
2 Concurrency Theory WS 2015/2016
Chair for Software Modeling and Verification
RWTH Aachen

Prof. Dr. Ir. Joost-Pieter Katoen
apl. Prof. Dr. Thomas Noll

Benjamin Kaminski, Christoph Matheja

Concurrency Theory WS 2015/2016

— Series 1 —
Hand in until November 2nd before the exercise class.

Exercise 1 (2 Points)

Consider the following process definition:

B = a.a.B + b.b.B

Draw LTS(B)! Also write down all necessary derivation trees for drawing LTS(B)!

Exercise 2 (3 Points)

In this exercise, we extend CCS by a new syntactical element. Intuitively, the sequential composition
P ;Q of two processes P and Q means that first P is executed until no further rule is applicable and then
Q is executed.

(a) Extend the semantics of CCS (Definition 2.4) by rules for sequential composition.

(b) Consider the following two process definitions:

C = (a.Q || P [a.nil / nil]) \ {a, a},
C ′ = P ;Q,

where P and Q are arbitrary processes, a does not occur in P and Q, and P [a.nil / nil] denotes the
syntactic replacement of every occurrence of nil by a.nil. Prove or disprove: LTS(C) and LTS(C ′)
are isomorphic.1

1Two LTS are isomorphic if and only if they are identical up to the names of states and actions.

2 Concurrency Theory WS 2015/2016
Chair for Software Modeling and Verification
RWTH Aachen

Prof. Dr. Ir. Joost-Pieter Katoen
apl. Prof. Dr. Thomas Noll

Benjamin Kaminski, Christoph Matheja

Exercise 3 (2 Points)

For any word w we write v � w, if v is a prefix of w. The prefix set pref(L) of a language L ⊆ Σ∗ is
defined as

pref(L) = {v ∈ Σ∗ | v � w, w ∈ L} .

A language L is called prefix–closed if L = pref(L).

Prove that every regular language can be prefix–completed while preserving regularity, i.e. prove that for
every regular language L the language pref(L) is again regular!

