1934—2010)

30f 23 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 12: Strong Bisimulation ‘ Bl and Verification Chair

RWTH

Bisimulation

Outline of Lecture 12

Bisimulation
4 of 23 Concurrency Theory
Winter Semester 2015/16 o Rm

Lecture 12: Strong Bisimulation

4

Software Modeling
Il and Verification Chair

Bisimulation

Rationale

Observation

In order for a behavioural equivalence to be deadlock sensitive, it has to take the
branching structure of processes into account.

RWTH

5 of 23 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 12: Strong Bisimulation ‘ Bl and Verification Chair

Bisimulation

Rationale

Observation

In order for a behavioural equivalence to be deadlock sensitive, it has to take the
branching structure of processes into account.

This is achieved by an equivalence that is defined according to the scheme:
Bisimulation scheme

P, Q € Prc are equivalent iff, for every action «, every c-successor of P is equivalent
to some a-successor of Q, and vice versa.

RWTH

5 of 23 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 12: Strong Bisimulation ‘ Bl and Verification Chair

Bisimulation

Rationale

Observation

In order for a behavioural equivalence to be deadlock sensitive, it has to take the
branching structure of processes into account.

This is achieved by an equivalence that is defined according to the scheme:
Bisimulation scheme

P, Q € Prc are equivalent iff, for every action «, every c-successor of P is equivalent
to some a-successor of Q, and vice versa.

Three versions will be considered in this course:

1. Strong bisimulation: ignore the special function of 7-actions
2. Weak bisimulation: treat 7-actions as invisible

3. Simulation relations: unidirectional versions of bisimulation

RWTH

5 of 23 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 12: Strong Bisimulation ‘ Bl and Verification Chair

Bisimulation

Strong Bisimulation |

Definition 12.1 (Strong bisimulation) (Park 1981, Milner 1989)

A binary relation p € Prc X Prcis a strong bisimulation whenever for every
(P,Q) € pand « € Act:

1.if P -+ P/, then there exists Q' € Prc such that @ —— Q' and (P’, @) < p, and
2. if @ %5 @, then there exists P’ € Prc such that P —— P"and (P, Q') € p.

RWTH

6 of 23 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 12: Strong Bisimulation ‘ Bl and Verification Chair

Bisimulation

Strong Bisimulation |

Definition 12.1 (Strong bisimulation) (Park 1981, Milner 1989)

A binary relation p € Prc X Prcis a strong bisimulation whenever for every
(P,Q) € pand « € Act:

1.if P -+ P/, then there exists Q' € Prc such that @ —— Q' and (P’, @) < p, and
2. if @ %5 @, then there exists P’ € Prc such that P —— P"and (P, Q') € p.

Definition 12.2 (Strong bisimilarity)

Processes P and Q are strongly bisimilar, denoted P ~ Q, iff there is a strong
bisimulation p with (P, Q) € p.

RWTH

6 of 23 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 12: Strong Bisimulation Bl and Verification Chair

Bisimulation

Strong Bisimulation |

Definition 12.1 (Strong bisimulation) (Park 1981, Milner 1989)

A binary relation p € Prc X Prcis a strong bisimulation whenever for every
(P,Q) € pand « € Act:

1.if P -+ P/, then there exists Q' € Prc such that @ —— Q' and (P’, @) < p, and
2. if @ %5 @, then there exists P’ € Prc such that P —— P"and (P, Q') € p.

Definition 12.2 (Strong bisimilarity)

Processes P and Q are strongly bisimilar, denoted P ~ Q, iff there is a strong
bisimulation p with (P, Q) € p. Thus,

~ = U {p | pis a strong bisimulation}.

RWTH

6 of 23 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 12: Strong Bisimulation Bl and Verification Chair

Bisimulation

Strong Bisimulation |

Definition 12.1 (Strong bisimulation) (Park 1981, Milner 1989)

A binary relation p € Prc X Prcis a strong bisimulation whenever for every
(P,Q) € pand « € Act:

1.if P -+ P/, then there exists Q' € Prc such that @ —— Q' and (P’, @) < p, and
2. if @ %5 @, then there exists P’ € Prc such that P —— P"and (P, Q') € p.

Definition 12.2 (Strong bisimilarity)

Processes P and Q are strongly bisimilar, denoted P ~ Q, iff there is a strong
bisimulation p with (P, Q) € p. Thus,

~ = U {p | pis a strong bisimulation}.
Relation ~ is called strong bisimilarity.

RWTH

6 of 23 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 12: Strong Bisimulation Bl and Verification Chair

Bisimulation

Strong Bisimulation Il

P — P

can be completed to

P — P

0

%

Q> Q

7 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

.

4

Software Modeling
Il and Verification Chair

RWTH

Bisimulation

Strong Bisimulation Il

P — P P — P
Iy, can be completedto p I,

Q Q — Q

and
o /
P P -2 P
Iy, can be completedto p I
(07 07
Q — Q@ Q — Q@
7 of 23 Concurrency Theory
Winter Semester 2015/16 o Soft Modeli Rm
Lecture 12: Strong Bisimulation ‘ m aﬂd‘\':":rrﬁica?ioi'gﬂair

Bisimulation

Examples

Example 12.3 (A first example)

Claim: P ~ Qwhere P = a.P;+ a.P»
P; b.P,
P b.P,

Q_

Q

3.01
b.Cy

8 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

)

4

Software Modeling
Il and Verification Chair

‘RW“-I

Bisimulation

Examples

Example 12.3 (A first example)

Claim: P ~ Qwhere P = a.P;+ a.P Q = a.Q; Proof:
Py = b.P; Q; = b.Qy4
P2 — ng

p=1{(P,Q), (P, Q),(P:, Q) } is a strong bisimulation

8 of 23 Concurrency Theory o Rm
Software Modeling

Winter Semester 2015/16
Lecture 12: Strong Bisimulation Bl and Verification Chair

Bisimulation

Examples

Example 12.3 (A first example)

Claim: P ~ Qwhere P = a.P;+ a.P Q = a.Q; Proof:
Py = b.P; Q = b.Qj
P2 — ng

p=1{(P,Q), (P, Q),(P:, Q) } is a strong bisimulation

Example 12.4 (Relating a finite to an infinite-state process)

Claim: Py ~ Qwhere P, = a.P,. fori € Nand Q = a.Q.

RWTH

8 of 23 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 12: Strong Bisimulation Bl and Verification Chair

Bisimulation

Examples

Example 12.3 (A first example)

Claim: P ~ Qwhere P = a.P;+ a.P Q = a.Q; Proof:
Py = b.Ps> Q = b.()
P2 — ng

p=1{(P,Q), (P, Q),(P:, Q) } is a strong bisimulation

Example 12.4 (Relating a finite to an infinite-state process)

Claim: Py ~ Qwhere P, = a.P,. fori € Nand Q = a.Q.
Proof: p = {(P;, Q) | i € N} is a strong bisimulation.

RWTH

8 of 23 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 12: Strong Bisimulation Bl and Verification Chair

Bisimulation

Examples

Example 12.3 (A first example)

Claim: P ~ Qwhere P = a.P;+ a.P Q = a.Q; Proof:
Py = b.Ps> Q = b.()
P2 — ng

p=1{(P,Q), (P, Q),(P:, Q) } is a strong bisimulation

Example 12.4 (Relating a finite to an infinite-state process)

Claim: Py ~ Qwhere P, = a.P,. fori € Nand Q = a.Q.
Proof: p = {(P;, Q) | i € N} is a strong bisimulation.

Example 12.5 (Counterexample; cf. Example 11.9)

Show on board that CTM ~ CTM' where

CTM = coin. (coffee. CTM + tea.CTM)
CTM’ = coin.coffee.CTM’ + coin.tea.CTM..

RWTH

8 of 23 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 12: Strong Bisimulation Bl and Verification Chair

Bisimulation

Properties of Strong Bisimilarity
Lemma 12.6 (Properties of ~)

1. ~ Is an equivalence relation (i.e., reflexive, symmetric, and transitive)

RWTH

9 of 23 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 12: Strong Bisimulation ‘ Bl and Verification Chair

Bisimulation

Properties of Strong Bisimilarity
Lemma 12.6 (Properties of ~)

1. ~ Is an equivalence relation (i.e., reflexive, symmetric, and transitive)
2. ~ IS the coarsest strong bisimulation

RWTH

9 of 23 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 12: Strong Bisimulation ‘ Bl and Verification Chair

Bisimulation

Properties of Strong Bisimilarity

Lemma 12.6 (Properties of ~)

1. ~ Is an equivalence relation (i.e., reflexive, symmetric, and transitive)
2. ~ IS the coarsest strong bisimulation

Proof.
on the board

RWTH

9 of 23 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 12: Strong Bisimulation ‘ B and Verification Chair

Bisimulation and Trace Equivalence

Outline of Lecture 12

Bisimulation and Trace Equivalence

10 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

.

4

Software Modeling
Il and Verification Chair

RWTH

Bisimulation and Trace Equivalence

Bisimulation on Paths
Lemma 12.7 (Bisimulation on paths)

Whenever we have:
Po - P, 5 P, =5 Py S Py

0
Qo

RWTH

11 of 23 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 12: Strong Bisimulation ‘ Bl and Verification Chair

Bisimulation and Trace Equivalence

Bisimulation on Paths
Lemma 12.7 (Bisimulation on paths)

Whenever we have:
Po =5 Py =2 P, = Py 5 Py

P
Co
this can be completed to
(8 (0 (07 (8
= 0 —1> = 1 —2> =) —3> = 3 —4> P 4ovenn.
p p p p p
(0 (8 (07 (8
@) — Q; — @) — @ — Qp......
11 of 23 Concurrency Theor
Winter Sem)(/ester 20y1 5/16 o Software Modeling Rm
Lecture 12: Strong Bisimulation ‘ Bl and Verification Chair

Bisimulation and Trace Equivalence

Bisimulation on Paths
Lemma 12.7 (Bisimulation on paths)
Whenever we have:

Po =% Py =% P, =% Py 25 Py

0

Co
this can be completed to

P, — P 2 Py =% Py 5 Py
p p p p p
Qo —5 Q - Q@ =5 3 - Qq......

Proof.
by induction on the length of the path

RWTH

11 of 23 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 12: Strong Bisimulation ‘ Bl and Verification Chair

Bisimulation and Trace Equivalence

Strong Bisimulation vs. Trace Equivalence

Theorem 12.8

P ~ Q implies that P and Q) are trace equivalent. The reverse does generally not
hold.

RWTH

12 of 23 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 12: Strong Bisimulation ‘ Bl and Verification Chair

Bisimulation and Trace Equivalence

Strong Bisimulation vs. Trace Equivalence

Theorem 12.8

P ~ Q implies that P and Q) are trace equivalent. The reverse does generally not
hold.

Proof.

The implication from left to right follows from the previous slide.

RWTH

12 of 23 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 12: Strong Bisimulation ‘ B and Verification Chair

Bisimulation and Trace Equivalence

Strong Bisimulation vs. Trace Equivalence

Theorem 12.8

P ~ Q implies that P and Q) are trace equivalent. The reverse does generally not
hold.

Proof.
The implication from left to right follows from the previous slide.

Consider the other direction.

RWTH

12 of 23 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 12: Strong Bisimulation ‘ B and Verification Chair

Bisimulation and Trace Equivalence

Strong Bisimulation vs. Trace Equivalence

Theorem 12.8

P ~ Q implies that P and Q) are trace equivalent. The reverse does generally not
hold.

Proof.

The implication from left to right follows from the previous slide.

Consider the other direction.
Take P = a.P; with P; = b.nil + c.niland Q = a.b.nil 4 a.c.nil.

RWTH

12 of 23 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 12: Strong Bisimulation B and Verification Chair

Bisimulation and Trace Equivalence

Strong Bisimulation vs. Trace Equivalence

Theorem 12.8

P ~ Q implies that P and Q) are trace equivalent. The reverse does generally not
hold.

Proof.
The implication from left to right follows from the previous slide.
Consider the other direction.

Take P = a.P; with P; = b.nil + c.niland Q = a.b.nil 4 a.c.nil.
Then: Tr(P) = {¢, a, ab, ac} = Tr(Q).

RWTH

12 of 23 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 12: Strong Bisimulation B and Verification Chair

Bisimulation and Trace Equivalence

Strong Bisimulation vs. Trace Equivalence

Theorem 12.8

P ~ Q implies that P and Q) are trace equivalent. The reverse does generally not
hold.

Proof.
The implication from left to right follows from the previous slide.

Consider the other direction.

Take P = a.P; with P; = b.nil + c.niland Q = a.b.nil 4 a.c.nil.
Then: Tr(P) = {¢, a,ab, ac} = Tr(Q).

Thus, P and Q are trace equivalent.

RWTH

12 of 23 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 12: Strong Bisimulation B and Verification Chair

Bisimulation and Trace Equivalence

Strong Bisimulation vs. Trace Equivalence

Theorem 12.8

P ~ Q implies that P and Q) are trace equivalent. The reverse does generally not
hold.

Proof.
The implication from left to right follows from the previous slide.

Consider the other direction.

Take P = a.P; with P; = b.nil + c.niland Q = a.b.nil + a.c.nil.
Then: Tr(P) = {¢, a,ab, ac} = Tr(Q).

Thus, P and Q are trace equivalent.

But: P +4 Q, as there is no state in the LTS of Q that is bisimilar to P;.

RWTH

12 of 23 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 12: Strong Bisimulation B and Verification Chair

Bisimulation and Trace Equivalence

Strong Bisimulation vs. Trace Equivalence

Theorem 12.8

P ~ Q implies that P and Q) are trace equivalent. The reverse does generally not
hold.

Proof.
The implication from left to right follows from the previous slide.

Consider the other direction.

Take P = a.P; with P; = b.nil + c.niland Q = a.b.nil 4 a.c.nil.
Then: Tr(P) = {¢, a,ab, ac} = Tr(Q).

Thus, P and Q are trace equivalent.

But: P +4 Q, as there is no state in the LTS of Q that is bisimilar to P;.
Why? No state in Q can perform both b and c.

RWTH

12 of 23 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 12: Strong Bisimulation Bl and Verification Chair

Bisimulation and Trace Equivalence

Deterministic Transition Systems

Definition 12.9 (Determinism)
P € Prc is deterministic whenever for every of its states s it holds:

(s 5 tand s — u) implies t = u.

RWTH

13 of 23 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 12: Strong Bisimulation ‘ Bl and Verification Chair

Bisimulation and Trace Equivalence

Deterministic Transition Systems

Definition 12.9 (Determinism)
P € Prc is deterministic whenever for every of its states s it holds:

(s 5 tand s — u) implies t = u.

Theorem 12.10 (Determinism implies coincidence of ~ and trace equivalence) (Park)

For deterministic P and Q: P ~ Q iff Tr(P) = Tr(Q).

RWTH

13 of 23 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 12: Strong Bisimulation Bl and Verification Chair

Bisimulation and Trace Equivalence

Deterministic Transition Systems

Definition 12.9 (Determinism)
P € Prc is deterministic whenever for every of its states s it holds:

(0% (0 1 5
(s — tand s — u) implies t = u.

Theorem 12.10 (Determinism implies coincidence of ~ and trace equivalence) (Park)

For deterministic P and Q: P ~ Q iff Tr(P) = Tr(Q).

Proof.

Left as an exercise.

RWTH

13 of 23 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 12: Strong Bisimulation Bl and Verification Chair

Bisimulation and Trace Equivalence

Deterministic Transition Systems

Definition 12.9 (Determinism)
P € Prc is deterministic whenever for every of its states s it holds:

(s s tand s —» u) implies t = u.

Theorem 12.10 (Determinism implies coincidence of ~ and trace equivalence) (Park)

For deterministic P and Q: P ~ Q iff Tr(P) = Tr(Q).

Proof.
Left as an exercise. In fact, for deterministic processes, trace equivalence, complete
trace, failure trace, and ready trace equivalence all coincide. []
13 of 23 Concurrency Theor

Winter Sem)(/ester 20y1 5/16 o " Rm

Lecture 12: Strong Bisimulation ‘ - 235“\'735%2?5;?:'33;;"

Congruence and Deadlock Sensitivity

Outline of Lecture 12

Congruence and Deadlock Sensitivity

RWTH

14 of 23 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 12: Strong Bisimulation ‘ Bl and Verification Chair

Congruence and Deadlock Sensitivity

Congruence

Theorem 12.11 (CCS congruence property of ~)

Strong bisimilarity ~ is a CCS congruence, that is, whenever P, Q € Prc such that
P~ Q,

a.P ~ a.Q for every action «
P+ R ~ Q-+ R forevery process R
P||R ~ Q|| R foreveryprocess R
P\L ~ Q\L foreverysetL C A
P[f] ~ Q|f] for every relabelling f : A — A

RWTH

15 of 23 Concurrency Theory
Winter Semester 2015/16 Software Modeling

Lecture 12: Strong Bisimulation Bl and Verification Chair

Congruence and Deadlock Sensitivity

Congruence

Theorem 12.11 (CCS congruence property of ~)

Strong bisimilarity ~ is a CCS congruence, that is, whenever P, Q € Prc such that
P~ Q,

a.P ~ a.Q for every action «
P+ R ~ Q-+ R forevery process R
P||R ~ Q|| R foreveryprocess R
P\L ~ Q\L foreverysetL C A
P[f] ~ Q|f] for every relabelling f : A — A

Proof.

e for ||: on the board
e for other CCS operators: left as an exercise

RWTH

15 of 23 Concurrency Theory
Winter Semester 2015/16 Software Modeling

Lecture 12: Strong Bisimulation Bl and Verification Chair

Congruence and Deadlock Sensitivity

Deadlock Sensitivity of ~

Definition (Deadlock; cf. Definition 11.5)

Let P, Q € Prcand w € Act* such that P — Q and Q /4. Then Qs called a
w-deadlock of P.

RWTH

16 of 23 Concurrency Theory
Winter Semester 2015/16

Lecture 12: Strong Bisimulation

Software Modeling
Il and Verification Chair

Congruence and Deadlock Sensitivity

Deadlock Sensitivity of ~

Definition (Deadlock; cf. Definition 11.5)

Let P, Q € Prcand w € Act* such that P — Q and Q /4. Then Qs called a
w-deadlock of P.

Definition (Deadlock sensitivity; cf. Definition 11.7)

Relation = C Prc X Prc is deadlock sensitive whenever:
P = Qimplies (Vw € Act”. P has a w-deadlock iff Q has a w-deadlock) .

RWTH

16 of 23 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 12: Strong Bisimulation B and Verification Chair

Congruence and Deadlock Sensitivity

Deadlock Sensitivity of ~

Definition (Deadlock; cf. Definition 11.5)

Let P, Q € Prcand w € Act* such that P — Q and Q /4. Then Qs called a
w-deadlock of P.

Definition (Deadlock sensitivity; cf. Definition 11.7)

Relation = C Prc X Prc is deadlock sensitive whenever:
P = Qimplies (Vw € Act”. P has a w-deadlock iff Q has a w-deadlock) .

Theorem 12.12
~ [s deadlock sensitive.

RWTH

16 of 23 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 12: Strong Bisimulation B and Verification Chair

Congruence and Deadlock Sensitivity

Deadlock Sensitivity of ~

Definition (Deadlock; cf. Definition 11.5)

Let P, Q € Prcand w € Act* such that P — Q and Q /4. Then Qs called a
w-deadlock of P.

Definition (Deadlock sensitivity; cf. Definition 11.7)

Relation = C Prc X Prc is deadlock sensitive whenever:
P = Qimplies (Vw € Act”. P has a w-deadlock iff Q has a w-deadlock) .

Theorem 12.12
~ [s deadlock sensitive.

Proof.

on the board

RWTH

16 of 23 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 12: Strong Bisimulation Bl and Verification Chair

Buffers Revisited

Outline of Lecture 12

Buffers Revisited

17 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

.

4

Software Modeling
Il and Verification Chair

RWTH

Buffers Revisited

Two Buffers

Example 12.13 (One-place buffer)

1 _ 1
B} = in.B!
Bl = out.B).
1 0
18 of 23 Concurrency Theory
Winter Semester 2015/16 o Rm

Lecture 12: Strong Bisimulation

4

Software Modeling
Il and Verification Chair

Buffers Revisited

Two Buffers

Example 12.13 (One-place buffer)
By = in.B;

Example 12.14 (Two-place buffer)

2 o Q2
B; in.Bj

B} = out.B,. B = in.B5 + out.B;
2 _ St R2
B2 = out.B?.
18 of 23 Concurrency Theory
Winter Semester 2015/16 o Rm

Lecture 12: Strong Bisimulation

‘ Software Modeling
Il and Verification Chair

Buffers Revisited

Two Buffers

Example 12.13 (One-place buffer)

Y
o=
|

in.B;
= out.By.

i)
|

Example 12.14 (Two-place buffer)

B> = in.B?
B = in.B5 + out.B;

B5 = out.Bs.

18 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

: Software Modeling

Il and Verification Chair

Buffers Revisited

Semaphores: A Generalisation

Example 12.15 (An n-ary semaphore)

Let S” stand for a semaphore for n resources i of which are taken:
Sy = get.S]
S} = get.Sl.; +put.S7 ; for0<i<n
S, = put.S)_,

RWTH

19 of 23 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 12: Strong Bisimulation ‘ Bl and Verification Chair

Buffers Revisited

Semaphores: A Generalisation

Example 12.15 (An n-ary semaphore)

Let S” stand for a semaphore for n resources i of which are taken:
Sy = get.SY
S! = get.S , +put.S’, for0<i<n
S, = put.S;_,

This process is strongly bisimilar to n parallel binary semaphores:
Lemma 12.16

. Qn 1 1
Foreveryn € N, we have: S§~ S || --- || Sy.
g
n times
19 of 23 Concurrency Theory
Winter Semester 2015/16 o Software Modeling Rm
Lecture 12: Strong Bisimulation ‘ Bl and Verification Chair

Buffers Revisited

Semaphores Il

Lemma
1 1
Foreveryn € N, we have: Sg ~ Sy || --- || Sy
n times
20 of 23 Concurrency Theor
Winter Sem};ster20y15/16 0 ‘ Rm

.) ‘ Software Modeling
Lecture 12: Strong Bisimulation B and Verification Chair

Buffers Revisited

Semaphores Il

For every , we have:
Proof.
Consider the following binary relation where i, o, . . ., i, € {0, 1}:
n
_ n 1 1 .
P = (SHSA [N Si,,) E :’/—
j=1
20 of 23 Concurrency Theory
Winter Semester 2015/16 o Software Modeling Rm
Lecture 12: Strong Bisimulation ‘ B and Verification Chair

Buffers Revisited

Semaphores Il

For every , we have:

Proof.
Consider the following binary relation where iy, iz, . . ., i, € {0,1}:

n
p=(ShS, 1S [S =i
j=1

Then: p is a strong bisimulation and (57, S || - - || Sp) € p.

o>
n times
20 of 23 Concurrency Theory o Rm
Winter Semester 201.5./16 . ‘ Software Modeling
Lecture 12: Strong Bisimulation Hl and Verification Chair

Epilogue

Outline of Lecture 12

Epilogue

21 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

.

4

Software Modeling
Il and Verification Chair

RWTH

Epilogue

Overview of Some Behavioural Equivalences

1somorphism

bisimulation equivalence

r Ll
ready trace equivalence

simulation equivalence ,
failure equivalence

/
trace equivalence

22 of 23 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 12: Strong Bisimulation ‘ Bl and Verification Chair

RWTH

Epilogue

Summary

e Strong bisimulation of processes is based on mutually mimicking each other

RWTH

23 of 23 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 12: Strong Bisimulation ‘ Bl and Verification Chair

Epilogue

Summary

e Strong bisimulation of processes is based on mutually mimicking each other

e Strong bisimilarity ~:
1. is the largest strong bisimulation
is an equivalence
is a CCS congruence
is strictly finer than trace equivalence
is deadlock sensitive

ok W

23 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

4

: Software Modeling

Il and Verification Chair

RWTH

	Recap: Trace Equivalence
	Bisimulation
	Bisimulation and Trace Equivalence
	Congruence and Deadlock Sensitivity
	Buffers Revisited
	Epilogue

