
Slicing Probabilistic Programs

Matthias Volk

RWTH Aachen University, Germany
Matthias.Volk@rwth-aachen.de

Abstract. Probabilistic programs extend the declaration of programs by use of probabilities.
Here the return value of a program is not a concrete value but a probability distribution. For
e�ciently analyzing these probabilistic programs the program should be made as small as possible
by slicing it. Here only parts which influence the return value are kept whereas unnecessary parts
are cut away.
In the given paper “Slicing Probabilistic Programs” [1] the authors Hur et al. extend the usual
slicing for non-probabilistic programs to probabilistic ones. As the control and data dependence
as used in the non-probabilistic setting are not enough to ensure correctness of the slicing, they
introduce the concept of observe dependence which handles observe statements in the probabilistic
program. Using these three notions of dependences altogether ensures a correct and e�cient
slicing of such probabilistic programs.

1 Introduction

Probabilistic programs extend the usual notion of programs, e.g. C or Java, by also allowing probabilistic
assignments where variable values are drawn from probability distributions. Further on, variable values
can be conditioned to certain values by observe statements. Probabilistic programs are widely used in
statistics and machine learning, e. g., speech recognition, biology. An important problem in the domain
of probabilistic programs is the so called probabilistic inference where the probability distribution of
the returned expression should be determined (or approximated). As the examined programs can be
complex a good way to reduce complexity would be to reduce the original program to a sliced program
where only those parts which influence the result remain. Parts which do not influence the outcome of
the program are eliminated. For non-probabilistic programs slicing as defined in [2] is well-understood.
For the probabilistic setting the problem of slicing is investigated in [1] and reviewed in the present
report. Here it does not su�ce to apply the usual slicing where control and data dependence are
considered. As we will see in certain examples in Section 3 applying the usual slicing is neither correct
nor results in the smallest possible sliced program. Therefore a third dependence, the so called observe
dependence, must be introduced. This dependence arises specifically from the observe statements which
can condition the variables to certain values. Only when considering the influences arising from this
statements we obtain a slicing transformation Sli, which is both correct and e�cient.

We start by giving an introduction about probabilistic programs in Section 2. In Section 3 we will
give an intuitive view about the slicing for probabilistic programs and the problems which arise there.
Using the knowledge gained there we give a slicing transformation in Section 4. We end by giving a
short evaluation in Section 5 and a conclusion in Section 6.

2 Preliminaries

We first introduce the concept of probabilistic programs by means of the probabilistic programming
language PROB. This programming language is an imperative programming language similar to Dijkstra’s
Guarded Command Language (GCL) [3] which is enriched by probabilistic commands.

PROB makes use of the “normal” syntax of imperative programming language, but introduces two
more commands:

1. The probabilistic assignment x ⇠ Dist(✓̄). Here a sample is drawn from distribution Dist(✓̄),
where ✓̄ is a vector containing the distribution parameters. This sample is then assigned to variable
x. An example for this is the statement x ⇠ Gaussian(µ, �

2) which draws a value from the
Gaussian distribution with mean µ and variance �2. This value is then assigned to variable x.

2. The observe statement observe(') declares a condition ' which must be fulfilled by all valid
execution of the program. An example for this is the statement observe(x = false) which means,
that in every valid run the variable x must have the value false when this command is executed.
Notice that the total probability of all valid runs can be less than 1. Therefore the probabilities
of all valid runs are rescaled to sum up to 1. Intuitively the observe statement has the e↵ect of
considering a conditional distribution and is very similar to the assume statement used in program
verification (even though the assume statement produces no probability re-scaling).

Before giving a formal definition of the probabilistic programming language PROB we illustrate the
use of the language by means of some examples.

Example 1 (Coin tossing).

1 bool c1, c2;

2 c1 = Bernoulli (0.5);

3 c2 = Bernoulli (0.5);

4 return c1 + c2;

Fig. 1: Coin tossing.

This example as seen in Fig. 1 models the tossing of two fair coins by drawing from a Bernoulli
distribution with mean 0.5. The resulting values are assigned to variables c1 and c2 respectively. The
return value is the sum of both variables c1 and c2. The semantics of the program is the expectation
of its return value. Since we have a fair coin it is Pr(c1 = false, c2 = false) = Pr(c1 = false, c2 =
true) = Pr(c1 = true, c2 = false) = Pr(c1 = true, c2 = true) = 1

4 . By setting false = 0 and true = 1
we obtain the expected return value 1

4 · (0 + 0) + 1
4 · (0 + 1) + 1

4 · (1 + 0) + 1
4 · (1 + 1) = 1

4 + 1
4 + 1

4 · 2 = 1.

Example 2 (Coin tossing with counting).
This example as shown in Fig. 2 extends the previous example by introducing the variable count

which stores the number of coin tosses resulting in the value true. Here the program has the expected
return value Pr(c1 = false, c2 = false) · 0 + Pr(c1 = true, c2 = false) · 1 + Pr(c1 = false, c2 =
true) · 1 + Pr(c1 = true, c2 = true) · 2 = 1

4 · 0 + 1
2 · 1 + 1

4 · 2 = 1.

Example 3 (Coin tossing with counting and observe).
This example as seen in Fig. 3 in comparison to the previous one has an additional observe statement.
This ensures that at least one of the coin tosses has to result in the value true. Execution runs not
fulfilling this condition are blocked whereas the probabilities of all valid runs are rescaled to sum
up to 1, i. e., they are normalized. Therefore it is Pr(c1 = false, c2 = false) = 0 as this run is
blocked. Further on the remaining possibilities get new probabilities as Pr(c1 = true, c2 = false) =
Pr(c1 = false, c2 = true) = Pr(c1 = true, c2 = true) = 1

3 . This leads to an expected return value of
0 · 0 + 1

3 · 1 + 1
3 · 1 + 1

3 · 2 = 4
3 .

Notice that the statement observe(x) can also be written as the equivalent statement while(!x) skip.
This is due to the fact that non-terminating runs are ignored in probabilistic programs and the semantics
is normalized w. r. t. the terminating runs.

2

1 bool c1, c2;

2 int count = 0;

3 c1 = Bernoulli (0.5);

4 if (c1) then

5 count = count + 1;

6 c2 = Bernoulli (0.5);

7 if (c2) then

8 count = count + 1;

9 return(count);

Fig. 2: Coin tossing with counting.

1 bool c1, c2;

2 int count = 0;

3 c1 = Bernoulli (0.5);

4 if (c1) then

5 count = count + 1;

6 c2 = Bernoulli (0.5);

7 if (c2) then

8 count = count + 1;

9 observe(c1 || c2);

10 return(count);

Fig. 3: Coin tossing with counting and observe.

2.1 Formal definition of PROB

We will now give the formal definition of the probabilistic programming language PROB. We start by
introducing the syntax of PROB.

Definition 1 (Syntax of PROB).

x 2 V ars Variables

uop ::= ... C unary operators

bop ::= ... C binary operators

', ::= ... logical formula

E ::= expressions

| x variable

| c constant

| uop E unary operation

| E1 bop E2 binary operation

S ::= statements

| skip skip

| x = E deterministic assignment

| x ⇠ Dist(✓̄) probabilistic assignment

| observe(') observe

| S1; S2 sequential composition

| if E then S1 else S2 conditional composition

| while E do S while-do loop

P ::= S return E program

As mentioned before the syntax is very similar to a classic imperative programming language, e. g., C.
A program consists of statements and a return expression. Statements include skips, deterministic and
probabilistic assignments and observes as well as conditionals and loops. Statements can be combined in
a sequential manner. Notice that additional “syntactic sugar”, e. g., functions or arrays, can be defined
in a straight-forward way but are not included in this core language.

We now introduce the semantics of PROB.

3

Definition 2 (Unnormalized semantics for statements).
JSK 2 (⌃ ! [0, 1])! ⌃ ! [0, 1]

JskipK(f)(�) := f(�)

Jx = EK(f)(�) := f(�[x �(E)])
Jx ⇠ Dist(✓̄)K(f)(�) :=

Z

v2Val
Dist(�(✓̄))(v) · f(�[x v])dv

Jobserve(')K(f)(�) :=
(
f(�) if �(') = true

0 otherwise

JS1; S2K(f)(�) := JS1K(JS2K(f))(�)

Jif E then S1 else S2K(f)(�) :=
(

JS1K(f)(�) if �(E) = true

JS2K(f)(�) otherwise

Jwhile E do SK(f)(�) := sup
n�0

Jwhile E don SK(f)(�)

where

while E do0 S = observe(false)

while E don+1 S = if E then (S; while E don S) else (skip)

A state � 2 ⌃ of a program is a (partial) valuation of all its variables as � : Vars ! Val . This can
be lifted to expressions as � : Exprs ! Val . By having default values for uninitialized variables we
make this lifting a total function. We now consider a probabilistic statement S. Here the denotational
semantics JSK(f)(�) gives the expected return value of a program with statement S, return expression
f and initial state �. The skip statement does not change the input state �. Next the deterministic
assignment first changes the state � by applying the assignment and then applying f . The probabilistic
assignment samples v from the distribution Dist(✓̄), executes the assignment with v as right-hand side
value and then applies f . By integrating over all possible values of v we obtain the expected value. The
observe statement behaves like a skip statement if the expression ' is evaluated to true. If this is not
the case the returned value is 0 indicating that this run is not probable. The sequential and conditional
statements are defined as expected. Last, the while loop has standard fixpoint semantics. Notice that
up to this point, the semantics for the statements are unnormalized. But due to non-terminating runs
and observe statements we must normalize this as seen next.

Definition 3 (Normalized semantics for programs).
JS return EK 2 (R! [0, 1])! [0, 1]

JS return EK(f) := JSK(��.f(�(E)))(?)
JSK(��.1)(?)

where ? denotes the empty state.

As stated in the definition ? denotes the empty state where the default values are assigned to every
variable. It is important for the definition to work that the behavior of the program is independent of
the initial state.

3 Slicing

3.1 The usual slicing

First we introduce the usual notion of slicing. When analyzing a (probabilistic) program P we are
interested in its return expression r. But instead of analyzing the complete program it would be better

4

to only consider those parts of the program relevant to the return expression. We therefore slice P
and elude all those parts not influencing r. As a result we obtain a smaller sliced program Sli(P). It
is important that the Sli transformation is both correct and e�cient. Correctness means, that the
probability distribution for r is the same for P and Sli(P). E�cient means, that the computation of the
Sli transformation should be fast and the sliced program should be small so that r can be computed
fast in Sli(P).

We start by giving an intuition of program slicing by means of some examples. In the first example
the usual definition of slicing [2] works for a probabilistic program as well.

Example 4 (Starting example).

1 bool d, i, s, l, g;

2 d = Bernoulli (0.6);

3 i = Bernoulli (0.7);

4 if (!i && !d)

5 g = Bernoulli (0.3);

6 else if (!i && d)

7 g = Bernoulli (0.05);

8 else if (i && !d)

9 g = Bernoulli (0.9);

10 else

11 g = Bernoulli (0.5);

12 if (!i)

13 s = Bernoulli (0.2);

14 else

15 s = Bernoulli (0.95);

16 if (!g)

17 l = Bernoulli (0.1);

18 else

19 l = Bernoulli (0.4);

20 return s;

Fig. 4: Starting example.

1 bool i, s;

2 i = Bernoulli (0.7);

3 if (!i)

4 s = Bernoulli (0.2);

5 else

6 s = Bernoulli (0.95);

7 return s;

Fig. 5: Sliced program of Fig. 4.

This example as seen in Fig. 4 is adapted from [4] and represents a model for a reference letter l
for a student. This reference letter depends on the course di�culty d, the student intelligence i, the
course grade g and the SAT score s. The dependency graph looks as depicted in Fig. 6. Edges in the
dependency graph depict control or data dependences.

As the variable s is returned by the program, we can see with help of the dependency graph, that s
only depends on i. A first intuitive idea would be to keep only those parts of the original program
where these two variables occur and slice away parts where d, g and l occur. This idea is similar to the
one used in regular non-probabilistic program slicing, where one performs a sort of back-trace from the
return value to compute control and data dependences. As a result we obtain the sliced program of
Fig. 5.

We see that the size of this sliced program is only one third of the size of the original program and
therefore allows an easier computation of the resulting probability distribution.

Now the question that arises is whether the usual slicing always works in the probabilistic setting
as well. We can show that this is not the case with the following example.

Example 5 (Usual slicing is incorrect). The example in Fig. 7 is a variation of Example 4 where only
the observe statement in Line 20 is added.

5

g s

d i

l

Fig. 6: Dependency graph for Fig. 4.

1 bool d, i, s, l, g;

2 d = Bernoulli (0.6);

3 i = Bernoulli (0.7);

4 if (!i && !d)

5 g = Bernoulli (0.3);

6 else if (!i && d)

7 g = Bernoulli (0.05);

8 else if (i && !d)

9 g = Bernoulli (0.9);

10 else

11 g = Bernoulli (0.5);

12 if (!i)

13 s = Bernoulli (0.2);

14 else

15 s = Bernoulli (0.95);

16 if (!g)

17 l = Bernoulli (0.1);

18 else

19 l = Bernoulli (0.4);

20 observe(l = true);

21 return s;

Fig. 7: Usual slicing is incorrect.

Performing the usual slicing we would obtain exactly the same result as in Example 4 (see Fig. 5).
The observe statement would be sliced as only the unnecessary variable l occurs here. But this result
is not correct as the original program and the sliced one are not equivalent. The reason is that the
observe statement introduces new dependencies which are not accounted for in the ordinary slicing
technique. The observation of l influences the value of g which then indirectly influences i and finally
leads to an influence on the resulting value of s. Further on a second “path of influence” flows from d

to i and therefore to s. In the end, all variables are important for the final result and therefore the
sliced program is exactly the same as the original program. We will have a closer look on the influence
of observe statements later on.

Next we consider another example where the usual slicing is correct but not optimal as it does not
result in the smallest possible program.

Example 6 (Usual slicing is ine�cient). This example in Fig. 8 is a variation of the previous example
in Fig. 4, but now the returned variable is l and we introduced an observe statement in Line 12
constraining the value of g to false.

As the returned variable is l the transitive dependences include g, i and d, but the variable s is not
needed anymore. This results in the sliced program as stated in Fig. 9.

But having a closer look on the observe statement in Line 12 leads to an even smaller sliced program.
As g is constrained to false we can stop traversing dependences at g. The values of i and d do not
influence the resulting value of g as it is constrained later on. We obtain a smaller sliced program as
seen in Fig. 10.

Further slicing this program leads to the final result in Fig. 11.

To conclude the examples we analyze the slicing of loopy programs.

Example 7 (Program with loops).
As seen in Fig. 12, c is repeatedly sampled and b is toggled until c becomes false. A simplified

dependency graph is show in Fig. 13.

6

1 bool d, i, s, l, g;

2 d = Bernoulli (0.6);

3 i = Bernoulli (0.7);

4 if (!i && !d)

5 g = Bernoulli (0.3);

6 else if (!i && d)

7 g = Bernoulli (0.05);

8 else if (i && !d)

9 g = Bernoulli (0.9);

10 else

11 g = Bernoulli (0.5);

12 observe(g = false);

13 if (!i)

14 s = Bernoulli (0.2);

15 else

16 s = Bernoulli (0.95);

17 if (!g)

18 l = Bernoulli (0.1);

19 else

20 l = Bernoulli (0.4);

21 return l;

Fig. 8: Usual slicing is ine�cient.

1 bool d, i, l, g;

2 d = Bernoulli (0.6);

3 i = Bernoulli (0.7);

4 if (!i && !d)

5 g = Bernoulli (0.3);

6 else if (!i && d)

7 g = Bernoulli (0.05);

8 else if (i && !d)

9 g = Bernoulli (0.9);

10 else

11 g = Bernoulli (0.5);

12 observe(g = false);

13 if (!g)

14 l = Bernoulli (0.1);

15 else

16 l = Bernoulli (0.4);

17 return l;

Fig. 9: Sliced program of Fig. 8.

1 bool l, g;

2 g = false;

3 if (!g)

4 l = Bernoulli (0.1);

5 else

6 l = Bernoulli (0.4);

7 return l;

Fig. 10: Further sliced program of Fig. 8.

1 bool l;

2 l = Bernoulli (0.1);

3 return l;

Fig. 11: Further sliced program of Fig. 10.

As the variable b is observed every part influencing b must be contained in the resulting sliced
program. As b is changed in every iteration this part can not be left out and in the end the sliced
program is the original program.

3.2 The observe dependence

As we have seen so far the usual definition of slicing guarantees neither an optimal nor a correct slicing.
This is because the observe statements play a role which is not considered in the usual slicing.

Therefore the usual control and data dependences as captured by the relation DInf are not enough
for probabilistic slicing. Thus, we extend the usual slicing technique by introducing the concept of
observe dependences. We extend the relation DInf to a relation called influencers and denoted Inf.
This captures the additional observe dependence as well. (Note that Inf ◆ DInf).

We explain the intuition behind this observe dependence with the following example.

Example 8 (Observe dependence). Consider the example in Fig. 14 derived from Example 4 by in-
troducing the observe statement in Line 20. The corresponding dependency graph is depicted in
Fig. 15.

7

1 bool x, b, c;

2 x = Bernoulli (0.5);

3 b = x;

4 c = Bernoulli (0.5);

5 while (c) do

6 b = !b;

7 c = Bernoulli (0.5);

8 observe(b = false);

9 return x;

Fig. 12: Program with loops.

2: x

3: b

4: c

5

6: b7: c

8: b

9

Fig. 13: Dependency graph for Fig. 12.

We have an observe statement observe(g = true) and two variables d and i such that g depends
on both of them by the usual notion of control or data dependence, i. e., d, i 2 DInf(g). The return
variable of the program is s and s depends on i, i. e., i 2 Inf(s).

There exists a path for influence to flow from d through g and i to s, i. e., d 2 Inf(s). By observing
g we know its value and the knowledge about d influences the knowledge about i and vice versa. By
knowing g and having knowledge about d we can draw conclusions about i. These additional flows of
influence rise from the observe dependences. These observe dependences are related to the concept of
active trails in Bayesian networks [4].

4 Slice transformation

In the previous section we have given an intuitive view on the slice transformation in the probabilistic
setting. We now formalize this slice transformation and give an algorithm for computing the sliced
program.

4.1 Preprocessing

First we restrict our programs to being in SSA form [5], i. e., each variable is assigned only once in the
program. Further on we assume that all predicates in observe statements and while loops are single
boolean variables, i. e., they have the form observe(x) and while (y) do S with x, y being boolean
variables. To ensure these constraints we perform a preprocessing consisting of three steps where the
first step prunes spurious dependences occurring through observe statements.

1. applying the Obs transformation to remove spurious dependences
2. for each predicate in an observe statement, conditional or while loop we introduce a fresh variable

holding its value by applying the Svf transformation
3. convert the resulting program into SSA form by applying the Ssa transformation

We now explain these three transformations in greater detail starting with the Obs transformation,
which is given in the following definition.

8

1 bool d, i, s, l, g;

2 d = Bernoulli (0.6);

3 i = Bernoulli (0.7);

4 if (!i && !d)

5 g = Bernoulli (0.3);

6 else if (!i && d)

7 g = Bernoulli (0.05);

8 else if (i && !d)

9 g = Bernoulli (0.9);

10 else

11 g = Bernoulli (0.5);

12 if (!i)

13 s = Bernoulli (0.2);

14 else

15 s = Bernoulli (0.95);

16 if (!g)

17 l = Bernoulli (0.1);

18 else

19 l = Bernoulli (0.4);

20 observe(g = true);

21 return s;

Fig. 14: Observe dependence.

g s

d i

l

Fig. 15: Dependency graph for Fig. 14.

Definition 4 (OBS transformation).

Obs(observe(E)) := observe(E); ObserveSet(E)
Obs(while E do S) := while E do Obs(S); WhileSet(E)

Obs(S1; S2) := Obs(S1); Obs(S2)

Obs(if E then S1 else S2) := if E then Obs(S1) else Obs(S2)

Obs(S) := S, otherwise
with

ObserveSet(E) :=
(
x = E 0 if E is (x = E 0) or (E 0 = x) for E 0 with no variables

skip otherwise

WhileSet(E) :=
(
x = E 0 if E is (x 6= E 0) or (E 0 6= x) for E 0 with no variables

skip otherwise

Obs(S return E) := Obs(S) return E

The intuition behind this Obs transformation is that after observe statements and while loops we
can in some cases add an assignment which states the value of the variables upon the exit of these
statements. After an observe statement which is an equality between a program variable and a closed
expression, e. g., observe(x = E), we add this equality as an assignment, e. g., x = E . After the guard of
a loop which is an inequality between a program variable and a closed expression, e. g., while(x 6= E),
we add the equality as an assignment, e. g., x = E . We therefore can stop traversing certain dependences
when the value of certain variables are know. As an example consider the previous example as seen
in Fig. 8 where the observe statements in Line 12 ensures g = false. We then stopped traversing
the dependences as the previous variable assignments were not important anymore. By introducing

9

assignments after every observe statement and while loop we ensure that these variable values are
considered while computing the dependences.

The second transformation step is the Svf transformation into single variable form which is defined
as follows.

Definition 5 (SVF transformation).

Svf(observe(E)) := let x

0 2 freshvar() in x

0 = E ; observe(x0)

Svf(while E do S) := let x

0 2 freshvar() in x

0 = E ; while x

0 do (S; x0 = E)
Svf(S1; S2) := Svf(S1); Svf(S2)

Svf(if E then S1 else S2) := let x

0 2 freshvar() in x

0 = E ; if x

0 then Svf(S1) else Svf(S2)

Svf(S) := S, otherwise

Svf(S return E) := Svf(S) return E
The Svf transformation introduces for every condition in observe, if-then-else or while loops a fresh

variable (by calling freshvar()) and stores the condition in this variables. Thus we ensure that we only
have single boolean variables in there which is important for the correctness proof.

The last transformation is the Ssa transformation which ensures that there is only one assignment
per variable.

Definition 6 (SSA transformation). Ssa(S) 2 P(Vars)⇥Ren ! P(Vars)⇥Ren ⇥ Statement with
Ren = Vars ! Vars

Ssa(skip)(X, ⇢) := (X, ⇢, skip)

Ssa(observe(E))(X, ⇢) := (X, ⇢, observe(⇢(E)))
Ssa(x = E)(X, ⇢) := let x

0 62 X in (X [{x0}, ⇢[x 7! x

0], x0 = ⇢(E))
Ssa(x ⇠ Dist(✓̄))(X, ⇢) := let x

0 62 X in (X [{x0}, ⇢[x 7! x

0], x0 ⇠ Dist(⇢(E)))
Ssa(S1; S2)(X, ⇢) := let (X 0

, ⇢

0
, S

0
1) = Ssa(S1)(X, ⇢) and

let (X 00
, ⇢

00
, S

0
2) = Ssa(S2)(X

0
, ⇢

0) in (X 00
, ⇢

00
, S

0
1; S

0
2)

Ssa(if E then S1 else S2)(X, ⇢) := let (X 0
, ⇢

0
, S

0
1) = Ssa(S1)(X, ⇢) and

let (X 00
, ⇢

00
, S

0
2) = Ssa(S2)(X

0
, ⇢

0) and

let S

00
2 = Merge(⇢0, ⇢00)

in (X 00
, ⇢

0
, if ⇢(E) then S

0
1 else (S0

2; S
00
2))

Ssa(while E do S)(X, ⇢) := let (X 0
, ⇢

0
, S

0) = Ssa(S)(X, ⇢) and

let S

00 = Merge(⇢, ⇢0) in (X 0
, ⇢, while ⇢(E) do (S0; S00))

Merge(⇢, ⇢0) := Mergerec(⇢, ⇢
0
, dom(⇢))

Mergerec(⇢, ⇢
0
, ;) := skip

Mergerec(⇢, ⇢
0
, {x}]X) :=

(
(⇢(x) = ⇢

0(x); Mergerec(⇢, ⇢0, X)) if ⇢(x) 6= ⇢

0(x)

Mergerec(⇢, ⇢0, X) otherwise

Ssa(S return E) := let X = Fv(S) [Fv(E) and
let (, ⇢

0
,S 0) = Ssa(S)(X, IDX) in S

0 return ⇢0(E)

10

The above Ssa transformation is a variant of the transformation in [5], where the phi-nodes are not
used by relaxing the Ssa condition that there should be only one assignment per variable.

To get a better understand of the preprocessing we give an example.

Example 9 (Preprocessing). We apply the preprocessing to the example from Fig. 8. After applying the
first transformation Obs we obtain the result shown in Fig. 16. Only the Line 15 right after the observe
statement was added. The next step is applying the Svf transformation which results in Fig. 17. Here
the fresh variables q1, ..., q6 are introduced. The set of observed variables is O = {q4}. Finally the
result after the Ssa transformation can be seen in Fig. 18.

1 bool d, i, s, l, g;

2 d = Bernoulli (0.6);

3 i = Bernoulli (0.7);

4 if (!i && !d)

5 g = Bernoulli (0.3);

6 else

7 if (!i && d)

8 g = Bernoulli (0.05);

9 else

10 if (i && !d)

11 g = Bernoulli (0.9);

12 else

13 g = Bernoulli (0.5);

14 observe(g = false);

15 g = false;

16 if (!i)

17 s = Bernoulli (0.2);

18 else

19 s = Bernoulli (0.95);

20 if (!g)

21 l = Bernoulli (0.1);

22 else

23 l = Bernoulli (0.4);

24 return l;

Fig. 16: After Obs.

4.2 Main transformation

After the preprocessing step we compute the slicing of the program. To this end, we first compute
the dependency graph, which allows identifying all variables that influence the return expression. As
illustrated before we do not only need control and data dependence from usual slicing but also our new
observe dependence. The whole slicing transformation is defined by the Sli transformation.

First we compute the dependency graph as well as the set of observed variables.

11

1 bool d, i, s, l, g;

2 bool q1, q2, q3, q4, q5, q6;

3 d = Bernoulli (0.6);

4 i = Bernoulli (0.7);

5 q1 = (!i && !d);

6 if (q1)

7 g = Bernoulli (0.3);

8 else

9 q2 = (!i && d);

10 if (q2)

11 g = Bernoulli (0.05);

12 else

13 q3 = (i && !d);

14 if (q3)

15 g = Bernoulli (0.9);

16 else

17 g = Bernoulli (0.5);

18 q4 = (g = false);

19 observe(q4);

20 g = false;

21 q5 = !i;

22 if (q5)

23 s = Bernoulli (0.2);

24 else

25 s = Bernoulli (0.95);

26 q6 = !g;

27 if (q6)

28 l = Bernoulli (0.1);

29 else

30 l = Bernoulli (0.4);

31 return l;

Fig. 17: After Svf.

1 bool d, i, s, l, g, q1, q2, q3, q4;

2 bool q5, q6, g1, g2, g3, g4, s1, l1;

3 d = Bernoulli (0.6);

4 i = Bernoulli (0.7);

5 q1 = (!i && !d);

6 if (q1)

7 g = Bernoulli (0.3);

8 else

9 q2 (!i && d);

10 if (q2)

11 g1 = Bernoulli (0.05);

12 else

13 q3 = (i && !d);

14 if (q3)

15 g2 = Bernoulli (0.9);

16 else

17 g3 = Bernoulli (0.5);

18 g2 = g3;

19 g1 = g2;

20 g = g1;

21 q4 = (g = false);

22 observe(q4);

23 g4 = false;

24 q5 = !i;

25 if (q5)

26 s = Bernoulli (0.2);

27 else

28 s1 = Bernoulli (0.95);

29 s = s1;

30 q6 = !g4;

31 if (q6)

32 l = Bernoulli (0.1);

33 else

34 l1 = Bernoulli (0.4);

35 l = l1;

36 return l;

Fig. 18: After Ssa.

Definition 7 (Calculation of observed variables and dependency graph).
OVar(S) 2 P(Vars)

OVar(observe(x)) := {x}
OVar(S1; S2) := OVar(S1) [OVar(S2)

OVar(if x then S1 else S2) := OVar(S1) [OVar(S2)

OVar(while x do S) := {x} [OVar(S)
OVar(S) := ;, otherwise

12

Dep(S) 2 P(Vars)! P(Vars ⇥ Vars)

Dep(skip)(C) := ;
Dep(x = E)(C) := {(y, x)|y 2 C [Fv(E)}

Dep(x ⇠ Dist(✓̄))(C) := {(y, x)|y 2 C [Fv(✓̄)}
Dep(observe(x))(C) := {(y, x)|y 2 C}

Dep(S1; S2)(C) := Dep(S1)(C) [Dep(S2)(C)
Dep(if x then S1 else S2)(C) := Dep(S1)(C [{x}) [Dep(S2)(C [{x})

Dep(while x do S)(C) := {(y, x)|y 2 C} [Dep(S)(C [{x})

The observed variables OVar are calculated by structural induction over the statements of the
program and accumulating the conditionals of observe statements and while loops. The dependency graph
Dep is a binary relation over the variables. It takes the control dependences C of the current statement
as as an argument and calculates the control and data dependences. For example (x, y) 2 Dep(S)(;)
means that there is a data or control flow from x to y at some point in S. The calculation of Dep is
done by accumulating variables of the guards of if-then-else statements and while loops. In deterministic
and probabilistic assignments the data dependence from right-hand side to the left-hand side as well as
the control dependence is added. Finally the observe statement accumulates the control dependences.

So far we have only considered the control and data dependences. Now we are interested in the
variables that influence the return expression of the program. We call these variables influencers. For
the return statement return(E) let R be the set of free variables in E . Now we want to compute the
influencers of R which depend on the program statement S. We distinguish between direct influencers
DInf and influencers Inf. The set of direct influencers of R for dependency graph G is denoted by
DInf(G)(R). It consists of all the variables which can be reached in G by backward traverse from R.
Notice that G depends on the program statement S, i. e., G = Dep(S)(;).
Definition 8 (Influencer calculation).

– Direct influencers

x 2 R
x 2 DInf(G)(R)

(x, y) 2 G y 2 DInf(G)(R)

x 2 DInf(G)(R)

– Influencers

x 2 DInf(G)(R)

x 2 Inf(O,G)(R)

x, y 2 DInf(G)({z}) z 2 O y 2 Inf(O,G)(R)

x 2 Inf(O,G)(R)

The first rule of the direct influencers states that every variable in the return expression is part
of the direct influencers. The second rule defines the backward traverse in the dependency graph to
accumulate all direct influencers. As a result the set DInf(G)(R) consists of all variables that influence
the return variables through control and data dependences. But as seen before this is not enough to
ensure correctness of the slicing and we have to consider indirect influencers of observe statements as
well. Let O be the set of all observed variables. The set of all influencers is denoted by Inf(O,G)(R) and
is computed by the second part of the influencer calculation. Here the first rule states that every direct
influencer is also an influencer. The second rule is more interesting as it captures observe dependences.
As seen before in Fig. 15 if we have an observed variable z, y is already an influencer of R and x and y

influence z directly then x is also an influencer of R..
Now we can define the slicing transformation Sli.

13

Definition 9 (SLI transformation).
Sli(S) 2 P(Vars)! Statement

Sli(skip)(X) := skip

Sli(x = E)(X) :=

(
x = E if x 2 X

skip otherwise

Sli(x ⇠ Dist(✓̄))(X) :=

(
x ⇠ Dist(✓̄) if x 2 X

skip otherwise

Sli(observe(x))(X) :=

(
observe(x) if x 2 X

skip otherwise

Sli(S1; S2)(X) := Sli(S1)(X); Sli(S2)(X)

Sli(if x then S1 else S2)(X) :=

(
skip if Sli(S1)(X) = Sli(S2)(X) = skip

if x then Sli(S1)(X) else Sli(S2)(X) otherwise

Sli(while x do S)(X) :=

(
while x do Sli(S)(X) if x 2 X

skip otherwise

Sli(S return E) := Sli(S)(Inf(O,G)(R)) return E
where O = OVar(S),G = Dep(S)(;),R = Fv(E)

The slicing transformation has the set of influencers Inf(O,G)(R) as input with dependency
graph G, the set of observed variables O and the set of variables in the return statement R. The
transformation only keeps those statements whose variables are in the set of influencers and replaces all
other unnecessary statements with skip.

For a better understanding of the Sli transformation we continue the Example 9 from the prepro-
cessing.

Example 10 (SLI transformation). The slicing results in program given in Fig. 19. As mentioned earlier
the conditioning of the variable g in the observe statements cuts away great parts of the original
program.

1 bool l, q6, g4, l1;

2 g4 = false;

3 q6 = !g4;

4 if (q6)

5 l = Bernoulli (0.1);

6 else

7 l1 = Bernoulli (0.4);

8 l = l1;

9 return l;

Fig. 19: SLI transformation.

14

The correctness of the transformation is stated in the following theorem.

Theorem 1 (Correctness of the transformation). For a probabilistic program P = S return E
with JSK(��.1)(?) 6= 0, we have that P and Sli(P) are semantically equivalent, i. e.,

JS return EK = JSli(S)(X) return EK

for X = Inf(OVar(S),Dep(S)(;))(Fv(E)).
Proof. The proof is done by induction on the statement structure. For further details see [1].

5 Evaluation

To show the applicability of the slicing transformation for probabilistic programs this approach with
the Sli transformation was implemented as a source-to-source transformation in the R2 probabilistic
programming language [6]. Additionally the transformation was implemented in two other tools
Church [7] and Infer.NET [8].

For the evaluation several benchmarks were used. In addition to the two examples of Fig. 4 and
Fig. 8 two small examples (Noisy OR and Burglar Alarm) and four bigger examples (Bayesian Linear
Regression, HIV, Chess and Halo) were taken.

The evaluation compares the inference time, i. e., the time needed for computing the probability
distribution of the return expression, on all benchmarks between the original program and the sliced
version. The results show that the Sli transformation leads to a speedup for all benchmarks up to
factor 10. Especially for the Halo benchmark the speedup actually is over 100. As this improvement can
be seen for all three tools this emphasizes that the Sli transformation is robust and not only applicable
to R2.

These results show that slicing probabilistic programs improves the inference time and therefore
the analysis performance. Unfortunately the authors do not state in the paper how fast the Sli
transformation can be computed. This is also an important point for measuring the performance and
applicability of the slicing.

6 Conclusion

6.1 Related Work

The work was inspired by the traditional concept of slicing [9] as well as the concept of influence as
seen by active trails in Bayesian networks [4].

6.2 Conclusion

In [1] the authors extend the concept of slicing of programs to probabilistic programs. Slicing programs
leads to smaller programs while keeping their semantics and makes analysis of them easier and faster.
The usual concept of control and data dependences is not su�cient to guarantee correctness of the
sliced program. Therefore the new notion of observe dependence was introduced. By applying the
Sli transformation which makes use of this new dependence it is possible to compute the slice of a
probabilistic program.

In the future the problem of probabilistic data slicing arises. Here we have a probabilistic program
P = C(D) with code C and data D. Now the question is to compute a slice Sli(P) = C0(D0) w. r. t.
certain returned variables where C0 is a transformation of C and D0 ✓ D. Then the slice would be
helpful for program where the data changes but the underlying code and the query stay the same.

15

References

1. Hur, C.K., Nori, A.V., Rajamani, S.K., Samuel, S.: Slicing probabilistic programs. In: Programming
Language Design and Implementation (PLDI), ACM (2014)

2. Weiser, M.: Program slicing. In: Proceedings of the 5th International Conference on Software Engineering.
ICSE ’81, Piscataway, NJ, USA, IEEE Press (1981) 439–449

3. Dijkstra, E.W.: Guarded commands, non-determinacy and formal derivation of programs. Comm. ACM
18(8) (1975) 453–457

4. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press (2009)
5. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: An e�cient method of computing static

single assignment form. In: Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. POPL ’89, New York, NY, USA, ACM (1989) 25–35

6. Nori, A.V., Hur, C.K., Rajamani, S.K., Samuel, S.: R2: An e�cient mcmc sampler for probabilistic programs.
In: AAAI Conference on Artificial Intelligence (AAAI), AAAI (2014)

7. Goodman, N.D., Mansinghka, V.K., Roy, D.M., Bonawitz, K., Tenenbaum, J.B.: Church: A language for
generative models. In: In UAI. (2008) 220–229

8. Minka, T., Winn, J., Guiver, J., Webster, S., Zaykov, Y., Yangel, B., Spengler, A., Bronskill, J.: Infer.NET
2.6 (2014) Microsoft Research Cambridge. http://research.microsoft.com/infernet.

9. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and its use in optimization.
ACM Trans. Program. Lang. Syst. 9(3) (1987) 319–349

16

	Slicing Probabilistic Programs

