
Concurrency Theory
Winter Semester 2015/16

Lecture 12: Strong Bisimulation

Joost-Pieter Katoen and Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ws-1516/ct/

http://moves.rwth-aachen.de/teaching/ws-1516/ct/

Recap: Trace Equivalence

Outline of Lecture 12

Recap: Trace Equivalence

Bisimulation

Bisimulation and Trace Equivalence

Congruence and Deadlock Sensitivity

Buffers Revisited

Epilogue

2 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Recap: Trace Equivalence

Trace Equivalence

• Trace equivalence is a possible behavioural equivalence, is a congruence, but does not
preserve deadlocks.

• Main problem:

α.(P + Q) ≡ α.P + α.Q,

whereas their deadlock behaviour in a context can differ.
• Solution: consider finer behavioural equivalences such that:

α.(P + Q) 6≡ α.P + α.Q

• Our (serious) attempt today: Milner’s strong bisimulation.

Robin Milner (1934–2010)

3 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Recap: Trace Equivalence

Trace Equivalence

• Trace equivalence is a possible behavioural equivalence, is a congruence, but does not
preserve deadlocks.
• Main problem:

α.(P + Q) ≡ α.P + α.Q,

whereas their deadlock behaviour in a context can differ.

• Solution: consider finer behavioural equivalences such that:

α.(P + Q) 6≡ α.P + α.Q

• Our (serious) attempt today: Milner’s strong bisimulation.

Robin Milner (1934–2010)

3 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Recap: Trace Equivalence

Trace Equivalence

• Trace equivalence is a possible behavioural equivalence, is a congruence, but does not
preserve deadlocks.
• Main problem:

α.(P + Q) ≡ α.P + α.Q,

whereas their deadlock behaviour in a context can differ.
• Solution: consider finer behavioural equivalences such that:

α.(P + Q) 6≡ α.P + α.Q

• Our (serious) attempt today: Milner’s strong bisimulation.

Robin Milner (1934–2010)

3 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Recap: Trace Equivalence

Trace Equivalence

• Trace equivalence is a possible behavioural equivalence, is a congruence, but does not
preserve deadlocks.
• Main problem:

α.(P + Q) ≡ α.P + α.Q,

whereas their deadlock behaviour in a context can differ.
• Solution: consider finer behavioural equivalences such that:

α.(P + Q) 6≡ α.P + α.Q

• Our (serious) attempt today: Milner’s strong bisimulation.

Robin Milner (1934–2010)

3 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Bisimulation

Outline of Lecture 12

Recap: Trace Equivalence

Bisimulation

Bisimulation and Trace Equivalence

Congruence and Deadlock Sensitivity

Buffers Revisited

Epilogue

4 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Bisimulation

Rationale

Observation

In order for a behavioural equivalence to be deadlock sensitive, it has to take the
branching structure of processes into account.

This is achieved by an equivalence that is defined according to the scheme:

Bisimulation scheme

P,Q ∈ Prc are equivalent iff, for every action α, every α-successor of P is equivalent
to some α-successor of Q, and vice versa.

Three versions will be considered in this course:
1. Strong bisimulation: ignore the special function of τ -actions
2. Weak bisimulation: treat τ -actions as invisible
3. Simulation relations: unidirectional versions of bisimulation

5 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Bisimulation

Rationale

Observation

In order for a behavioural equivalence to be deadlock sensitive, it has to take the
branching structure of processes into account.

This is achieved by an equivalence that is defined according to the scheme:

Bisimulation scheme

P,Q ∈ Prc are equivalent iff, for every action α, every α-successor of P is equivalent
to some α-successor of Q, and vice versa.

Three versions will be considered in this course:
1. Strong bisimulation: ignore the special function of τ -actions
2. Weak bisimulation: treat τ -actions as invisible
3. Simulation relations: unidirectional versions of bisimulation

5 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Bisimulation

Rationale

Observation

In order for a behavioural equivalence to be deadlock sensitive, it has to take the
branching structure of processes into account.

This is achieved by an equivalence that is defined according to the scheme:

Bisimulation scheme

P,Q ∈ Prc are equivalent iff, for every action α, every α-successor of P is equivalent
to some α-successor of Q, and vice versa.

Three versions will be considered in this course:
1. Strong bisimulation: ignore the special function of τ -actions
2. Weak bisimulation: treat τ -actions as invisible
3. Simulation relations: unidirectional versions of bisimulation

5 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Bisimulation

Strong Bisimulation I

Definition 12.1 (Strong bisimulation) (Park 1981, Milner 1989)

A binary relation ρ ⊆ Prc × Prc is a strong bisimulation whenever for every
(P,Q) ∈ ρ and α ∈ Act :
1. if P α−→ P ′, then there exists Q′ ∈ Prc such that Q α−→ Q′ and (P ′,Q′) ∈ ρ, and
2. if Q α−→ Q′, then there exists P ′ ∈ Prc such that P α−→ P ′ and (P ′,Q′) ∈ ρ.

Definition 12.2 (Strong bisimilarity)

Processes P and Q are strongly bisimilar, denoted P ∼ Q, iff there is a strong
bisimulation ρ with (P,Q) ∈ ρ. Thus,

∼ =
⋃
{ρ | ρ is a strong bisimulation}.

Relation ∼ is called strong bisimilarity.

6 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Bisimulation

Strong Bisimulation I

Definition 12.1 (Strong bisimulation) (Park 1981, Milner 1989)

A binary relation ρ ⊆ Prc × Prc is a strong bisimulation whenever for every
(P,Q) ∈ ρ and α ∈ Act :
1. if P α−→ P ′, then there exists Q′ ∈ Prc such that Q α−→ Q′ and (P ′,Q′) ∈ ρ, and
2. if Q α−→ Q′, then there exists P ′ ∈ Prc such that P α−→ P ′ and (P ′,Q′) ∈ ρ.

Definition 12.2 (Strong bisimilarity)

Processes P and Q are strongly bisimilar, denoted P ∼ Q, iff there is a strong
bisimulation ρ with (P,Q) ∈ ρ.

Thus,

∼ =
⋃
{ρ | ρ is a strong bisimulation}.

Relation ∼ is called strong bisimilarity.

6 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Bisimulation

Strong Bisimulation I

Definition 12.1 (Strong bisimulation) (Park 1981, Milner 1989)

A binary relation ρ ⊆ Prc × Prc is a strong bisimulation whenever for every
(P,Q) ∈ ρ and α ∈ Act :
1. if P α−→ P ′, then there exists Q′ ∈ Prc such that Q α−→ Q′ and (P ′,Q′) ∈ ρ, and
2. if Q α−→ Q′, then there exists P ′ ∈ Prc such that P α−→ P ′ and (P ′,Q′) ∈ ρ.

Definition 12.2 (Strong bisimilarity)

Processes P and Q are strongly bisimilar, denoted P ∼ Q, iff there is a strong
bisimulation ρ with (P,Q) ∈ ρ. Thus,

∼ =
⋃
{ρ | ρ is a strong bisimulation}.

Relation ∼ is called strong bisimilarity.

6 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Bisimulation

Strong Bisimulation I

Definition 12.1 (Strong bisimulation) (Park 1981, Milner 1989)

A binary relation ρ ⊆ Prc × Prc is a strong bisimulation whenever for every
(P,Q) ∈ ρ and α ∈ Act :
1. if P α−→ P ′, then there exists Q′ ∈ Prc such that Q α−→ Q′ and (P ′,Q′) ∈ ρ, and
2. if Q α−→ Q′, then there exists P ′ ∈ Prc such that P α−→ P ′ and (P ′,Q′) ∈ ρ.

Definition 12.2 (Strong bisimilarity)

Processes P and Q are strongly bisimilar, denoted P ∼ Q, iff there is a strong
bisimulation ρ with (P,Q) ∈ ρ. Thus,

∼ =
⋃
{ρ | ρ is a strong bisimulation}.

Relation ∼ is called strong bisimilarity.

6 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Bisimulation

Strong Bisimulation II

P
α−→ P ′ P

α−→ P ′

ρ can be completed to ρ ρ

Q Q
α−→ Q′

and

P P
α−→ P ′

ρ can be completed to ρ ρ

Q
α−→ Q′ Q

α−→ Q′

7 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Bisimulation

Strong Bisimulation II

P
α−→ P ′ P

α−→ P ′

ρ can be completed to ρ ρ

Q Q
α−→ Q′

and

P P
α−→ P ′

ρ can be completed to ρ ρ

Q
α−→ Q′ Q

α−→ Q′

7 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Bisimulation

Examples

Example 12.3 (A first example)

Claim: P ∼ Q where P = a.P1 + a.P2 Q = a.Q1

P1 = b.P2 Q1 = b.Q1

P2 = b.P2

Proof:

ρ = {(P,Q), (P1,Q1), (P2,Q1)} is a strong bisimulation

Example 12.4 (Relating a finite to an infinite-state process)

Claim: P0 ∼ Q where Pi = a.Pi+1 for i ∈ N and Q = a.Q.
Proof: ρ = {(Pi,Q) | i ∈ N} is a strong bisimulation.

Example 12.5 (Counterexample; cf. Example 11.9)

Show on board that CTM 6∼ CTM ′ where
CTM = coin.

(
coffee.CTM + tea.CTM

)
CTM’ = coin.coffee.CTM’ + coin.tea.CTM’.

8 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Bisimulation

Examples

Example 12.3 (A first example)

Claim: P ∼ Q where P = a.P1 + a.P2 Q = a.Q1

P1 = b.P2 Q1 = b.Q1

P2 = b.P2

Proof:

ρ = {(P,Q), (P1,Q1), (P2,Q1)} is a strong bisimulation

Example 12.4 (Relating a finite to an infinite-state process)

Claim: P0 ∼ Q where Pi = a.Pi+1 for i ∈ N and Q = a.Q.
Proof: ρ = {(Pi,Q) | i ∈ N} is a strong bisimulation.

Example 12.5 (Counterexample; cf. Example 11.9)

Show on board that CTM 6∼ CTM ′ where
CTM = coin.

(
coffee.CTM + tea.CTM

)
CTM’ = coin.coffee.CTM’ + coin.tea.CTM’.

8 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Bisimulation

Examples

Example 12.3 (A first example)

Claim: P ∼ Q where P = a.P1 + a.P2 Q = a.Q1

P1 = b.P2 Q1 = b.Q1

P2 = b.P2

Proof:

ρ = {(P,Q), (P1,Q1), (P2,Q1)} is a strong bisimulation

Example 12.4 (Relating a finite to an infinite-state process)

Claim: P0 ∼ Q where Pi = a.Pi+1 for i ∈ N and Q = a.Q.

Proof: ρ = {(Pi,Q) | i ∈ N} is a strong bisimulation.

Example 12.5 (Counterexample; cf. Example 11.9)

Show on board that CTM 6∼ CTM ′ where
CTM = coin.

(
coffee.CTM + tea.CTM

)
CTM’ = coin.coffee.CTM’ + coin.tea.CTM’.

8 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Bisimulation

Examples

Example 12.3 (A first example)

Claim: P ∼ Q where P = a.P1 + a.P2 Q = a.Q1

P1 = b.P2 Q1 = b.Q1

P2 = b.P2

Proof:

ρ = {(P,Q), (P1,Q1), (P2,Q1)} is a strong bisimulation

Example 12.4 (Relating a finite to an infinite-state process)

Claim: P0 ∼ Q where Pi = a.Pi+1 for i ∈ N and Q = a.Q.
Proof: ρ = {(Pi,Q) | i ∈ N} is a strong bisimulation.

Example 12.5 (Counterexample; cf. Example 11.9)

Show on board that CTM 6∼ CTM ′ where
CTM = coin.

(
coffee.CTM + tea.CTM

)
CTM’ = coin.coffee.CTM’ + coin.tea.CTM’.

8 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Bisimulation

Examples

Example 12.3 (A first example)

Claim: P ∼ Q where P = a.P1 + a.P2 Q = a.Q1

P1 = b.P2 Q1 = b.Q1

P2 = b.P2

Proof:

ρ = {(P,Q), (P1,Q1), (P2,Q1)} is a strong bisimulation

Example 12.4 (Relating a finite to an infinite-state process)

Claim: P0 ∼ Q where Pi = a.Pi+1 for i ∈ N and Q = a.Q.
Proof: ρ = {(Pi,Q) | i ∈ N} is a strong bisimulation.

Example 12.5 (Counterexample; cf. Example 11.9)

Show on board that CTM 6∼ CTM ′ where
CTM = coin.

(
coffee.CTM + tea.CTM

)
CTM’ = coin.coffee.CTM’ + coin.tea.CTM’.

8 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Bisimulation

Properties of Strong Bisimilarity

Lemma 12.6 (Properties of ∼)

1. ∼ is an equivalence relation (i.e., reflexive, symmetric, and transitive)

2. ∼ is the coarsest strong bisimulation

Proof.

on the board

9 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Bisimulation

Properties of Strong Bisimilarity

Lemma 12.6 (Properties of ∼)

1. ∼ is an equivalence relation (i.e., reflexive, symmetric, and transitive)
2. ∼ is the coarsest strong bisimulation

Proof.

on the board

9 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Bisimulation

Properties of Strong Bisimilarity

Lemma 12.6 (Properties of ∼)

1. ∼ is an equivalence relation (i.e., reflexive, symmetric, and transitive)
2. ∼ is the coarsest strong bisimulation

Proof.

on the board

9 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Bisimulation and Trace Equivalence

Outline of Lecture 12

Recap: Trace Equivalence

Bisimulation

Bisimulation and Trace Equivalence

Congruence and Deadlock Sensitivity

Buffers Revisited

Epilogue

10 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Bisimulation and Trace Equivalence

Bisimulation on Paths

Lemma 12.7 (Bisimulation on paths)

Whenever we have:
P0

α1−→ P1
α2−→ P2

α3−→ P3
α4−→ P4

ρ

Q0

this can be completed to

P0
α1−→ P1

α2−→ P2
α3−→ P3

α4−→ P4

ρ ρ ρ ρ ρ

Q0
α1−→ Q1

α2−→ Q2
α3−→ Q3

α4−→ Q4

Proof.

by induction on the length of the path

11 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Bisimulation and Trace Equivalence

Bisimulation on Paths

Lemma 12.7 (Bisimulation on paths)

Whenever we have:
P0

α1−→ P1
α2−→ P2

α3−→ P3
α4−→ P4

ρ

Q0

this can be completed to

P0
α1−→ P1

α2−→ P2
α3−→ P3

α4−→ P4

ρ ρ ρ ρ ρ

Q0
α1−→ Q1

α2−→ Q2
α3−→ Q3

α4−→ Q4

Proof.

by induction on the length of the path

11 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Bisimulation and Trace Equivalence

Bisimulation on Paths

Lemma 12.7 (Bisimulation on paths)

Whenever we have:
P0

α1−→ P1
α2−→ P2

α3−→ P3
α4−→ P4

ρ

Q0

this can be completed to

P0
α1−→ P1

α2−→ P2
α3−→ P3

α4−→ P4

ρ ρ ρ ρ ρ

Q0
α1−→ Q1

α2−→ Q2
α3−→ Q3

α4−→ Q4

Proof.

by induction on the length of the path

11 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Bisimulation and Trace Equivalence

Strong Bisimulation vs. Trace Equivalence

Theorem 12.8

P ∼ Q implies that P and Q are trace equivalent. The reverse does generally not
hold.

Proof.

The implication from left to right follows from the previous slide.

Consider the other direction.
Take P = a.P1 with P1 = b.nil + c.nil and Q = a.b.nil + a.c.nil.
Then: Tr(P) = {ε, a, ab, ac} = Tr(Q).
Thus, P and Q are trace equivalent.
But: P 6∼ Q, as there is no state in the LTS of Q that is bisimilar to P1.
Why? No state in Q can perform both b and c.

12 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Bisimulation and Trace Equivalence

Strong Bisimulation vs. Trace Equivalence

Theorem 12.8

P ∼ Q implies that P and Q are trace equivalent. The reverse does generally not
hold.

Proof.

The implication from left to right follows from the previous slide.

Consider the other direction.
Take P = a.P1 with P1 = b.nil + c.nil and Q = a.b.nil + a.c.nil.
Then: Tr(P) = {ε, a, ab, ac} = Tr(Q).
Thus, P and Q are trace equivalent.
But: P 6∼ Q, as there is no state in the LTS of Q that is bisimilar to P1.
Why? No state in Q can perform both b and c.

12 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Bisimulation and Trace Equivalence

Strong Bisimulation vs. Trace Equivalence

Theorem 12.8

P ∼ Q implies that P and Q are trace equivalent. The reverse does generally not
hold.

Proof.

The implication from left to right follows from the previous slide.

Consider the other direction.

Take P = a.P1 with P1 = b.nil + c.nil and Q = a.b.nil + a.c.nil.
Then: Tr(P) = {ε, a, ab, ac} = Tr(Q).
Thus, P and Q are trace equivalent.
But: P 6∼ Q, as there is no state in the LTS of Q that is bisimilar to P1.
Why? No state in Q can perform both b and c.

12 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Bisimulation and Trace Equivalence

Strong Bisimulation vs. Trace Equivalence

Theorem 12.8

P ∼ Q implies that P and Q are trace equivalent. The reverse does generally not
hold.

Proof.

The implication from left to right follows from the previous slide.

Consider the other direction.
Take P = a.P1 with P1 = b.nil + c.nil and Q = a.b.nil + a.c.nil.

Then: Tr(P) = {ε, a, ab, ac} = Tr(Q).
Thus, P and Q are trace equivalent.
But: P 6∼ Q, as there is no state in the LTS of Q that is bisimilar to P1.
Why? No state in Q can perform both b and c.

12 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Bisimulation and Trace Equivalence

Strong Bisimulation vs. Trace Equivalence

Theorem 12.8

P ∼ Q implies that P and Q are trace equivalent. The reverse does generally not
hold.

Proof.

The implication from left to right follows from the previous slide.

Consider the other direction.
Take P = a.P1 with P1 = b.nil + c.nil and Q = a.b.nil + a.c.nil.
Then: Tr(P) = {ε, a, ab, ac} = Tr(Q).

Thus, P and Q are trace equivalent.
But: P 6∼ Q, as there is no state in the LTS of Q that is bisimilar to P1.
Why? No state in Q can perform both b and c.

12 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Bisimulation and Trace Equivalence

Strong Bisimulation vs. Trace Equivalence

Theorem 12.8

P ∼ Q implies that P and Q are trace equivalent. The reverse does generally not
hold.

Proof.

The implication from left to right follows from the previous slide.

Consider the other direction.
Take P = a.P1 with P1 = b.nil + c.nil and Q = a.b.nil + a.c.nil.
Then: Tr(P) = {ε, a, ab, ac} = Tr(Q).
Thus, P and Q are trace equivalent.

But: P 6∼ Q, as there is no state in the LTS of Q that is bisimilar to P1.
Why? No state in Q can perform both b and c.

12 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Bisimulation and Trace Equivalence

Strong Bisimulation vs. Trace Equivalence

Theorem 12.8

P ∼ Q implies that P and Q are trace equivalent. The reverse does generally not
hold.

Proof.

The implication from left to right follows from the previous slide.

Consider the other direction.
Take P = a.P1 with P1 = b.nil + c.nil and Q = a.b.nil + a.c.nil.
Then: Tr(P) = {ε, a, ab, ac} = Tr(Q).
Thus, P and Q are trace equivalent.
But: P 6∼ Q, as there is no state in the LTS of Q that is bisimilar to P1.

Why? No state in Q can perform both b and c.

12 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Bisimulation and Trace Equivalence

Strong Bisimulation vs. Trace Equivalence

Theorem 12.8

P ∼ Q implies that P and Q are trace equivalent. The reverse does generally not
hold.

Proof.

The implication from left to right follows from the previous slide.

Consider the other direction.
Take P = a.P1 with P1 = b.nil + c.nil and Q = a.b.nil + a.c.nil.
Then: Tr(P) = {ε, a, ab, ac} = Tr(Q).
Thus, P and Q are trace equivalent.
But: P 6∼ Q, as there is no state in the LTS of Q that is bisimilar to P1.
Why? No state in Q can perform both b and c.

12 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Bisimulation and Trace Equivalence

Deterministic Transition Systems

Definition 12.9 (Determinism)

P ∈ Prc is deterministic whenever for every of its states s it holds:(
s

α−→ t and s
α−→ u

)
implies t = u.

Theorem 12.10 (Determinism implies coincidence of ∼ and trace equivalence) (Park)

For deterministic P and Q: P ∼ Q iff Tr(P) = Tr(Q).

Proof.

Left as an exercise. In fact, for deterministic processes, trace equivalence, complete
trace, failure trace, and ready trace equivalence all coincide.

13 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Bisimulation and Trace Equivalence

Deterministic Transition Systems

Definition 12.9 (Determinism)

P ∈ Prc is deterministic whenever for every of its states s it holds:(
s

α−→ t and s
α−→ u

)
implies t = u.

Theorem 12.10 (Determinism implies coincidence of ∼ and trace equivalence) (Park)

For deterministic P and Q: P ∼ Q iff Tr(P) = Tr(Q).

Proof.

Left as an exercise. In fact, for deterministic processes, trace equivalence, complete
trace, failure trace, and ready trace equivalence all coincide.

13 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Bisimulation and Trace Equivalence

Deterministic Transition Systems

Definition 12.9 (Determinism)

P ∈ Prc is deterministic whenever for every of its states s it holds:(
s

α−→ t and s
α−→ u

)
implies t = u.

Theorem 12.10 (Determinism implies coincidence of ∼ and trace equivalence) (Park)

For deterministic P and Q: P ∼ Q iff Tr(P) = Tr(Q).

Proof.

Left as an exercise.

In fact, for deterministic processes, trace equivalence, complete
trace, failure trace, and ready trace equivalence all coincide.

13 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Bisimulation and Trace Equivalence

Deterministic Transition Systems

Definition 12.9 (Determinism)

P ∈ Prc is deterministic whenever for every of its states s it holds:(
s

α−→ t and s
α−→ u

)
implies t = u.

Theorem 12.10 (Determinism implies coincidence of ∼ and trace equivalence) (Park)

For deterministic P and Q: P ∼ Q iff Tr(P) = Tr(Q).

Proof.

Left as an exercise. In fact, for deterministic processes, trace equivalence, complete
trace, failure trace, and ready trace equivalence all coincide.

13 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Congruence and Deadlock Sensitivity

Outline of Lecture 12

Recap: Trace Equivalence

Bisimulation

Bisimulation and Trace Equivalence

Congruence and Deadlock Sensitivity

Buffers Revisited

Epilogue

14 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Congruence and Deadlock Sensitivity

Congruence

Theorem 12.11 (CCS congruence property of ∼)

Strong bisimilarity ∼ is a CCS congruence, that is, whenever P,Q ∈ Prc such that
P ∼ Q,

α.P ∼ α.Q for every action α
P + R ∼ Q + R for every process R
P ‖ R ∼ Q ‖ R for every process R
P \ L ∼ Q \ L for every set L ⊆ A

P[f] ∼ Q[f] for every relabelling f : A→ A

Proof.

• for ‖: on the board
• for other CCS operators: left as an exercise

15 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Congruence and Deadlock Sensitivity

Congruence

Theorem 12.11 (CCS congruence property of ∼)

Strong bisimilarity ∼ is a CCS congruence, that is, whenever P,Q ∈ Prc such that
P ∼ Q,

α.P ∼ α.Q for every action α
P + R ∼ Q + R for every process R
P ‖ R ∼ Q ‖ R for every process R
P \ L ∼ Q \ L for every set L ⊆ A

P[f] ∼ Q[f] for every relabelling f : A→ A

Proof.

• for ‖: on the board
• for other CCS operators: left as an exercise

15 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Congruence and Deadlock Sensitivity

Deadlock Sensitivity of ∼

Definition (Deadlock; cf. Definition 11.5)

Let P,Q ∈ Prc and w ∈ Act∗ such that P
w−→ Q and Q 6−→. Then Q is called a

w-deadlock of P.

Definition (Deadlock sensitivity; cf. Definition 11.7)

Relation ≡⊆ Prc × Prc is deadlock sensitive whenever:

P ≡ Q implies (∀w ∈ Act∗.P has a w-deadlock iff Q has a w-deadlock) .

Theorem 12.12

∼ is deadlock sensitive.

Proof.

on the board

16 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Congruence and Deadlock Sensitivity

Deadlock Sensitivity of ∼

Definition (Deadlock; cf. Definition 11.5)

Let P,Q ∈ Prc and w ∈ Act∗ such that P
w−→ Q and Q 6−→. Then Q is called a

w-deadlock of P.

Definition (Deadlock sensitivity; cf. Definition 11.7)

Relation ≡⊆ Prc × Prc is deadlock sensitive whenever:

P ≡ Q implies (∀w ∈ Act∗.P has a w-deadlock iff Q has a w-deadlock) .

Theorem 12.12

∼ is deadlock sensitive.

Proof.

on the board

16 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Congruence and Deadlock Sensitivity

Deadlock Sensitivity of ∼

Definition (Deadlock; cf. Definition 11.5)

Let P,Q ∈ Prc and w ∈ Act∗ such that P
w−→ Q and Q 6−→. Then Q is called a

w-deadlock of P.

Definition (Deadlock sensitivity; cf. Definition 11.7)

Relation ≡⊆ Prc × Prc is deadlock sensitive whenever:

P ≡ Q implies (∀w ∈ Act∗.P has a w-deadlock iff Q has a w-deadlock) .

Theorem 12.12

∼ is deadlock sensitive.

Proof.

on the board

16 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Congruence and Deadlock Sensitivity

Deadlock Sensitivity of ∼

Definition (Deadlock; cf. Definition 11.5)

Let P,Q ∈ Prc and w ∈ Act∗ such that P
w−→ Q and Q 6−→. Then Q is called a

w-deadlock of P.

Definition (Deadlock sensitivity; cf. Definition 11.7)

Relation ≡⊆ Prc × Prc is deadlock sensitive whenever:

P ≡ Q implies (∀w ∈ Act∗.P has a w-deadlock iff Q has a w-deadlock) .

Theorem 12.12

∼ is deadlock sensitive.

Proof.

on the board

16 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Buffers Revisited

Outline of Lecture 12

Recap: Trace Equivalence

Bisimulation

Bisimulation and Trace Equivalence

Congruence and Deadlock Sensitivity

Buffers Revisited

Epilogue

17 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Buffers Revisited

Two Buffers

Example 12.13 (One-place buffer)

B1
0 = in.B1

1
B1

1 = out.B1
0.

Example 12.14 (Two-place buffer)

B2
0 = in.B2

1
B2

1 = in.B2
2 + out.B2

0
B2

2 = out.B2
1.

B2
0 ∼ B1

0 ‖ B1
0

18 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Buffers Revisited

Two Buffers

Example 12.13 (One-place buffer)

B1
0 = in.B1

1
B1

1 = out.B1
0.

Example 12.14 (Two-place buffer)

B2
0 = in.B2

1
B2

1 = in.B2
2 + out.B2

0
B2

2 = out.B2
1.

B2
0 ∼ B1

0 ‖ B1
0

18 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Buffers Revisited

Two Buffers

Example 12.13 (One-place buffer)

B1
0 = in.B1

1
B1

1 = out.B1
0.

Example 12.14 (Two-place buffer)

B2
0 = in.B2

1
B2

1 = in.B2
2 + out.B2

0
B2

2 = out.B2
1.

B2
0 ∼ B1

0 ‖ B1
0

18 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Buffers Revisited

Semaphores: A Generalisation

Example 12.15 (An n-ary semaphore)

Let Sn
i stand for a semaphore for n resources i of which are taken:

Sn
0 = get.Sn

1
Sn

i = get.Sn
i+1 + put.Sn

i−1 for 0 < i < n
Sn

n = put.Sn
n−1

This process is strongly bisimilar to n parallel binary semaphores:

Lemma 12.16

For every n ∈ N+, we have: Sn
0 ∼ S1

0 ‖ · · · ‖ S1
0︸ ︷︷ ︸

n times

.

19 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Buffers Revisited

Semaphores: A Generalisation

Example 12.15 (An n-ary semaphore)

Let Sn
i stand for a semaphore for n resources i of which are taken:

Sn
0 = get.Sn

1
Sn

i = get.Sn
i+1 + put.Sn

i−1 for 0 < i < n
Sn

n = put.Sn
n−1

This process is strongly bisimilar to n parallel binary semaphores:

Lemma 12.16

For every n ∈ N+, we have: Sn
0 ∼ S1

0 ‖ · · · ‖ S1
0︸ ︷︷ ︸

n times

.

19 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Buffers Revisited

Semaphores II

Lemma

For every n ∈ N+, we have: Sn
0 ∼ S1

0 ‖ · · · ‖ S1
0︸ ︷︷ ︸

n times

.

Proof.

Consider the following binary relation where i1, i2, . . . , in ∈ {0, 1}:

ρ =

(Sn
i ,S

1
i1 ‖ · · · ‖ S1

in

) ∣∣∣∣∣∣
n∑

j=1

ij = i


Then: ρ is a strong bisimulation and (Sn

0,S
1
0 ‖ · · · ‖ S1

0︸ ︷︷ ︸
n times

) ∈ ρ.

20 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Buffers Revisited

Semaphores II

Lemma

For every n ∈ N+, we have: Sn
0 ∼ S1

0 ‖ · · · ‖ S1
0︸ ︷︷ ︸

n times

.

Proof.

Consider the following binary relation where i1, i2, . . . , in ∈ {0, 1}:

ρ =

(Sn
i ,S

1
i1 ‖ · · · ‖ S1

in

) ∣∣∣∣∣∣
n∑

j=1

ij = i



Then: ρ is a strong bisimulation and (Sn
0,S

1
0 ‖ · · · ‖ S1

0︸ ︷︷ ︸
n times

) ∈ ρ.

20 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Buffers Revisited

Semaphores II

Lemma

For every n ∈ N+, we have: Sn
0 ∼ S1

0 ‖ · · · ‖ S1
0︸ ︷︷ ︸

n times

.

Proof.

Consider the following binary relation where i1, i2, . . . , in ∈ {0, 1}:

ρ =

(Sn
i ,S

1
i1 ‖ · · · ‖ S1

in

) ∣∣∣∣∣∣
n∑

j=1

ij = i


Then: ρ is a strong bisimulation and (Sn

0,S
1
0 ‖ · · · ‖ S1

0︸ ︷︷ ︸
n times

) ∈ ρ.

20 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Epilogue

Outline of Lecture 12

Recap: Trace Equivalence

Bisimulation

Bisimulation and Trace Equivalence

Congruence and Deadlock Sensitivity

Buffers Revisited

Epilogue

21 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Epilogue

Overview of Some Behavioural Equivalences

22 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Epilogue

Summary

• Strong bisimulation of processes is based on mutually mimicking each other

• Strong bisimilarity ∼:
1. is the largest strong bisimulation
2. is an equivalence
3. is a CCS congruence
4. is strictly finer than trace equivalence
5. is deadlock sensitive

23 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

Epilogue

Summary

• Strong bisimulation of processes is based on mutually mimicking each other
• Strong bisimilarity ∼:

1. is the largest strong bisimulation
2. is an equivalence
3. is a CCS congruence
4. is strictly finer than trace equivalence
5. is deadlock sensitive

23 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

	Recap: Trace Equivalence
	Bisimulation
	Bisimulation and Trace Equivalence
	Congruence and Deadlock Sensitivity
	Buffers Revisited
	Epilogue

