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Recap: Trace Equivalence

Trace Equivalence

e Trace equivalence is a possible behavioural equivalence, is a congruence, but does not
preserve deadlocks.
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Recap: Trace Equivalence

Trace Equivalence

e Trace equivalence is a possible behavioural equivalence, is a congruence, but does not
preserve deadlocks.

e Main problem:
a.(P+ Q) = a.P+ a.Q,
whereas their deadlock behaviour in a context can differ.
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Recap: Trace Equivalence

Trace Equivalence

e Trace equivalence is a possible behavioural equivalence, is a congruence, but does not
preserve deadlocks.

e Main problem:
a.(P+ Q) = a.P+ a.Q,
whereas their deadlock behaviour in a context can differ.
e Solution: consider finer behavioural equivalences such that:

a(P+Q) # a.P+a.Q
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Recap: Trace Equivalence

Trace Equivalence

e Trace equivalence is a possible behavioural equivalence, is a congruence, but does not
preserve deadlocks.

e Main problem:
a.(P+ Q) = a.P+ a.Q,
whereas their deadlock behaviour in a context can differ.
e Solution: consider finer behavioural equivalences such that:
a(P+Q) # a.P+a.Q
e Our (serious) attempt today: Milner’s strong bisimulation.

Robin Milner (1934—2010)
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Bisimulation

Outline of Lecture 12

Bisimulation
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Bisimulation

Rationale

Observation

In order for a behavioural equivalence to be deadlock sensitive, it has to take the
branching structure of processes into account.
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Bisimulation

Rationale

Observation

In order for a behavioural equivalence to be deadlock sensitive, it has to take the
branching structure of processes into account.

This is achieved by an equivalence that is defined according to the scheme:
Bisimulation scheme

P, Q € Prc are equivalent iff, for every action «, every c-successor of P is equivalent
to some a-successor of Q, and vice versa.
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Bisimulation

Rationale

Observation

In order for a behavioural equivalence to be deadlock sensitive, it has to take the
branching structure of processes into account.

This is achieved by an equivalence that is defined according to the scheme:
Bisimulation scheme

P, Q € Prc are equivalent iff, for every action «, every c-successor of P is equivalent
to some a-successor of Q, and vice versa.

Three versions will be considered in this course:

1. Strong bisimulation: ignore the special function of 7-actions
2. Weak bisimulation: treat 7-actions as invisible

3. Simulation relations: unidirectional versions of bisimulation
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Bisimulation

Strong Bisimulation |

Definition 12.1 (Strong bisimulation) (Park 1981, Milner 1989)

A binary relation p € Prc X Prcis a strong bisimulation whenever for every
(P,Q) € pand « € Act:

1.if P -+ P/, then there exists Q' € Prc such that @ —— Q' and (P’, @) < p, and
2. if @ %5 @, then there exists P’ € Prc such that P —— P"and (P, Q') € p.
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Bisimulation

Strong Bisimulation |

Definition 12.1 (Strong bisimulation) (Park 1981, Milner 1989)

A binary relation p € Prc X Prcis a strong bisimulation whenever for every
(P,Q) € pand « € Act:

1.if P -+ P/, then there exists Q' € Prc such that @ —— Q' and (P’, @) < p, and
2. if @ %5 @, then there exists P’ € Prc such that P —— P"and (P, Q') € p.

Definition 12.2 (Strong bisimilarity)

Processes P and Q are strongly bisimilar, denoted P ~ Q, iff there is a strong
bisimulation p with (P, Q) € p.
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Bisimulation

Strong Bisimulation |

Definition 12.1 (Strong bisimulation) (Park 1981, Milner 1989)

A binary relation p € Prc X Prcis a strong bisimulation whenever for every
(P,Q) € pand « € Act:

1.if P -+ P/, then there exists Q' € Prc such that @ —— Q' and (P’, @) < p, and
2. if @ %5 @, then there exists P’ € Prc such that P —— P"and (P, Q') € p.

Definition 12.2 (Strong bisimilarity)

Processes P and Q are strongly bisimilar, denoted P ~ Q, iff there is a strong
bisimulation p with (P, Q) € p. Thus,

~ = U {p | pis a strong bisimulation}.
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Bisimulation

Strong Bisimulation |

Definition 12.1 (Strong bisimulation) (Park 1981, Milner 1989)

A binary relation p € Prc X Prcis a strong bisimulation whenever for every
(P,Q) € pand « € Act:

1.if P -+ P/, then there exists Q' € Prc such that @ —— Q' and (P’, @) < p, and
2. if @ %5 @, then there exists P’ € Prc such that P —— P"and (P, Q') € p.

Definition 12.2 (Strong bisimilarity)

Processes P and Q are strongly bisimilar, denoted P ~ Q, iff there is a strong
bisimulation p with (P, Q) € p. Thus,

~ = U {p | pis a strong bisimulation}.
Relation ~ is called strong bisimilarity.
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Bisimulation

Strong Bisimulation Il

P — P

can be completed to

P — P

0

%

Q> Q
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Bisimulation

Strong Bisimulation Il

P — P P — P
Iy, can be completedto p I,

Q Q — Q

and
o /
P P -2 P
Iy, can be completedto p I
(07 07
Q — Q@ Q — Q@
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Bisimulation

Examples

Example 12.3 (A first example)

Claim: P ~ Qwhere P = a.P;+ a.P»
P; b.P,
P b.P,

Q_

Q

3.01
b.Cy
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Bisimulation

Examples

Example 12.3 (A first example)

Claim: P ~ Qwhere P = a.P;+ a.P Q = a.Q; Proof:
Py = b.P; Q; = b.Qy4
P2 — ng

p=1{(P,Q), (P, Q),(P:, Q) } is a strong bisimulation

8 of 23 Concurrency Theory o Rm
Software Modeling

Winter Semester 2015/16
Lecture 12: Strong Bisimulation Bl and Verification Chair



Bisimulation

Examples

Example 12.3 (A first example)

Claim: P ~ Qwhere P = a.P;+ a.P Q = a.Q; Proof:
Py = b.P; Q = b.Qj
P2 — ng

p=1{(P,Q), (P, Q),(P:, Q) } is a strong bisimulation

Example 12.4 (Relating a finite to an infinite-state process)

Claim: Py ~ Qwhere P, = a.P,. fori € Nand Q = a.Q.
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Bisimulation

Examples

Example 12.3 (A first example)

Claim: P ~ Qwhere P = a.P;+ a.P Q = a.Q; Proof:
Py = b.Ps> Q = b.()
P2 — ng

p=1{(P,Q), (P, Q),(P:, Q) } is a strong bisimulation

Example 12.4 (Relating a finite to an infinite-state process)

Claim: Py ~ Qwhere P, = a.P,. fori € Nand Q = a.Q.
Proof: p = {(P;, Q) | i € N} is a strong bisimulation.
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Bisimulation

Examples

Example 12.3 (A first example)

Claim: P ~ Qwhere P = a.P;+ a.P Q = a.Q; Proof:
Py = b.Ps> Q = b.()
P2 — ng

p=1{(P,Q), (P, Q),(P:, Q) } is a strong bisimulation

Example 12.4 (Relating a finite to an infinite-state process)

Claim: Py ~ Qwhere P, = a.P,. fori € Nand Q = a.Q.
Proof: p = {(P;, Q) | i € N} is a strong bisimulation.

Example 12.5 (Counterexample; cf. Example 11.9)

Show on board that CTM ~ CTM' where

CTM = coin. (coffee. CTM + tea.CTM)
CTM’ = coin.coffee.CTM’ + coin.tea.CTM..
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Bisimulation

Properties of Strong Bisimilarity
Lemma 12.6 (Properties of ~)

1. ~ Is an equivalence relation (i.e., reflexive, symmetric, and transitive)
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Bisimulation

Properties of Strong Bisimilarity
Lemma 12.6 (Properties of ~)

1. ~ Is an equivalence relation (i.e., reflexive, symmetric, and transitive)
2. ~ IS the coarsest strong bisimulation
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Bisimulation

Properties of Strong Bisimilarity

Lemma 12.6 (Properties of ~)

1. ~ Is an equivalence relation (i.e., reflexive, symmetric, and transitive)
2. ~ IS the coarsest strong bisimulation

Proof.
on the board
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Bisimulation and Trace Equivalence

Outline of Lecture 12

Bisimulation and Trace Equivalence
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Bisimulation and Trace Equivalence

Bisimulation on Paths
Lemma 12.7 (Bisimulation on paths)

Whenever we have:
Po - P, 5 P, =5 Py S Py

0
Qo
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Bisimulation and Trace Equivalence

Bisimulation on Paths
Lemma 12.7 (Bisimulation on paths)

Whenever we have:
Po =5 Py =2 P, = Py 5 Py

P
Co
this can be completed to
(8 (0 (07 (8
= 0 —1> = 1 —2> = ) —3> = 3 —4> P 4ovenn.
p p p p p
(0 (8 (07 (8
@) — Q; — @) — @ — Qp......
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Bisimulation and Trace Equivalence

Bisimulation on Paths
Lemma 12.7 (Bisimulation on paths)
Whenever we have:

Po =% Py =% P, =% Py 25 Py

0

Co
this can be completed to

P, — P 2 Py =% Py 5 Py
p p p p p
Qo —5 Q - Q@ =5 3 - Qq......

Proof.
by induction on the length of the path
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Bisimulation and Trace Equivalence

Strong Bisimulation vs. Trace Equivalence

Theorem 12.8

P ~ Q implies that P and Q) are trace equivalent. The reverse does generally not
hold.
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Bisimulation and Trace Equivalence

Strong Bisimulation vs. Trace Equivalence

Theorem 12.8

P ~ Q implies that P and Q) are trace equivalent. The reverse does generally not
hold.

Proof.

The implication from left to right follows from the previous slide.
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Bisimulation and Trace Equivalence

Strong Bisimulation vs. Trace Equivalence

Theorem 12.8

P ~ Q implies that P and Q) are trace equivalent. The reverse does generally not
hold.

Proof.
The implication from left to right follows from the previous slide.

Consider the other direction.
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Bisimulation and Trace Equivalence

Strong Bisimulation vs. Trace Equivalence

Theorem 12.8

P ~ Q implies that P and Q) are trace equivalent. The reverse does generally not
hold.

Proof.

The implication from left to right follows from the previous slide.

Consider the other direction.
Take P = a.P; with P; = b.nil + c.niland Q = a.b.nil 4 a.c.nil.
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Bisimulation and Trace Equivalence

Strong Bisimulation vs. Trace Equivalence

Theorem 12.8

P ~ Q implies that P and Q) are trace equivalent. The reverse does generally not
hold.

Proof.
The implication from left to right follows from the previous slide.
Consider the other direction.

Take P = a.P; with P; = b.nil + c.niland Q = a.b.nil 4 a.c.nil.
Then: Tr(P) = {¢, a, ab, ac} = Tr(Q).
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Bisimulation and Trace Equivalence

Strong Bisimulation vs. Trace Equivalence

Theorem 12.8

P ~ Q implies that P and Q) are trace equivalent. The reverse does generally not
hold.

Proof.
The implication from left to right follows from the previous slide.

Consider the other direction.

Take P = a.P; with P; = b.nil + c.niland Q = a.b.nil 4 a.c.nil.
Then: Tr(P) = {¢, a,ab, ac} = Tr(Q).

Thus, P and Q are trace equivalent.
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Bisimulation and Trace Equivalence

Strong Bisimulation vs. Trace Equivalence

Theorem 12.8

P ~ Q implies that P and Q) are trace equivalent. The reverse does generally not
hold.

Proof.
The implication from left to right follows from the previous slide.

Consider the other direction.

Take P = a.P; with P; = b.nil + c.niland Q = a.b.nil + a.c.nil.
Then: Tr(P) = {¢, a,ab, ac} = Tr(Q).

Thus, P and Q are trace equivalent.

But: P +4 Q, as there is no state in the LTS of Q that is bisimilar to P;.
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Bisimulation and Trace Equivalence

Strong Bisimulation vs. Trace Equivalence

Theorem 12.8

P ~ Q implies that P and Q) are trace equivalent. The reverse does generally not
hold.

Proof.
The implication from left to right follows from the previous slide.

Consider the other direction.

Take P = a.P; with P; = b.nil + c.niland Q = a.b.nil 4 a.c.nil.
Then: Tr(P) = {¢, a,ab, ac} = Tr(Q).

Thus, P and Q are trace equivalent.

But: P +4 Q, as there is no state in the LTS of Q that is bisimilar to P;.
Why? No state in Q can perform both b and c.

RWTH

12 of 23 Concurrency Theory o
Winter Semester 2015/16 Software Modeling

Lecture 12: Strong Bisimulation Bl and Verification Chair




Bisimulation and Trace Equivalence

Deterministic Transition Systems

Definition 12.9 (Determinism)
P € Prc is deterministic whenever for every of its states s it holds:

(s 5 tand s — u) implies t = u.
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Bisimulation and Trace Equivalence

Deterministic Transition Systems

Definition 12.9 (Determinism)
P € Prc is deterministic whenever for every of its states s it holds:

(s 5 tand s — u) implies t = u.

Theorem 12.10 (Determinism implies coincidence of ~ and trace equivalence) (Park)

For deterministic P and Q: P ~ Q iff Tr(P) = Tr(Q).
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Bisimulation and Trace Equivalence

Deterministic Transition Systems

Definition 12.9 (Determinism)
P € Prc is deterministic whenever for every of its states s it holds:

(0% (0 1 5
(s — tand s — u) implies t = u.

Theorem 12.10 (Determinism implies coincidence of ~ and trace equivalence) (Park)

For deterministic P and Q: P ~ Q iff Tr(P) = Tr(Q).

Proof.

Left as an exercise.
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Bisimulation and Trace Equivalence

Deterministic Transition Systems

Definition 12.9 (Determinism)
P € Prc is deterministic whenever for every of its states s it holds:

(s s tand s —» u) implies t = u.

Theorem 12.10 (Determinism implies coincidence of ~ and trace equivalence) (Park)

For deterministic P and Q: P ~ Q iff Tr(P) = Tr(Q).

Proof.
Left as an exercise. In fact, for deterministic processes, trace equivalence, complete
trace, failure trace, and ready trace equivalence all coincide. []
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Congruence and Deadlock Sensitivity

Outline of Lecture 12

Congruence and Deadlock Sensitivity
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Congruence and Deadlock Sensitivity

Congruence

Theorem 12.11 (CCS congruence property of ~)

Strong bisimilarity ~ is a CCS congruence, that is, whenever P, Q € Prc such that
P~ Q,

a.P ~ a.Q for every action «
P+ R ~ Q-+ R forevery process R
P||R ~ Q|| R foreveryprocess R
P\L ~ Q\L foreverysetL C A
P[f] ~ Q|f] for every relabelling f : A — A

RWTH

15 of 23 Concurrency Theory
Winter Semester 2015/16 Software Modeling

Lecture 12: Strong Bisimulation Bl and Verification Chair




Congruence and Deadlock Sensitivity

Congruence

Theorem 12.11 (CCS congruence property of ~)

Strong bisimilarity ~ is a CCS congruence, that is, whenever P, Q € Prc such that
P~ Q,

a.P ~ a.Q for every action «
P+ R ~ Q-+ R forevery process R
P||R ~ Q|| R foreveryprocess R
P\L ~ Q\L foreverysetL C A
P[f] ~ Q|f] for every relabelling f : A — A

Proof.

e for ||: on the board
e for other CCS operators: left as an exercise
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Congruence and Deadlock Sensitivity

Deadlock Sensitivity of ~

Definition (Deadlock; cf. Definition 11.5)

Let P, Q € Prcand w € Act* such that P — Q and Q /4. Then Qs called a
w-deadlock of P.
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Congruence and Deadlock Sensitivity

Deadlock Sensitivity of ~

Definition (Deadlock; cf. Definition 11.5)

Let P, Q € Prcand w € Act* such that P — Q and Q /4. Then Qs called a
w-deadlock of P.

Definition (Deadlock sensitivity; cf. Definition 11.7)

Relation = C Prc X Prc is deadlock sensitive whenever:
P = Qimplies (Vw € Act”. P has a w-deadlock iff Q has a w-deadlock) .
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Congruence and Deadlock Sensitivity

Deadlock Sensitivity of ~

Definition (Deadlock; cf. Definition 11.5)

Let P, Q € Prcand w € Act* such that P — Q and Q /4. Then Qs called a
w-deadlock of P.

Definition (Deadlock sensitivity; cf. Definition 11.7)

Relation = C Prc X Prc is deadlock sensitive whenever:
P = Qimplies (Vw € Act”. P has a w-deadlock iff Q has a w-deadlock) .

Theorem 12.12
~ [s deadlock sensitive.
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Congruence and Deadlock Sensitivity

Deadlock Sensitivity of ~

Definition (Deadlock; cf. Definition 11.5)

Let P, Q € Prcand w € Act* such that P — Q and Q /4. Then Qs called a
w-deadlock of P.

Definition (Deadlock sensitivity; cf. Definition 11.7)

Relation = C Prc X Prc is deadlock sensitive whenever:
P = Qimplies (Vw € Act”. P has a w-deadlock iff Q has a w-deadlock) .

Theorem 12.12
~ [s deadlock sensitive.

Proof.

on the board
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Buffers Revisited

Outline of Lecture 12

Buffers Revisited
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Buffers Revisited

Two Buffers

Example 12.13 (One-place buffer)

1 _ 1
B} = in.B!
Bl = out.B).
1 0
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Buffers Revisited

Two Buffers

Example 12.13 (One-place buffer)
By = in.B;

Example 12.14 (Two-place buffer)

2 o Q2
B; in.Bj

B} = out.B,. B = in.B5 + out.B;
2 _ St R2
B2 = out.B?.
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Buffers Revisited

Two Buffers

Example 12.13 (One-place buffer)

Y
o=
|

in.B;
= out.By.

i)
|

Example 12.14 (Two-place buffer)

B> = in.B?
B = in.B5 + out.B;

B5 = out.Bs.
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Buffers Revisited

Semaphores: A Generalisation

Example 12.15 (An n-ary semaphore)

Let S” stand for a semaphore for n resources i of which are taken:
Sy = get.S]
S} = get.Sl.; +put.S7 ; for0<i<n
S, = put.S)_,

RWTH
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Buffers Revisited

Semaphores: A Generalisation

Example 12.15 (An n-ary semaphore)

Let S” stand for a semaphore for n resources i of which are taken:
Sy = get.SY
S! = get.S , +put.S’, for0<i<n
S, = put.S;_,

This process is strongly bisimilar to n parallel binary semaphores:
Lemma 12.16

. Qn 1 1
Foreveryn € N, we have: S§~ S || --- || Sy.
g
n times
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Buffers Revisited

Semaphores Il

Lemma
1 1
Foreveryn € N, we have: Sg ~ Sy || --- || Sy
n times
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Buffers Revisited

Semaphores Il

For every , we have:
Proof.
Consider the following binary relation where i, o, . . ., i, € {0, 1}:
n
_ n 1 1 .
P = (SHSA [N Si,,) E :’/—
j=1
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Buffers Revisited

Semaphores Il

For every , we have:

Proof.
Consider the following binary relation where iy, iz, . . ., i, € {0,1}:

n
p=(ShS, 1S [ S =i
j=1

Then: p is a strong bisimulation and (57, S || - - || Sp) € p.

o>
n times
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Winter Semester 201.5./16 . ‘ Software Modeling
Lecture 12: Strong Bisimulation Hl and Verification Chair




Epilogue

Outline of Lecture 12

Epilogue

21 of 23 Concurrency Theory

Winter Semester 2015/16
Lecture 12: Strong Bisimulation

.

4

Software Modeling
Il and Verification Chair

RWTH



Epilogue

Overview of Some Behavioural Equivalences

1somorphism

bisimulation equivalence

r Ll
ready trace equivalence

simulation equivalence ,
failure equivalence

/
trace equivalence
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Epilogue

Summary

e Strong bisimulation of processes is based on mutually mimicking each other
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Epilogue

Summary

e Strong bisimulation of processes is based on mutually mimicking each other

e Strong bisimilarity ~:
1. is the largest strong bisimulation
is an equivalence
is a CCS congruence
is strictly finer than trace equivalence
is deadlock sensitive

ok W
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