
The Satisfiability Problem for Probabilistic CTL

Philipp Berger

November 17, 2014

Abstract

Probabilistic CTL formulas are used in model checking, which is a technique for formal
verification with successful utilization in the analysis of systems from a diverse back-
ground like randomized algorithms, biological processes and communication protocols.
In this paper we analyze a subclass of PCTL, the qualitative fragment, where all prob-
abilistic bounds are either “ 0, ° 0, † 1 or “ 1. We present a method for generating
a satisfying model for a given formula in exponential time. We present a technique for
representing infinite–state models in finite structures and therefore present an algorithm
which finds a finite description of a satisfying model for every satisfiable qualitative
PCTL formula.

1 Introduction

1.1 Results for Computation Tree Logic (CTL)

Computation Tree Logic (CTL) is a branching time logic which allows the specification
of properties over discrete time systems. For this purpose, we distinguish state- and
path formulas. State formulas allow assertions on the branching structure and atomic
propositions exhibited by a single state, whereas path formulas allow assertions on future
states. The Syntax of CTL state formulas is as follows:

� :“ true | a | �1 ^ �2 | � | D' | @'
where a P AP is an atomic proposition and ' is a CTL path formula. CTL path formulas
follow the syntax

' :“ �� | �1U�2,

where �, �1 and �2 are state formulas.
The satisfiability problem is defined as the question whether a given formula can be

satisfied, e.g. if there exists a (possibly infinite) model on which the formula holds. If a
logic possesses the small model property, than for every formula in the logic there exists
a model that satisfies the formula and this model is finite. In Emerson and Halpern [2] it
is shown that for CTL the satisfiability problem is EXPTIME–complete and that CTL
possesses the small model property.

1

The algorithm proposed by Emerson and Halpern [2] focuses on creating a pseudo–
model from the formula by applying a technique due to Fischer and Ladner involving
the closure of a formula and its subsets. They argue that this technique is a generalized
approach that is promising for other logics as well.

1.2 PCTL and the Qualitative Fragment

Brázdil et al. [1] build upon this approach and apply it to Probabilistic CTL (PCTL),
a logic similar to CTL but extended by probabilistic operators. As in CTL the syntax
of PCTL is divided into state formulas and path formulas. The syntax of PCTL state
formulas is

� :“ true | a | �1 ^ �2 | � | PJp'q,
where, again, a P AP is an atomic proposition and ' is a CTL path formula. J is of the
form ’ p with ’P t†,°,§,•u and p P r0, 1s.

PCTL path formulas follow the syntax

' :“ �� | �1U�2 | �1U
§n�2,

where �, �1 and �2 are state formulas and n P N is an upper bound on the number of
steps.

The qualitative fragment of PCTL is identical to PCTL, but the probability operator
PJp'q is restricted to J P t“ 0,° 0,† 1,“ 1u.

2 The Qualitative PCTL Satisfiability Problem

In this chapter we give an algorithm and accompanying descriptional structures for rep-
resenting infinite–state models for the satisfiability problem on the qualitative fragment
of PCTL.

We will prove that for every satisfiable qualitative PCTL formula there exists a finite
representation of its possibly infinite model. Along with this proof we will introduce
pseudo–models and marked graphs.

The basic approach of this technique will be:

1. Deduce a model–like structure from the initial formula.

2. Iterate certain logical checks for consistency, prune parts that do not fit.

3. On convergence: check whether the initial formula is satisfied in a state.

4. If yes: return abstract model description, or

5. if no: return unsatisfiable.

A common way for solving the satisfiability problem on CTL formulas uses the
Fischer–Ladner closure of the given formula as a basis for constructing a model. This
closure of a CTL formula � contains all sub–formulas, negations, etc. of �. Of course

2

many formulas in this set contradict each other, and therefore the set is used to create
a set of all eligible subsets of the closure. A set of formulas is eligible i↵ it is logically
consistent with regard to all contained formulas.

We employ a similar construction for PCTL but with some important changes. A
subtle di↵erence between CTL and PCTL is the behavior on the existence of a single path
with a specific trait. In CTL a single path is enough to refute a property like an until
formula @�1U�2. If there exists a single path on which the formula does not hold, than
this path is a model for the formula D p�1U�2q and is a counterexample for the universal
formula. In PCTL logic one could say an equivalent formula is P“1p�1U�2q. Because
the probability of a single infinite path can be zero, this formula might still hold, even if
there exists a path on which the property does not hold. To refute this formula, one of
two cases must hold. Following the idea of the aforementioned path, a single path can be
enough if it is a finite path. If there exists a finite path on which the until formula does
not hold, then this path has a non–zero probability and therefore refutes the property.
If there are only infinite paths and the model is finite then by standard probability
theory this path must lead to a bottom strongly connected component (BSCC). As the
probability of not visiting a state in this BSCC is zero, all states along the way leading
to this BSCC and all states in the BSCC support �1 ^ �2.

Lemma 1. Let � :“ P“1p�1U�2q be a qualitative PCTL formula, M “ pS,Ñ, Lq be a

Markov chain with a state–set S, a transition function Ñ and a labeling function L : S Ñ
2AP

. If there exists a state s P S in which � does not hold, e.g. Ms * P“1p�1U�2q,
then either

1. there is a finite path ⇡ “ s0 . . . sn starting in s such that s0 “ s and Msi |ù
�1 ^ �2 for i † n and Msn |ù �1 ^ �2, or

2. PrMpt⇡|@si P ⇡ : Msi |ù �1 ^ �2uq ° 0. For a finite model M, each infinite

path eventually leads to a BSCC ↵. For all states s on the path and in ↵ it holds

that Ms |ù �1 ^ �2.

2.1 Pseudo–Structures and -Models

We use a version of the Fischer–Ladner closure adapted to PCTL. Given a PCTL formula
�, the closure of �, Clp�q, is the least set satisfying the following rules:

1. �1 P Clp�q ñ �1 P Clp�q
2. �1 ^ �2 P Clp�q ñ �1 P Clp�q and �2 P Clp�q
3. P’p��1q ñ �1 P Clp�q
4. P’p�1U�2q P Clp�q ñ �1 P Clp�q and �2 P Clp�q and P’p�P’p�1U�2qq P

Clp�q
5. P“1p�1U�2q P Clp�q ñ P°0p�1U�2q P Clp�q

3

6. � P Clp�q
In a simple example we calculate the closure of the formula � :“ P“1p aUaq.
1. P“1p aUaq (� itself)

2. a (rule 4)

3. a (rule 4)

4. P“1p�P“1p aUaqq (rule 4)

5. P°0p aUaq (rule 5)

6. P°0p�P°0p aUaqq (rule 4)

Of course, the negated version of entries 1, 4, 5 and 6 are also present. The full set is:

Clp�q :“ta, a,�, �,P“1p�P“1p aUaqq, P“1p�P“1p aUaqq,
P°0p aUaq, P°0p aUaq,P°0p�P°0p aUaqq,
 P°0p�P°0p aUaqqu

As we want to create a state–set for a model that satisfies �, we need to embed
the formula into the states. In each state, some formulas hold and some do not — the
powerset of the closure is closely a�liated with this state–set. But we restrict the subsets
to those which are logically consistent. Here we implicitly use the expansion law of the
until formula known from model checking theory to capture the requirements for the
formula to hold in implications for next–states, e.g. either the until formula is fulfilled
in this state or it could hold as the current state satisfies the intermediate condition. We
call a subset S of the closure of � consistent or eligible i↵ for every P Clp�q it holds
that:

• P S ô R S

• 1 ^ 2 P S ñ 1 P S ^ 2 P S

• p 1 ^ 2q P S ñ 1 P S _ 2 P S

• P°0p 1U 2q P S ñ 2 P S or p 1 P S and P°0p�P°0p 1U 2qq P Sq
• pP°0p 1U 2qq P S ñ p 1 P S and 2 P Sq or p 2 P S^ P°0p�P°0p 1U 2qq P

Sq
• P“1p 1U 2q P S ñ 2 P S or p 1 P S and P“1p�P“1p 1U 2qq P Sq
• pP“1p 1U 2qq P S ñ p 1 P S and 2 P Sq or p 2 P S^ P“1p�P“1p 1U 2qq P

Sq

4

Based on these possible states, which are now abstractly defined by the formulas
they satisfy, we construct a pseudo–structure A “ pA,Ñq. The state–set A consists of
all eligible subsets of the closure of � and ÑÑ A ˆ A is a total relation. The next step
towards a suitable model is to add a probability distribution to the pseudo–structure.
We use P, a uniform probability distribution for each state. Combining A and P yields
a Markov chain M. We use the closure of � to implicitly define the atomic propositions
on M, where for each formula in the closure a new atomic proposition is inserted. This
allows us to label each state with those formulas holding in the state, mapping the
eligible subsets of A exactly onto the labeled states of M.

Following the example from earlier, we construct all eligible subsets of Clp�q. In the
table below, each numbered column represents a state and each row contains either a 0
(this formula is not contained in the state) or a 1 (this formula is contained in the state).

State 1 2 3 4 5 6

a 1 1 1 0 0 0
 a 0 0 0 1 1 1
P°0p aUaq 1 1 1 1 1 0
 P°0p aUaq 0 0 0 0 0 1
P“1p aUaq 1 1 1 1 0 0
 P“1p aUaq 0 0 0 0 1 1
P“1p�P“1p aUaqq 1 0 0 1 0 0
 P“1p�P“1p aUaqq 0 1 1 0 1 1
P°0p�P°0p aUaqq 1 1 0 1 1 0
 P°0p�P°0p aUaqq 0 0 1 0 0 1

This gives us a Markov chain with six states.
As discussed earlier, the validity or invalidity of a negated almost–sure until for-

mula is non–trivial to see, but all other formulas can be evaluated on a state and its
successors. To formalize the observation from Lemma 1, we define corresponding sub–
pseudo–structures of A. A witness for a formula :“ pP“1p�1U�2qq P Clp�q in A is
a pseudo–structure B :“ pB, ãÑq with H ‰ B Ñ A and ãÑÑÑ. In Lemma 1 we stated
that in some cases we require a BSCC in M to show that holds in a state. The witness
B models this BSCC, therefore we require, that

• B is strongly connected,

• for every s P B it holds that �2 P s and

• for every s P B and every P“1p⇠1U⇠2q P s it holds that MB
s |ù P“1p⇠1U⇠2q.

The main idea of a witness is the following: Imagine a finite Markov chain with a state s.
This state s does not satisfy P“1p�1U�2q. As this is a finite Markov chain, only a finite
path starting in s may fulfill this. To cover infinite models, we search for ways to enhance
this. If the probabilities were dropped, an infinite path using a loop reachable from s

would also be possible, but because of the probabilities this path has a probability mass

5

of zero and can therefore not be used. The witness captures this loop and will later on be
used for augmentation of the finite model into an infinite model, where the probabilities
around the states in the loop are adapted to not be of zero weight.

As the transition relation in a pseudo–structure is quite broad, the formulas on the
underlying Markov chain do not necessarily hold. In a next step we therefore refine
pseudo–structures by adding two rules about logical consistency. We call the resulting
structure a pseudo–model. The first rule requires that for all formulas but formulas
 of the form pP“1p�1U�2qq, e.g. P“1p��q, P“1p��q, P°0p��q, P°0p��q,
P°0p�1U�2q, pP°0p�1U�2qq, and P“1p�1U�2q, that are part of the eligible subset
associated with the state s it holds that Ms |ù . This can be evaluated by looking at
a state and its direct successors. The second rule takes care of the more involved check
for the validity of pP“1p�1U�2qq. For a pseudo–structure to be a pseudo–model, we
require that for pP“1p�1U�2qq P s, s P A either

1. Ms * P“1p�1U�2q or

2. there exists a finite path ⇡ “ s0...sn and a witness B for pP“1p�1U�2qq, such
that s0 P s, sn P B and �2 P si, for 0 § i § n.

We call a pseudo–model simple, i↵ the first rule always implies the second and no witness
is necessary.

2.2 Marked Graphs

For some qualitative PCTL formulas, only infinite models exist. Using marked graphs
we present a way of representing such infinite state models in a finite way. To achieve
this, we exploit certain properties, i.e. similarities in the structure of the models. A
marked graph G :“ pG, ãÑ, Lq, where G is a finite node set, ãÑÑ G ˆ G a total relation,
L ÑãÑ a set of marked transitions, with an induced Markov chain MG “ pG`

,Ñ,Pq
is a graph, where the transition relation Ñ is induced by ãÑ such that for w P G

˚,
x P G, there is a transition wx Ñ wxy i↵ there exists some y P G with x ãÑ y. A
transition in MG is called marked i↵ the corresponding transition of G is marked. The
transition probabilities of MG are determined as follows. If all outgoing transitions of a
state w are unmarked or all outgoing transitions of w are marked, then the probability
distribution in this state will be uniform. Otherwise, they depend on the depth of the
state in the graph, i.e. lenpwq. All marked transitions receive a uniform amount of

the share 1 ´ `
1
4

˘lenpwq
, the remaining part is distributed uniformly over all unmarked

transitions. If there are states in a marked graph which have marked and unmarked
transitions, the resulting Markov chain has an infinite state set, otherwise it is finite.

2.3 Proof and Algorithm

The algorithm starts by computing the closure of the input formula �. The initial state
set is the set of eligible subsets of said closure and the transition relation is initialized
to be complete.

6

In this configuration the model is of course invalid, as for any non–trivial formula
there will be logical inconsistencies. Imagine formulas of the form P“1p��1q, which
may hold in a state s1. Per construction that uses the closure of �, there will also be
states in which �1 does not hold, call such a state s2. Since the transition relation is
initially complete, there will be a transition s1 Ñ s2. Of course this transition implies
that the formula does not hold in s1.

This lays out the basic idea of the algorithm. Starting from the complete pseudo–
model, we iteratively delete states and transitions that contain formulas which are not
satisfied in the current model. As mentioned earlier, all formulas but the negated until
formulas can be handled by examining the states and their successors. The until formulas
of the form P“1p�1U�2q will be handled di↵erently, depending on the type of model
required. For a finite model, we check whether there exists a finite path refuting the
until formula. If no such path exists, the state will be removed. For a (possibly) infinite
model, before removing the state we further check if a witness for the formula can be
employed. Should there be no such witness, the state is finally removed. Whenever
we encounter a state with no outgoing edges, we remove it. The algorithm terminates
on convergence, i.e. when the state set and transition relation do not change between
iterations. If the original formula � is still satisfied in a state, we found a model for �
and can therefore conclude that � is indeed satisfiable. Otherwise, we return that � is
unsatisfiable.

Theorem 2. If the algorithm returns some A “ pA,Ñq, then A is a (simple) pseudo–

model for �.

The proof for Theorem 2 is done by showing that the rules of the definition of a
pseudo–model hold for the output of the algorithm, which boils down to showing that
for each formula ⇠ in each state s P A it holds that MA

s |ù ⇠. First up, we prove the
first rule concerning next and some until formulas:

• For each formula ⇠ “ P“1p��1q or ⇠ “ P°0p��1q, MA
s |ù ⇠ is ensured by

construction. Note that a single transition is enough to invalidate these formulas
— exactly those transitions are removed in the algorithms initial steps by looking
at exactly these formulas and inspecting all successor states. All transitions which
would now invalidate ⇠ have been removed.

• Formulas of the form ⇠ “ P°0p��1q, ⇠ “ P“1p��1q and ⇠ “ P°0p�1U�2q are
a bit di↵erent, since here a single path is not enough to refute them, but a single
path can be enough for them to hold. In the algorithm we check in each iteration
if for each ⇠ such a path still exists. If it has been removed or did never exist, the
state containing ⇠ is also removed.

• Formulas of the form ⇠ “ P°0p�1U�2q. Proof by contraposition - we assume
that MA

s |ù P°0p�1U�2q. As used in the previous part, if the formula holds there
exists a finite path ⇡ “ s0, ..., sn such that �2 P sn and for 0 § i § n : �1 P si. We
now show by induction over the path length that if such a path exists, a state in
the path violates the eligibility criterion.

7

Induction base (n “ 0): For a path of length zero the state s must fulfill the until
formula. Therefore �2 P s. But since P°0p�1U�2q “ ⇠ P s we know that by
completeness �2 P s. Since �2 P s and �2 P s, the state s is not eligible.

Induction step (n Ñ n`1): There are two possibilities for P°0p�1U�2q P s “ sn

— either both �1 P sn and �2 P sn — or P°0p�P°0p�1U�2qq P sn. In the
first case, with �1 P sn and �2 P sn, we know that per definition of the finite
path we have that �1 P sn, too. Then sn is not eligible as �1 is in the state
both negated and unnegated. If P°0p�P°0p�1U�2qq P sn then we have that
 P°0p�1U�2q P sn`1. We can use the induction hypothesis.

• Formulas of the form ⇠ “ P“1p�1U�2q. Proof by contraposition — lets assume
that MA

s |ù P“1p�1U�2q. Recall Lemma 1. There exists a finite path starting
in s which either contains a state in neither �1 nor �2 hold or leads to a BSCC
where �2 holds. For the first case, the finite path ⇡ “ s0, ..., sn holds a positive
probability. All states along the path satisfy �2 and the last state satisfies �1.
Then this path contains a state which is not eligible. Proof by induction over n:

Induction base (n “ 0): For a path of length zero the state s0 must fulfill the
negated until formula. Therefore �1 P s0. But since P“1p�1U�2q “ ⇠ P s0 we
know that by completeness �1 P s0. Since �1 P s and �1 P s, the state s0 is not
eligible.

Induction step: There are two possibilities for P“1p�1U�2q P s “ sn — either
both �1 P sn and �2 P sn — or P“1p�P“1p�1U�2qq P sn. In the first case,
with �1 P sn and �2 P sn, we know that per definition of the finite path we
have that �1 P sn, too. Then sn is not eligible as �1 is in the state both negated
and unnegated.

If P“1p�P“1p�1U�2qq P sn then we have that P“1p�1U�2q P sn`1. We can
use the induction hypothesis.

• Formulas of the form ⇠ “ P“1p�1U�2q. Following the definition of the pseudo–
model, either MA

s |ù P“1p�1U�2q or there is a suitable witness for ⇠. Proof
by contraposition — lets assume that MA

s |ù P“1p�1U�2q. Then there exists no
such finite path ⇡ starting in s where at some point neither �1 nor �2.

In the case where the algorithm aims to construct a simple pseudo–model, the
non–existance of ⇡ would have lead to the deletion of s.

If on the other hand a witness may be employed and there es no such witness for
⇠ in s, then s would have been deleted.

Theorem 3. If � is (finite) satisfiable, then the algorithm returns a (simple) pseudo-

model for �

For this proof we first formulate another theorem:

Theorem 4. Let � be a qualitative PCTL formula. If � is satisfiable, then there is a

pseudo-model A “ pA,Ñq for �. Moreover, if � is finitely–satisfiable, then A is simple.

8

We will prove this theorem by giving a construction. In accordance with the theorem
we start with a satisfiable formula �. Since � is satisfiable, there exists a Markov chain
M “ pS,Ñ, Lq containing a state s P S for which Ms |ù �. We define the labeling
function L using the closure of �:

Lpsq :“ t P Clp�q|Ms |ù u
We now build the state set A of the pseudo-model from the distinct sets of L, meaning
we formulate an equivalence relation on M which merges two states i↵ they have the
same labeling. The transition relation of A is also defined using M. If there are two
states s and t in M and s Ñ t, then in A there is a transition between the equivalent
states.

To prove that A is a pseudo-model for � we will check the two conditions discussed
earlier with pseudo-models. That all sets in A are eligible is assured by construction.

1. If for some s P A and ⇠ P s with ⇠ is of the form P“1p��1q, P“1p��1q,
P°0p��1q, P°0p��1q, P°0p�1U�2q, P°0p�1U�2q, or P“1p�1U�2q, thenMA

s |ù
⇠. We check each type of ⇠:

• P“1p��1q: For each transition s Ñ t in A there is a corresponding transition
s

1 Ñ t

1 in M and per construction ⇠ holds in s

1. Therefore for each successor
of s1 the formula �1 must hold. This therefore also holds for t.

• P°0p��1q: Analog construction over all successors.

• P“1p��1q: The corresponding state s1 in M fulfills ⇠, therefore there exists
a successor t

1 in which �1 does not hold. By construction this transition is
also present in A, leading to a state t, where, due to the labeling, �1 does
not hold.

• P°0p��1q: Analog construction using the existence of a suitable successor.

• P°0p�1U�2q: Since Ms |ù ⇠ there exists a path ⇡ “ s

1
0, ..., s

1
n such that

Ms1
n

|ù �2 and for all 0 § i § n Ms1
i

|ù �1. By construction for every state
t in A that is equivalent to a state in ⇡ it holds that �1 P t. The transitions
along the path are also present in A, alongside with the final state sn.

• P°0p�1U�2q: Proof by contraposition. Assume that MA
s |ù P°0p�1U�2q.

Then there exists a path ⇡ “ s0, ..., sn starting in s as described above. We
show by induction over the path length n that there exists a state that is not
eligible.

Induction base (n “ 0): Then �2 P s0 “ s. Because of completeness, from
 P°0p�1U�2q P s it follows that �2 P s. Then s “ s0 is not eligible.

Induction step (n Ñ n` 1): Since P°0p�1U�2q P sn, there are two options:
Either the formula is rejected directly by having �1 P sn and �2 P sn,
but then per definition of the path �1 P sn - sn is not eligible. Otherwise
 P°0p�P°0p�1U�2qq P sn. Therefore it must hold that P°0p�1U�2q P
sn`1. We can apply the induction hypothesis.

9

• P“1p�1U�2q: Proof by contraposition. Assume that MA
s |ù P“1p�1U�2q.

By Lemma 1 we know that there are two options. Either there exists a finite
path ⇡ “ s0, ..., sn starting in s with �1 P sn and �2 P sn. Then we know
that Msn |ù P“0p�1U�2q. Therefore all states along the path necessarily
fulfill P†1p�1U�2q. The initial transition s

1
0 Ñ s

1
1 is a contradiction toMs0 |ù

P“1p�1U�2q. Otherwise there has to be a BSCC B of A such that �2 P T

for every T P B and a finite path ⇡ “ s0, ..., sn leading from s to B (sn P B).
By construction for every state t in B the equivalent state t

1 in the Markov
chain M it holds that M1

t |ù P“0p�1U�2q. Since that last state of ⇡, the
state sn is also in B, we can apply the same argument as for the finite path.

2. This leaves the second condition regarding the formula ⇠ “ P“1p�1U�2q.
We divide this proof into two parts. We show that if � is finitely–satisfiable,
then the simple condition is su�cient, i.e. MA

s * P“1p�1U�2q. Since in this
case by definition M is a finite Markov chain, we again apply Lemma 1. As
Ms |ù P“1p�1U�2q there exists a finite path starting in s that either leads to a
single state refuting the property (e.g. fulfilling both �1 and �2) or a BSCC.
We conclude that this finite path also exists in A. Both conditions can be mimicked
in A because both the final state and a BSCC also exists there.

But this only works for the finite Markov chains. In the more general case where
the model may be infinite, we know that since Ms * P“1p�1U�2q there are
two possibilities. If there exists a finite path leading to a state which refutes
P“1p�1U�2q, this path also exists in A, as in the finite variant. If on the other
hand a witness needs to be used, the proof is not as easy.

Firstly, we observe that the amount of eligible states in A is bounded from above
by 2|Clp�q| and therefore finite. We conclude that even if an infinite amount of
states of M is necessary to prove that ⇠ holds, in A this will always be equivalent
to a finite number of states and therefore must include a loop that is traversed
infinitely often. We construct our witness from M by selecting all those states
which are traversed infinitely often, which is equivalent to the loop. Additionally,
we select all those transitions which are traversed infinitely often. This forms the
witness B “ pB, ãÑq.
For now we have to proof that the witness as defined above is valid. The three
conditions as given with the definition of a witness are checked in the following.

Firstly, as B is built from a loop, it is strongly connected by construction.

The same applies to the condition that �2 holds in every state, as by construction
we only viewed states s for which �2 P s.

The last condition states that for every t P B and for every P“1p⇠1U⇠2q P t it holds
that MB

t |ù P“1p⇠1U⇠2q. We prove the statement by contraposition.

We assume that MB
t * P“1p⇠1U⇠2q. Again, we apply Lemma 1.

For the state t to refute the formula, there are two options.

10

(a) There exists a finite path ⇡ “ t0, t1, ..., tn in B starting in t “ t0 such that
 ⇠2 P ti for every 0 § i § n and ⇠1 P tn. Since B Ñ A and ãÑÑÑ, this path
also exists in A, therefore t is not eligible.

(b) For every state s in B it holds that ⇠1 P s and ⇠2 P s. We show that in that
case P“1p⇠1U⇠2q R t.

For B to be a witness, the probability mass of all runs through B must be
greater than zero. Suppose there exists a state u P B such that the probability
mass of all runs starting in u is zero. But B is strongly connected, therefore
every state is reachable from every state - if u would exist, then the probability
mass of the whole witness must equal zero, which is a contradiction.

We conclude that there exists a set of runs starting in t with non-zero prob-
ability for which ⇠2 never holds. By that we know that MB

t * P“1p⇠1U⇠2q
and therefore P“1p⇠1U⇠2q R t.

We now use Theorem 4 in our proof of Theorem 3. As � is satisfiable, we know that
there exists a pseudo-model A1 “ pA1

,Ñ1q for �.
Here we use the algorithm and its structure to show that A1 is an invariant of the

inner loop from lines 9 to 35. The algorithm iteratively removes states which break the
model. We therefore assume that A1 Ñ A.

We examine each inner if-condition and show, that no element in A1 could be removed
from A:

• Line 11, formula P°0p��1q: If ⇠ “ P°0p��1q and MA1
s |ù ⇠, then there exists a

transition s Ñ t in A1 with �1 P t. Since A1 Ñ A, t also exists in A. Therefore
MA

s |ù ⇠.

• Line 11, formula P“1p��1q: If ⇠ “ P“1p��1q and MA1
s |ù ⇠, then there exists

a transition s Ñ t in A1 with �1 R t. Since A1 Ñ A, t also exists in A. Therefore
MA

s |ù ⇠.

• Line 11, formula P°0p�1U�2q: If ⇠ “ P°0p�1U�2q and MA1
s |ù ⇠, then there

exists a path ⇡ “ s0, ..., sn in A1 with �1 P si for all 0 § i § n and �2 P sn. Since
A1 Ñ A, ⇡ also exists in A. Therefore MA

s |ù ⇠.

• Line 14, formula P“1p�1U�2q: Suppose there exists a counterexample, i.e. a BSCC
B where for every s P B we have that �1 P s, �2 P s and P“1p�1U�2q P s.
Assume that s is a state of B and is a part of A1: s P A

1. Because A1 is a valid
pseudo–model and ⇠ P s, we know that there must exist a path ⇡ starting in s and
leading to a state t for which �2 P t. This is a contradiction to the assumption
that s is part of a BSCC where �2 P u for every u P B. This path would also
exist in A.

• Line 21, formula P“1p�1U�2q: First assume that A1 is simple. Since ⇠ “
 P“1p�1U�2q and ⇠ P s for some s P A

1, there are two possibilities: Either
there exists a finite path ⇡ “ s0, ..., sn starting in s on which �1 P si for all

11

0 § i § n and �1 P sn and ‰ �2 P sn, or a reachable BSCC B in which for all
states t P B it holds that �1 P t and �2 P t. The path leading to the BSCC
B is equivalent to the first option in the sense that for paths the last state fulfills
P“0p�1U�2q “ P°0p�1U�2q. Therefore the required path for the condition in
line 22 exists and also exists in A.

Now A1 must not necessarily be simple. If a witness is required in A1, then there
exists a path leading from s to the witness. Because of A1 Ñ A this path also exists
in A. By the same argument the witness is embedded in A.

Now all that remains is the initialization of A from line 1 to line 8. Both A and Ñ
are initialized to their maximal extent. There exists no state that could be in A1 but
not in this initial form of A, because per construction A1 Ä ts P Clp�q|s is eligibleu.
All transitions removed in lines 4 and 7 cannot be in A1 since it would immediately
invalidate the model.

We established that A1 Ñ A after the algorithm terminates. Since there exists a state
s P A

1 for which � P s, this state also exists in A and A is a model for �.

Theorem 5. The Algorithm terminates within a time that is exponential in |�|.
We first identify sub-problems that need to be solved in the algorithm. In many

instances PCTL model checking has to be performed on finite-state models. This is
polynomial in the length of � and the size of A.

The computation of a witness for a formula P“1p�1U�2q P s from some s P A can
be done as follows.

1. Remember that a witness contains only states in which �2 holds. We first filter
the set A using this condition: Let B :“ ts P A| �2 P su.

2. The second condition for a witness requires the states to be strongly connected.
We therefore split B into m disjoint strongly connected components Bi :“ pBi, ãÑiq
with s ãÑi t i↵ s, t P Bi and s Ñ t.

3. Now for the third condition we need to check whether in each strongly connected
component all formulas of the form P“1p⇠1U⇠2q are fulfilled. To do this we first
identify the set of all states C such that for each s P C with s P Bi for some i there
exists a formula P“1p⇠1U⇠2q and MBi

s * P“1p⇠1U⇠2q.
4. Now we set B :“ BzC. Since this may invalidate the second condition, we iterate

these steps again. Should the set C be empty, the computation converged and is
finished.

The aforementioned steps can be performed in time polynomial in the length of �
and A, as step 1 is linear in |A|, step 2 is quadratic in |A|, step 3 is polynomial in |⇠1|,
|⇠2| and |A|.

12

To show that this computation is correct, we first proof that no state of a witness
in A1 can be deleted in step 2. Let s be a state of a witness B “ pB, ãÑq for a formula
 P“1p�1U�2q.

Proof by contraposition - we assume that s is deleted in step 2. Hence there exists
a formula ⇠ “ P“1p�1U�2q such that ⇠ P s but MBi

s * ⇠ for some i. By Lemma 1 we
know that there are two possibilities.

Firstly we assume that there exists a finite path that acts as a counterexample to ⇠.
The idea is that by construction and eligibility we know that if P“1p⇠1U⇠2q P s, then
either ⇠2 P s or P“1p�P“1p⇠1U⇠2qq P s. The first case (⇠2 P s) immediately results in a
contradiction since clearly MBi

s |ù ⇠. In the second case we see that every successor of s
must fulfill the formula ⇠. If there would exist a path which contradicts ⇠ in Bi, it also
exists in A1 and defies the eligibility of s.

In the second case, we assume that there exists a reachable BSCC in which ⇠1, ⇠2 P
s for every state t of the BSCC. Note that Bi is by construction the only reachable
BSCC from s. This implies that this witness and BSCC is also a witness for ⇠, which
contradicts the assumption that Bi was a witness to begin with.

By construction we find that every Bi we constructed in this fashion is a correct wit-
ness for a formula P“1p�1U�2q, since the three requirements of witnesses are fulfilled.

We can now combine the Theorem 2, which states that if the algorithm returns a
pseudo-model, it is a valid one, and the Theorem 3, which states that if a formula is
satisfiable, then the algorithm will return a pseudo-model, to proof that this algorithm
returns a pseudo-model for � if and only if the formula � is satisfiable. Additionally we
have shown that the algorithm terminates in time which is exponential in |�|.
Theorem 6. If there is a pseudo-model A for �, then there is a marked graph G “
pG, ãÑ, L,Mq whose size is exponential in |�|, a valuation function L : G Ñ 2AP

and

the set of marked transitions M ÑãÑ and a state s P G such that MG
s |ùL �. Moreover,

if A is simple, then L “ H and � has a finite-state model whose size is exponential in

|�|.
We prove this theorem by providing a construction for the marked graph given a

pseudo-model A “ pA,Ñq. If A is a simple pseudo-model, then we set G “ pA,Ñ, L,Hq,
with the labeling given by A, i.e. Lpsq :“ tap P AP |ap P su for every s P A.

As there are no marked transitions, the markov chain induced by the marked graph
is equivalent to the transition system formed by A, therefore all formulas formulas of a
state in A also hold on the equivalent state in G.

If on the other hand A is not simple, we apply the following construction. Since A is
not simple, witnesses are employed. Let Bi “ pBi,ùq, 1 § i § m be all used witnesses
such that for every s P A and every P“1p⇠1U⇠2q P s there is a suitable Bi and a suitable
finite path leading from s to Bi. Because there are at most |�| such formulas requiring
a witness, the number of witnesses required is bounded from above by m § |A| ¨ |�|.

We construct the states of G by taking the disjoint union of A and Bi for 1 § i § m.
For the ease of reading we now refer to A as B0. We define the transition relation ãÑ of
G as follows. For every s, t P A with s Ñ t:

13

• ps, 0q ãÑ pt, iq for every 0 § i § m such that t P Bi.

• For every 1 § i § m with s, t P Bi and s ùi t there is a transition ps, iq ãÑ pt, iq
and this transition is marked.

• For every 1 § i § m with s P Bi and t R Bi there is a transition ps, iq ãÑ pt, 0iq.
We say that a run w stays at i if for all k P N0 it holds that wpkq P Bi ˆ i. We say

that a run w enters i if after some finite initial prefix of w, the run w

1 stays at i.
We present three preliminary observations about G:

• For every ps, iq P G the probability of all w P Runpps, iqq staying at i for i ° 0 is
at least 2

3 , as by construction the probability of taking a non-marked transition is

bounded from above by
∞8

k“1
1
4
k “ 1

3 .

• For every ps, iq P G the probability of all w P Runpps, iqq such that w does not enter
any j for 0 § j § m, is zero, since the probability of always leaving a component
converges against zero.

• For every ps, iq P G and every P“1p⇠1U⇠2q P s the conditional probability of all
w P Runpps, iqq such that MG

s |ù P“1p⇠1U⇠2q under the condition that w stays at
i is equal to one because of the definition of a witness.

By induction over the structure of P Clp�q, it follows that for every formula in
the closure of �, it is fulfilled in a state ps, iq by the induced markov chain of G if and
only if P s.

3 Conclusion

We have shown that for a given PCTL formula we can either find a finite description of
a satisfying model or conclude its unsatisfiability in time exponential in the size of the
formula. We presented an algorithm that iteratively removes parts of an abstract model–
description that would violate logical permissibility. We have seen that a certain class
of qualitative PCTL formulas need special attention as they may require infinite–state
models to hold.

14

4 Bibliography

References

[1] Brázdil, T., Forejt, V., Kretinsky, J., and Kucera, A. (2008). The satisfiability
problem for probabilistic ctl. In Logic in Computer Science, 2008. LICS’08. 23rd
Annual IEEE Symposium on, pages 391–402. IEEE.

[2] Emerson, E. A. and Halpern, J. Y. (1982). Decision procedures and expressiveness
in the temporal logic of branching time. In Proceedings of the Fourteenth Annual
ACM Symposium on Theory of Computing, STOC ’82, pages 169–180, New York,
NY, USA. ACM.

15

Input: A qualitative PCTL formula �.
Output: A (simple) pseudo–model A “ pA,Ñq if � is (finite) satisfiable, unsatisfiable

otherwise.
1: A :“ the set of all eligible subsets of Clp�q
2: Ñ:“ A ˆ A

3: for all S P A,P“1p��1q P S do
4: delete all edges S Ñ T where �1 R T

5: end for
6: for all S P A, P°0p��1q P S do
7: delete all edges S Ñ T where �1 P T

8: end for
9: repeat

10: for all S P A, ⇠ P S do
11: if ⇠ ” P°0p��1q or ⇠ ” P“1p��1q or ⇠ ” P°0p�1U�2q then
12: if MA

s * ⇠ then A :“ AztSu end if
13: end if
14: if ⇠ ” P“1p�1U�2q then
15: for all BSCC B of pA,Ñq do
16: if �1, �2,P“1p�1U�2q P T for every T P B then
17: A :“ AzB
18: end if
19: end for
20: end if
21: if ⇠ ” P“1p�1U�2q then
22: if there is no finite path ⇡ “ s0, ..., sn where P°0p�1U�2q P sn and

�1, �2 P si for all 0 § i § n then
23: if CREATE SIMPLE then
24: A :“ AztSu
25: else if there is no witness pB, ãÑq for P“1p�1U�2q in pA,Ñq such

that there is a finite path ⇡ “ s0, ..., sn where sn P B and �2 P si for all 0 § i § n

then
26: A :“ AztSu
27: end if
28: end if
29: end if
30: repeat
31: Ñ:“Ñ XpA ˆ Aq
32: A :“ AztS P A|S has no outgoing edgesu
33: until pA,Ñq does not change
34: end for
35: until pA,Ñq does not change
36: if � P S for some S P A then return A “ pA,Ñq
37: end if
38: return unsatisfiable

Figure 1: An algorithm for constructing a (simple) pseudo–model.

