(2+2 Points)

Concurrency Theory WS 2015/2016 — Series 5 —

Hand in until December 7th before the exercise class.

Exercise 1 (Value Passing Process Definitions)

(a) Complete the value passing process definition below such that the process Counter outputs the sequence of natural numbers, i.e. $\overline{out}(0)$, $\overline{out}(1)$, $\overline{out}(2)$, $\overline{out}(3)$, ..., but where arbitrarily many τ 's may occur between the outputs.

 $\begin{array}{rcl} \mbox{Counter} &=& \dots \\ \mbox{Adder} &=& \dots \\ \mbox{Adder}' &=& \dots \\ \mbox{Buffer} &=& \dots \end{array}$

(b) Give a value passing process definition for a process Squarer such that the process Squares = $(Counter || Squarer) \setminus \{sync\}$ outputs the sequence of *even* square numbers, i.e. $\overline{square}(0)$, $\overline{square}(4)$, $\overline{square}(16)$, $\overline{square}(36)$, ..., but where arbitrarily many τ 's may occur between the outputs.

Exercise 2 (Translation of Value Passing into Pure CCS) (4 Points)

Prove Theorem 8.8 from Lecture 8.

Exercise 3 (Structural Congruence in the π -Calculus) (1+1 Points)

Let Q_1 and Q_2 be two monadic π -calculus processes.

- (a) Prove that new $x Q_1 \neq Q_1 \implies x \in fn(Q_1)$.
- (b) Prove that $Q_1 \equiv Q_1 \implies \operatorname{fn}(Q_1) = \operatorname{fn}(Q_2)$.