

Concurrency Theory

- Winter Semester 2015/16
- **Lecture 12: Strong Bisimulation**
- Joost-Pieter Katoen and Thomas Noll Software Modeling and Verification Group RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ws-1516/ct/

Outline of Lecture 12

Recap: Trace Equivalence

Bisimulation

Bisimulation and Trace Equivalence

Congruence and Deadlock Sensitivity

Buffers Revisited

Epilogue

2 of 23

• Trace equivalence is a possible behavioural equivalence, is a congruence, but does not preserve deadlocks.

- Trace equivalence is a possible behavioural equivalence, is a congruence, but does not preserve deadlocks.
- Main problem:

 $\alpha.(\boldsymbol{P}+\boldsymbol{Q}) \equiv \alpha.\boldsymbol{P}+\alpha.\boldsymbol{Q},$

whereas their deadlock behaviour in a context can differ.

- Trace equivalence is a possible behavioural equivalence, is a congruence, but does not preserve deadlocks.
- Main problem:

 $\alpha.(P+Q) \equiv \alpha.P + \alpha.Q,$

whereas their deadlock behaviour in a context can differ.

• Solution: consider finer behavioural equivalences such that:

 $\alpha.(P+Q) \neq \alpha.P+\alpha.Q$

3 of 23

- Trace equivalence is a possible behavioural equivalence, is a congruence, but does not preserve deadlocks.
- Main problem:

 $\alpha.(P+Q) \equiv \alpha.P + \alpha.Q,$

whereas their deadlock behaviour in a context can differ.

• Solution: consider finer behavioural equivalences such that:

 $\alpha.(P+Q) \neq \alpha.P+\alpha.Q$

• Our (serious) attempt today: Milner's strong bisimulation.

Robin Milner (1934–2010)

3 of 23

Outline of Lecture 12

Recap: Trace Equivalence

Bisimulation

Bisimulation and Trace Equivalence

Congruence and Deadlock Sensitivity

Buffers Revisited

Epilogue

4 of 23

Rationale

Observation

In order for a behavioural equivalence to be deadlock sensitive, it has to take the branching structure of processes into account.

Rationale

Observation

In order for a behavioural equivalence to be deadlock sensitive, it has to take the branching structure of processes into account.

This is achieved by an equivalence that is defined according to the scheme:

Bisimulation scheme

 $P, Q \in Prc$ are equivalent iff, for every action α , every α -successor of P is equivalent to some α -successor of Q, and vice versa.

Rationale

Observation

In order for a behavioural equivalence to be deadlock sensitive, it has to take the branching structure of processes into account.

This is achieved by an equivalence that is defined according to the scheme:

Bisimulation scheme

 $P, Q \in Prc$ are equivalent iff, for every action α , every α -successor of P is equivalent to some α -successor of Q, and vice versa.

Three versions will be considered in this course:

- 1. Strong bisimulation: ignore the special function of τ -actions
- 2. Weak bisimulation: treat τ -actions as invisible
- 3. Simulation relations: unidirectional versions of bisimulation

Definition 12.1 (Strong bisimulation)

(Park 1981, Milner 1989)

A binary relation $\rho \subseteq Prc \times Prc$ is a strong bisimulation whenever for every $(P, Q) \in \rho$ and $\alpha \in Act$:

1. if $P \xrightarrow{\alpha} P'$, then there exists $Q' \in Prc$ such that $Q \xrightarrow{\alpha} Q'$ and $(P', Q') \in \rho$, and

2. if $Q \xrightarrow{\alpha} Q'$, then there exists $P' \in Prc$ such that $P \xrightarrow{\alpha} P'$ and $(P', Q') \in \rho$.

Definition 12.1 (Strong bisimulation)

(Park 1981, Milner 1989)

A binary relation $\rho \subseteq Prc \times Prc$ is a strong bisimulation whenever for every $(P, Q) \in \rho$ and $\alpha \in Act$: 1. if $P \xrightarrow{\alpha} P'$, then there exists $Q' \in Prc$ such that $Q \xrightarrow{\alpha} Q'$ and $(P', Q') \in \rho$, and 2. if $Q \xrightarrow{\alpha} Q'$ then there exists $P' \in Prc$ such that $P \xrightarrow{\alpha} P'$ and $(P', Q') \in \rho$.

2. if $Q \xrightarrow{\alpha} Q'$, then there exists $P' \in Prc$ such that $P \xrightarrow{\alpha} P'$ and $(P', Q') \in \rho$.

Definition 12.2 (Strong bisimilarity)

Processes *P* and *Q* are strongly bisimilar, denoted $P \sim Q$, iff there is a strong bisimulation ρ with $(P, Q) \in \rho$.

Definition 12.1 (Strong bisimulation)

(Park 1981, Milner 1989)

A binary relation $\rho \subseteq Prc \times Prc$ is a strong bisimulation whenever for every $(P, Q) \in \rho$ and $\alpha \in Act$: 1. if $P \xrightarrow{\alpha} P'$, then there exists $Q' \in Prc$ such that $Q \xrightarrow{\alpha} Q'$ and $(P', Q') \in \rho$, and 2. if $Q \xrightarrow{\alpha} Q'$, then there exists $P' \in Prc$ such that $P \xrightarrow{\alpha} P'$ and $(P', Q') \in \rho$.

Definition 12.2 (Strong bisimilarity)

Processes *P* and *Q* are strongly bisimilar, denoted $P \sim Q$, iff there is a strong bisimulation ρ with $(P, Q) \in \rho$. Thus,

 $\sim = \bigcup \{ \rho \mid \rho \text{ is a strong bisimulation} \}.$

Concurrency Theory Winter Semester 2015/16 Lecture 12: Strong Bisimulation

6 of 23

Definition 12.1 (Strong bisimulation)

(Park 1981, Milner 1989)

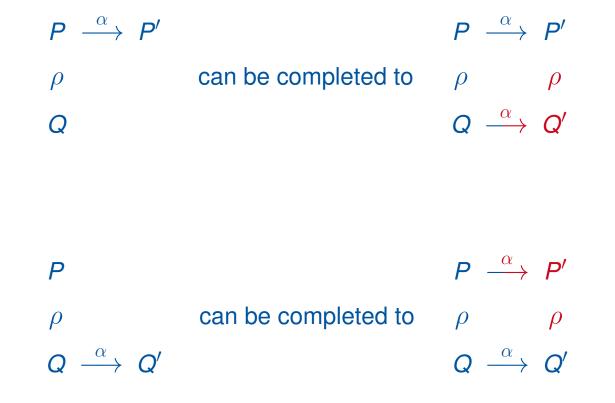
A binary relation $\rho \subseteq Prc \times Prc$ is a strong bisimulation whenever for every $(P, Q) \in \rho$ and $\alpha \in Act$: 1. if $P \xrightarrow{\alpha} P'$, then there exists $Q' \in Prc$ such that $Q \xrightarrow{\alpha} Q'$ and $(P', Q') \in \rho$, and 2. if $Q \xrightarrow{\alpha} Q'$, then there exists $P' \in Prc$ such that $P \xrightarrow{\alpha} P'$ and $(P', Q') \in \rho$.

Definition 12.2 (Strong bisimilarity)

Processes *P* and *Q* are strongly bisimilar, denoted $P \sim Q$, iff there is a strong bisimulation ρ with $(P, Q) \in \rho$. Thus,

$$\sim = \bigcup \{ \rho \mid \rho \text{ is a strong bisimulation} \}.$$

Relation \sim is called strong bisimilarity.



and

7 of 23

Example 12.3 (A first example)

Claim:
$$P \sim Q$$
 where $P = a.P_1 + a.P_2$ $Q = a.Q_1$
 $P_1 = b.P_2$ $Q_1 = b.Q_1$
 $P_2 = b.P_2$

Example 12.3 (A first example)

Claim: $P \sim Q$ where $P = a.P_1 + a.P_2$ $Q = a.Q_1$ Proof: $P_1 = b.P_2$ $Q_1 = b.Q_1$ $P_2 = b.P_2$ $\rho = \{(P,Q), (P_1, Q_1), (P_2, Q_1)\}$ is a strong bisimulation

Example 12.3 (A first example)

Claim: $P \sim Q$ where $P = a.P_1 + a.P_2$ $Q = a.Q_1$ Proof: $P_1 = b.P_2$ $Q_1 = b.Q_1$ $P_2 = b.P_2$ $\rho = \{(P,Q), (P_1, Q_1), (P_2, Q_1)\}$ is a strong bisimulation

Example 12.4 (Relating a finite to an infinite-state process)

Claim: $P_0 \sim Q$ where $P_i = a P_{i+1}$ for $i \in \mathbb{N}$ and Q = a Q.

Example 12.3 (A first example)

Claim:
$$P \sim Q$$
 where $P = a.P_1 + a.P_2$ $Q = a.Q_1$ Proof
 $P_1 = b.P_2$ $Q_1 = b.Q_1$
 $P_2 = b.P_2$
 $\rho = \{(P,Q), (P_1, Q_1), (P_2, Q_1)\}$ is a strong bisimulation

Example 12.4 (Relating a finite to an infinite-state process)

Claim: $P_0 \sim Q$ where $P_i = a P_{i+1}$ for $i \in \mathbb{N}$ and Q = a Q. Proof: $\rho = \{(P_i, Q) \mid i \in \mathbb{N}\}$ is a strong bisimulation.

Example 12.3 (A first example)

Claim:
$$P \sim Q$$
 where $P = a.P_1 + a.P_2$ $Q = a.Q_1$ Proof:
 $P_1 = b.P_2$ $Q_1 = b.Q_1$
 $P_2 = b.P_2$
 $\rho = \{(P, Q), (P_1, Q_1), (P_2, Q_1)\}$ is a strong bisimulation

Example 12.4 (Relating a finite to an infinite-state process)

Claim: $P_0 \sim Q$ where $P_i = a P_{i+1}$ for $i \in \mathbb{N}$ and Q = a Q. Proof: $\rho = \{(P_i, Q) \mid i \in \mathbb{N}\}$ is a strong bisimulation.

Example 12.5 (Counterexample; cf. Example 11.9)

Show on board that $CTM \not\sim CTM'$ where

CTM = coin. (coffee.CTM + tea.CTM)CTM' = coin.coffee.CTM' + coin.tea.CTM'.

Concurrency Theory Winter Semester 2015/16 Lecture 12: Strong Bisimulation

8 of 23

Bisimulation

Properties of Strong Bisimilarity

Lemma 12.6 (Properties of \sim)

1. \sim is an equivalence relation (i.e., reflexive, symmetric, and transitive)

Bisimulation

Properties of Strong Bisimilarity

Lemma 12.6 (Properties of \sim)

1. \sim is an equivalence relation (i.e., reflexive, symmetric, and transitive)

2. \sim is the coarsest strong bisimulation

Bisimulation

Properties of Strong Bisimilarity

Lemma 12.6 (Properties of \sim)

1. \sim is an equivalence relation (i.e., reflexive, symmetric, and transitive)

2. \sim is the coarsest strong bisimulation

Proof.

on the board

Outline of Lecture 12

Recap: Trace Equivalence

Bisimulation

Bisimulation and Trace Equivalence

Congruence and Deadlock Sensitivity

Buffers Revisited

Epilogue

Bisimulation on Paths

Lemma 12.7 (Bisimulation on paths)

Whenever we have:

$$P_{0} \xrightarrow{\alpha_{1}} P_{1} \xrightarrow{\alpha_{2}} P_{2} \xrightarrow{\alpha_{3}} P_{3} \xrightarrow{\alpha_{4}} P_{4} \dots$$

$$\rho$$

$$Q_{0}$$

Bisimulation on Paths

Lemma 12.7 (Bisimulation on paths)

Whenever we have: $P_{0} \xrightarrow{\alpha_{1}} P_{1} \xrightarrow{\alpha_{2}} P_{2} \xrightarrow{\alpha_{3}} P_{3} \xrightarrow{\alpha_{4}} P_{4} \dots \dots$ ρ Q_{0} this can be completed to $P_{0} \xrightarrow{\alpha_{1}} P_{1} \xrightarrow{\alpha_{2}} P_{2} \xrightarrow{\alpha_{3}} P_{3} \xrightarrow{\alpha_{4}} P_{4} \dots \dots$ $\rho \qquad \rho \qquad \rho \qquad \rho \qquad \rho$ $Q_{0} \xrightarrow{\alpha_{1}} Q_{1} \xrightarrow{\alpha_{2}} Q_{2} \xrightarrow{\alpha_{3}} Q_{3} \xrightarrow{\alpha_{4}} Q_{4} \dots \dots$

Bisimulation on Paths

Lemma 12.7 (Bisimulation on paths)

Whenever we have: $P_{0} \xrightarrow{\alpha_{1}} P_{1} \xrightarrow{\alpha_{2}} P_{2} \xrightarrow{\alpha_{3}} P_{3} \xrightarrow{\alpha_{4}} P_{4} \dots \dots$ ρ Q_{0} this can be completed to $P_{0} \xrightarrow{\alpha_{1}} P_{1} \xrightarrow{\alpha_{2}} P_{2} \xrightarrow{\alpha_{3}} P_{3} \xrightarrow{\alpha_{4}} P_{4} \dots \dots$ $\rho \qquad \rho \qquad \rho \qquad \rho \qquad \rho$ $Q_{0} \xrightarrow{\alpha_{1}} Q_{1} \xrightarrow{\alpha_{2}} Q_{2} \xrightarrow{\alpha_{3}} Q_{3} \xrightarrow{\alpha_{4}} Q_{4} \dots \dots$

Proof.

11 of 23

by induction on the length of the path

Strong Bisimulation vs. Trace Equivalence

Theorem 12.8

 $P \sim Q$ implies that P and Q are trace equivalent. The reverse does generally not hold.

Strong Bisimulation vs. Trace Equivalence

Theorem 12.8

 $P \sim Q$ implies that P and Q are trace equivalent. The reverse does generally not hold.

Proof.

The implication from left to right follows from the previous slide.

Strong Bisimulation vs. Trace Equivalence

Theorem 12.8

 $P \sim Q$ implies that P and Q are trace equivalent. The reverse does generally not hold.

Proof.

The implication from left to right follows from the previous slide.

Consider the other direction.

Strong Bisimulation vs. Trace Equivalence

Theorem 12.8

 $P \sim Q$ implies that P and Q are trace equivalent. The reverse does generally not hold.

Proof.

The implication from left to right follows from the previous slide.

Consider the other direction.

Take $P = a.P_1$ with $P_1 = b.nil + c.nil$ and Q = a.b.nil + a.c.nil.

Strong Bisimulation vs. Trace Equivalence

Theorem 12.8

 $P \sim Q$ implies that P and Q are trace equivalent. The reverse does generally not hold.

Proof.

The implication from left to right follows from the previous slide.

Consider the other direction.

Take $P = a.P_1$ with $P_1 = b.nil + c.nil$ and Q = a.b.nil + a.c.nil. Then: $Tr(P) = \{\epsilon, a, ab, ac\} = Tr(Q)$.

Strong Bisimulation vs. Trace Equivalence

Theorem 12.8

 $P \sim Q$ implies that P and Q are trace equivalent. The reverse does generally not hold.

Proof.

The implication from left to right follows from the previous slide.

Consider the other direction.

Take $P = a.P_1$ with $P_1 = b.nil + c.nil$ and Q = a.b.nil + a.c.nil. Then: $Tr(P) = \{\epsilon, a, ab, ac\} = Tr(Q)$. Thus, P and Q are trace equivalent.

Strong Bisimulation vs. Trace Equivalence

Theorem 12.8

 $P \sim Q$ implies that P and Q are trace equivalent. The reverse does generally not hold.

Proof.

The implication from left to right follows from the previous slide.

Consider the other direction.

Take $P = a.P_1$ with $P_1 = b.nil + c.nil$ and Q = a.b.nil + a.c.nil.

Then: $Tr(P) = \{\epsilon, a, ab, ac\} = Tr(Q)$.

Thus, P and Q are trace equivalent.

But: $P \not\sim Q$, as there is no state in the LTS of Q that is bisimilar to P_1 .

Strong Bisimulation vs. Trace Equivalence

Theorem 12.8

 $P \sim Q$ implies that P and Q are trace equivalent. The reverse does generally not hold.

Proof.

The implication from left to right follows from the previous slide.

Consider the other direction.

Take $P = a.P_1$ with $P_1 = b.nil + c.nil$ and Q = a.b.nil + a.c.nil. Then: $Tr(P) = \{\epsilon, a, ab, ac\} = Tr(Q)$. Thus, P and Q are trace equivalent. But: $P \not\sim Q$, as there is no state in the LTS of Q that is bisimilar to P_1 . Why? No state in Q can perform both b and c.

Deterministic Transition Systems

Definition 12.9 (Determinism)

 $P \in Prc$ is deterministic whenever for every of its states *s* it holds:

$$\left(s \xrightarrow{\alpha} t \text{ and } s \xrightarrow{\alpha} u\right)$$
 implies $t = u$.

Deterministic Transition Systems

Definition 12.9 (Determinism)

 $P \in Prc$ is deterministic whenever for every of its states *s* it holds:

$$\left(s \stackrel{\alpha}{\longrightarrow} t \text{ and } s \stackrel{\alpha}{\longrightarrow} u\right)$$
 implies $t = u$.

Theorem 12.10 (Determinism implies coincidence of \sim and trace equivalence) (Park) For deterministic P and Q: $P \sim Q$ iff Tr(P) = Tr(Q).

Deterministic Transition Systems

Definition 12.9 (Determinism)

 $P \in Prc$ is deterministic whenever for every of its states *s* it holds:

$$\left(s \xrightarrow{\alpha} t \text{ and } s \xrightarrow{\alpha} u\right)$$
 implies $t = u$.

Theorem 12.10 (Determinism implies coincidence of \sim and trace equivalence) (Park) For deterministic P and Q: $P \sim Q$ iff Tr(P) = Tr(Q).

Proof.

Left as an exercise.

Deterministic Transition Systems

Definition 12.9 (Determinism)

 $P \in Prc$ is deterministic whenever for every of its states s it holds:

$$\left(s \xrightarrow{\alpha} t \text{ and } s \xrightarrow{\alpha} u\right)$$
 implies $t = u$.

Theorem 12.10 (Determinism implies coincidence of \sim and trace equivalence) (Park) For deterministic P and Q: $P \sim Q$ iff Tr(P) = Tr(Q).

Proof.

Left as an exercise. In fact, for deterministic processes, trace equivalence, complete trace, failure trace, and ready trace equivalence all coincide.

Outline of Lecture 12

Recap: Trace Equivalence

Bisimulation

Bisimulation and Trace Equivalence

Congruence and Deadlock Sensitivity

Buffers Revisited

Epilogue

Congruence

Theorem 12.11 (CCS congruence property of \sim)

Strong bisimilarity \sim is a CCS congruence, that is, whenever $P, Q \in Prc$ such that $P \sim Q$,

α .P $\sim \alpha$.Q	for every action $lpha$
$P+R \sim Q+R$	for every process R
$P \parallel R \sim Q \parallel R$	for every process R
$P \setminus L \sim Q \setminus L$	for every set $L \subseteq A$
$P[f] \sim Q[f]$	for every relabelling $f: A ightarrow A$

Congruence

Theorem 12.11 (CCS congruence property of \sim)

Strong bisimilarity \sim is a CCS congruence, that is, whenever $P, Q \in Prc$ such that $P \sim Q$,

α .P ~ α .Q	for every action $lpha$
$P+R \sim Q+R$	for every process R
$P \parallel R \sim Q \parallel R$	for every process R
${\it P} \setminus {\it L} \sim {\it Q} \setminus {\it L}$	for every set $L \subseteq A$
$P[f] \sim Q[f]$	for every relabelling $f: A \to A$

Proof.

- for ||: on the board
- for other CCS operators: left as an exercise

Definition (Deadlock; cf. Definition 11.5)

Let $P, Q \in Prc$ and $w \in Act^*$ such that $P \xrightarrow{w} Q$ and $Q \not\rightarrow$. Then Q is called a *w*-deadlock of P.

Definition (Deadlock; cf. Definition 11.5)

Let $P, Q \in Prc$ and $w \in Act^*$ such that $P \xrightarrow{w} Q$ and $Q \not\longrightarrow$. Then Q is called a *w*-deadlock of P.

Definition (Deadlock sensitivity; cf. Definition 11.7)

Relation $\equiv \subseteq Prc \times Prc$ is deadlock sensitive whenever:

 $P \equiv Q$ implies ($\forall w \in Act^*$. P has a w-deadlock iff Q has a w-deadlock).

Definition (Deadlock; cf. Definition 11.5)

Let $P, Q \in Prc$ and $w \in Act^*$ such that $P \xrightarrow{w} Q$ and $Q \not\longrightarrow$. Then Q is called a *w*-deadlock of P.

Definition (Deadlock sensitivity; cf. Definition 11.7)

Relation $\equiv \subseteq Prc \times Prc$ is deadlock sensitive whenever:

 $P \equiv Q$ implies ($\forall w \in Act^*$. P has a w-deadlock iff Q has a w-deadlock).

Theorem 12.12

 \sim is deadlock sensitive.

Definition (Deadlock; cf. Definition 11.5)

Let $P, Q \in Prc$ and $w \in Act^*$ such that $P \xrightarrow{w} Q$ and $Q \not\longrightarrow$. Then Q is called a *w*-deadlock of P.

Definition (Deadlock sensitivity; cf. Definition 11.7)

Relation $\equiv \subseteq Prc \times Prc$ is deadlock sensitive whenever:

 $P \equiv Q$ implies ($\forall w \in Act^*$. P has a w-deadlock iff Q has a w-deadlock).

Theorem 12.12

 \sim is deadlock sensitive.

Proof.

16 of 23

on the board

Outline of Lecture 12

Recap: Trace Equivalence

Bisimulation

Bisimulation and Trace Equivalence

Congruence and Deadlock Sensitivity

Buffers Revisited

Epilogue

Two Buffers

Example 12.13 (One-place buffer) $B_0^1 = in.B_1^1$ $B_1^1 = out.B_0^1.$

Two Buffers

Example 12.13 (One-place buffer)

$$B_0^1 = in.B_1^1$$
$$B_1^1 = out.B_0^1$$

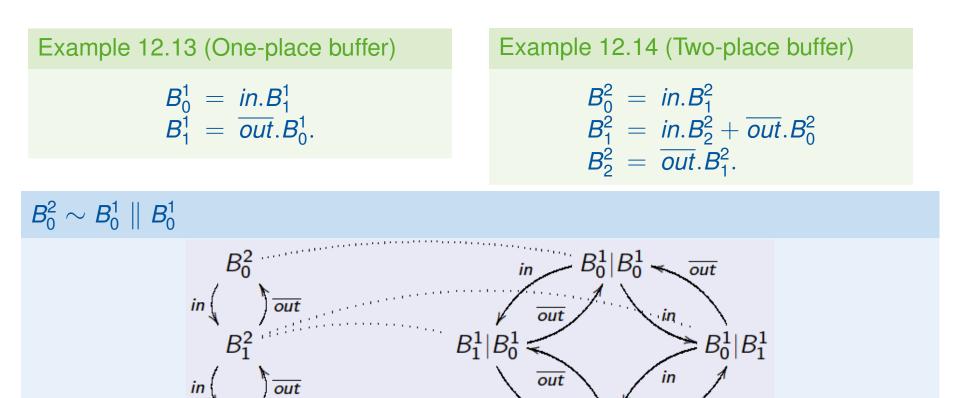
Example 12.14 (Two-place buffer)

$$B_0^2 = in.B_1^2$$

$$B_1^2 = in.B_2^2 + \overline{out}.B_0^2$$

$$B_2^2 = \overline{out}.B_1^2.$$

Two Buffers



in

Bi

В

18 of 23

 B_2^2

out

Semaphores: A Generalisation

Example 12.15 (An *n*-ary semaphore)

Let S_i^n stand for a semaphore for *n* resources *i* of which are taken:

Semaphores: A Generalisation

Example 12.15 (An *n*-ary semaphore)

Let S_i^n stand for a semaphore for *n* resources *i* of which are taken:

This process is strongly bisimilar to *n* parallel binary semaphores:

Lemma 12.16 For every $n \in \mathbb{N}_+$, we have: $S_0^n \sim \underbrace{S_0^1 \parallel \cdots \parallel S_0^1}_{n \text{ times}}$.

Buffers Revisited

Semaphores II

Lemma

For every
$$n \in \mathbb{N}_+$$
, we have: $S_0^n \sim \underbrace{S_0^1 \parallel \cdots \parallel S_0^1}_{n \text{ times}}$.

Buffers Revisited

Semaphores II

Lemma

For every
$$n \in \mathbb{N}_+$$
, we have: $S_0^n \sim \underbrace{S_0^1 \parallel \cdots \parallel S_0^1}_{n \text{ times}}$.

Proof.

Consider the following binary relation where $i_1, i_2, \ldots, i_n \in \{0, 1\}$:

$$\rho = \left\{ \left(S_{i}^{n}, S_{i_{1}}^{1} \parallel \cdots \parallel S_{i_{n}}^{1} \right) \middle| \sum_{j=1}^{n} i_{j} = i \right\}$$

Buffers Revisited

Semaphores II

Lemma

For every
$$n \in \mathbb{N}_+$$
, we have: $S_0^n \sim \underbrace{S_0^1 \parallel \cdots \parallel S_0^1}_{n \text{ times}}$.

Proof.

Consider the following binary relation where $i_1, i_2, \ldots, i_n \in \{0, 1\}$:

$$\rho = \left\{ \left(S_{i}^{n}, S_{i_{1}}^{1} \parallel \cdots \parallel S_{i_{n}}^{1} \right) \left| \sum_{j=1}^{n} i_{j} = i \right. \right\}$$

Then: ρ is a strong bisimulation and $(S_0^n, \underbrace{S_0^1 \parallel \cdots \parallel S_0^1}_{n \text{ times}}) \in \rho$.

Outline of Lecture 12

Recap: Trace Equivalence

Bisimulation

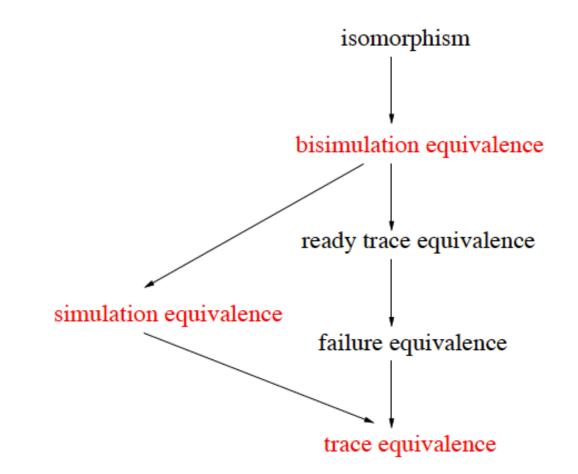
Bisimulation and Trace Equivalence

Congruence and Deadlock Sensitivity

Buffers Revisited

Epilogue

Overview of Some Behavioural Equivalences



Summary

• Strong bisimulation of processes is based on mutually mimicking each other

Summary

23 of 23

- Strong bisimulation of processes is based on mutually mimicking each other
- Strong bisimilarity \sim :
 - 1. is the largest strong bisimulation
 - 2. is an equivalence
 - 3. is a CCS congruence
 - 4. is strictly finer than trace equivalence
 - 5. is deadlock sensitive

