

Concurrency Theory

- Winter Semester 2015/16
- Lecture 10: Variations of π -Calculus
- Joost-Pieter Katoen and Thomas Noll Software Modeling and Verification Group RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ws-1516/ct/

Syntax of the Monadic π -Calculus

Definition (Syntax of monadic π -Calculus)

- Let $A = \{a, b, c ..., x, y, z, ...\}$ be a set of names.
- The set of action prefixes is given by
 - $\pi ::= x(y) \qquad (\text{receive } y \text{ along } x) \\ \mid \overline{x} \langle y \rangle \qquad (\text{send } y \text{ along } x) \\ \mid \tau \qquad (\text{unobservable action})$
- The set Prc^{π} of π -Calculus process expressions is defined by the following syntax:
 - $P ::= \sum_{i \in I} \pi_i . P_i \quad (guarded sum)$ | $P_1 \parallel P_2 \quad (parallel composition)$ | new x P (restriction)| $!P \quad (replication)$

(where *I* finite index set, $x \in A$)

Conventions: nil := $\sum_{i \in \emptyset} \pi_i P_i$, new $x_1, \ldots, x_n P$:= new $x_1 (\ldots$ new $x_n P)$

Concurrency Theory Winter Semester 2015/16 Lecture 10: Variations of π -Calculus

A Standard Form

Theorem (Standard form)

Every process expression is structurally congruent to a process of the standard form $new x_1, \dots, x_k (P_1 \parallel \dots \parallel P_m \parallel |Q_1 \parallel \dots \parallel |Q_n)$ where each P_i is a non-empty sum, and each Q_j is in standard form. (If m = n = 0: nil; if k = 0: restriction absent)

Proof.

by induction on the structure of $R \in Prc^{\pi}$ (on the board)

The Reaction Relation

Thanks to Theorem 9.5, only processes in standard form need to be considered for defining the operational semantics:

Definition

5 of 20

The reaction relation $\longrightarrow \subseteq Prc^{\pi} \times Prc^{\pi}$ is generated by the rules:

$$\overline{\tau}.P + Q \longrightarrow P$$

$$\begin{array}{c} {}^{(\text{React})} \hline (x(y).P+R) \parallel (\overline{x}\langle z \rangle.Q+S) \longrightarrow P[z/y] \parallel Q \\ {}^{(\text{Par})} \hline P \longrightarrow P' \\ P \parallel Q \longrightarrow P' \parallel Q \end{array} \xrightarrow{(\text{Res})} \hline P \longrightarrow P' \\ {}^{(\text{Res})} \hline new \ x \ P \longrightarrow new \ x \ P' \\ {}^{(\text{Res})} \hline Q \longrightarrow Q' \end{array}$$
 if $P \equiv Q$ and $P' \equiv Q'$

• P[z/y] replaces every free occurrence of y in P by z.

• In (React), the pair $(x(y), \overline{x} \langle z \rangle)$ is called a redex.

Concurrency Theory Winter Semester 2015/16 Lecture 10: Variations of π -Calculus

Example: Mobile Clients

Example 10.1

- System specification (cf. Example 8.10): $System_{1} = \text{new } L (Client_{1} \parallel Station_{1} \parallel Idle_{2} \parallel Control_{1})$ $System_{2} = \text{new } L (Client_{2} \parallel Idle_{1} \parallel Station_{2} \parallel Control_{2})$ $Station(talk, switch, gain, lose) = talk.Station(talk, switch, gain, lose) + lose(t, s).\overline{switch}\langle t, s \rangle.Idle(gain, lose)$ Idle(gain, lose) = gain(t, s).Station(t, s, gain, lose) $Control_{1} = \overline{lose_{1}}\langle talk_{2}, switch_{2} \rangle.\overline{gain_{2}}\langle talk_{2}, switch_{2} \rangle.Control_{2}$ $Control_{2} = \overline{lose_{2}}\langle talk_{1}, switch_{1} \rangle.\overline{gain_{1}}\langle talk_{1}, switch_{1} \rangle.Control_{1}$ $Client(talk, switch) = \overline{talk}.Client(talk, switch) + switch(t, s).Client(t, s)$ $L = (talk_{i}, switch_{i}, gain_{i}, lose_{i} \mid i \in \{1, 2\})$
- Use additional reaction rule for polyadic communication:

 $\overbrace{(x(\vec{y}).P+R) \parallel (\overline{x}\langle \vec{z} \rangle.Q+S) \longrightarrow P[\vec{z}/\vec{y}] \parallel Q}$

- Use additional congruence rule for process calls: if $A(\vec{x}) = P_A$, then $A(\vec{y}) \equiv P_A[\vec{y}/\vec{x}]$
- Show $System_1 \longrightarrow^* System_2$ (on the board)

Concurrency Theory Winter Semester 2015/16 Lecture 10: Variations of π -Calculus

The Polyadic π -Calculus

Polyadic Communication I

- So far: messages with exactly one name
- Now: arbitrary number
- New types of action prefixes:

 $x(y_1,\ldots,y_n)$ and $\overline{x}\langle z_1,\ldots,z_n\rangle$

where $n \in \mathbb{N}$ and all y_i distinct

• Expected behavior:

$$\overset{\scriptscriptstyle{(\mathsf{React'})}}{\overbrace{}} (x(\vec{y}).P+R) \parallel (\overline{x}\langle \vec{z}\rangle.Q+S) \longrightarrow P[\vec{z}/\vec{y}] \parallel Q$$

(replacement of free names)

• Obvious attempt for encoding:

$$x(y_1,\ldots,y_n).P\mapsto x(y_1)\ldots x(y_n).P$$

 $\overline{x}\langle z_1,\ldots,z_n\rangle.Q\mapsto \overline{x}\langle z_1\rangle\ldots \overline{x}\langle z_n\rangle.Q$

Concurrency Theory Winter Semester 2015/16 Lecture 10: Variations of π -Calculus

Polyadic Communication II

But consider the following counterexample.
Polyadic representation:

$$\begin{array}{c} x(y_{1},y_{2}).P \parallel \overline{x}\langle z_{1},z_{2}\rangle.Q \parallel \overline{x}\langle z_{1}',z_{2}'\rangle.Q' \\ & \swarrow \\ P[z_{1}/y_{1},z_{2}/y_{2}] \parallel Q \parallel \overline{x}\langle z_{1}',z_{2}'\rangle.Q' \quad P[z_{1}'/y_{1},z_{2}'/y_{2}] \parallel \overline{x}\langle z_{1},z_{2}\rangle.Q \parallel Q' \\ \text{Monadic encoding:} \ P[z_{1}/y_{1},z_{2}/y_{2}] \parallel \dots \quad \checkmark \quad P[z_{1}'/y_{1},z_{2}'/y_{2}] \parallel \dots \quad \checkmark \\ \uparrow^{2} \qquad \uparrow^{2} \\ x(y_{1}).x(y_{2}).P \parallel \overline{x}\langle z_{1}\rangle.\overline{x}\langle z_{2}\rangle.Q \parallel \overline{x}\langle z_{1}'\rangle.\overline{x}\langle z_{2}'\rangle.Q' \\ \qquad \qquad \downarrow_{2} \qquad \qquad \downarrow_{2} \\ P[z_{1}/y_{1},z_{1}'/y_{2}] \parallel \dots \quad \checkmark \quad P[z_{1}'/y_{1},z_{1}/y_{2}] \parallel \dots \quad \checkmark \end{array}$$

• Solution: avoid interferences by first introducing a fresh channel:

$$\begin{array}{l} x(y_1,\ldots,y_n).P\mapsto x(w).w(y_1)\ldots w(y_n).P\\ \overline{x}\langle z_1,\ldots,z_n\rangle.Q\mapsto \mathsf{new}\ w\left(\overline{x}\langle w\rangle.\overline{w}\langle z_1\rangle\ldots\overline{w}\langle z_n\rangle.Q\end{array}\right)$$

where $w \notin fn(Q) \cup \{y_1, \ldots, y_n, z_1, \ldots, z_n\}$

• Correctness: see exercises

Concurrency Theory Winter Semester 2015/16 Lecture 10: Variations of π -Calculus

Adding Recursive Process Calls

Recursive Process Calls I

- So far: process replication !P
- Now: parametric process definitions of the form

$$A(x_1,\ldots,x_n)=P_A$$

where A is a process identifier and P_A a process expression containing calls of A (and possibly other parametric processes)

• Semantic interpretation by new congruence rule:

$$A(y_1,\ldots,y_n)\equiv P_A[y_1/x_1,\ldots,y_n/x_n]$$

- Again: possible to simulate in basic calculus by using
 - message passing to model parameter passing to A
 - replication to model the multiple activations of A
 - restriction to model the scope of the definition of A

Recursive Process Calls II

The encoding

- of a process definition $A(\vec{x}) = P_A$
- with right-hand side $P_A = \ldots A(\vec{u}) \ldots A(\vec{v}) \ldots$
- for main process $Q = \ldots A(\vec{y}) \ldots A(\vec{z}) \ldots$

is defined as follows:

- 1. Let $a \in A$ be a new name (standing for A).
- 2. For any process *R*, let \hat{R} be the result of replacing every call $A(\vec{w})$ by $\bar{a}\langle \vec{w} \rangle$.nil.
- 3. Replace Q by $Q' := \text{new } a(\hat{Q} \parallel !a(\vec{x}).\hat{P}_A).$

(In the presence of more than one process identifier, Q' will contain a replicated component for each definition.)

Example 10.2

One-place buffer:

$$B(in, out) = in(x).\overline{out}\langle x \rangle.B(in, out)$$

(on the board)

13 of 20Concurrency TheoryWinter Semester 2015/16Lecture 10: Variations of π -Calculus

Asynchronous Communication

- So far: CCS and π -Calculus feature synchronous communication: interaction involves joint participation of processes ("handshaking")
- Prefix operator expresses temporal precedence:
 - $-\overline{x}\langle y\rangle$. *P* requires *y* to be received before executing *P*
 - -x(z).Q requires (of course) z to be sent before executing Q
- But: many concurrent (especially distributed) systems use asynchronous communication where sending and receiving are separated: sender can continue before actual reception
- Often involves explicit medium of certain characteristic
 - bounded or unbounded capacity
 - preserving sending order or not
- Now: introduce subcalculus of π -Calculus with asynchronous communication
- "Trick": output prefix can only be followed by nil
 - (unguarded) subprocess $\overline{x}\langle y \rangle$.nil ("output particle") can be understood as message y in (implicit) communication medium
 - available for reception to any (unguarded) subprocess of the form x(z).Q
 - -y is sent when $\overline{x}\langle y\rangle$.nil becomes unguarded
 - -y is received when $\overline{x}\langle y \rangle$.nil disappears via reaction $\overline{x}\langle y \rangle$.nil $\parallel (x(z).Q+R) \longrightarrow Q[y/z]$
 - \implies syntactic modification sufficient, no change of semantics

The Asynchronous π -Calculus I

Definition 10.3 (Syntax of asynchronous π -Calculus)

- Let $A = \{a, b, c \dots, x, y, z, \dots\}$ be a set of names.
- The set of action prefixes is given by

 $\pi ::= x(y) \qquad (receive y along x) \\ \mid \tau \qquad (unobservable action)$

The set *Prc^{aπ}* of asynchronous π-Calculus process expressions is defined by the following syntax:

(guarded sum)
(asynchronous output)
(parallel composition)
(restriction)
(replication)

(where *I* finite index set, $x, y \in A$)

The Asynchronous $\pi\text{-}\mathrm{Calculus}\ \mathrm{II}$

- As Prc^{aπ} ⊆ Prc^π, the semantics of the asynchronous π-Calculus does not have to be defined explicitly
- $Prc^{a\pi}$ actually imposes two restrictions:
 - output particles can only be followed by nil (as discussed before)
 - output particles cannot be summands in an expression $\sum_{i \in I} \pi_i P_i$ where |I| > 1
- Second restriction also in line with asynchronous communication:
 - (unguarded) particle $\overline{x}\langle y \rangle$.nil represents message that has been sent
 - process like $\overline{x}\langle y \rangle$.nil + v(w). *Q* is *capable* of sending via *x*, but also capable of receiving via *v* (which disables sending)
 - thus: correspondence between sent (but unreceived) message and presence of (unguarded) output particle would get lost

Encoding Synchronous Communication

- Synchronous communication: sender only allowed to continue if message has been received
- Usual asynchronous implementation: enforce synchronous behaviour by two asynchronous communication operations
 - sending of actual data
 - waiting for acknowledgement
- Here: encoding carried out in two steps
 - 1. encoding (monadic) synchronous by polyadic asynchronous communication
 - 2. encoding polyadic asynchronous by monadic asynchronous communication

Encoding Synchronous by Polyadic Asynchronous Communication

• Encoding:

- sending: $\overline{x}\langle y \rangle P \mapsto \text{new } v(\overline{x}\langle y, v \rangle . \text{nil } || v().P)$
- receiving: $x(z).Q \mapsto x(z,v).(\overline{v}\langle\rangle.nil \parallel Q)$

where $v \notin fn(P) \cup fn(Q) \cup \{x, y\}$ ("acknowledgement channel")

Correctness: synchronous transition

 $\overline{x}\langle y\rangle.P \parallel x(z).Q \longrightarrow P \parallel Q[y/z]$

is mimicked by polyadic asynchronous transition sequence

new $v(\overline{x}\langle y, v \rangle$.nil $|| v().P) || x(z, v).(\overline{v}\langle \rangle$.nil || Q) (encoding) $= \operatorname{new} v \left(\overline{x} \langle y, v \rangle . \operatorname{nil} \parallel v() . P \parallel x(z, v) . (\overline{v} \langle \rangle . \operatorname{nil} \parallel Q) \right)$ \longrightarrow new $v(v(), P \parallel \overline{v}(), \text{nil} \parallel Q[y/z])$ \rightarrow new $v(P \parallel Q[y/z])$ $\equiv P \parallel Q[y/z]$

(scope extension) (reaction) (reaction) (congruence)

• Note: *P* only executable after completion of *Q*'s input

19 of 20 Concurrency Theory Winter Semester 2015/16 Lecture 10: Variations of π -Calculus

Encoding Polyadic by Monadic Asynchronous Communication

- Encoding: (for two parameters, using v/w for sender from/to receiver)
 - sending: $\overline{x}\langle y_1, y_2 \rangle$.nil \mapsto new $v(\overline{x}\langle v \rangle$.nil $\parallel v(w).(\overline{w}\langle y_1 \rangle$.nil $\parallel v(w).\overline{w}\langle y_2 \rangle$.nil))
 - receiving: $x(z_1, z_2).R \mapsto x(v)$.new $w(\overline{v}\langle w \rangle$.nil $|| w(z_1).(\overline{v}\langle w \rangle$.nil $|| w(z_2).R))$ where $v, w \notin fn(P) \cup fn(Q) \cup \{x, y_1, y_2\}$
- **Correctness:** polyadic transition

 $\overline{x}\langle y_1, y_2 \rangle$.nil $\parallel x(z_1, z_2).R \longrightarrow R[y_1/z_1, y_2/z_2]$

is mimicked by monadic transition sequence



20 of 20 Concurrency Theory Winter Semester 2015/16 Lecture 10: Variations of π -Calculus

