Concurrency Theory WS 2015/2016 — Series 3 —

Hand in until November 23th before the exercise class.

Exercise 1 (Semantics of HML with recursion) (5 Points)

Let (S, Act, \rightarrow) be an LTS, the semantics of a HML formula $F \in HMF_X$ is defined in lecture 5 as a function

$$\llbracket F \rrbracket : 2^S \to 2^S.$$

1) Show that $\llbracket F \rrbracket$ is monotonic over the complete lattice $(2^S, \subseteq)$. How about if we allow negations in F?

2) An LTS (S, Act, \rightarrow) is given as follows:

Consider following questions:

- compute $[\![\langle b \rangle[a]tt \land \langle b \rangle[b]X]\!](\{s_0, s_2\})$ iteratively.
- compute the set of processes satisfying following property

$$X \stackrel{\min}{=} \langle b \rangle \langle a \rangle tt \vee \langle b \rangle [b] X$$

• compute the sets of processes satisfying following equational systems

$$\begin{array}{lll} A & \stackrel{\max}{=} & [a]B \\ B & \stackrel{\max}{=} & \langle a \rangle C \wedge [b]B \\ C & \stackrel{\max}{=} & [b]B \end{array}$$

Exercise 2 (Complete Lattices)

Prove the following statement. If (L, \sqsubseteq) and (M, \sqsubseteq) are complete lattices and M is finite then the three conditions

- 1. $\gamma: M \rightarrow L$ is monotone,
- 2. $\gamma(\top) = \top$, and

3. for each $m_1, m_2 \in M$ with $m_1 \not\subseteq m_2$ and $m_2 \not\subseteq m_1$ it holds that $\gamma(\bigcap \{m_1, m_2\}) = \bigcap \{\gamma(m_1), \gamma(m_2)\}$ are jointly equivalent to $\gamma : M \to L$ satisfying

$$\gamma\left(\prod Y\right) = \prod\{\gamma(l) \mid l \in Y\}$$

for each $Y \subseteq M$.

(3 Points)

Exercise 3 (Tarski's Fixed Point Theorem)

(2 Points)

Show the second part of Theorem 5.12, i.e. for a complete lattice (D, \sqsubseteq) and $f : D \to D$ monotonic prove that the greatest fixed point of f exists and is given by

$$\operatorname{FIX}(f) = \bigsqcup \{ d \in D \mid d \sqsubseteq f(d) \}.$$