
Rheinisch-Westfälisch Technische Hochschule Aachen

Seminar Paper

Proving Termination of

Probabilistic Programs using

Patterns

Seminar Probabilistic Programs – Winter Term 2014/2015

Chair i2 – Software Modelling and Verification

Abstract

The paper presents an algorithm that proves termination of probabilistic programs. This issue is
reducible to the halting problem, which is undecidable. Thus, the algorithm will make guesses
and won’t guarantee completeness and correctness for all possible programs at the same time.
We will introduce the notion of “almost sure termination” and devise an algorithm that uses a
refinement-based approach to prove whether a probabilistic program terminates with the
likelihood of one. For this, patterns of possible probabilistic choices are constructed by the
algorithm. A pattern indicates special properties of probabilistic runs, namely it defines a family
of runs for which a structural representation of coin-toss outcomes holds. The algorithm then
tries to construct a pattern whose induced runs are terminating.

Author: Lukas Westhofen Supervisor: Nils Jansen

1 Introduction

Probabilistic programs are used in a wide variety of fields, including probabilistic network protocols,
machine learning, biologic models and robotics. They allow for randomization of algorithms such
that desired properties are potentially reached faster. For example, the well-known FireWire-
protocol, which is explained in [3], implements such a probabilistic algorithm that solves the
problem of electing a root node in its hierarchical tree-like network structure. Roughly speaking,
every node sends “Be my parent node” to other nodes to iteratively construct a tree-structure.
If neighbored nodes both receive this message from each other, a conflict is risen. This clash is
then solved by both nodes flipping a coin until they show a di�erent outcome. The node whose
coin shows head is then elected as the parent node. But a problem arises: Does the process of
coin-flipping ever end? If both nodes always produce the same coin-toss outcomes, the election
will fail and ultimately the protocol communication will come to a halt. Thus, we need to prove
termination of probabilistic programs in order to guarantee the functionality of developed protocols
and algorithms.
In this paper, which is based on [5], an algorithm is devised which proves termination of such
processes. For this, we examine probabilistic programs on their property of halting with probability
one. Intuitively, this is the case if the set of all terminating runs has probability one – Thus, the
program is assured to be terminating with probability one.
Let us examine an example probabilistic program to clarify the notion of “terminating runs with
probability one” and the later presented approach on termination checking.

1 k = 0;

2 x = 0;

3 while (k < 10) {

4 old_x = x;

5 x = coin (0.5)

6 if(x != old_x)

7 k = k + 1;

8 }

Figure 1: Textual representation of a simple probabilistic program that terminates almost surely.

In Code Snippet 1 a simple probabilistic program is shown. Note that it has no parameters at
all. Similar to [5], we denote coin(p) as a function that returns with probability p one and with
probability 1 ≠ p zero. We set 0 < p < 1. Loosely speaking, coin(p) flips a coin that may be
unfair, thus having di�erent probabilities for each side of the coin. In this example, we use a fair
coin, which means every outcome has the same probability.
On the first sight, it may not be obvious whether that program terminates or not. Using human
intuition, we note that the program terminates if the outcome of coin(0.5) alternates between
1 and 0 ten times. Also, if we keep tossing that coin over a very long time period, stochastic
theory guarantees us that we will somewhen see such a finite alternation between both outcomes.
So we observe, via intuition, that Program 1 terminates. But there exist also non-terminating
runs, such as the run where coin(0.5) returns 0 at any point. But since the probability of this
run is 0 – because we will eventually see a 1-result in every run – we disregard such runs in our
termination-analysis.
To formalize this intuitive stochastic thinking the term almost sure termination, which defines a
property on probabilistic programs, is used in [5]. This notion is known from stochastic theory,
where an event is called to happen almost surely if it has the probability 1 [1, p.176]. We say
that a given probabilistic program terminates almost surely if the probability of all terminating
runs equals 1. A run is a specific order of execution states in which variables and their values are
specified. For example, the run where coin(p) yields at first 0 and afterwards 10 times 1 is a
terminating run. We will see that a run is exactly defined by the outcomes of the coin-calls if we
fix possible input parameters.
Going back to the above example, we can see that all runs containing ten alternations between
the coin-tosses terminate. This induces a pattern „ ™ {0, 1}Ê that outlines the shape of every

1

terminating run via its associated coin toss outcomes: „ = (Cú10)10
C

Ê. We will characterize
patterns using infinite concatenations of regular expressions over finite languages. The presented
algorithm will use those patterns to prove termination by constructing such a pattern iteratively
and employing hereafter mentioned model checkers to prove that all runs induced by this pattern
are terminating ones.
Before we examine the presented termination checker, we need to take a glance at the halting

problem. The halting problem states a fundamental challenge to computer scientists. Intuitively,
it asks for an algorithm that decides whether a given program halts on a specific input.

Definition 1 (Halting problem, [4, p.70]). Find a Turing machine M such that, for any other

Turing machine P and an input i, M returns “1” if and only if P terminates after finitely many

computation steps on i.

Since Alan Turing showed the undecidability of the halting problem in 1936, we should handle
the topic of proving program termination with care. We recognize that any attempt to create a
correct and complete termination prover will ultimately fail. This e�ects the content of this paper
drastically: Although an algorithm will be presented that tries to prove termination of probabilistic
programs, one should keep the undecidability in mind. But, on the bright side, we can reduce the
question of termination to certain subclasses of programs – We can, for example, prove termination
of loop- and recursion-free programs since they do not allow for infinite runs due to their structure.
Alternatively, we are able create algorithms that at least for quite a lot of cases return an answer,
but can also return “maybe” or loop to infinity for some inputs.
Computer scientists are now able to reduce the question of termination to certain subclasses of
programs and by now, there exist algorithms that are quite often able to tell whether a program
halts or not. For this purpose, we can use a so called model-checker, since we are able to express
the halting property in such a way that a model checker is hopefully able to verify it. In general,
a model checker answers the question:

Does a given property p hold on a given formal system M? [2, p.13]

In other words, we are looking for the truth content of the relation M |= p. We can employ
those tools for proving termination via asking if a given program P fulfills the LTL-formula GF€,
which states that for every program state there needs to be a program state later on that indicates
the “end” position (called € in the formula). Since most model-checkers are able to verify LTL-
properties of systems, those tools can be used to attempt a termination proof.
SPIN might be one of the best-known model-checkers. SPIN works on Finite State Machines
(FSMs) and LTL-formulas, a special temporal logic [8]. We express our FSM-property in such
an LTL-formula Ï (a so-called never-claim) and, along with the FSM A that is to be evaluated,
pass it to SPIN, which then returns True if Ï holds for every run of the system A, i.e. A |= Ï.
Otherwise we are provided with a counterexample. A counterexample is a run of A for which Ï

does not hold. In this paper, SPIN will be used to verify temporal properties of non-probabilistic
non-deterministic programs. Since we work on probabilistic programs, the presented algorithm
needs to transform those into non-probabilistic programs for which SPIN is then able to verify
properties on.
ARMC is a more specialized tool than SPIN – It verifies termination and reachability properties
of a given program [9]. Internally, it uses the logical programming language Prolog. Similar to
SPIN, we will not run ARMC on probabilistic programs directly, but on non-probabilistic non-
deterministic ones. The advantage of ARMC over SPIN is that the input program is not limited
to be finite-state, which i.a. allows for parameters.

2

2 Fundamentals

2.1 Probabilistic programs

A program itself is, colloquially, a finite collection of instructions for a computational machine. We
will not further specify whether a program needs to be deterministic or non-deterministic, since our
algorithm will nevertheless perform a non-deterministic transformation of its input program. A
probabilistic program introduces randomness – We will allow the machine, with a given probability
p and based on a discrete stochastic distribution, to choose one of several alternative instruction
sequences.
In this paper, a probabilistic program and their variables will be defined to only work on integers
as values. Additionally, our textual representation of control structures will look common to the
C programming language. For every program, we will allow an arbitrary number of parameters
which can be named as desired.

2.1.1 Syntax

Definition 2 (Parts of probabilistic programs).

• Var is the set of all possible variables over the alphabet of digits and standard letters.

• Conf is the countable set of all possible configurations of Var : For c œ Conf it holds that c

is a function such that c : Var æ Z.

• We introduce <, <=, == and != as relations between variables and integers. We call the

resulting terms expressions. Every boolean combination of expressions is again an expression

itself.

• As commands, we allow

– assignments, where for every v, v

Õ œ Var and i œ Z, v = i and v = v’ is an assignment.

The right side of an assignment is allowed to include arithmetics over +, ≠ and ·. Ad-

ditionally, for the sake of simplicity, we permit assignments of expressions to variables,

so for every expression e and v œ Var , v = e is an assignment.

– conditions, where for every expression e if(e) is a condition.

And since we want to incorporate random choices into our programs, we need our priorly mentioned

coin-method:

• We introduce coin(p) for 0 < p < 1 as an expression. This allows us to use the coin-method

in both assignments and conditions.

For non-deterministic probabilistic programs we need to define special assignments to allow non-

deterministic configuration-alternation.

• We add nondet() to our set of expressions. nondet() will non-deterministically return a 0

or 1.

Finally, welding all those constructions together, we are able to define a probabilistic program
syntactically by using a directed graph whose nodes represent, roughly speaking, the lines of a
text-based program depiction.

Definition 3 (Probabilistic Programs). A probabilistic program P is a directed labeled graph

where P = (Locations, Init, Òæ, Labels, ‹, €).

3

• Locations µ N defines the finite set of control flow locations. Each command will lead to

such a location. Further on we define the set of non-deterministic locations Locations

n

™
Locations, where for every location holds that it has at least one outgoing transition labeled

with the expression nondet(). The set Locations

d

= Locations \ Locations

n

denotes the

deterministic locations.

• Init ™ Conf is the set of initial configurations, i.e. the variable and parameter values that

are set immediately before the program start.

• Òæ™ (Locations ◊ Locations) is the control flow relation. It connects locations via directed

edges.

• ‹ œ Locations denotes the initial location, while € œ Locations indicates the termination

location of the program.

• Labels: (Òæ \(€, €)) æ Commands assigns every label with exactly one command. We

exclude the termination location for practical sakes.

Further on we need to define some constraints regarding the conditional statements and the special
nodes € and ‹.

Definition 4 (Constraints on probabilistic programs).

1. The only outgoing edge of € points to € itself.

2. All outgoing edges of a location must be of the same type: Either assignments or conditions.

3. If we label all outgoing edges of a location as conditions, we have to ensure that every possible

program configuration satisfies exactly one of those conditions.

The last condition is needed in order to ensure that a program does not unconsciously become
non-deterministic – albeit we allow non-determinism in general via the nondet()-statement.
After all, we can represent a probabilistic program just as well in the already-known textual form.
To understand the formal construction of probabilistic programs an example is given. Figure 2
shows the conversion from the before mentioned example program to its associated directed graph.

1 k = 0;

2 x = 0;

3 while (k < 10) {

4 old_x = x;

5 x = coin (0.5)

6 if(x != old_x)

7 k = k + 1;

8 }

‹ 0 1

€

2 3 4

5

k = 0 x = 0

if(k < 10)

old_x = x

x = coin(0.5)

i

f

(

x

!

=

o

l

d

_

x

)

if(x == old_x)

k

=

k

+

1

if(k >= 10)

Figure 2: Above, a textual representation of Example 1 is shown, the associated directed graph is
presented below.

4

2.1.2 Semantics

Once we defined the syntax of probabilistic programs, life needs to be breathed into those concepts
via defining its operational semantics. In this section we explicate how to interpret above mentioned
directed graph. We do so by using Markov Decision Processes (MDPs), a special class of stochastic
systems.
MDPs provide two kinds of possible transitions: On one side we have the already-known action

transitions which are similar to NFA-transitions and labeled with the possible actions the MDP
can perform. On the other side we have probabilistic transitions which we also label, but addi-
tionally introduce a probability to each transition. The MDP then assures that the transition is
taken with the given likelihood on the basis of a given discrete probability measure. Since MDPs
allow for probabilistic choices in successor-node choosing, they fit our requirements for modeling
probabilistic programs: We can utilize the action transitions to represent non-probabilistic pro-
gram state changes (such as x = nondet()). For the probabilistic parts of our program we will
use the probabilistic transitions: For every command that includes coin(p) we introduce two new
transitions, one will lead with probability p to the program state where coin(p) returned 1, the
other one will lead with probability p ≠ 1 to the state where coin(p) yielded 0.

Definition 5 (Markov Decision Process). We define a Markov Decision Process M as a tupel

M = (Q
a

, Q

p

, �, Actions, Labels

p

, Init), where

• Q

a

is the set of action nodes and Q

p

is the set of probabilistic nodes. We define the set of all

nodes as Q := Q

a

fi Q

p

.

• Actions is the finite set of possible system actions, whereas Labels
p

denotes the finite set of

probabilistic labels. Actions and Labels

p

shall be disjunct.

• �
a

™ (Q
a

◊ Actions ◊ Q) is the action transition relation, whereas �
p

™ (Q
p

◊ (0, 1] ◊
Labels

p

◊ Q) denotes the probabilistic transition relation with the second entry of each tuple

being the assigned probability. We define � := �
a

fi �
p

.

• Init ™ Q is the set of initial nodes.

Further on, we need some constraints on those systems:

Definition 6 (Constraints on MDPs).

1. We prohibit that two probabilistic transitions coming from the same node, entering the same

node, and having the same label, can have di�erent probabilities.

2. We additionally prohibit nondeterminism in the action transitions, thus every action shall

only be selectable at most once from every action node.

3. The sum of all probabilities of transitions going out of a probabilistic node has to be 1.

4. Every action node has at least one successor node.

To visualize this definition, an example MDP is presented in Figure 3.
Since we want to reason about MDPs later on, we need to define some terminology regarding runs.
A run on an MDP M is uniquely determined by the sequence of nodes and labels. Thus, we define
a run as a word r œ (Q · Labels)Ê where for every prefix q

i

l

i

q

i+1 holds that there exists a transition
from q

i

to q

i+1 labeled with l

i

. It does not matter whether this transition is probabilistic or not.
If the first letter of r is an initial node, then r is called an initial run. The set of all runs on M is
written as Runs(M), whereas the set of all runs on M starting in q is written as Runs(M, q).
A path of a given run r is a (finite) prefix of r. The set of all paths of a given MDP M is called
Paths(M). Again, the set of paths starting in q is denoted by Paths(M, q).
The trace t

r

of a run r is defined as the sequence of labels induced by the run. This means we take
r and remove every occurrence of nodes in it, thus the remaining word becomes the trace t

r

. We

5

a0 p0

a1

a2

action0
0.4

,

p

l

a

b

e

l

0

0
.6
,

p

l

a

b

e

l1

action1

action2

Figure 3: An example MDP M0 where M0 = (Q
a

, Q

p

, �, Actions, Labels

p

, Init) with the nodes
Q

a

= {a0, a1, a2} and Q

p

= {p0}, the system actions Actions = {action0, action1} and probabilistic
labels Labels

p

= {plabel0}. The set of initial nodes consists of one node a0.

can further restrict that trace to a particular alphabet � by removing every occurrence of labels
that are not in �. We denote this restricted trace by t

r

[�].
To understand those notions we take a look at our example MDP in Figure 3. The runs of this
automaton have the form R1 = a0 · action0 · p0 · plabel0 · (a1 · action1)Ê and R2 = a0 · action0 · p0 ·
plabel1 · (a2 · action2)Ê, where some run has a chance of 0.4 to be in the first omega-language and
0.6 to be in the latter. r = a0 ·action0 ·p0 ·(a1 ·action1)5 would be one specific path of a run r œ R1.
The trace t

r

of a run r œ R1 has the form action0 ·plabel0 ·(action1)Ê. We may want to restrict it to
contain only the actions and no probabilistic labels, thus we get t

r

[Actions] = action0 · (action1)Ê.
Notice that traces can be finite and infinite.
Since we now defined the semantics of MDPs, we need to translate a given probabilistic program
into such an MDP. By doing this, we can argue about concrete runs of a program just by examining
the runs of the associated MDP. Similar to [5], we will do so by setting the nodes as the possi-
ble program configurations. With suitable actions we are then able to move from one program
configuration to another. This is best explained using an example: Starting from the program
configuration {k æ 0, i æ 0} the MDP should allow to proceed to the configuration {k æ 1,

i æ 0} if the program code states k = k + 1. As stated earlier, we are going to employ the
probabilistic transitions for the coin(p) statements of our program. Since we also allow non-
deterministic programs we need to incorporate those into the MDP as well. This is where we need
to di�erentiate between action nodes and probabilistic nodes. For our construction, probabilistic
transitions are used to change states deterministically. Since not every deterministic statement
incorporates the coin-method, we set the probability to 1 for non-probabilistic, deterministic con-
figuration transitions. We will use action nodes only to indicate a non-deterministic program part
(namely anything involving nondet()). Here we allow our configuration to proceed to two new
configurations, one for every possible resulting program state.

Definition 7 (Semantics of probabilistic programs). Let P = (Locations, Init

P

, Òæ, Labels, ‹, €)
be a probabilistic program as defined in Definition 2.

We define an MDP M
P

= (Q
a

, Q

p

, �, Actions, Labels

p

, Init) where

• Q

a

= Locations

n

◊ Conf , thus the action nodes are tupels containing a non-deterministic

location and a program configuration.

• Q

p

= (Locations

d

◊ Conf) fi {€}. The probabilistic nodes assign a program configuration to

a deterministic location.

• Actions = {n0, n1} denotes the actions whose function is to indicate which non-deterministic

path in the exponential run-tree we chose on a specific run. n0 indicates that nondet() was

0 in this run while n1 does the same for 1.

• Labels

p

= {c0, c1, ≠} analogously defines the probabilistic labels. For every deterministic ac-

tion there has to be a corresponding label: We use c0 and c1 if coin(p) yielded a 0 respectively

6

1 and ≠ to indicate that no probabilistic expression was used.

• Init = Init

P

is the set of initial program configurations. Note that it may be infinite.

For convenience, we assume from now on that P is given in a normal form where expressions are not
mixed or nested in types, i.e. we only allow – for x œ {0, 1} – coin(p) == x, nondet() == x or a
non-deterministic non-probabilistic expression e. One can easily see that this normal form does not
restrict the expressiveness of our programs, since every statement of the form if(e ¶ coin(p))

{...} for an boolean operator ¶ and an expression e can be represented by x = coin(p); if(e

¶ x) {...}, and accordingly for nondeterministic expressions.
Furthermore, we will need to define the transition relation between the nodes, which is based on
the definition given in [6].

Definition 8 (Transition relation of M
P

). The transition relation � is defined as following: For

every node v = (n, ‡) of M
P

and every edge (n, n

Õ) of P

• if Labels(n, n

Õ) = x = e for a deterministic, non-probabilistic expression e then add

(v, 1, ≠, (nÕ
, ‡[x = e(‡)])) to �, where ‡[–] denotes the updated configuration where – was

applied. e(‡) defines that expression e is evaluated under the current configuration ‡.

• if Labels(n, n

Õ) = x = coin(p) then add (v, p ≠ 1, c0, (nÕ
, ‡[x = 0])) and (v, p, c1, (nÕ

, ‡[x =
1])) to �.

• if Labels(n, n

Õ) = x = nondet() then add (v, n0, (nÕ
, ‡[x = 0])) and (v, n1, (nÕ

, ‡[x = 1])) to

�.

• if Labels(n, n

Õ) = if(e) for an expression e then

– if e = coin(p) == x for x œ {0, 1} then add (v, p, c

x

, (nÕ
, ‡)) to �.

– if e = nondet() == x for x œ {0, 1} then add (v, n

x

, (nÕ
, ‡)) to �.

– if e does not contain both above stated functions then we just add a ordinary condi-

tion transition to the MDP, but only if the current program configuration ‡ satisfies e:

(v, 1, ≠, (nÕ
, ‡)).

• if n = € then add (v, 1, ≠, €) to �.

(2, k ‘æ 0, x ‘æ 0, old_x ‘æ 0)

(3, k ‘æ 0, x ‘æ 1, old_x ‘æ 0)

(3, k ‘æ 0, x ‘æ 0, old_x ‘æ 0)

(4, k ‘æ 0, x ‘æ 1, old_x ‘æ 0)

(0, k ‘æ 0, x ‘æ 0, old_x ‘æ 0)

(0, k ‘æ 1, x ‘æ 0, old_x ‘æ 0)

c

1, 0.

5

c0
, 0

.5

≠, 1

≠, 1

≠, 1

Figure 4: A fragment of the MDP belonging to Example Program 1. The probabilistic nodes
are represented as rectangles. Note that there are no action nodes present due to the lack of
non-deterministic commands in program 1.

This rather long-described construction can be examined by the use of Example 4. For the non-
deterministic, non-probabilistic commands the “≠, 1” labeling is used which indicates that no coin
is thrown (≠) and that the probability of the transition is 1. Those transitions are present for
the initial program command k = 0 and for the decrements and increments of k depending on the
coin toss outcome. Since we incorporated coin(0.5) into the example, we need to split up the
program path in two possible resulting paths, indicated by c0 and c1. Note that the probabilities
add up to 1 as constrained before.
For obvious reasons, only a partial construction and not the full MDP is shown. Since the state
space contains every possible variable valuation, it is theoretically infinite. But even if we restrict

7

it to 64-bit integers, for 2 program variables we need to construct at maximum (264)2 states. One
may notice that this problem is practically unsolvable. This is among other things the reason
why termination checkers and other verification tools won’t construct the MDP for their inputs.
Likewise, our later presented algorithm will not construct an MDP explicitly. But since they are
important to show termination properties of probabilistic programs, they are nevertheless needed.

2.1.3 Types of probabilistic programs

In this paper we need to distinguish between two program classes: Finite and weakly finite pro-
grams.
Definition 9 (Finite and weakly finite programs). The class of finite programs contains all pro-

grams P for which it holds that M
P

has only a finite number of nodes reachable from every initial

node. For weakly finite programs we additionally allow an infinite number of initial nodes.

As may be imagined, the termination proofs of weakly finite programs turn out to be more complex
than for finite programs, since we need to respect every possible initial program configuration.
Weakly finite programs include the class of parameterized programs. Figure 5 shows such a weakly
finite program. Just as Example 1 it terminates almost surely, but termination is not as obvious:
For an arbitrary large parameter N the coin tosses need to yield 1 N times in a row – But since we
need to fix the input before we even start the program, we can be sure that such a number of coin
toss outcomes will be eventually reached.

1 k = 0;

2 x = 0;

3 while (k < N) {

4 old_x = x;

5 x = coin (0.5)

6 if(x != old_x)

7 k = k + 1;

8 }

Figure 5: An example weakly finite program which takes N as an input parameter. It appears quite
similar to program 1, but yet a termination proof is not as obvious to find.

2.2 Patterns

Since we now defined probabilistic programs in syntax and semantics, we will recall to the intro-
duction where it was stated that Patterns will be used to show termination of a given probabilistic
programs. A pattern is, broadly speaking, a family of sequences induced by coin-toss outcomes of
concrete program runs.
Definition 10 (Patterns). A pattern � is a subset of C

Ê

where C is the set of possible coin toss

outcomes. In this paper it will be fixed to C = {0, 1}. We will denote � as the following expression

to indicate its structure: � = C

ú
w1C

ú
w2C

ú
w3C

ú
. . . with w

i

œ C

ú
.

Thus we define patterns as a language over C by using a (possibly infinite) concatenation of regular
expressions over finite languages. Note that the structural representation C

ú
w1C

ú
w2C

ú
w3C

ú
. . .

does not limit the expressiveness of patterns. The words w

i

represent the essential part of the coin
tosses in which we are particularly interested in. The C

ú parts of the pattern denote finite but
irrelevant parts for the termination proof. It is of importance that after getting w

i

as a coin toss
outcome sequence, we will eventually see w

i+1 later.
Definition 11 (The universal pattern.). Since C is a finite set, there exists an enumeration

x1, x2, . . . of C

ú
. Using this enumeration, we denote the universal pattern by C

ú
x1C

ú
x2C

ú
. . . .

The universal pattern guarantees us to reach every possible finite coin toss sequence somewhen in
a program execution. This will prove helpful later on. An example for a universal pattern is the
pattern �

u

= C

ú0C

ú1C

ú00C

ú01C

ú10C

ú11C

ú000

8

Definition 12 (Pattern-conforming runs). Let P be a probabilistic program and � a pattern. A

run r of P is �-conforming if the trace t

r

[C] is a prefix of some word in �, i.e. the coin toss

outcomes of the run match the structure defined by the pattern. We denote the set of �-conforming

runs as Runs(M, �).

Definition 13 (Terminating pattern). A pattern � is terminating if every �-conforming run

eventually reaches the final state €, i.e. the run terminates.

Let us examine the notion of patterns by the use of Example Program 1. As already observed,
the program terminates if we see ten outcome alternations in the coin tosses. We are now able to
formalize this intuitive thinking: We define our terminating pattern �

t

= (Cú01)10
C

Ê, so w

i

= 01
for every i œ {1, . . . , 10}.
The exemplary trace t

r

= 100110(01)10 of a (terminating) run r would be �
t

-conforming, since t

r

is a prefix of a word in �
t

(e.g. 100110(01)100Ê).
We can also define non-terminating patterns such as �

n

= C

ú0C

ú00C

ú000C

ú
. . . . Observe that

we can not represent �
n

as a regular expression over Ê-words. One should also note that some �
n

-
conforming runs may terminate, e.g. the run r with its trace t

r

= (01)100Ê. But since not all runs
in �

n

terminate (e.g. r

Õ with t

r

Õ = 0Ê) the pattern is not terminating itself. Thus, the important
property of terminating patterns is the guarantee of every conforming run being a terminating one.

3 Almost-sure termination

In this section, we define the meaning of “termination with probability one” and also prove the
correctness of the pattern approach. For this section, we fix a probabilistic program P and its
associated MDP M

P

.

Definition 14 (Almost-sure termination). A probabilistic program P is terminating almost surely
if the probability of all terminating runs of the associated MDP M

P

starting in n

i

is 1 for every

initial node n

i

. It is required to hold for every discrete probability measure to which coin(p) may

evaluates (e.g. the discrete uniform distribution).

Using patterns, we have now defined a construct that allows us reason about termination of prob-
abilistic programs. Looking back to the introduction, we stated the following claim which is still
to prove:

Claim 1. Let R be a set of runs on a probabilistic program P . If the probability of R is 1 and

every run in R is terminating, then P terminates almost surely.

We will break the claim into two independent pieces:

Theorem 1. Let � be a not further constrained pattern of P . Then the probability of the set of

�-conforming runs is 1.

Theorem 2. Let � be a terminating pattern of P . Then it follows that P is almost sure termi-

nating.

Further on, a proof of Theorem 1 will be outlined. For a detailed version of the proof, see the
appendix of [5].

Sketch of a proof of Theorem 1. Let � = C

ú
w1C

ú
w2C

ú
w3C

ú
. . . be a pattern on M

P

. We want
to show that P (Runs(M, �)) = 1, where P (A) denotes the probability of the event A. A formal
definition of discrete and countable probability spaces and its measures can be found on Page 167
and following in [1].
Since Runs(M, C

Ê \ �) = Runs(M) \ Runs(M, �) contains all runs that are not induced by the
pattern �, we can examine whether this set of run has the probability 0. In stochastic notions this
would be called a null set. If this is determined, it follows that the probability of the set of runs
induced by � is 1.

9

It is easy to see that

Runs(M, C

ú
w1w2 . . . w

n

C

Ê) ™ Runs(M, �) ™ Runs(M) (*)

holds for every n œ N. For example, the set of runs which are induced by � = C

ú1C

ú0C

Ê of
Program 1 (namely every run which eventually has an ensuing 1 after a 0 coin toss) is a subset of
all runs. The set of runs induced by C

ú10C

Ê are again defined as all runs which have the coin-toss
sequence 10 somewhen present. This set is obviously a subset of Runs(M, �).
Thus, it is now su�cient to show that P (Runs(M, C

ú
w1w2 . . . w

n

C

Ê)) = 1.
Or, if use the above mentioned approach, it is su�cient to show that

P (Runs(M) \ Runs(M, C

ú
w1w2 . . . w

n

C

Ê)) = 0

holds.
We will do so by estimating an upper bound for P (S) where S is the set of non-Cú

w1 . . . w

n

C

Ê-
conforming runs, thus S = Runs(M) \ Runs(M, C

ú
w1w2 . . . w

n

C

Ê). We do so by examining the
probability of the set of runs which do not contain w = w1w2 . . . w

n

, but visit more than |w| many
probabilistic nodes. Intuitively, we need to visit more than |w| many nodes because otherwise it
would not be possible to achieve n coin tosses in such a run and ultimately, since they will never
by induced by our pattern, those runs are of no interest to our observations – We need to exclude
them from our analysis.
We will denote this set by B(j) = V (j · |w|) fl (Runs(M) \ S) where V (j) is the set of runs which
visit a probabilistic node at least j times.
We are then able to show that

P (Runs(M) \ S) = lim
jæŒ

P (B(j))

and then estimate following upper bound

lim
jæŒ

P (B(j)) Æ lim
jæŒ

(1 ≠ p

n

min)j

where pmin denotes the minimal probability that appears in M. Since pmin > 0 it follows that

lim
jæŒ

(1 ≠ p

n

min)j = 0.

Thus, we conclude that
P (S) = 0

and finally, since (*) holds, it follows that

P (Runs(M, �)) = 1.

Since we are now aware that P (Runs(M, �)) = 1 for every pattern � of P , it remains to show the
second part of our essential Claim 1.

Proof of Theorem 2. Let � be a terminating pattern and R

t

= Runs(M, �). We denote the set of
all terminating runs of M by Runs

t

(M).
It follows by Theorem 1 that P (R

t

) = 1. Because R

t

is a terminating pattern, every run r œ R

t

is
terminating. Thus, R

t

™ Runs

t

. Since P (R
t

) = 1 holds, P (Runs

t

) = 1 is a direct consequence of
the subset relation.
By definition of almost sure termination it follows that P is terminating almost surely.

10

4 The algorithm

We have now gathered all essential constructs and theorems together to present the termination
prover devised by [5]. We will need to distinguish between finite and weakly finite programs, since
finite programs – due to a fixed initial configuration – allow for an easier algorithm design.
In general, we will divide our algorithm into two pieces:

1. The pattern constructor

2. The pattern checker

While the pattern constructor builds our hopefully-to-find terminating pattern, the pattern checker
verifies whether our just constructed pattern is a terminating one.
Furthermore, we will use an iterative, refinement-based approach on the pattern constructor, which
basically refines the pattern in every iteration and verifies subsequently if that pattern is terminat-
ing. In the loop body of our algorithm, we try to scrape up information we have: � is of a form
we know and � is not terminating. Thus, we will need to reconstruct � in such a way that the
chances increase that � will become terminating.

4.1 The pattern constructor

In this subsection we will just assume that we have already built such a pattern checker, which
returns “True” if a given pattern � terminates on a given program P , and a counterexample
otherwise. We will call those counterexamples lassos. A lasso is a trace of a non-terminating run
r of P where t

r

œ �. We will denote the periodically repeating part of this run as the loop.

4.1.1 Finite programs

As proposed in [5], every finite program has a simple terminating pattern, which is defined as
�

s

= (Cú
w)Ê for some word w œ C

ú. We will utilize this statement and let our algorithm
construct a simple terminating pattern, i.e. instead of the whole pattern � we only need to refine
our word w in every iteration.

Data: A probabilistic program P and a baseword s0 œ C

ú.
Result: True if P terminates almost surely, false otherwise.
i := 0
while (Cú

s

i

)Ê

is not a terminating pattern do

l

i

:= lasso, taken from the termination checker.
u

i

:= loop of l

i

.
if u

i

= ‘ then

return false

else

s

i+1 := shortest word that has s0 as prefix and is not an infix of any u

Ê

k

for
k œ {1, . . . , i}.

end

i := i + 1.
end

return true

Figure 6: The pattern-constructor for finite programs. By default the baseword s0 is set to ‘.

The pseudo code of the algorithm is shown in Figure 6. The algorithm takes a probabilistic
program P and an arbitrary baseword s0, which by default is set to ‘. As previously mentioned,
the constructed pattern is iteratively refined.
In every loop iteration, the termination checker is executed on P with the beforehand constructed
pattern. The pattern checker then returns a counterexample if the pattern is non-terminating.

11

This counterexample is subsequently used to refine our word s

i

: We construct s

i

such that it does
not contain any coin-toss sequence induced by the previously detected loops. Additionally, s

i

has
s0 as a prefix, thus we prepend the baseword to every repeating pattern element s

i

. By default,
where s0 = ‘, s

i

remains unchanged. We also demand s

i

to be the shortest word for which the
desired properties hold. This prevents that we may “skip” infinite loops of P in our loop detection.
Thus, in each iteration the algorithm constructs the word s

i

such that it does not evoke the
previously detected loops in its induced program runs. This guarantees us that C

ú
s

i

C

Ê will
eventually transform into the wanted simple terminating pattern if P terminates almost surely.
In the case that the pattern checker did not find a run with a looping part (thus, u

i

= ‘), we know
that P is not almost sure terminating, since P will loop on the run l

i

with only finite many coin
tosses. For example, this is the case if a program with a non-terminating loop with no probabilistic
functions is given.
The functioning is best examined by the use of an example. Again, we consider our finite Program 1.
The algorithm then constructs the following patterns, starting with � = (Cú

‘)Ê, in every iteration
step:

1. The pattern checker yields 0Ê as a counterexample, thus we construct (Cú1)Ê, since 1 is the
shortest word that is not an infix of 0Ê.

2. The pattern checker yields 1Ê as a counterexample, thus we construct (Cú01)Ê, since 01 is
the shortest word that is neither an infix of 0Ê nor 1Ê.

3. The pattern checker then determines that (Cú01)Ê is a terminating pattern – The algorithm
returns “True”.

4.1.2 Weakly finite programs

For weakly finite programs, the pattern construction needs to be a bit more sophisticated, since we
allow for infinitely many initial nodes. The algorithm will require human interaction. The main
idea is to construct a program P

Õ from the given program P where P

Õ fixes one of those initial
nodes as its only initial node. This results in P

Õ being finite and ultimately allows us to run our
previously constructed algorithm for finite programs on it. Since the set of initial nodes of P is
countable, the presented algorithm just iterates through every possible P

Õ.
Formally, the algorithm presented in Figure 7 fixes an enumeration i1, i2, . . . of Init

P . For every
element i

k

of this enumeration the previously mentioned probabilistic program P

ik is constructed,
where P

ik = (Locations

P

, {i

k

}, ÒæP

, Labels

P

, ‹P

, €P), thus equal to P but fixing i

k

as the only
initial node.
After running the termination checker for finite programs on P

ik using the baseword w

ik≠1 , we
are given a simple terminating pattern of the form (Cú

w

ik)CÊ. Note that every previously con-
structed w

ij is a prefix of w

ik . For every initial node we will receive such a pattern. Since
(Cú

w

ik)Ê is terminating for the initial node i

k

, we also know that, for every n œ N the pattern
�

n

= C

ú
w

i1C

ú
w

i2C

ú
. . . w

inC

Ê is terminating for the program P

n

= (Locations

P

, {i1, . . . , i

n

}, ÒæP

, Labels

P

, ‹P

, €P), thus the program derived from P where the initial nodes are fixed to i1, . . . , i

n

.
We then keep on computing the pattern �

n

. If Init

P is infinite, the algorithm will never halt. But
practical observations have shown that it is often su�cient to only compute the first few patterns
and then let a human extrapolate this pattern, albeit there is no theoretical evidence that those
patterns are always easily predictable. However, since most programs are written by humans,
they are likely to contain some predictable loop structures which often induce straightforward
patterns. As an example, the algorithm may construct �1 = C

ú0C

Ê, �2 = C

ú0C

ú00C

Ê and
�3 = C

ú0C

ú00C

ú000C

Ê. Using human intuition, we can extrapolate the k-th word as w

ik = 0i

from this information.
After the human has found such a possible terminating pattern, we will pass it to our assumed to
be constructed pattern checker. It will then verify whether the intuitive approach was correct or
not. Note that we use the pattern checker for weakly finite programs in this step, as opposed to
before where we used the pattern checker for finite programs on the pattern �

n

.

12

Data: A weakly finite probabilistic program P .
Result: True and the terminating pattern if P terminates almost surely, false otherwise.
Fix an enumeration i1, i2, . . . of Init

P .
k := 0
while true do

Construct P

ik .
if P

ik is almost-sure terminating then

�
ik := simple terminating pattern C

ú
w

ik C

Ê of P

ik using w

ik≠1 as a baseword.
�

k

:= C

ú
w

i1C

ú
w

i2 . . . C

ú
w

ik C

Ê.
if human is able to extrapolate a sequence (w

in)
nœN when given �

k

then

if � = C

ú
w

i1C

ú
w

i2 . . . is a terminating pattern then

return true and �.
end

end

k := k + 1
else

return false

end

end

return true

Figure 7: The pattern constructor for weakly finite programs. In its iteration steps, it calls the in
Figure 6 presented algorithm for finite programs.

4.2 The pattern checker

It remains to construct a pattern checker. A pattern checker takes a pattern � and a probabilistic
program P to verify the termination property for. Again, we need to distinguish between finite
and weakly finite programs, since the latter program class enforces a more elaborated algorithm
design.

4.2.1 Finite programs

For finite programs, we can easily exploit the strength of already built model-checkers, in this
particular outline we will use SPIN [8], as mentioned in the introduction.
The pattern checker for finite programs takes a simple pattern of the form � = (Cú

w)Ê and the
program P . If � is a terminating pattern it shall return “True”, otherwise it shall return a lasso l

as a counterexample, which is a run of � that is non-terminating.
Since SPIN is not able to work with probabilistic programs, we need to eliminate the probabilistic
parts of P . We do so by using non-determinism to emulate the di�erent probabilistic outcomes.
We establish two unused variables named c œ {0, 1, 2} and termination œ {0, 1}. If termination

equals 1, the program will halt in the next step. Otherwise, termination will always be set to 0.
c indicates the di�erent probabilistic coin-toss outcomes: If c was set to 0, the coin(p)-function
yielded 0, and equally for 1. Directly after every probabilistic expression, c is set to 2, so both
program paths won’t di�er from this point on.
Formally, the transformation from probabilistic to non-probabilistic non-deterministic programs is
shown in Figure 8. For this step, we will assume that P is in a normal-form where it does not
contain if(coin(p))-conditions. Those are beforehand transformed into the code snippet x =

coin(p); if(x) {...}, where x is an unused variable.
Further on, we will incorporate the termination variable such that it is set to 0 at the very
beginning of the program and to 1 at the very end.
Now, we are able to verify properties of the program using a model checker for non-deterministic
non-probabilistic programs, such as SPIN. Since we need to pass an LTL-formula to spin, we need
to express the non-termination property in such a formula: In every execution of P , termination

13

1 x = coin(p);
1 if(nondet ()) {

2 c = 1;

3 x = 1;

4 } else {

5 c = 0;

6 x = 0;

7 }

8 c = 2;

Figure 8: The transformation from probabilistic to non-probabilistic programs. In this process, the
program will unavoidable become non-deterministic, as indicated by the nondet()-function. Since
coin(p) is defined by a discrete probability measure, the method is only applicable to programs
which work on such a discrete stochastic model.

shall always be 0, and additionally the run shall only incorporate finitely many coin(p)-calls, thus
eventually stop visiting the probabilistic locations of P . The formula Ï = ¬termination · FG(c /œ
{0, 1}) expresses those circumstances.
We will pass the now modified program P along with the property Ï to SPIN, which then returns
True if there exists a run of P which is non-terminating and visits only finitely many probabilistic
locations. The pattern checker will return this lasso. Otherwise SPIN reports False, thus no run of
P exists for which Ï holds. This means that all non-terminating runs of P involve infinitely many
probabilistic expressions.
Up to now, we did not incorporate the pattern �. We will do so by constructing a deterministic
Büchi-automaton (DBA) A with L(A) = Runs(M, �). Thus, A represents all runs induced by �.
Since we eliminated probabilistic expressions, A represents the �-conforming runs via specifying
the assignments to c.

� = (Cú
a1 . . . a

n

)Ê
C

a1 a2 a

n≠1

true

c = a1

c = 2

c = a2

c = 2
c = 2

c = a

n

Figure 9: The transformation from a simple terminating pattern � = (Cú
a1 . . . a

n

)Ê into a Büchi-
automaton A with L(A) = Runs(M

P

, �). a1, . . . , a

n

are elements of the given alphabet C. true

indicates that every command (except the labels of the outgoing transitions) can be read at this
point.

We can now pass the DBA A along with P to SPIN, which then verifies whether P has a run that
is accepted by A. If this is the case, we can simply return the now determined lasso. Otherwise,
the algorithm returns that � is a terminating pattern.

4.2.2 Weakly finite programs

For weakly finite programs the algorithm design again needs to be a bit more sophisticated since
we need to check the termination property for every initial node. Also, not every weakly finite
program has a simple terminating pattern. In fact, their terminating patterns are may not even
NBA-recognizable, since we allow for general Ê≠languages here.
Again, we employ a transformation from probabilistic to non-deterministic programs to pass the
result into a model-checker. We will use ARMC for this, since this tool is able to handle infinite
program state sets. For this, we denote nondet(S) as the function which nondeterministically
returns a number from the given countable set S. We transform P into the non-deterministic
program P

� which depends on the to be evaluated pattern �.
The actual transformation is shown in Figure 10.

14

1 x = coin(p);

1 // Initialization at the program start

2 counter = nondet (N);

3 next = 1;

4 position = 1;

5 [...]

6 // Actual transformed part

7 x = nondet ();

8 if (counter <= 0) {

9 if (position > length (w[next])) {

10 counter = nondet (N);

11 position = 1;

12 next = next + 1;

13 } else {

14 x = w[next][position];

15 position = position + 1;

16 }

17 } else {

18 counter := counter - 1;

19 }

Figure 10: The transformation from probabilistic to non-probabilistic weakly finite programs,
which depends on a given pattern �. With w[i][k] we denote the k-th element of the word w

i

of
the pattern � = C

ú
w1C

ú
w2 counter, next, position are newly introduced variables.

We use counter to guess the length of the irrelevant part of the program run, namely those parts
of the trace that are not part of any w

i

. With this transformation we achieve that all program
runs conform to the given pattern �, because we “cut o�” the C

ú parts of the run. We assign to x,
in a non-deterministically fashion, the content of the every w

i

that appears in the pattern – And
jump, via the counter variable, over the irrelevant parts.
Since every run of P

� is �-conforming, and every run induced by � is a run of P

�, we can then
pass P

� to our model-checker. Since ARMC is able to prove termination without any further
input, we will just query ARMC for this purpose. If ARMC is able to prove termination of P

� we
know that every run of P

� is a terminating one. Since the runs of P

� are exactly the runs of P

induced by �, we can report that � is a terminating pattern. If ARMC returns an infinite run of
P

� we are able to report that � is not a terminating pattern of P , and we return the lasso that
ARMC yielded. Note that ARMC may gives up on P

�, due to the undecidability of the halting
problem. In this case, the presented algorithm also surrenders and returns “Maybe”.

5 Conclusion and applications

In this paper, the in [5] devised algorithm was presented. This algorithm is able to prove termina-
tion of finite programs and, employing human ingenuity, tries to prove termination of weakly finite
programs. After transforming probabilistic programs into non-probabilistic non-deterministic pro-
grams, we were able to use SPIN and ARMC to verify the termination of our iteratively refined
pattern. For weakly-finite programs, where ARMC was employed, the algorithm took way longer
to compute compared to SPIN on finite programs [5]. This is not surprising, since ARMC needs to
verify the termination property of a program with infinitely many initial nodes. Experiments of [5]
also yielded that the runtime of the employed non-probabilistic model-checkers SPIN and ARMC
accounts for the main part of the computation. Thus, the best way to improve the algorithm’s
runtime is to enhance the employed tools. The authors of [5] were actually able to modify ARMC
in such a way that a loop invariant would be found faster.
Termination provers of probabilistic programs are needed in a great range of applications. In
randomized network protocols probabilistic expressions are for instance used to retrieve sensor
data in a probabilistic manner, as presented in [7]. Thus, the termination of the retrieving process
is of utter importance: If the process never halts, no sensor data is returned and the sensor itself
stays useless in that time. Therefore, we need to at least attempt a termination proof – And, when
using the presented algorithm, with no or little human interaction involved.

15

References

[1] R.B. Ash and C. Doléans-Dade. Probability and Measure Theory. Harcourt/Academic Press,
2000.

[2] C. Baier and I. Katoen. Principles of Model Checking. 2008.

[3] D. Bert. ZB 2003: Formal Specification and Development in Z and B: Third International

Conference of B and Z Users, Turku, Finland, June 4-6, 2003, Proceedings. Lecture Notes in
Computer Science. Springer, 2003.

[4] M. Davis. Computability & Unsolvability. Dover Books on Computer Science Series. Dover,
1958.

[5] Javier Esparza, Andreas Gaiser, and Stefan Kiefer. Proving termination of probabilistic pro-
grams using patterns. CoRR, abs/1204.2932, 2012.

[6] Friedrich Gretz, Joost-Pieter Katoen, and Annabelle McIver. Operational versus weakest pre-
expectation semantics for the probabilistic guarded command language. Perform. Eval., 73:110–
132, 2014.

[7] M. Hefeeda and H. Ahmadi. A probabilistic coverage protocol for wireless sensor networks. In
Network Protocols, 2007. ICNP 2007. IEEE International Conference on.

[8] G.J. Holzmann. The Spin Model Checker: Primer and Reference Manual. Addison-Wesley,
2004.

[9] A. Podelski and A. Rybalchenko. Armc: The logical choice for software model checking with
abstraction refinement. In LNCS 4354, 2007.

