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Introducion

Introduction

Probabilistic programs use random variables
) Properties of probabilistic programs are hard to verify

Expectation invariants are expressions over the program variables that
stay non-negative all the time
) They can be used to verify properties

Compute expectation invariants as fixed points
The presented algorithm computes a set of expectation invariants
Only works with some restrictions to the program
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Introducion

Probabilistic programs

The following notion will be used:

P: A probabilistic program

X = {x
1

, . . . ,xm}: A finite set of program variables

R = {r
1

, . . . ,rl}: A finite set of random variables

DR : The joint distribution of random variables R

, : The vectors denoting the valuation of all program and random
variables respectively
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Probabilistic Loops

Probabilistic loops

Definition (Probabilistic loops)

A probabilistic loop of P is a tuple hT ,D
0

,ni, with
T : {⌧

1

, . . . ,⌧k}: A finite set of probabilistic transitions

D
0

: The initial probability distribution of the program variables

n: A loop counter

A probabilistic transition ⌧i : hgi ,Fi i consists of
A guard gi ( ) over X

An update function Fi ( , ) s.t. after taking the transition it holds:
0 = Fi ( , ).

P. Florian Expectation Invariants as Fixed Points February 3, 2015 5 / 33



Probabilistic Loops

Probabilistic loops

Definition (Probabilistic loops)

A probabilistic loop of P is a tuple hT ,D
0

,ni, with
T : {⌧

1

, . . . ,⌧k}: A finite set of probabilistic transitions

D
0

: The initial probability distribution of the program variables

n: A loop counter

A probabilistic transition ⌧i : hgi ,Fi i consists of
A guard gi ( ) over X

An update function Fi ( , ) s.t. after taking the transition it holds:
0 = Fi ( , ).

P. Florian Expectation Invariants as Fixed Points February 3, 2015 5 / 33



Probabilistic Loops

Example

i n t x := rand (0 , 2 )
whi le ( x<=10){

x := x + rand (0 , 2 )
}

Can be expressed as hT ,D
0

,ni
T = {⌧

1

}
g

1

( ) = x  10
F

1

( , ) = x + r

1

r
1

= U(0,2)

D

0

: hxi = U[0,2]

n = 0
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Probabilistic Loops

Piecewise linear transitions

Definition (Piecewise linear transitions)

⌧ : hg,F( , )i is a piecewise linear transition if:

g is a linear guard over X

F( , ) is a piecewise linear function and may be written as:

F( , ) =

8
><

>:

f

1

: A
1

+ B

1

+ d

1

, with probability p

1

...
fk : Ak + Bk + dk , with probability pk

f

1

, . . . ,fk : Identifier for di↵erent outcomes of Bernoulli choices
p

1

, . . . ,pk : Probabilities for choosing the corresponding fork
Ai 2 Rm⇥m, Bi 2 Rm⇥l , di 2 Rm are used to model the changes to the
program variables occurring in the loop.
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Probabilistic Loops

Example

i n t x := rand (�5 ,3)
i n t y := rand (�3 ,5)
i n t c := 0
whi le ( true ){

i f ( x+y<=10)
i f f l i p (3/4)

x := x + rand (0 , 2 )
y := y + 2

c++
e l s e

do no th i ng
}
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Probabilistic Loops

Example (continued)

The corresponding piecewise linear transition ⌧ : hg,Fi
g( ) = x + y  10

F( , ) =

8
>>>>>><

>>>>>>:

f

1

:

0

@
x

y

c

1

A+

0

@
r

1

0
0

1

A+

0

@
0
2
1

1

A , p
1

= 3

4

f

2

:

0

@
x

y

c

1

A+

0

@
0
0
1

1

A , p
2

= 1

4
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Probabilistic Loops

Restrictions for this approach

Probabilistic loops are not nested
For simplicity
For all nested loops there are equivalent unnested variants

All transitions are piecewise linear

Exactly one transition can be taken in every iteration

The loop might need to be modified

All expressions e( ) are linear expressions

e( ) = c

0

+
Pm

i=0

�i · xi , c0,�i 2 R
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Probabilistic Loops

Execution model

To model an execution of a probabilistic loop we use tuples ( n,n) as
states

, where:

n represents the program variables at loop-iteration n

(
0

,0) is an initial state if
0

is drawn from D
0

( i ,i) is predecessor of ( i+1

,i + 1) if for a transition ⌧ : hg,F( , )i
i |= g

9 2 DR , i+1

= F( i , )

Di = { i | ( i ,i) is reachable from an initial state}
Di is the distribution of program variables at iteration i
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Probabilistic Loops

Example execution

One possible execution:

((3,3,0)T ,0)

⌧
1�! ((4,5,1)T ,1)

⌧
1�!

((6,7,2)T ,2)
⌧
2�! ((6,7,2)T ,3)

⌧
2�! . . .

P. Florian Expectation Invariants as Fixed Points February 3, 2015 12 / 33



Probabilistic Loops

Example execution

One possible execution:

((3,3,0)T ,0)
⌧
1�! ((4,5,1)T ,1)

⌧
1�!

((6,7,2)T ,2)
⌧
2�! ((6,7,2)T ,3)

⌧
2�! . . .

P. Florian Expectation Invariants as Fixed Points February 3, 2015 12 / 33



Probabilistic Loops

Example execution

One possible execution:

((3,3,0)T ,0)
⌧
1�! ((4,5,1)T ,1)

⌧
1�!

((6,7,2)T ,2)

⌧
2�! ((6,7,2)T ,3)

⌧
2�! . . .

P. Florian Expectation Invariants as Fixed Points February 3, 2015 12 / 33



Probabilistic Loops

Example execution

One possible execution:

((3,3,0)T ,0)
⌧
1�! ((4,5,1)T ,1)

⌧
1�!

((6,7,2)T ,2)
⌧
2�! ((6,7,2)T ,3)

⌧
2�! . . .

P. Florian Expectation Invariants as Fixed Points February 3, 2015 12 / 33



Probabilistic Loops

Example execution

One possible execution:

((3,3,0)T ,0)
⌧
1�! ((4,5,1)T ,1)

⌧
1�!

((6,7,2)T ,2)
⌧
2�! ((6,7,2)T ,3)

⌧
2�! . . .

P. Florian Expectation Invariants as Fixed Points February 3, 2015 12 / 33



Probabilistic Loops

Pre-Expectations

Assume we are currently in state ( ,n)

What is the expected value of e( 0) evaluated over all successor
states ( 0,n + 1)

With respect to a single transition?

With respect to all transitions?

) Pre-expectation of e( 0)
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Pre-Expectations

Pre-Expectation

Definition (Pre-expectation for fixed PWL transitions)

For a PWL transition ⌧ the pre-expectation operator can be written as:

preE⌧ (e(
0)) =

kX

j=1

pjER(pre(e(
0),fj) | )

where pre(e( 0),fj) denotes the expression obtained by applying fj to all
variables of occurring in e( ).
ER( ) denotes the expectation of over DR .
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Pre-Expectations

Example

e( 0) = 1 + 2x 0 � 3y 0

⌧
1

: hg
1

,F
1

i with:
g

1

: x + y  10

F
1

( , ) =

8
>>>>>><

>>>>>>:

f

1

:

0

@
x

y

c

1

A+

0

@
r

1

0
0

1

A+

0

@
0
2
1

1

A , p
1

= 3

4

f

2

:

0

@
x

y

c

1

A+

0

@
0
0
1

1

A , p
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Pre-Expectations

Example (continued)

preE⌧
1

(1 + 2x 0 � 3y 0) =

2X

j=1

pj · EDR (pre(1 + 2x 0 � 3y 0, fj) | )

=
3

4
· EDR (1 + 2 · (x + r

1

)� 3 · (y + 2))

+
1

4
· EDR (1 + 2x � 3y)

= �7

2
+ 2x � 3y +

3

2
· ER(r1)

r

1

= U[0,2] ) ER(r1) = 1

preE⌧
1

(1 + 2x � 3y) = �2 + 2x � 3y
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Pre-Expectations

Pre-expectation (continued)

Definition (Pre-expectation over all transitions)

The expected value of e over the post-state distribution starting from
state ( n,n) is the value of the pre-expectation preE(e 0) evaluated over the
current state ( n,n):

EDn(e) = preE(e 0) =
X

⌧i2T
g⌧i

( n) · preE⌧i (e
0)
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Expectation Invariants

Expectation Invariants

Definition (Expectation invariants)

An expression e over the program variables X is called an expectation
invariant (EI ) if and only if EDi (e) � 0 for all i � 0.

Example
We show that e( ) = 2y � x is an expectation invariant.

1 ED
0

(2y � x) = 2 · ED
0

(y)� ED
0

(x) = 3 � 0

2 EDi (2y � x) = 2 · EDi (y)� EDi (x) � 0 for all i � 0 as EDi (y) is
always larger than EDi (x)

) e is an expectation invariant of P
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Expectation Invariants

Inductive Expectation Invariants

Definition (Inductive expectation invariants)

Let E = {e
1

, . . . ,ek} be a set of expressions. The set E forms an inductive
expectation invariant i↵ for each ej , j 2 [1,k] the following holds:

1 ED
0

(ej) � 0

2 preE(ej) = �
0

+
kP

i=1

�iei , �i , � 0

Theorem

Let E : {e
1

, . . . ,em} be an inductive expectation invariant. It follows that

each ej 2 E is an expectation invariant.
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Expectation Invariants

Cones of expressions

Definition (Cones)

Let E = {e
1

, . . . ,ek} be a finite set of program expressions over the
program variables . The set of conic combinations (the finitely generated
cone) of E is defined as

Cone(E ) =

(
�
0

+
kX

i=1

�iei | �i 2 R+, 0  i  k

)

Theorem

If E is an inductive expectation invariant, then e 2 Cone(E ) is an
expectation invariant.
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Expectation Invariants

Example

E = {e
1

: y � x , e
2

: 2y + c}
Without proof e

1

, e
2

are EIs

Consider e = 4y � 2x + c = 2 · e
1

+ e

2

) e 2 Cone(E )

) e is an EI
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Expectation Invariants

Pre-Expectation of cones

Definition (Pre-expectation over a single transitions)

Let E = {e
1

, . . . ,em} be a set of expressions, and let ⌧ : hg,Fi be a
transition. The pre-expectation of a cone I : Cone(E ) with respect to ⌧ is
defined as:

preE⌧ (I ) = {(e,�) 2 A( )⇥ Rm |� � 0 ^ 9µ � 0(preE⌧ (e)

⌘
mX

j=1

�jej + µ)}
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Expectation Invariants

Pre-Expectation of cones (continued)

Definition (Pre-Expectation over all transitions)

Let I be a finitely generated cone of expressions. The pre-expectation over
all transitions in T = {⌧

1

, . . . ,⌧k} can be computed as:

preE(I ) = {e 2 A( ) | 9� � 0(e,�) 2
k\

j=1

preE⌧j (I )}
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Fixed points for Expectation Invariants

Fixed points for Expectation Invariants

Algorithm

Create the initial cone I

0

I

0

: Cone({1, x
1

� ED
0

(x
1

),ED
0

(x
1

)� x

1

, . . . ,

xn � ED
0

(xn),ED
0

(xn)� xn})
In each iteration

Compute preE(In)
Compute In+1

= preE(In) \ I

0

Repeat until I ⇤ = In+1

= In

Might not converge

) Resulting cone I

⇤ contains only EIs
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Fixed points for Expectation Invariants

Example

I

0

= Cone({1,x � ED
0

(x),ED
0

(x)� x ,ED
0

(y)� y ,y � ED
0

(y),

ED
0

(c)� c ,c � ED
0

(c)})

= Cone({1,x + 1,� 1� x ,y � 1,1� y ,c ,� c})
preE⌧

1

(I
0

) = {(1, (1,0,0,0,0,0)T ),(x + 1, (0.75,1,0,0,0,0)T ),

(y � 1, (2.5,0,1,0,0,0)T ),(1� y , (1.5,0,0,1,0,0)T ),

(c ,(1,0,0,0,1,0)T ), . . .}
preE⌧

2

(I
0

) = {(e,�) | 8e 2 I

0

, � corresponding to e}
preE(I

0

) = {1,x + 1,y � 1,1� y ,c}
I

1

= I

0

\ preE(I
0

) = {1,x + 1,y � 1,1� y ,c}
I

⇤ = I

1

= I

1

\ preE(I
0

)
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Fixed points for Expectation Invariants

Standard dual widening

Definition (Standard dual widening)

Let I
1

= Cone(e
1

, . . . ,ek) and I

2

= Cone(g
1

, . . . ,gk) be two finitely
generated cones such that I

1

◆ I

2

.
The dual widening operator I

1

erI

2

is defined as I = Cone(gi | gi 2 I

2

).
Cone I is the cone generated by generators of I

1

that are also in I

2

If er is applied to two successive cones in the algorithm the
convergence is ensured
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Fixed points for Expectation Invariants

Example

Assume P is a probabilistic program s.t. ±(x � 1) 2 I

0

and the
pre-expectations for these expressions alternate in each iteration.

I

1

= Cone{1,x � 1} = I

3

= · · ·
I

2

= Cone{1,� x + 1} = I

4

= · · ·
I

1

erI

2

= Cone{1} = I

⇤

) The problem of alternation is solved
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Fixed points for Expectation Invariants

Experimental results from [2]

|X |: Number of program variables
#: Number of needed iterations
Time: Runtime in seconds

|T |: Number of transitions
er: Dual widening used or not
" = 0.05s

Name |X | |T | # er Time
MOT-EXAMPLE 3 2 2 No  "
MOT-EX-LOOP-INV 3 2 2 No 0.10
MOT-EX-POLY 9 2 2 No 0.18
2D-WALK 4 4 7 Yes  "
AGGREGATE-RV 3 2 2 No  "
HARE-TURTLE 3 2 2 No  "
COUPON5 2 5 2 No  "
HAWK-DOVE-FAIR 6 2 2 No  "
HAWK-DOVE-BIAS 6 2 2 No  "
FAULTY-INCR 2 2 7 Yes  "
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Fixed points for Expectation Invariants

Comparrison with PRINSYS

Out of 26 tests only 3 IEI could be found by PRINSYS

26 IEI could be found with this approach

Not checked whether PRINSYS finds IEI, that this approach does not
find

P. Florian Expectation Invariants as Fixed Points February 3, 2015 29 / 33



Conclusion

Conclusion

+ Expectation invariants can be found fast

+ Mostly without usage of dual widening

- Unknown time complexity

- Vague descriptions in the paper

- Implementation is not su�ciently tested
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Conclusion

Thanks for your attention!

If you have questions, feel free to ask.
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Dealing with finite loops

Need to guarantee that exactly one transition can be taken in every
iteration

No problem for infinite loops

Finite loops need to be modified
1 Create an infinite loop
2 Create an if-statement inside
3 If the original loop-guard is valid execute original loop-body
4 Else preserve all program variables

) New transition that can be taken after the original loop would
have been exited
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Example

i n t x := rand (�5 ,3)
i n t y := rand (�3 ,5)
i n t c := 0
whi le ( x+y<=10){

i f f l i p (3/4)
x := x + rand (0 , 2 )
y := y + 2

c++
}

i n t x := rand (�5 ,3)
i n t y := rand (�3 ,5)
i n t c := 0
whi le ( true ){

i f ( x+y<=10)
i f f l i p (3/4)

x := x + rand (0 , 2 )
y := y + 2

c++
e l s e

do no th i ng
}
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