
Expressing and Verifying Probabilistic Assertions

Author: Dustin Hütter
Advisor: Prof. Dr. Ir. Joost-Pieter Katoen

Winter term 2014/2015
RWTH Aachen (Chair for Software Modeling and Verification)

Seminar work for seminar Probabilistic Programs

Abstract

While there exist advanced tools for verifying traditional assertions,
tools for the verification of probabilistic assertions are still not as so-
phisticated as desired. Since problems occurring in machine learning,
approximate computing and data obfuscation, deal with probabilis-
tic calculations, there is a necessity to develop such tools enabling
programmers to check whether certain assumptions in their code hold.
The following report presents a verification template for the verification
of probabilistic assertions and its implementation in a tool calledMAY-
HAP. MAYHAP models slices of probabilistic programs as Bayesian
networks and verifies probabilistic assertions on the latter either by di-
rect verification of the optimized Bayesian network or by sampling. As
we will see, MAYHAP outperforms competing tools by several orders
of magnitude.

Chapter 1

Introduction

This seminar report presents a verification scheme for probabilistic asser-
tions. The scheme is presented in [SPM+14] and its soundness proof is given
in [SPM+]. Some of the illustrations and formalisms occurring in this report
can be found in these sources. Before we introduce the verification scheme,
we will have a look at required terminology and the theoretical foundations
that the scheme bases on. We will then proceed with optimizations for the
scheme and judge the applicability by considering its benchmark results.

1.1 (Probabilistic) Assertions

Assertions are statements evaluating to a Boolean and are a powerful concept
of formal verification to express conditions that are desired to hold in a code
snippet. Model checking these enables us to either verify that the assertion
is always satisfied or not in which case a possible bug is revealed. We take
the following lines of code into account in which we want to ensure that a
value that we divide by is unequal to zero:

1 f loat a = 0 , b = 0 ;
2 a = some ca l cu l a t i on 1 () ;
3 b = some ca l cu l a t i on 2 () ;
4 a s s e r t b != 0 :
5 return a/b ;

Figure 1.1: Sample code

The assertion in Figure 1.1 states that b has to be di↵erent from zero
on every execution of this program. While applying these assertions is use-
ful for a lot of problem classes especially deterministic ones, it is not for
programs exhibiting probabilistic behavior. These occur for example in ap-
proximate computing, machine learning and data obfuscation. Instances

1

of domains involving probabilistic computation inherently do not provide
the exact same output on every execution. Therefore, applying classical as-
sertions and the corresponding verification mechanisms to these would be
inappropriate. Hence, we will extend classical assertions to probabilistic
assertions of the form passert e p c. The latter provides a notion to verify
whether a Boolean condition e over the variables of the program holds with
probability p and confidence c. The following example illustrates that:

1 f loat [] n o i s y da taba s e en t ry (f loat [] t o be obscured)
2 {
3 // Create no i se
4 obsc 0 = random . Gauss (0 , 1) ;
5 obsc 1 = random . Gauss (0 , 1) ;
6 f loat [] r e s = to be obscured ;
7 // Add no i se
8 r e s [0] = to be obs c [0]+ obsc 0 ;
9 r e s [1] = to be obs c [1]+ obsc 1 ;

10 pa s s e r t e u c l d i s t (res , t o be obs c) 100 0 .85 0 .9
11 return r e s ;
12 }

Figure 1.2: Sample code

Figure 1.2 shows a procedure that takes a database entry and obfuscates
the first two parameters for privacy reasons, e.g. because they represent the
salary and the height of a person. Before we return res we probabilistically
assert that the Euclidean distance between the original and the obfuscated
value is less or equal than 100 ensuring that the latter is still useful for further
proceeding, e.g. for statistical purposes. In contrast to classical assertions
we do not require the satisfaction of the assertion for every execution but for
85% of the cases with a confidence of 0.9. The confidence is a measure for
the reliability of the verification result. In the chapter about the sampling
approach we will formalize the notion of confidence. The classical assertion

assert eucl dist(res,to be obsc) 100

would not be satisfied in every execution since the noise could be too big. But
satisfaction in every execution is actually not required because our data is
not distorted too much if the probabilistic assertion is satisfied su�ciently of-
ten. Hence, probabilistic assertions are appropriate for these kind of queries.

1.2 Probabilistic Programs

In order to have a formal fundament for the notion of a probabilistic pro-
gram, we introduce the grammar shown in Figure 1.3 for a simple prob-

2

abilistic language. This language, called PROBCORE, is used to verify
the correctness of the presented method and provides an intuitive way of
modeling probabilistic behavior. Another way of modeling certain classes
of probabilistic programs is given by Markov chains. The interested reader
may consult [SPH84] to get familiar with this.

P ⌘ S ;; passert C

C ⌘ E < E | E = E | C ^ C | C _ C | ¬C
E ⌘ E + E | E ⇤ E | E ÷ E | R | V

S ⌘ V := E | V D | S;S | skip | if C S S | while C S

R 2 R, V 2 Variables, D 2 Distributions

Figure 1.3: PROBCORE

PROBCORE is a plain imperative language exhibiting conditionals,
loops, assignments and other known features of non-probabilistic languages
extended by the feature to assign variables with random draws from a proba-
bility distribution denoted V D. Furthermore, one can specify assertions.
Using this grammar, a program P can intuitively be constructed. The pa-
rameters probability p and the confidence c of the passert are not given in
this grammar because PROBCORE is used to deduce the satisfaction of the
passert for single program runs. Either by direct verification or a sampling
approach the user-defined p and c are involved in the verification.

Figure 1.4 shows an example PROBCORE program with input values
a and b in which v1 and v2 are assigned with the results of deterministic
procedures and are added. The value of v3 is from the uniform distribution
which ranges from 0 to 2. After further operations v5 is assigned �1 if the
value of v3 is smaller than 1 respectively assigned 1 otherwise. Then we
probabilistically assert that v5 should be at least 0.

v1 := detProc (a) ;
v2 := detProc (b) ;
v2 := v2 + v1 ;
v3 Unif (0 , 2) ;
v4 := v3 � v2 ;
v5 := 0 ;
i f v3 < 1 v5 := �1 v5 := 1 ; ;
pa s s e r t v5 � 0

Figure 1.4: An example PROBCORE program

3

While this example seems artificial, it is appropriate to illustrate the
verification scheme that we will see later.

1.3 Concrete Semantics

After having established the syntax of a PROBCORE program, we now
have a look at a (concrete) semantics for this language taking random draws
from distributions when probabilistic calculation occurs. The use of the term
concrete gets evident when we introduce the main verification scheme which,
in contrast, is symbolic. Firstly, we introduce the notions of big-step [Big]
and small-step semantics [Sma] which are especially used for our purposes
to formalize the concrete and the symbolic semantics.

1.3.1 Big-Step Semantics

Big-step semantics of programming languages provide the opportunity to
interpret the syntactic constructs of a programming language in a suitable
domain. Such a semantics is given by a system of inference rules. Big-step
semantics contain steps of the form E + R meaning that the evaluation of
E provides R, e.g. the evaluation of an arithmetic operation E yields the
real number R.

1.3.2 Small-Step Semantics

While big-step semantics evaluate constructs of programming languages,
small-step semantics model computation steps as transitions from one con-
figuration say C1 to the configuration say C2. Configurations are typically
tuples containing variable valuations and the program fragment that is to
be evaluated. We denote such a transition by C1 ! C2. Besides the in-
structions that are processed, a configuration of the small-step parts of our
concrete semantics includes a sequence of draws ⌃ for the generation of
random samples and a heap H keeping track of the variable valuations. ⌃
and H are introduced below more precisely. Small-step semantics are also
defined by a system of inference rules. We use C1 !⇤ C

n

for the reflexive
and transitive closure of the transition relation, meaning that the configura-
tion C

n

can be reached from C1 in a finite and non-negative number of steps.

In order to model variable valuations, we use a heap H for which H(v)
is the value of variable v. Furthermore, to model the generation of proba-
bilistic values, we use a draw sequence ⌃. The draws can be imagined as
the seed for generators of pseudo-random numbers. When a statement of
the form v D occurs, the top element of ⌃ is taken to compute a random
value according to the distribution D. We will have a look at the inference
rules for all important syntactical elements of a PROBCORE program and

4

see how they are used to evaluate a given program concretely. The whole
set of inference rules can be found in [SPM+].

The first rule that we consider models arithmetic operations with � 2
{+, ⇤,÷}:

(H, e1) +c v1 (H, e2) +c v2
(H, e1 � e2) +c v1 � v2

+
c

is the symbol for our concrete big-step semantics. The inference rule is
stating that when two expressions e1 respectively e2 evaluate with a heap
configuration H to values v1 respectively v2, e1 � e2 evaluates to the value
v1 � v2. The subscript c in +

c

stands for ’concrete’.

Similarly, we define for conditions with �0 2 {^,_} that when condition
c1 evaluates to a Boolean b1 and a condition c2 to a Boolean b2, c1 �0 c2
evaluates to b1 �0 b2:

(H, c1) +c b1 (H, c2) +c b2
(H, c1 �0 c2) +c b1 �0 b2

We now consider the transition relation. The assignment of an expression
e, evaluating to a value x, to a variable v is defined. The heap assignment
for v is updated and all other variables stay untouched.

(H, e) +
c

x

(⌃, H, v := e)!
c

(⌃, (v 7! x) : H, skip)

The concrete semantics follows one branch of an if statement depending
on whether the condition of the if statement is satisfied or not. For the
case that the condition holds (the complementary case is completely analo-
gously), we obtain:

(H, c) +
c

true

(⌃, H, if c s1s2) +c (⌃, H, s1)

The execution of a loop is intuitively modeled in the way that the loop
is executed as long as the loop condition is satisfied:

(⌃, H,while c s)!
c

(⌃, H, if c (s; while c s) skip)

Sampling a value of a certain distribution corresponds to taking the first
value � of ⌃ and calculating the sample value d(�) with it:

⌃ = � : ⌃0

(⌃, H, v d)!
c

(⌃0, (v 7! d(�)) : H, skip)

5

Also consider:

(⌃, H, skip; s2)!c

(⌃, H, s2)

The whole set of rules enables us to define whether a probabilistic asser-
tion is satisfied by stating that it is when its condition is satisfied after the
execution of the preceding program:

(⌃, H0, s)!⇤
c

(⌃0, H 0, skip) (H 0, c) +
c

b

(⌃, H0, s ; ; passert c) +
c

b

Figure 1.5 shows the evaluation of a PROBCORE program according
to the inference rule for probabilistic assertions.

PROBCORE program:

x Gauss(0, 1) ;
i f x > 0.1 x := 1 x := �1 ; ;
p a s s e r t x = 1

Premise 1:
(⌃ = �1 : ⌃0, ;, x Gauss(0, 1)) !

c

(⌃0, {x 7! d(�1) = 0.2}, skip) !
c

(⌃0, {x 7! 0.2}, if x > 0.1 x := 1 x := �1) !
c

(⌃0, {x 7! 0.2}, if 0.2 > 0.1 x := 1 x := �1) !
c

(⌃0, {x 7! 0.2}, if true x := 1 x := �1) !
c

(⌃0, {x 7! 0.2}, x := 1) !
c

(⌃0, {x 7! 1}, skip)

Premise 2:
({x 7! 1}, x = 1) +

c

true

Figure 1.5: Sample PROBCORE program and the evaluation of the prob-
abilistic assertion with the concrete semantics

6

Chapter 2

Algorithm for Verifying
Probabilistic Assertions

After we have introduced the concrete semantics of PROBCORE, this chap-
ter focuses on the actual procedure of verifying probabilistic assertions. It
overcomes the naive procedure of executing a probabilistic program several
times and comparing the relative share where the corresponding probabilis-
tic assertion, say passert e p, is met, with p. The following verification
scheme is more sophisticated since it removes deterministic computations
having the same output on every execution and uses statistical knowledge
to reduce the model that is generated from the part involving probabilistic
computations. In addition to that, we can specify a certain confidence level
c.

2.1 Verification Scheme

The verification scheme is depicted in Figure 2.1. The input, a probabilistic
program with a (probabilistic or concrete) input value, is first transformed
into a Bayesian network representation encoding the probabilistic behavior
of the input that is relevant for the probabilistic assertion of the program.
A Bayesian network is a directed acyclic graph (DAG) where the nodes
are random variables. The edges of a Bayesian network model conditional
dependencies between the random variables. After the obtained Bayesian
network representation has been optimized, the probabilistic assertion is
either directly verified or sampling is applied.

7

Figure 2.1: Verification scheme [SPM+14]

2.2 Distribution Extraction

Distribution extraction yields a Bayesian network by passing over the in-
put program until the passert is reached. We aim to only include those
parts in the Bayesian network contributing to the passert. We call such a
part probabilistic slice. This process provides the advantage of removing
deterministic computations having the same output on every execution and
enables us to apply stochastic laws such as the Central Limit Theorem in
order to minimize the resulting Bayesian network. Therefore, we concretely
evaluate deterministic parts and create symbolic nodes for probabilistic val-
ues. In particular, we do not take draws from distributions when variables
are assigned to a probabilistic value but represent these variables symboli-
cally by their distribution. After having passed over the input we obtain an
expression DAG which represents a Bayesian network.

We illustrate this by a small example. The expression DAG correspond-
ing to the probabilistic program from Figure 1.4 is presented in the left half
of Figure 2.2. We first observe that the addition of the results of the calls
of detProc(a) and detProc(b) is merged into one node labeled with c due to
the fact that it is a purely deterministic computation. Therefore, determin-
istic computations are not repeated over and over again. Secondly, the red
nodes do not have to be considered since they are not reachable from the
node for the passert. Hence, this formalization removes redundant deter-
ministic computations and only considers those parts of the input program
that are relevant for the probabilistic assertion to be considered. Reverting
the direction of the edges of such an expression DAG yields a Bayesian net-
work in which the nodes model random variables and the edges model the
dependencies that the program creates between the latter. Constants are
simply point-mass distributions. The representation as a Bayesian network
which is a well-known formalism in statistics provides the advantage of a
rich variety of optimizations on the latter.

8

The resulting Bayesian network of the example program in Figure 1.4
is visualized in the right half of Figure 2.2. The double circled node models
a random variable for the probabilistic assertion. Note that in symbolic
verification both branches of every if statement need to be considered, since
we consider taking samples from a distribution symbolically and do not
take random draws. This is done by considering both branches and merging
conflicting updates of variable contents. The chapter about the symbolic
semantics shows how this is technically done.

�

?

0

<

-1
1

1

U

�c

if

then

else

�

?

0

<

-1
1

1

U

Figure 2.2: Expression DAG (left) and Bayesian network (right) of the
example program in Figure 1.4

2.3 Handling Loops

One problem of integrating loops in symbolic execution is that these can
have an unbounded number of iterations meaning that a Bayesian network
which models a slice of a probabilistic program containing such a loop would
contain cycles. This would violate the DAG property of Bayesian networks.
Consider for example a repeated coin flip situation:

v1 Bernoulli(0.5) ;
while v1 = HEAD v1 Bernou l l i (0 . 5) ;

Figure 2.3: Repeated coin flip

Such loops are modeled as summary nodes where variables that are read
in the loop body lead to edges into these nodes and variables that are written

9

in the loop body lead to edges out of these nodes. These summary nodes, or
black boxes, are used to take samples from them in order to prune unlikely
paths. To be precise, MAYHAP uses path pruning to iteratively exclude
paths that are unlikely to occur. In particular, MAYHAP tries to show that
the probability of conditions that would result in following a certain path
goes below some threshold and excludes these paths from further consider-
ations. Programs that have a high probability of non-termination can still
cause non-termination of the analysis. However, this rather suggests a bug
in the program. As the authors of [SPM+14] point out, this approach is far
from being complete and leave its extension to future work.

When the loop condition is deterministically bounded, e.g. when the
number of iterations only depends on constants, MAYHAP is able to derive
the distributions modeling such loops.

2.4 Soundness

In this section we sketch how the soundness of the presented verification
scheme is shown. The complete soundness proof can be found in [SPM+].
The general idea for the soundness proof is to use the concrete semantics
that we have presented before and a symbolic semantics for the distribution
extraction. Proceeding by a structural induction over the program, one
obtains that both semantics evaluate a given PROBCORE program equally.

2.4.1 Symbolic Semantics

The symbolic semantics formalizes the distribution extraction process. Val-
ues in the symbolic semantics are expression trees representing Bayesian
networks. The outcome of a symbolic execution is the expression tree of the
passert condition. We will only consider those inference rules that distin-
guish the symbolic semantics from the concrete one. While we have used
a sequence of draws ⌃ for the concrete semantics, the symbolic semantics
does not require that because the distributions are not evaluated. Instead it
requires a stream o↵set, a natural number keeping track of how many sam-
ples have already been taken, for every sample of a distribution. We will
see how it is integrated into the semantics and why its use is important. As
we have already mentioned, statements evaluate to expression trees repre-
senting Bayesian network. This is exemplified in the rules for the arithmetic
operations where e.g. {x1 + x2} represents an expression in the expression
tree. The curly braces indicate delayed evaluation. Let � 2 {+, ⇤,÷}.

(H, e1) +s {x1} (H, e2) +s {x2}
(H, e1 � e2) +s {x1 � x2}

10

A lot of the other rules that we considered in the concrete semantics are
defined analogously. The interested reader finds them in [SPM+].

The inference rule for sample statements shows that we increase the stream
o↵set by one and save the increased stream o↵set and the corresponding
distribution for the variable that is assigned with the sample:

(n,H, v d)!
s

(n+ 1, (v 7! {(d, n)}) : H, skip)

This rule points out the necessity of the stream o↵set. Rather than
keeping track of the concrete value of v, it is recorded that it is the n-th
sample. If we would not apply that, di↵erent programs would have identical
symbolic semantics as for example x1 Uniform(0, 1);x3 = x1 ⇤ x1 and
x1 Uniform(0, 1);x2 Uniform(0, 1);x3 = x1 ⇤ x2.

Since the distribution extraction does not evaluate distributions, if-bran-
ches whose condition depends on probabilistic values are both executed. For
conflicting heap updates of the branches we merge the resulting heaps de-
pending on the if-condition. See [SPM+] for the straight-forward definition
of the merge operation. For two heaps obtained by the execution of dif-
ferent branches of an if-statement, it symbolically sets conflicting variable
valuations to the value that is assigned in the branch that has to be exe-
cuted depending on the if-condition. Accordingly, we also obtain a symbolic
stream o↵set depending on the if-condition. The inference rule is given by:

(H, c) +
s

{x} (n,H, b
t

)!⇤
s

(m
t

, H
t

, skip) (n,H, b
f

)!⇤
s

(m
f

, H
f

, skip)

(n,H, if c b
t

b
f

)!
s

({if x m
t

m
f

},merge(H
t

, H
f

, {x}), skip)

Since the rule for while loops that we used for the concrete semantics
would create infinite Bayesian networks we can not simply adopt it. The
presented symbolic semantics only handles terminating while loops whose
conditions do not depend on a probabilistic value. Further formalization of
while loops is left to future work. Still, when a loop condition is proven to
be false, we can skip it which is covered by the following inference rule (+

o

is introduced after the passert rule):

(H, c) +
s

{x} 8⌃(⌃, {x}) +
o

false

(n,H,while c s)! (n,H, skip)

The symbolic evaluation of programs is defined as follows:

(0, H0, s)!⇤
s

(n,H 0, skip) (H 0, c) +
s

{x}
(H0, s ; ; passert c) +

s

{x}

11

The symbolic semantics enabled us to create an expression tree repre-
senting a Bayesian network. To evaluate the expression tree, we introduce
+
o

which evaluates an expression tree {x} with a given draw sequence ⌃ de-
noted by (⌃, {x}) +

o

v. Thereby we concretely evaluate the symbolic parts.
Consider for example the inference rule for the evaluation of arithmetic op-
erations with � 2 {+, ⇤,÷} and correspondingly the one for samples where
�
k

denotes the k-th element of ⌃:

(⌃, e1) +o v1 (⌃, e2) +o v2
(⌃, e1 � e2) +o v1 � v2

(⌃, (d, k)) +
o

d(�
k

)

Again the whole set of rules for +
o

can be found in [SPM+]. An example
illustrating the distribution extraction process can be found in Figure 2.2.

2.4.2 Final Result

By proceeding with a structural induction, the main theorem for the sound-
ness is derived:

Theorem 2.4.1

Let (0, H, p) +
s

{x}, where x is a finite program. Then (⌃, H0, p) +c b if
and only if (⌃, x) +

o

b.

It states that after the distribution extraction of a program p resulting
in an expression tree, for any draw sequence ⌃, the concrete evaluation of
this program yields the same result as the evaluation of the extracted dis-
tribution. The soundness proof shows that the concrete semantics evaluates
to the same output as the evaluation of the extracted distribution for all
syntactical constructs of PROBCORE. To give an impression how the proof
works, Figure 2.4 exemplary shows the proof for loops. The mentioned
Lemma 2 states soundness for conditions.

12

Figure 2.4: Proof for while loops [SPM+]

Chapter 3

Optimizations

One important reason for slicing probabilistic programs by Bayesian net-
works is that we can exploit statistical knowledge to optimize these and
therefore reducing the verification e↵ort. As we will see, probabilistic asser-
tions in our optimized model can either directly be verified for the case that
the optimizations provide a simple Bernoulli distribution or by applying a
sampling approach.

3.1 Arithmetic Operations on Common Distribu-
tions

The verification e↵ort can be reduced by reducing the number of nodes that
have to be considered in a Bayesian network. One way of achieving this is
to combine nodes that represent common distributions which are associated
by an arithmetic operation to one single node. Figure 3.1 shows such a
reduction. Assume that we have two random variables X1 and X2 with
X1 ⇠ N1(µX1 = 1,�2

X1
= 16) and X2 ⇠ N2(µX2 = 5,�2

X2
= 9), then

the sum of these is also a Gaussian distribution with X1 + X2 = X3 ⇠
N3(µX1 +µ

X2 = 6,�2
X1

+�2
X2

= 25). MAYHAP exhibits such reductions for

13

a rich variety of distributions and arithmetic operations. Still, the catalog
of this kind of reductions is to be extended in future work.

+

X1 +X2

N1

X1

N2

X2

#

N3

X3

Figure 3.1: Reduction of the sum of two Gaussians

3.2 Simplifying Inequalities

Some cases require to check whether a probabilistic value is smaller than
some constant. In this case the cumulative distribution function (CDF) of
the distribution which the probabilistic value depends on can be exploited.
The CDF CDF

X

(x) of a random variable say X is given by CDF
X

(x) =
Pr(X < x). Intuitively spoken it gives the probability that the outcome
of X is less than some real-valued x. Therefore instead of checking X < c,
we compute CDF

X

(x). This process is depicted in Figure 3.2. Assume for
example that X1 is a random variable with X1 ⇠ N (1, 5).

<

N

X1

c

#

CDF
X1(c)

Figure 3.2: Reduction of a probabilistic inequality

14

3.3 Central Limit Theorem

The Central Limit Theorem (CLT) states that the sum of a large amount
of independent random variables that are identically distributed and have a
finite expected value and variance converges to a normal distribution. MAY-
HAP exploits that when the sum of such random variables is calculated, e.g.
in an iterative process, to transform such a sum into a Gaussian distribu-
tion. Figure 3.3 illustrates that for a distribution D satisfying the necessary
conditions for the application of the CLT.

+

D D D ... D

#

N

Figure 3.3: Transformation of a huge sum of random variables into a
Gaussian distribution

3.4 Sampling Approach

While there exist probabilistic assertions that can be verified directly on the
optimized Bayesian network without using sampling, this of course does not
always apply. When direct verification is not possible MAYHAP uses statis-
tical verification on the optimized Bayesian network. Since probabilistic as-
sertions represent conditions evaluating to a Boolean value, they can be mod-
eled as Bernoulli random variables. Assume that X

i

with i 2 {1, ..., n} are
n samples of a probabilistic assertion, then MAYHAP uses p⇠ = 1

n

P
n

i=1Xi

as an approximation of the probability p of the corresponding Bernoulli dis-
tribution. In order to ensure that p⇠ is a good approximation of the actual
p, the probability that p⇠ 2 [p� ✏, p+ ✏] where ✏ is the desired accuracy is
determined. The probabilistic assertion is verified as true when this proba-
bility is at least as big as 1�↵ stating that with probability ↵ the estimation
is not accurate enough:

Pr(p⇠ 2 [p� ✏, p+ ✏]) � 1� ↵ (i)

When using MAYHAP a programmer can input ↵ and ✏ for the verification
of a probabilistic assertion. A priori it is not clear how many samples n are
needed to satisfy the desired accuracy and confidence. So to ensure that (i)
holds, the two-sided Cherno↵ bound is used that gives an upper bound for
the probability that p⇠ di↵ers more from p than ✏:

15

Pr(| p⇠ � p |� ✏p) 2e�
✏2np
2+✏

Pr(| p⇠ � p |� ✏p) is ↵ by definition. Setting p = 1 which results in the
worst case for the sampling procedure and reformulating this as an inequality
depending on the number of samples n, we obtain for the minimum number
of samples:

n � 2+✏

✏

2 ln(2
↵

)

Since this approach only calculates an upper bound for the number of
samples, obtaining them in this manner can be extended by checking after
every iteration whether (i) is satisfied. Such an extension is left to future
work.

Chapter 4

Evaluation

4.1 MAYHAP

Before we have a look at the results, we briefly examine the architecture
and some of the implementation details of MAYHAP. The latter compiles
C and C++ code using the LLVM compiler infrastructure and applies the
procedure that we have presented. Programmers can simply add passert(e)
to their code in order to notify that a probabilistic assertion shall be checked.
Furthermore, one can specify the desired accuracy ✏ and confidence ↵.

4.2 Results

MAYHAP was tested on some benchmarks of representative problem do-
mains in probabilistic computing, namely sensors, di↵erential privacy and
approximate computing. Figure 4.1 from [SPM+14] elaborates what the
particular benchmarks compute and which kind of probabilistic assertions
are tested. MAYHAPs approach is measured by comparing it to naive stress
testing which is explained at the beginning of chapter two. All programs
were tested with a confidence of ↵ = 0.05 and an accuracy of ✏ = 0.01 which
according to Cherno↵s bound results in 74147 samples.

16

Figure 4.1: Benchmarks

Figure 4.2 from [SPM+14] depicts the runtime of stress testing (B)
which in each case defines the reference for the remaining runtimes of a
non-optimized (N) and an optimized (O) verification scheme of MAYHAP.
Furthermore, MAYHAP ’s runtimes, non-optimized and optimized, are di-
vided into the time needed for the analysis and the time spent executing the
optimized representation. We can observe that, except for the benchmark
salary � abs, the verification of the unoptimized representation provides
massive advantages compared to stress testing. This is due to the fact that
redundant deterministic parts are removed and we only consider slices of
the input program. The impact of the optimizations is strongly dependent
on the benchmark instance. While these heavily reduce the runtime on
salary, salary-abs and sobel, the runtime even slightly increases on hotspot
compared to non-optimized verification. Still, the results suggest that the
additional runtime needed for the optimization steps, is worth it and can
highly improve the verification performance.

Figure 4.2: Results

17

4.3 Conclusion

After we have introduced the theoretical foundations that are required to
understand the main approach, we presented the latter. We then formal-
ized the distribution extraction and asserted the main theorem stating that
the concrete semantics evaluates a given PROBCORE program identically
as the symbolic semantics. Furthermore, we sketched how the soundness is
shown. The evaluation suggests that the presented approach outperforms
naive stress testing of probabilistic programs by removing redundant deter-
ministic computation and symbolically executing probabilistic slices of the
program.
In addition to that, we have seen that the presented notions can be ex-
tended at multiple working points, e.g. the bandwidth and depth of the
used optimizations. Hence, future work will probably advance the verifica-
tion process.

18

Bibliography

[Big] Big-step structural operational semantics.
http://fsl.cs.illinois.edu/images/b/b3/

CS522-Spring-2011-PL-book-bigstep.pdf/.

[Sam] Adrian Sampson. Expressing and verifying probabilistic asser-
tions. https://www.youtube.com/watch?v=84qpGAKIc4M.

[Sma] Small-step structural operational semantics.
http://fsl.cs.illinois.edu/images/7/74/

CS522-Spring-2011-PL-book-smallstep.pdf/.

[SPH84] Micha Sharir, Amir Pnueli, and Sergiu Hart. Verification of prob-
abilistic programs. SIAM Journal on Computing, 13(2):292–314,
1984.

[SPM+] Adrian Sampson, Pavel Panchekha, Todd Mytkowicz,
Kathryn S McKinley, Dan Grossman, and Luis Ceze.
Probabilistic assertions: Extended semantics and proof.
http://research.microsoft.com/pubs/211410/passert-aux.pdf.

[SPM+14] Adrian Sampson, Pavel Panchekha, Todd Mytkowicz, Kathryn S
McKinley, Dan Grossman, and Luis Ceze. Expressing and veri-
fying probabilistic assertions. In Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design and
Implementation, page 14. ACM, 2014.

19

http://fsl.cs.illinois.edu/images/b/b3/CS522-Spring-2011-PL-book-bigstep.pdf/
http://fsl.cs.illinois.edu/images/b/b3/CS522-Spring-2011-PL-book-bigstep.pdf/
https://www.youtube.com/watch?v=84qpGAKIc4M
http://fsl.cs.illinois.edu/images/7/74/CS522-Spring-2011-PL-book-smallstep.pdf/
http://fsl.cs.illinois.edu/images/7/74/CS522-Spring-2011-PL-book-smallstep.pdf/

	Introduction
	(Probabilistic) Assertions
	Probabilistic Programs
	Concrete Semantics
	Big-Step Semantics
	Small-Step Semantics

	Algorithm for Verifying Probabilistic Assertions
	Verification Scheme
	Distribution Extraction
	Handling Loops
	Soundness
	Symbolic Semantics
	Final Result

	Optimizations
	Arithmetic Operations on Common Distributions
	Simplifying Inequalities
	Central Limit Theorem
	Sampling Approach

	Evaluation
	MAYHAP
	Results
	Conclusion

