
Proving Termination of Probabilistic Programs
using Patterns

Lukas Westhofen

Chair of Computer Science 2
RWTH Aachen

4.2.2015

Outline

1 Motivation

2 Introduction to probabilistic programs

3 Almost-sure termination

4 Patterns

5 The algorithm

6 Conclusion

Based on Proving termination of probabilistic programs using

patterns by Javier Esparza, Andreas Gaiser and Stefan Kiefer.

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Motivation

Why do want to show termination of probabilistic programs?

æ First: Understand the applications of probabilistic programs!

Lukas Westhofen 3 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Motivation

Why do want to show termination of probabilistic programs?

æ First: Understand the applications of probabilistic programs!

Lukas Westhofen 3 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Applications

Biology Modeling populations, e.g. in agronomics

1

1
Introduction to Stochastic Models in Biology, S. Ditlevsen and A. Samson

Lukas Westhofen 4 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Applications

Biology Modeling populations, e.g. in agronomics
Robotics Collecting sensor data in a probabilistic way

2

2
Source: Washington University St. Louis

Lukas Westhofen 5 / 55

http://www.ese.wustl.edu/~nehorai/research/robotic_sensing/robotic_sensing.html

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Applications

Biology Modeling populations, e.g. in agronomics
Robotics Collecting sensor data in a probabilistic way
Networks Solve concurrency related problems

Lukas Westhofen 6 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Applications

Biology Modeling populations, e.g. in agronomics
Robotics Collecting sensor data in a probabilistic way
Networks Solve concurrency related problems
Machine Learning Neural networks

3
3
Probabilistic Neural Networks for Classification, Mapping, or Associative

Memory, Donald F. Specht.

Lukas Westhofen 7 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Proving Termination

Why do want to show termination of probabilistic programs?

æ Termination of algorithms used in the field is of utter
importance!

Lukas Westhofen 8 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Proving Termination

Why do want to show termination of probabilistic programs?

æ Termination of algorithms used in the field is of utter
importance!

Lukas Westhofen 8 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

The FireWire IEEE 1394 root contention protocol

Idea

FireWire builds a hierarchical tree-like network structure
But no device is set as the root or parent node as default!

æ FireWire devices will have to build up the tree dynamically

Lukas Westhofen 9 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

The FireWire IEEE 1394 root contention protocol

Idea

FireWire builds a hierarchical tree-like network structure
But no device is set as the root or parent node as default!

æ FireWire devices will have to build up the tree dynamically

Lukas Westhofen 9 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

The FireWire IEEE 1394 root contention protocol

Solution – The FireWire parent election algorithm (simplified)

Every node says “Be my parent!” to each neighboured node
Every node that receives such a message saves the sending
node as its child

Lukas Westhofen 10 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

The FireWire IEEE 1394 root contention protocol

Solution – The FireWire parent election algorithm (simplified)

Every node says “Be my parent!” to each neighboured node
Every node that receives such a message saves the sending
node as its child

Lukas Westhofen 11 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

The FireWire IEEE 1394 root contention protocol

Is there any problem with this algorithm?

What happens if two nodes receiving “Be my parent?” at the same
time from each other?

Lukas Westhofen 12 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

The FireWire IEEE 1394 root contention protocol

Is there any problem with this algorithm?
What happens if two nodes receiving “Be my parent?” at the same
time from each other?

Lukas Westhofen 12 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Probabilistic parent node election
To solve this problem, we introduce randomness!
Root contention solver

Each node tosses a coin
If both results di�er, the node with the head coin will win and
be the parent node

Lukas Westhofen 13 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Probabilistic parent node election
To solve this problem, we introduce randomness!
Root contention solver

Each node tosses a coin
If both results di�er, the node with the head coin will win and
be the parent node

Lukas Westhofen 13 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Probabilistic parent node election

æ Problem solved?

What happens if both coins always show the same outcome?
We need to show termination of the election algorithm, otherwise
we can’t be sure that the FireWire-communication would not come
to a halt!

In this presentation, a termination prover for probabilistic
programs will be presented.

Lukas Westhofen 14 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Probabilistic parent node election

æ Problem solved?
What happens if both coins always show the same outcome?
We need to show termination of the election algorithm, otherwise
we can’t be sure that the FireWire-communication would not come
to a halt!

In this presentation, a termination prover for probabilistic
programs will be presented.

Lukas Westhofen 14 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

1 Motivation

2 Introduction to probabilistic programs

3 Almost-sure termination

4 Patterns

5 The algorithm

6 Conclusion

Lukas Westhofen 15 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Informal definition of probabilistic programs

Similar to normal programs, but allow for randomization

1 k = 0;

2 x = 0;

3 while(k < 10) {

4 old_x = x;

5 x = coin (0.5)

6 if(x != old_x)

7 k = k + 1;

8 }

coin(p) tosses a (possibly unfair) coin
Additionally, we allow for nondeterminism via nondet()

Lukas Westhofen 16 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Informal definition of probabilistic programs

Similar to normal programs, but allow for randomization

1 k = 0;

2 x = 0;

3 while(k < 10) {

4 old_x = x;

5 x = coin (0.5)

6 if(x != old_x)

7 k = k + 1;

8 }

coin(p) tosses a (possibly unfair) coin

Additionally, we allow for nondeterminism via nondet()

Lukas Westhofen 16 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Informal definition of probabilistic programs

Similar to normal programs, but allow for randomization

1 k = 0;

2 x = 0;

3 while(k < 10) {

4 old_x = x;

5 x = coin (0.5)

6 if(x != old_x)

7 k = k + 1;

8 }

coin(p) tosses a (possibly unfair) coin
Additionally, we allow for nondeterminism via nondet()

Lukas Westhofen 16 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Formal definition via flow graphs

1 k = 0;

2 x = 0;

3 while(k < 10) {

4 old_x = x;

5 x = coin (0.5)

6 if(x != old_x)

7 k = k + 1;

8 }
‹ 0 1

€

2 3 4

5

k = 0 x = 0

if(k < 10)

old_x = x

x = coin(0.5)

i

f

(

x

!

=

o

l

d

_

x

)

if(x == old_x)

k

=

k

+

1

if(k >= 10)

Lukas Westhofen 17 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Formal definition via flow graphs

1 k = 0;

2 x = 0;

3 while(k < 10) {

4 old_x = x;

5 x = coin (0.5)

6 if(x != old_x)

7 k = k + 1;

8 }
‹ 0 1

€

2 3 4

5

k = 0 x = 0

if(k < 10)

old_x = x

x = coin(0.5)

i

f

(

x

!

=

o

l

d

_

x

)

if(x == old_x)

k

=

k

+

1

if(k >= 10)

Lukas Westhofen 18 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Formal definition via flow graphs

1 k = 0;

2 x = 0;

3 while(k < 10) {

4 old_x = x;

5 x = coin (0.5)

6 if(x != old_x)

7 k = k + 1;

8 }
‹ 0 1

€

2 3 4

5

k = 0 x = 0

if(k < 10)

old_x = x

x = coin(0.5)

i

f

(

x

!

=

o

l

d

_

x

)

if(x == old_x)

k

=

k

+

1

if(k >= 10)

Lukas Westhofen 19 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Formal definition via flow graphs

1 k = 0;

2 x = 0;

3 while(k < 10) {

4 old_x = x;

5 x = coin (0.5)

6 if(x != old_x)

7 k = k + 1;

8 }
‹ 0 1

€

2 3 4

5

k = 0 x = 0

if(k < 10)

old_x = x

x = coin(0.5)

i

f

(

x

!

=

o

l

d

_

x

)

if(x == old_x)

k

=

k

+

1

if(k >= 10)

Lukas Westhofen 20 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Formal definition via flow graphs

1 k = 0;

2 x = 0;

3 while(k < 10) {

4 old_x = x;

5 x = coin (0.5)

6 if(x != old_x)

7 k = k + 1;

8 }
‹ 0 1

€

2 3 4

5

k = 0 x = 0

if(k < 10)

old_x = x

x = coin(0.5)

i

f

(

x

!

=

o

l

d

_

x

)

if(x == old_x)

k

=

k

+

1

if(k >= 10)

Lukas Westhofen 21 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Formal definition via flow graphs

1 k = 0;

2 x = 0;

3 while(k < 10) {

4 old_x = x;

5 x = coin (0.5)

6 if(x != old_x)

7 k = k + 1;

8 }
‹ 0 1

€

2 3 4

5

k = 0 x = 0

if(k < 10)

old_x = x

x = coin(0.5)

i

f

(

x

!

=

o

l

d

_

x

)

if(x == old_x)

k

=

k

+

1

if(k >= 10)

Lukas Westhofen 22 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Formal definition via flow graphs

1 k = 0;

2 x = 0;

3 while(k < 10) {

4 old_x = x;

5 x = coin (0.5)

6 if(x != old_x)

7 k = k + 1;

8 }
‹ 0 1

€

2 3 4

5

k = 0 x = 0

if(k < 10)

old_x = x

x = coin(0.5)

i

f

(

x

!

=

o

l

d

_

x

)

if(x == old_x)

k

=

k

+

1

if(k >= 10)

Lukas Westhofen 23 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Markov Decision Processes (MDPs)

Consist of action nodes and probabilistic nodes
Probabilistic nodes allow for probabilistic successor choosing
Action nodes allow to choose between several system actions

Example MDP:

a0 p0

a1

a2

action0

0.4
, p

l

a

b

e

l

0

0.6,
p

l

a

b

e

l1

action1

action2

Lukas Westhofen 24 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Markov Decision Processes (MDPs)

Consist of action nodes and probabilistic nodes
Probabilistic nodes allow for probabilistic successor choosing
Action nodes allow to choose between several system actions

Example MDP:

a0 p0

a1

a2

action0

0.4
, p

l

a

b

e

l

0

0.6,
p

l

a

b

e

l1

action1

action2

Lukas Westhofen 24 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Operational semantics of probabilistic programs

We will use an MDP to define the operational semantics of a
probabilistic program P.

Its nodes consist of two tupel elements:
1 A node of the flow-graph representation of P

2 A program configuration ‡

More details: Friedrich Gretz, Joost-Pieter Katoen and Annabelle

McIver, Operational versus weakest pre-expectation semantics
for the probabilistic guarded command language, 2014.

Lukas Westhofen 25 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Example program MDP

‹ 0 1

€

2 3 4

5

k = 0 x = 0

if(k < 10)

old_x = x

x = coin(0.5)

i

f

(

x

!

=

o

l

d

_

x

)

if(x == old_x)

k

=

k

+

1

if(k >= 10)

(2, k ‘æ 0, x ‘æ 0, old_x ‘æ 0)

(3, k ‘æ 0, x ‘æ 1, old_x ‘æ 0)

(3, k ‘æ 0, x ‘æ 0, old_x ‘æ 0)

(4, k ‘æ 0, x ‘æ 1, old_x ‘æ 0)

(0, k ‘æ 0, x ‘æ 0, old_x ‘æ 0)

(0, k ‘æ 1, x ‘æ 0, old_x ‘æ 0)

c

1, 0.5

c0 , 0.5

≠, 1

≠, 1

≠, 1

Lukas Westhofen 26 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Example program MDP

‹ 0 1

€

2 3 4

5

k = 0 x = 0

if(k < 10)

old_x = x

x = coin(0.5)

i

f

(

x

!

=

o

l

d

_

x

)

if(x == old_x)

k

=

k

+

1

if(k >= 10)

(2, k ‘æ 0, x ‘æ 0, old_x ‘æ 0)

(3, k ‘æ 0, x ‘æ 1, old_x ‘æ 0)

(3, k ‘æ 0, x ‘æ 0, old_x ‘æ 0)

(4, k ‘æ 0, x ‘æ 1, old_x ‘æ 0)

(0, k ‘æ 0, x ‘æ 0, old_x ‘æ 0)

(0, k ‘æ 1, x ‘æ 0, old_x ‘æ 0)

c

1, 0.5

c0 , 0.5

≠, 1

≠, 1

≠, 1

Lukas Westhofen 26 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Example program MDP

‹ 0 1

€

2 3 4

5

k = 0 x = 0

if(k < 10)

old_x = x

x = coin(0.5)

i

f

(

x

!

=

o

l

d

_

x

)

if(x == old_x)

k

=

k

+

1

if(k >= 10)

(2, k ‘æ 0, x ‘æ 0, old_x ‘æ 0)

(3, k ‘æ 0, x ‘æ 1, old_x ‘æ 0)

(3, k ‘æ 0, x ‘æ 0, old_x ‘æ 0)

(4, k ‘æ 0, x ‘æ 1, old_x ‘æ 0)

(0, k ‘æ 0, x ‘æ 0, old_x ‘æ 0)

(0, k ‘æ 1, x ‘æ 0, old_x ‘æ 0)

c

1, 0.5

c0 , 0.5

≠, 1

≠, 1

≠, 1

Lukas Westhofen 27 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Example program MDP

‹ 0 1

€

2 3 4

5

k = 0 x = 0

if(k < 10)

old_x = x

x = coin(0.5)

i

f

(

x

!

=

o

l

d

_

x

)

if(x == old_x)

k

=

k

+

1

if(k >= 10)

(2, k ‘æ 0, x ‘æ 0, old_x ‘æ 0)

(3, k ‘æ 0, x ‘æ 1, old_x ‘æ 0)

(3, k ‘æ 0, x ‘æ 0, old_x ‘æ 0)

(4, k ‘æ 0, x ‘æ 1, old_x ‘æ 0)

(0, k ‘æ 0, x ‘æ 0, old_x ‘æ 0)

(0, k ‘æ 1, x ‘æ 0, old_x ‘æ 0)

c

1, 0.5

c0 , 0.5

≠, 1

≠, 1

≠, 1

Lukas Westhofen 28 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Example program MDP

‹ 0 1

€

2 3 4

5

k = 0 x = 0

if(k < 10)

old_x = x

x = coin(0.5)

i

f

(

x

!

=

o

l

d

_

x

)

if(x == old_x)

k

=

k

+

1

if(k >= 10)

(2, k ‘æ 0, x ‘æ 0, old_x ‘æ 0)

(3, k ‘æ 0, x ‘æ 1, old_x ‘æ 0)

(3, k ‘æ 0, x ‘æ 0, old_x ‘æ 0)

(4, k ‘æ 0, x ‘æ 1, old_x ‘æ 0)

(0, k ‘æ 0, x ‘æ 0, old_x ‘æ 0)

(0, k ‘æ 1, x ‘æ 0, old_x ‘æ 0)

c

1, 0.5

c0 , 0.5

≠, 1

≠, 1

≠, 1

Lukas Westhofen 29 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Example program MDP

‹ 0 1

€

2 3 4

5

k = 0 x = 0

if(k < 10)

old_x = x

x = coin(0.5)

i

f

(

x

!

=

o

l

d

_

x

)

if(x == old_x)

k

=

k

+

1

if(k >= 10)

(2, k ‘æ 0, x ‘æ 0, old_x ‘æ 0)

(3, k ‘æ 0, x ‘æ 1, old_x ‘æ 0)

(3, k ‘æ 0, x ‘æ 0, old_x ‘æ 0)

(4, k ‘æ 0, x ‘æ 1, old_x ‘æ 0)

(0, k ‘æ 0, x ‘æ 0, old_x ‘æ 0)

(0, k ‘æ 1, x ‘æ 0, old_x ‘æ 0)

c

1, 0.5

c0 , 0.5

≠, 1

≠, 1

≠, 1

Lukas Westhofen 30 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Classes of probabilistic programs

Definition (Finite and weakly finite programs)

For a finite program P holds that its associated MDP has
only a finite number of nodes reachable from every initial
node.
A weakly finite program is additionally allowed to have an
infinite number of initial nodes.

Remark: The class of weakly finite programs contains
parameterized programs!

Lukas Westhofen 31 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Classes of probabilistic programs

Definition (Finite and weakly finite programs)

For a finite program P holds that its associated MDP has
only a finite number of nodes reachable from every initial
node.
A weakly finite program is additionally allowed to have an
infinite number of initial nodes.

Remark: The class of weakly finite programs contains
parameterized programs!

Lukas Westhofen 31 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

1 Motivation

2 Introduction to probabilistic programs

3 Almost-sure termination

4 Patterns

5 The algorithm

6 Conclusion

Lukas Westhofen 32 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Almost-sure termination

Termination of probabilistic programs is more involved!
Intuitively: Does this program “terminate”?

1 k = 0;

2 x = 0;

3 while(k < 10) {

4 old_x = x;

5 x = coin (0.5)

6 if(x != old_x)

7 k = k + 1;

8 }

Yes, it does, although there exist non-terminating runs!
A non-terminating run: coin(0.5) yields always 0.
A terminating run: coin(0.5) yields 01 ten times in a row.

Lukas Westhofen 33 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Almost-sure termination

Termination of probabilistic programs is more involved!
Intuitively: Does this program “terminate”?

1 k = 0;

2 x = 0;

3 while(k < 10) {

4 old_x = x;

5 x = coin (0.5)

6 if(x != old_x)

7 k = k + 1;

8 }

Yes, it does, although there exist non-terminating runs!

A non-terminating run: coin(0.5) yields always 0.
A terminating run: coin(0.5) yields 01 ten times in a row.

Lukas Westhofen 33 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Almost-sure termination

Termination of probabilistic programs is more involved!
Intuitively: Does this program “terminate”?

1 k = 0;

2 x = 0;

3 while(k < 10) {

4 old_x = x;

5 x = coin (0.5)

6 if(x != old_x)

7 k = k + 1;

8 }

Yes, it does, although there exist non-terminating runs!
A non-terminating run: coin(0.5) yields always 0.
A terminating run: coin(0.5) yields 01 ten times in a row.

Lukas Westhofen 33 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Almost-sure termination

æ Ordinary termination notion does not work for
probabilistic programs.

Goal
Devise a termination notion that excludes non-terminating runs
which have probability 0. It should be su�cient to find a set of
terminating runs that have probability 1.

Lukas Westhofen 34 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Almost-sure termination

Definition (Almost-sure termination)
A probabilistic program P is terminating almost surely if the
probability of all terminating runs of the associated MDP M

P

,
starting in an initial node, is 1.

Consequence: The algorithm needs to find a set of program runs
which has the probability 1!

Lukas Westhofen 35 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Almost-sure termination

Definition (Almost-sure termination)
A probabilistic program P is terminating almost surely if the
probability of all terminating runs of the associated MDP M

P

,
starting in an initial node, is 1.

Consequence: The algorithm needs to find a set of program runs
which has the probability 1!

Lukas Westhofen 35 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Example on almust-sure termination

The example program

1 k = 0;

2 while(k < 10) {

3 old_x = x;

4 x = coin (0.5)

5 if(x != old_x)

6 k = k + 1;

7 }

terminates almost surely, because the set of terminating runs which
have probability 1 is. . .

T = {r œ Runs(M
P

)|r alternates at least 10 times between c1 and c0}

Generalize this concept?

Lukas Westhofen 36 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Example on almust-sure termination

The example program

1 k = 0;

2 while(k < 10) {

3 old_x = x;

4 x = coin (0.5)

5 if(x != old_x)

6 k = k + 1;

7 }

terminates almost surely, because the set of terminating runs which
have probability 1 is. . .

T = {r œ Runs(M
P

)|r alternates at least 10 times between c1 and c0}

Generalize this concept?

Lukas Westhofen 36 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Example on almust-sure termination

The example program

1 k = 0;

2 while(k < 10) {

3 old_x = x;

4 x = coin (0.5)

5 if(x != old_x)

6 k = k + 1;

7 }

terminates almost surely, because the set of terminating runs which
have probability 1 is. . .

T = {r œ Runs(M
P

)|r alternates at least 10 times between c1 and c0}

Generalize this concept?

Lukas Westhofen 36 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

1 Motivation

2 Introduction to probabilistic programs

3 Almost-sure termination

4 Patterns

5 The algorithm

6 Conclusion

Lukas Westhofen 37 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Patterns

It’s hard to show that a run-set has probability 1 – The pattern
approach simplifies that!

Definition (Pattern)
A pattern � is a subset of C

Ê, where C = {0, 1}. We denote � as
the following expression to indicate its structure:
� = C

ú
w1C

ú
w2C

ú
w3C

ú . . . with w

i

œ C

ú.

w

i

parts denote the important coin-toss outcomes
C

ú stands for irrelevant and finite parts of the run

Lukas Westhofen 38 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Patterns

It’s hard to show that a run-set has probability 1 – The pattern
approach simplifies that!

Definition (Pattern)
A pattern � is a subset of C

Ê, where C = {0, 1}. We denote � as
the following expression to indicate its structure:
� = C

ú
w1C

ú
w2C

ú
w3C

ú . . . with w

i

œ C

ú.

w

i

parts denote the important coin-toss outcomes
C

ú stands for irrelevant and finite parts of the run

Lukas Westhofen 38 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Patterns

It’s hard to show that a run-set has probability 1 – The pattern
approach simplifies that!

Definition (Pattern)
A pattern � is a subset of C

Ê, where C = {0, 1}. We denote � as
the following expression to indicate its structure:
� = C

ú
w1C

ú
w2C

ú
w3C

ú . . . with w

i

œ C

ú.

w

i

parts denote the important coin-toss outcomes
C

ú stands for irrelevant and finite parts of the run

Lukas Westhofen 38 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Patterns

An example pattern. . .

� = C

ú010C

ú11C

ú(01C

ú)Ê

Remark 1: It is of importance that after getting w

i

as a coin toss
outcome sequence, we will eventually see w

i+1 later.

Remark 2: Patterns aren’t just regular expressions over
omega-languages!

Lukas Westhofen 39 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Patterns

An example pattern. . .

� = C

ú010C

ú11C

ú(01C

ú)Ê

Remark 1: It is of importance that after getting w

i

as a coin toss
outcome sequence, we will eventually see w

i+1 later.

Remark 2: Patterns aren’t just regular expressions over
omega-languages!

Lukas Westhofen 39 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Patterns

An example pattern. . .

� = C

ú010C

ú11C

ú(01C

ú)Ê

Remark 1: It is of importance that after getting w

i

as a coin toss
outcome sequence, we will eventually see w

i+1 later.

Remark 2: Patterns aren’t just regular expressions over
omega-languages!

Lukas Westhofen 39 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Terminating patterns

Combining probabilistic programs and patterns:

Definition (Pattern-conforming runs)
A run r of a probabilistic program P conforms a pattern � if the
coin toss outcomes of r match the structure defined by the pattern.

Combining almost-sure termination and patterns:

Definition (Terminating patterns)
A pattern � is terminating if every �-conforming run eventually
reaches the final state €, i.e. the run terminates.

Lukas Westhofen 40 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Terminating patterns

Combining probabilistic programs and patterns:

Definition (Pattern-conforming runs)
A run r of a probabilistic program P conforms a pattern � if the
coin toss outcomes of r match the structure defined by the pattern.

Combining almost-sure termination and patterns:

Definition (Terminating patterns)
A pattern � is terminating if every �-conforming run eventually
reaches the final state €, i.e. the run terminates.

Lukas Westhofen 40 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Example on terminating patterns

Our example has various patterns, but only some are terminating.

1 k = 0;

2 x = 0;

3 while(k < 10) {

4 old_x = x;

5 x = coin (0.5)

6 if(x != old_x)

7 k = k + 1;

8 }

Which pattern is terminating?

�1 = C

ú10C

ú00C

Ê?

X

�2 = C

ú(10)10
C

Ê?

X

�3 = (Cú10)Ê?

X

Lukas Westhofen 41 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Example on terminating patterns

Our example has various patterns, but only some are terminating.

1 k = 0;

2 x = 0;

3 while(k < 10) {

4 old_x = x;

5 x = coin (0.5)

6 if(x != old_x)

7 k = k + 1;

8 }

Which pattern is terminating?

�1 = C

ú10C

ú00C

Ê?

X
�2 = C

ú(10)10
C

Ê?

X

�3 = (Cú10)Ê?

X

Lukas Westhofen 41 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Example on terminating patterns

Our example has various patterns, but only some are terminating.

1 k = 0;

2 x = 0;

3 while(k < 10) {

4 old_x = x;

5 x = coin (0.5)

6 if(x != old_x)

7 k = k + 1;

8 }

Which pattern is terminating?

�1 = C

ú10C

ú00C

Ê? X

�2 = C

ú(10)10
C

Ê?

X

�3 = (Cú10)Ê?

X

Lukas Westhofen 41 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Example on terminating patterns

Our example has various patterns, but only some are terminating.

1 k = 0;

2 x = 0;

3 while(k < 10) {

4 old_x = x;

5 x = coin (0.5)

6 if(x != old_x)

7 k = k + 1;

8 }

Which pattern is terminating?

�1 = C

ú10C

ú00C

Ê? X
�2 = C

ú(10)10
C

Ê?

X
�3 = (Cú10)Ê?

X

Lukas Westhofen 41 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Example on terminating patterns

Our example has various patterns, but only some are terminating.

1 k = 0;

2 x = 0;

3 while(k < 10) {

4 old_x = x;

5 x = coin (0.5)

6 if(x != old_x)

7 k = k + 1;

8 }

Which pattern is terminating?

�1 = C

ú10C

ú00C

Ê? X
�2 = C

ú(10)10
C

Ê? X

�3 = (Cú10)Ê?

X

Lukas Westhofen 41 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Example on terminating patterns

Our example has various patterns, but only some are terminating.

1 k = 0;

2 x = 0;

3 while(k < 10) {

4 old_x = x;

5 x = coin (0.5)

6 if(x != old_x)

7 k = k + 1;

8 }

Which pattern is terminating?

�1 = C

ú10C

ú00C

Ê? X
�2 = C

ú(10)10
C

Ê? X
�3 = (Cú10)Ê?

X

Lukas Westhofen 41 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Example on terminating patterns

Our example has various patterns, but only some are terminating.

1 k = 0;

2 x = 0;

3 while(k < 10) {

4 old_x = x;

5 x = coin (0.5)

6 if(x != old_x)

7 k = k + 1;

8 }

Which pattern is terminating?

�1 = C

ú10C

ú00C

Ê? X
�2 = C

ú(10)10
C

Ê? X
�3 = (Cú10)Ê? X

Lukas Westhofen 41 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Correctness of the pattern approach – Theorems

1. The probability of every pattern is 1.

Intuition on why this holds:

Stochastic theory guarantees that when infinitely often tossing
coins, we will eventually see every possible finite coin-toss
outcome sequence!
Additionally, the C

ú-parts of the pattern allow for arbitrary,
but finite coin-toss outcomes between those finite, fixed parts.

Lukas Westhofen 42 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Correctness of the pattern approach – Theorems

1. The probability of every pattern is 1.

Intuition on why this holds:

Stochastic theory guarantees that when infinitely often tossing
coins, we will eventually see every possible finite coin-toss
outcome sequence!
Additionally, the C

ú-parts of the pattern allow for arbitrary,
but finite coin-toss outcomes between those finite, fixed parts.

Lukas Westhofen 42 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Correctness of the pattern approach – Theorems

2. If P has a terminating pattern, then P terminates
almost-surely.

Lukas Westhofen 43 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Correctness of the pattern approach – Theorems

3. Every almost-surely terminating finite-program has a simple
terminating pattern of the form � = (Cú

w)Ê for some w œ C .

1 k = 0;

2 while(k < 10) {

3 old_x = x;

4 x = coin (0.5)

5 if(x != old_x)

6 k = k + 1;

7 }

Simple terminating pattern for the example is � = (Cú01)Ê.

Conclusion: The algorithm needs to construct a terminating
pattern! (And for finite programs, only a simple terminating
pattern)

Lukas Westhofen 44 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Correctness of the pattern approach – Theorems

3. Every almost-surely terminating finite-program has a simple
terminating pattern of the form � = (Cú

w)Ê for some w œ C .

1 k = 0;

2 while(k < 10) {

3 old_x = x;

4 x = coin (0.5)

5 if(x != old_x)

6 k = k + 1;

7 }

Simple terminating pattern for the example is � = (Cú01)Ê.

Conclusion: The algorithm needs to construct a terminating
pattern! (And for finite programs, only a simple terminating
pattern)

Lukas Westhofen 44 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Correctness of the pattern approach – Theorems

3. Every almost-surely terminating finite-program has a simple
terminating pattern of the form � = (Cú

w)Ê for some w œ C .

1 k = 0;

2 while(k < 10) {

3 old_x = x;

4 x = coin (0.5)

5 if(x != old_x)

6 k = k + 1;

7 }

Simple terminating pattern for the example is � = (Cú01)Ê.

Conclusion: The algorithm needs to construct a terminating
pattern! (And for finite programs, only a simple terminating
pattern)

Lukas Westhofen 44 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

1 Motivation

2 Introduction to probabilistic programs

3 Almost-sure termination

4 Patterns

5 The algorithm

6 Conclusion

Lukas Westhofen 45 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Overview

Goal: Find a terminating pattern!

Two subparts:
1 Iteratively construct a pattern (Pattern constructor)
2 Check if this pattern is terminating (Pattern checker)

Lukas Westhofen 46 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Overview

Goal: Find a terminating pattern!

Two subparts:
1 Iteratively construct a pattern (Pattern constructor)
2 Check if this pattern is terminating (Pattern checker)

Lukas Westhofen 46 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Pattern checker

Pattern checker

Input: A pattern � and a probabilistic program P.
Output: True if � is a terminating pattern of P, and a
counterexample (lasso) otherwise.

In practice, this pattern checker is realized via replacing the
probabilistic programs parts with nondeterministic ones and
passing it to SPIN and ARMC.

Lukas Westhofen 47 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Using SPIN and ARMC

Model-Checkers

Verify properties of systems
Return counterexamples if the property does not hold

How to express those properties? Logics such as LTL!

SPIN

One of the most popular
model-checkers
Takes a Finite State
Machine and an LTL
formula

ARMC

Is able to verify properties
over infinite systems
(Longer computation time)
Important for weakly finite
programs!

Lukas Westhofen 48 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Using SPIN and ARMC

Model-Checkers

Verify properties of systems
Return counterexamples if the property does not hold

How to express those properties? Logics such as LTL!

SPIN

One of the most popular
model-checkers
Takes a Finite State
Machine and an LTL
formula

ARMC

Is able to verify properties
over infinite systems
(Longer computation time)
Important for weakly finite
programs!

Lukas Westhofen 48 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Using SPIN and ARMC

Model-Checkers

Verify properties of systems
Return counterexamples if the property does not hold

How to express those properties? Logics such as LTL!

SPIN

One of the most popular
model-checkers
Takes a Finite State
Machine and an LTL
formula

ARMC

Is able to verify properties
over infinite systems
(Longer computation time)
Important for weakly finite
programs!

Lukas Westhofen 48 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

The pattern checker – Intuition

A basic overview on how to implement such a pattern checker:

Pattern checker

1 Transform a given probabilistic program P into a
non-probabilistic program P

Õ employing nondeterminism
2 Execute a model checker on P

Õ to check whether P

Õ has a run
induced by � which is non-terminating

Lukas Westhofen 49 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

The pattern construtor – For finite programs

Overview

1 Iterate until a terminating pattern was constructed
2 For every iteration, construct a new pattern which excludes

loops induced by previously constructed patterns

Lukas Westhofen 50 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

The pattern construtor – For finite programs

Constructs a simple terminating pattern � = (Cú
w)Ê.

Data: A probabilistic program P and a baseword s0 œ C

ú.
Result: True if P terminates almost surely, false otherwise.

i := 0
while (Cú

s

i

)Ê
is not a terminating pattern do

l

i

:= lasso, taken from the termination checker.
u

i

:= loop of l

i

.
if u

i

= ‘ then
return false

else
s

i+1 := shortest word that has s0 as prefix and is not an infix of
any u

Ê
k

for k œ {1, . . . , i}.
end
i := i + 1.

end

return true

Example on board.

Lukas Westhofen 51 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

The pattern construtor – For finite programs

Constructs a simple terminating pattern � = (Cú
w)Ê.

Data: A probabilistic program P and a baseword s0 œ C

ú.
Result: True if P terminates almost surely, false otherwise.
i := 0
while (Cú

s

i

)Ê
is not a terminating pattern do

l

i

:= lasso, taken from the termination checker.
u

i

:= loop of l

i

.
if u

i

= ‘ then
return false

else
s

i+1 := shortest word that has s0 as prefix and is not an infix of
any u

Ê
k

for k œ {1, . . . , i}.
end
i := i + 1.

end
return true

Example on board.

Lukas Westhofen 51 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

The pattern construtor – For finite programs

Constructs a simple terminating pattern � = (Cú
w)Ê.

Data: A probabilistic program P and a baseword s0 œ C

ú.
Result: True if P terminates almost surely, false otherwise.
i := 0
while (Cú

s

i

)Ê
is not a terminating pattern do

l

i

:= lasso, taken from the termination checker.
u

i

:= loop of l

i

.
if u

i

= ‘ then
return false

else
s

i+1 := shortest word that has s0 as prefix and is not an infix of
any u

Ê
k

for k œ {1, . . . , i}.
end
i := i + 1.

end
return true

Example on board.

Lukas Westhofen 51 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

The pattern construtor – For finite programs

Constructs a simple terminating pattern � = (Cú
w)Ê.

Data: A probabilistic program P and a baseword s0 œ C

ú.
Result: True if P terminates almost surely, false otherwise.
i := 0
while (Cú

s

i

)Ê
is not a terminating pattern do

l

i

:= lasso, taken from the termination checker.
u

i

:= loop of l

i

.
if u

i

= ‘ then
return false

else
s

i+1 := shortest word that has s0 as prefix and is not an infix of
any u

Ê
k

for k œ {1, . . . , i}.
end
i := i + 1.

end
return true Example on board.

Lukas Westhofen 51 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

The pattern construtor – For weakly finite programs

Overview

1 Iterate over every initial node i

k

2 In every iteration, check whether the finite program P

i

k

, which
is P but fixes i

k

as its only initial node, terminates
3 Append the word of the simple terminating pattern to the new

pattern
4 Ask a human to extrapolate a general pattern

Lukas Westhofen 52 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

The pattern constructor – For weakly finite programs

Data: A weakly finite probabilistic program P.
Result: True and the terminating pattern if P terminates almost surely, false

otherwise.

Fix an enumeration i1, i2, . . . of Init

P .
k := 0
while true do

Construct P

i

k

.
if P

i

k

is almost-sure terminating then

�
i

k

:= simple terminating pattern C

ú
w

i

k

C

Ê of P

i

k

using w

i

k≠1 as a
baseword.
�

k

:= C

ú
w

i1 C

ú
w

i2 . . . C

ú
w

i

k

C

Ê .
if human is able to extrapolate a sequence (w

i

n

)
nœN when given �

k

then
if � = C

ú
w

i1 C

ú
w

i2 . . . is a terminating pattern then
return true and �.

end
end
k := k + 1

else

return false

end

end
return true Example on board.

Lukas Westhofen 53 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

The pattern constructor – For weakly finite programs

Data: A weakly finite probabilistic program P.
Result: True and the terminating pattern if P terminates almost surely, false

otherwise.
Fix an enumeration i1, i2, . . . of Init

P .
k := 0
while true do

Construct P

i

k

.
if P

i

k

is almost-sure terminating then

�
i

k

:= simple terminating pattern C

ú
w

i

k

C

Ê of P

i

k

using w

i

k≠1 as a
baseword.
�

k

:= C

ú
w

i1 C

ú
w

i2 . . . C

ú
w

i

k

C

Ê .
if human is able to extrapolate a sequence (w

i

n

)
nœN when given �

k

then
if � = C

ú
w

i1 C

ú
w

i2 . . . is a terminating pattern then
return true and �.

end
end
k := k + 1

else

return false

end

end
return true

Example on board.

Lukas Westhofen 53 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

The pattern constructor – For weakly finite programs

Data: A weakly finite probabilistic program P.
Result: True and the terminating pattern if P terminates almost surely, false

otherwise.
Fix an enumeration i1, i2, . . . of Init

P .
k := 0
while true do

Construct P

i

k

.
if P

i

k

is almost-sure terminating then

�
i

k

:= simple terminating pattern C

ú
w

i

k

C

Ê of P

i

k

using w

i

k≠1 as a
baseword.
�

k

:= C

ú
w

i1 C

ú
w

i2 . . . C

ú
w

i

k

C

Ê .
if human is able to extrapolate a sequence (w

i

n

)
nœN when given �

k

then
if � = C

ú
w

i1 C

ú
w

i2 . . . is a terminating pattern then
return true and �.

end
end
k := k + 1

else

return false

end
end
return true

Example on board.

Lukas Westhofen 53 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

The pattern constructor – For weakly finite programs

Data: A weakly finite probabilistic program P.
Result: True and the terminating pattern if P terminates almost surely, false

otherwise.
Fix an enumeration i1, i2, . . . of Init

P .
k := 0
while true do

Construct P

i

k

.
if P

i

k

is almost-sure terminating then
�

i

k

:= simple terminating pattern C

ú
w

i

k

C

Ê of P

i

k

using w

i

k≠1 as a
baseword.
�

k

:= C

ú
w

i1 C

ú
w

i2 . . . C

ú
w

i

k

C

Ê .
if human is able to extrapolate a sequence (w

i

n

)
nœN when given �

k

then
if � = C

ú
w

i1 C

ú
w

i2 . . . is a terminating pattern then
return true and �.

end
end
k := k + 1

else
return false

end
end
return true Example on board.

Lukas Westhofen 53 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Results and applications

The algorithm is able to prove termination fully automated
for finite programs and semi-automated for weakly-finite
programs.

Is correct for both program classes, but only complete for
finite programs.
Applied on various exemplary programs, such as

- FireWire (weakly-finite, 1m53s): w

i

= 010
- Randomwalk (weakly-finite, 1m45s): w

i

= 0i

- BRP (weakly-finite, 45m33s): w

i

= 00
Pattern checker was not presented, but it heavily relies on
model checkers such as ARMC and SPIN. Most of the time
the algorithm waits for those tools to return an output

æ Best way to enhance the algorithm is to enhance the model
checkers!

Lukas Westhofen 54 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Results and applications

The algorithm is able to prove termination fully automated
for finite programs and semi-automated for weakly-finite
programs.
Is correct for both program classes, but only complete for
finite programs.

Applied on various exemplary programs, such as
- FireWire (weakly-finite, 1m53s): w

i

= 010
- Randomwalk (weakly-finite, 1m45s): w

i

= 0i

- BRP (weakly-finite, 45m33s): w

i

= 00
Pattern checker was not presented, but it heavily relies on
model checkers such as ARMC and SPIN. Most of the time
the algorithm waits for those tools to return an output

æ Best way to enhance the algorithm is to enhance the model
checkers!

Lukas Westhofen 54 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Results and applications

The algorithm is able to prove termination fully automated
for finite programs and semi-automated for weakly-finite
programs.
Is correct for both program classes, but only complete for
finite programs.
Applied on various exemplary programs, such as

- FireWire (weakly-finite, 1m53s): w

i

= 010
- Randomwalk (weakly-finite, 1m45s): w

i

= 0i

- BRP (weakly-finite, 45m33s): w

i

= 00

Pattern checker was not presented, but it heavily relies on
model checkers such as ARMC and SPIN. Most of the time
the algorithm waits for those tools to return an output

æ Best way to enhance the algorithm is to enhance the model
checkers!

Lukas Westhofen 54 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Results and applications

The algorithm is able to prove termination fully automated
for finite programs and semi-automated for weakly-finite
programs.
Is correct for both program classes, but only complete for
finite programs.
Applied on various exemplary programs, such as

- FireWire (weakly-finite, 1m53s): w

i

= 010
- Randomwalk (weakly-finite, 1m45s): w

i

= 0i

- BRP (weakly-finite, 45m33s): w

i

= 00
Pattern checker was not presented, but it heavily relies on
model checkers such as ARMC and SPIN. Most of the time
the algorithm waits for those tools to return an output

æ Best way to enhance the algorithm is to enhance the model
checkers!

Lukas Westhofen 54 / 55

Motivation Introduction to probabilistic programs Almost-sure termination Patterns The algorithm Conclusion

Conclusion

We are now easily able to prove termination for probabilistic
programs using the pattern approach!

Lukas Westhofen 55 / 55

	Motivation
	Introduction to probabilistic programs
	Almost-sure termination
	Patterns
	The algorithm
	Conclusion

