

Concurrency Theory WS 2015/2016 — Series 7 —

Hand in until January 11th before the exercise class.

Exercise 1 (Strong Bisimulation)

(1+1+1 Points)

Consider the following LTS:

- 1. Give the smallest strong bisimulation of the above LTS.
- 2. Give the smallest strong bisimulation \mathcal{R} , such that at least $P \mathcal{R} P'$.
- 3. Prove or disprove: \mathcal{R} is an equivalence relation.

Exercise 2 (Trace Equivalence and Strong Bisimulation)

(2 Points)

Consider the following LTS:

- 1. Show that $P' \equiv P$, where \equiv denotes trace equivalence!
- 2. Give ~! Does $P \sim P'$ hold?

Exercise 3 (CCS Congruence)

(3 Points)

- 1. Provide an example of two processes which are trace equivalent, but not completed trace equivalent
- 2. Prove or disprove: Completed trace equivalence is a CCS congruence.
- 3. Recall the rule for sequential composition introduced in sheet 1, exercise 2. Check whether trace equivalence is a congruence for sequential composition.

Exercise 4 (Coinduction)

(2 Points)

Let A be a finite set and A^{ω} be the set of all *infinite* sequences of symbols in A. For $w \in A^{\omega}$ we denote the first symbol in w by w[0] and the remaining sequence by w', i.e. $w = w[0] \cdot w'$, where $w[0] \in A$ and $w' \in A^{\omega}$. A relation $\sim \subseteq A^{\omega} \times A^{\omega}$ is called a bismulation (on infinite sequences) if it satisfies the following property: For $u, v \in A^{\omega}$ it holds that if $u \sim v$ then u[0] = v[0] and $u' \sim v'$.

Show for the largest bimsimulation $\sim \subseteq A^{\omega} \times A^{\omega}$ that for all $u, v \in A^{\omega}$, we have u = v if and only if $u \sim v$ holds.