Expectation Invariants for Probabilistic Program Loops as Fixed Points

Phillip Florian

February 3, 2015

- Probabilistic Loops
- 3 Pre-Expectations
- 4 Expectation Invariants
- 5 Fixed points for Expectation Invariants

Probabilistic programs use random variables
 Properties of probabilistic programs are hard to verify

- Probabilistic programs use random variables
 ⇒ Properties of probabilistic programs are hard to verify
- Expectation invariants are expressions over the program variables that stay non-negative all the time
 ⇒ They can be used to verify properties

- Probabilistic programs use random variables
 ⇒ Properties of probabilistic programs are hard to verify
- Expectation invariants are expressions over the program variables that stay non-negative all the time
 ⇒ They can be used to verify properties
- Compute expectation invariants as fixed points

- Probabilistic programs use random variables
 ⇒ Properties of probabilistic programs are hard to verify
- Expectation invariants are expressions over the program variables that stay non-negative all the time
 ⇒ They can be used to verify properties
- Compute expectation invariants as fixed points
 - The presented algorithm computes a set of expectation invariants
 - Only works with some restrictions to the program

Probabilistic programs

The following notion will be used:

- \mathcal{P} : A probabilistic program
- $X = \{x_1, \ldots, x_m\}$: A finite set of program variables
- $R = \{r_1, \ldots, r_l\}$: A finite set of random variables
- \mathcal{D}_R : The joint distribution of random variables R
- *x*,*r*: The vectors denoting the valuation of all program and random variables respectively

Probabilistic loops

Definition (Probabilistic loops)

- A probabilistic loop of \mathcal{P} is a tuple $\langle \mathcal{T}, \mathcal{D}_0, n \rangle$, with
 - $\mathcal{T}: \{\tau_1, \ldots, \tau_k\}$: A finite set of probabilistic transitions
 - \mathcal{D}_0 : The initial probability distribution of the program variables
 - n: A loop counter

Probabilistic loops

Definition (Probabilistic loops)

- A probabilistic loop of \mathcal{P} is a tuple $\langle \mathcal{T}, \mathcal{D}_0, n \rangle$, with
 - $\mathcal{T}: \{\tau_1, \ldots, \tau_k\}$: A finite set of probabilistic transitions
 - \mathcal{D}_0 : The initial probability distribution of the program variables
 - n: A loop counter

A probabilistic transition $au_i : \langle \mathbf{g}_i, \mathcal{F}_i \rangle$ consists of

- A guard $\mathbf{g}_i(\mathbf{x})$ over X
- An update function $\mathcal{F}_i(\mathbf{x},\mathbf{r})$ s.t. after taking the transition it holds: $\mathbf{x}' = \mathcal{F}_i(\mathbf{x},\mathbf{r}).$

int x := rand (0,2)
while
$$(x \le 10)$$
{
 x:= x + rand (0,2)
}

Can be expressed as $\langle \mathcal{T}, \mathcal{D}_0, n \rangle$ • $\mathcal{T} = \{\tau_1\}$

int x := rand (0,2)
while
$$(x \le 10)$$
{
 x:= x + rand (0,2)
}

Can be expressed as $\langle \mathcal{T}, \mathcal{D}_0, n \rangle$ • $\mathcal{T} = \{\tau_1\}$ • $\mathbf{g}_1(\mathbf{x}) = x \le 10$

int x := rand (0,2)
while
$$(x \le 10)$$
{
 x:= x + rand (0,2)
}

Can be expressed as $\langle \mathcal{T}, \mathcal{D}_0, n \rangle$ • $\mathcal{T} = \{\tau_1\}$ • $\mathbf{g}_1(\mathbf{x}) = \mathbf{x} \le 10$ • $\mathcal{F}_1(\mathbf{x}, \mathbf{r}) = \mathbf{x} + r_1$ • $r_1 = U(0, 2)$

int x := rand (0,2)
while
$$(x \le 10)$$
{
 x:= x + rand (0,2)
}

Can be expressed as $\langle \mathcal{T}, \mathcal{D}_0, \textit{n} \rangle$

•
$$\mathcal{T} = \{\tau_1\}$$

• $\mathbf{g}_1(\mathbf{x}) = \mathbf{x} \le 10$
• $\mathcal{F}_1(\mathbf{x}, \mathbf{r}) = \mathbf{x} + r_1$
• $r_1 = U(0, 2)$

•
$$D_0$$
: $\langle x \rangle = U[0,2]$

int x := rand (0,2)
while
$$(x \le 10)$$
{
 x:= x + rand (0,2)
}

Can be expressed as $\langle \mathcal{T}, \mathcal{D}_0, n \rangle$

$$\mathcal{T} = \{\tau_1\}$$

• $\mathbf{g}_1(\mathbf{x}) = \mathbf{x} \le 10$
• $\mathcal{F}_1(\mathbf{x}, \mathbf{r}) = \mathbf{x} + r_1$
• $r_1 = U(0, 2)$

•
$$D_0:\langle x\rangle=U[0,2]$$

• *n* = 0

۲

Definition (Piecewise linear transitions)

 $\tau: \langle \mathbf{g}, \mathcal{F}(\mathbf{x}, \mathbf{r}) \rangle$ is a piecewise linear transition if:

Definition (Piecewise linear transitions)

- $\tau: \langle \mathbf{g}, \mathcal{F}(\mathbf{x}, \mathbf{r}) \rangle$ is a piecewise linear transition if:
 - g is a *linear guard* over X

Definition (Piecewise linear transitions)

- $\tau: \langle \mathbf{g}, \mathcal{F}(\mathbf{x}, \mathbf{r}) \rangle$ is a piecewise linear transition if:
 - g is a *linear guard* over X
 - $\mathcal{F}(\mathbf{x},\mathbf{r})$ is a *piecewise linear function* and may be written as:

$$\mathcal{F}(\boldsymbol{x},\boldsymbol{r}) = \begin{cases} f_1 : A_1\boldsymbol{x} + B_1\boldsymbol{r} + d_1, & \text{with probability } p_1 \\ \vdots \\ f_k : A_k\boldsymbol{x} + B_k\boldsymbol{r} + d_k, & \text{with probability } p_k \end{cases}$$

Definition (Piecewise linear transitions)

- $\tau: \langle \mathbf{g}, \mathcal{F}(\mathbf{x}, \mathbf{r}) \rangle$ is a piecewise linear transition if:
 - g is a *linear guard* over X
 - $\mathcal{F}(\mathbf{x},\mathbf{r})$ is a *piecewise linear function* and may be written as:

$$\mathcal{F}(\boldsymbol{x},\boldsymbol{r}) = \begin{cases} f_1 : A_1\boldsymbol{x} + B_1\boldsymbol{r} + d_1, & \text{with probability } p_1 \\ \vdots \\ f_k : A_k\boldsymbol{x} + B_k\boldsymbol{r} + d_k, & \text{with probability } p_k \end{cases}$$

• f_1, \ldots, f_k : Identifier for different outcomes of Bernoulli choices

Definition (Piecewise linear transitions)

- $\tau: \langle \mathbf{g}, \mathcal{F}(\mathbf{x}, \mathbf{r}) \rangle$ is a piecewise linear transition if:
 - g is a *linear guard* over X
 - $\mathcal{F}(\mathbf{x},\mathbf{r})$ is a *piecewise linear function* and may be written as:

$$\mathcal{F}(\boldsymbol{x},\boldsymbol{r}) = \begin{cases} f_1 : A_1\boldsymbol{x} + B_1\boldsymbol{r} + d_1, & \text{with probability } p_1 \\ \vdots \\ f_k : A_k\boldsymbol{x} + B_k\boldsymbol{r} + d_k, & \text{with probability } p_k \end{cases}$$

f₁,...,f_k: Identifier for different outcomes of Bernoulli choices
p₁,...,p_k: Probabilities for choosing the corresponding fork

Definition (Piecewise linear transitions)

- $\tau: \langle \mathbf{g}, \mathcal{F}(\mathbf{x}, \mathbf{r}) \rangle$ is a piecewise linear transition if:
 - g is a *linear guard* over X
 - $\mathcal{F}(\mathbf{x},\mathbf{r})$ is a *piecewise linear function* and may be written as:

$$\mathcal{F}(\boldsymbol{x},\boldsymbol{r}) = \begin{cases} f_1 : A_1\boldsymbol{x} + B_1\boldsymbol{r} + d_1, & \text{with probability } p_1 \\ \vdots \\ f_k : A_k\boldsymbol{x} + B_k\boldsymbol{r} + d_k, & \text{with probability } p_k \end{cases}$$

- f_1, \ldots, f_k : Identifier for different outcomes of Bernoulli choices
- p_1, \ldots, p_k : Probabilities for choosing the corresponding fork
- $A_i \in \mathbb{R}^{m \times m}$, $B_i \in \mathbb{R}^{m \times l}$, $d_i \in \mathbb{R}^m$ are used to model the changes to the program variables occurring in the loop.

```
Example (continued)
```

The corresponding piecewise linear transition $au: \langle \mathbf{g}, \mathcal{F} \rangle$

• $g(x) = x + y \le 10$

Example (continued)

The corresponding piecewise linear transition $au: \langle \mathbf{g}, \mathcal{F} \rangle$

•
$$g(x) = x + y \le 10$$

Example (continued)

The corresponding piecewise linear transition $au: \langle \mathbf{g}, \mathcal{F} \rangle$

•
$$\mathbf{g}(\mathbf{x}) = \mathbf{x} + \mathbf{y} \le 10$$

• $\mathcal{F}(\mathbf{x},\mathbf{r}) = \begin{cases} f_1 : \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{c} \end{pmatrix} + \begin{pmatrix} r_1 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} , p_1 = \frac{3}{4} \end{cases}$

Example (continued)

The corresponding piecewise linear transition $au: \langle \mathbf{g}, \mathcal{F} \rangle$

•
$$\mathbf{g}(\mathbf{x}) = \mathbf{x} + \mathbf{y} \le 10$$

• $\mathcal{F}(\mathbf{x}, \mathbf{r}) = \begin{cases} f_1 : \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{c} \end{pmatrix} + \begin{pmatrix} r_1 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} , p_1 = \frac{3}{4} \\ f_2 : \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{c} \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} , p_2 = \frac{1}{4} \end{cases}$

• Probabilistic loops are not nested

- Probabilistic loops are not nested
 - For simplicity
 - For all nested loops there are equivalent unnested variants

- Probabilistic loops are not nested
 - For simplicity
 - For all nested loops there are equivalent unnested variants
- All transitions are piecewise linear

- Probabilistic loops are not nested
 - For simplicity
 - For all nested loops there are equivalent unnested variants
- All transitions are piecewise linear
- Exactly one transition can be taken in every iteration
 - The loop might need to be modified

- Probabilistic loops are not nested
 - For simplicity
 - For all nested loops there are equivalent unnested variants
- All transitions are piecewise linear
- Exactly one transition can be taken in every iteration
 - The loop might need to be modified
- All expressions e(x) are linear expressions

•
$$e(\mathbf{x}) = c_0 + \sum_{i=0}^m \lambda_i \cdot x_i, \ c_0, \lambda_i \in \mathbb{R}$$

To model an execution of a probabilistic loop we use tuples (x_n, n) as states

To model an execution of a probabilistic loop we use tuples (x_n, n) as states, where:

• \mathbf{x}_n represents the program variables at loop-iteration n

To model an execution of a probabilistic loop we use tuples (x_n, n) as states, where:

- \boldsymbol{x}_n represents the program variables at loop-iteration n
- $(\mathbf{x}_0, 0)$ is an *initial state* if \mathbf{x}_0 is drawn from \mathcal{D}_0

To model an execution of a probabilistic loop we use tuples (x_n, n) as states, where:

- x_n represents the program variables at loop-iteration n
- $(\mathbf{x}_0, 0)$ is an *initial state* if \mathbf{x}_0 is drawn from \mathcal{D}_0
- (\mathbf{x}_{i},i) is predecessor of $(\mathbf{x}_{i+1},i+1)$ if for a transition $\tau : \langle \mathbf{g}, \mathcal{F}(\mathbf{x},\mathbf{r}) \rangle$ • $\mathbf{x}_{i} \models \mathbf{g}$
 - $\exists \mathbf{r} \in \mathcal{D}_R, \, \mathbf{x}_{i+1} = \mathcal{F}(\mathbf{x}_i, \mathbf{r})$

Execution model

To model an execution of a probabilistic loop we use tuples (x_n, n) as states, where:

- x_n represents the program variables at loop-iteration n
- $(\mathbf{x}_0, 0)$ is an *initial state* if \mathbf{x}_0 is drawn from \mathcal{D}_0
- (\mathbf{x}_{i},i) is predecessor of $(\mathbf{x}_{i+1},i+1)$ if for a transition $\tau : \langle \mathbf{g}, \mathcal{F}(\mathbf{x},\mathbf{r}) \rangle$ • $\mathbf{x}_{i} \models \mathbf{g}$ • $\exists \mathbf{r} \in \mathcal{D}_{B}, \ \mathbf{x}_{i+1} = \mathcal{F}(\mathbf{x}_{i},\mathbf{r})$
- $\mathcal{D}_i = \{ \mathbf{x}_i \mid (\mathbf{x}_i, i) \text{ is reachable from an initial state} \}$
 - D_i is the distribution of program variables at iteration i

One possible execution:

 $((3,3,0)^T,0)$

$$((3,3,0)^T,0) \xrightarrow{\tau_1} ((4,5,1)^T,1)$$

$$((3,3,0)^{\mathsf{T}},0) \xrightarrow{\tau_1} ((4,5,1)^{\mathsf{T}},1) \xrightarrow{\tau_1} ((6,7,2)^{\mathsf{T}},2)$$

$$((3,3,0)^{\mathsf{T}},0) \xrightarrow{\tau_1} ((4,5,1)^{\mathsf{T}},1) \xrightarrow{\tau_1} \\ ((6,7,2)^{\mathsf{T}},2) \xrightarrow{\tau_2} ((6,7,2)^{\mathsf{T}},3)$$

$$((3,3,0)^{T},0) \xrightarrow{\tau_{1}} ((4,5,1)^{T},1) \xrightarrow{\tau_{1}} \\ ((6,7,2)^{T},2) \xrightarrow{\tau_{2}} ((6,7,2)^{T},3) \xrightarrow{\tau_{2}} \dots$$

Pre-Expectations

• Assume we are currently in state (x,n)

Pre-Expectations

- Assume we are currently in state (x,n)
- What is the expected value of $e(\mathbf{x}')$ evaluated over all successor states $(\mathbf{x}', n+1)$
 - With respect to a single transition?
 - With respect to all transitions?

Pre-Expectations

- Assume we are currently in state (x,n)
- What is the expected value of $e(\mathbf{x}')$ evaluated over all successor states $(\mathbf{x}', n+1)$
 - With respect to a single transition?
 - With respect to all transitions?
- \Rightarrow Pre-expectation of $e(\mathbf{x'})$

Pre-Expectation

Definition (Pre-expectation for fixed PWL transitions)

For a PWL transition τ the pre-expectation operator can be written as:

$$\mathsf{pre}\mathbb{E}_{\tau}(e(\mathbf{x}')) = \sum_{j=1}^{k} p_{j}\mathbb{E}_{R}(\mathsf{pre}(e(\mathbf{x}'), f_{j}) \mid \mathbf{x})$$

Pre-Expectation

Definition (Pre-expectation for fixed PWL transitions)

For a PWL transition τ the pre-expectation operator can be written as:

$$\mathsf{pre}\mathbb{E}_{\tau}(e(\mathbf{x}')) = \sum_{j=1}^{k} p_{j}\mathbb{E}_{R}(\mathsf{pre}(e(\mathbf{x}'), f_{j}) \mid \mathbf{x})$$

where $\operatorname{pre}(e(\mathbf{x}'), f_j)$ denotes the expression obtained by applying f_j to all variables of \mathbf{x} occurring in $e(\mathbf{x})$. $\mathbb{E}_R(\mathbf{r})$ denotes the expectation of \mathbf{r} over \mathcal{D}_R .

$e(\mathbf{x}') = 1 + 2x' - 3y'$

$$e(\mathbf{x}') = 1 + 2\mathbf{x}' - 3\mathbf{y}'$$

$$\tau_1 : \langle \mathbf{g}_1, \mathcal{F}_1 \rangle \text{ with:}$$

• $\mathbf{g}_1 : \mathbf{x} + \mathbf{y} \le 10$
• $\mathcal{F}_1(\mathbf{x}, \mathbf{r}) = \begin{cases} f_1 : \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{c} \end{pmatrix} + \begin{pmatrix} r_1 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} , p_1 = \frac{3}{4}$
 $f_2 : \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{c} \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} , p_2 = \frac{1}{4}$

$$\mathsf{pre}\mathbb{E}_{\tau_1}(1+2x'-3y') =$$

$$\mathsf{pre}\mathbb{E}_{\tau_1}(1+2x'-3y') = \sum_{j=1}^2 p_j \cdot \mathbb{E}_{\mathcal{D}_R}(\mathsf{pre}(1+2x'-3y',\,f_j) \mid \boldsymbol{x})$$

$$pre\mathbb{E}_{\tau_1}(1+2x'-3y') = \sum_{j=1}^2 p_j \cdot \mathbb{E}_{\mathcal{D}_R}(pre(1+2x'-3y', f_j) \mid \mathbf{x})$$
$$= \frac{3}{4} \cdot \mathbb{E}_{\mathcal{D}_R}(1+2 \cdot (x+r_1) - 3 \cdot (y+2))$$
$$+ \frac{1}{4} \cdot \mathbb{E}_{\mathcal{D}_R}(1+2x-3y)$$

$$pre\mathbb{E}_{\tau_1}(1+2x'-3y') = \sum_{j=1}^2 p_j \cdot \mathbb{E}_{\mathcal{D}_R}(pre(1+2x'-3y', f_j) \mid \mathbf{x})$$

= $\frac{3}{4} \cdot \mathbb{E}_{\mathcal{D}_R}(1+2 \cdot (x+r_1)-3 \cdot (y+2))$
+ $\frac{1}{4} \cdot \mathbb{E}_{\mathcal{D}_R}(1+2x-3y)$
= $-\frac{7}{2} + 2x - 3y + \frac{3}{2} \cdot \mathbb{E}_R(r_1)$

$$pre\mathbb{E}_{\tau_1}(1+2x'-3y') = \sum_{j=1}^2 p_j \cdot \mathbb{E}_{\mathcal{D}_R}(pre(1+2x'-3y', f_j) \mid \mathbf{x})$$

$$= \frac{3}{4} \cdot \mathbb{E}_{\mathcal{D}_R}(1+2 \cdot (x+r_1)-3 \cdot (y+2))$$

$$+ \frac{1}{4} \cdot \mathbb{E}_{\mathcal{D}_R}(1+2x-3y)$$

$$= -\frac{7}{2} + 2x - 3y + \frac{3}{2} \cdot \mathbb{E}_R(r_1)$$

$$r_1 = U[0,2] \Rightarrow \mathbb{E}_R(r_1) = 1$$

$$pre\mathbb{E}_{\tau_1}(1+2x'-3y') = \sum_{j=1}^2 p_j \cdot \mathbb{E}_{\mathcal{D}_R}(pre(1+2x'-3y', f_j) \mid \mathbf{x})$$

$$= \frac{3}{4} \cdot \mathbb{E}_{\mathcal{D}_R}(1+2 \cdot (x+r_1)-3 \cdot (y+2))$$

$$+ \frac{1}{4} \cdot \mathbb{E}_{\mathcal{D}_R}(1+2x-3y)$$

$$= -\frac{7}{2} + 2x - 3y + \frac{3}{2} \cdot \mathbb{E}_R(r_1)$$

$$r_1 = U[0,2] \Rightarrow \mathbb{E}_R(r_1) = 1$$

$$pre\mathbb{E}_{\tau_1}(1+2x-3y) = -2 + 2x - 3y$$

Pre-expectation (continued)

Definition (Pre-expectation over all transitions)

The expected value of *e* over the post-state distribution starting from state (\mathbf{x}_n, n) is the value of the pre-expectation pre $\mathbb{E}(e')$ evaluated over the current state (\mathbf{x}_n, n) :

$$\mathbb{E}_{\mathcal{D}_n}(e) = \mathsf{pre}\mathbb{E}(e') = \sum_{ au_i \in \mathcal{T}} \mathbb{1}_{\mathbf{g}_{ au_i}}(oldsymbol{x}_n) \cdot \mathsf{pre}\mathbb{E}_{ au_i}(e')$$

Definition (Expectation invariants)

An expression *e* over the program variables *X* is called an expectation invariant (*EI*) if and only if $\mathbb{E}_{\mathcal{D}_i}(e) \ge 0$ for all $i \ge 0$.

Definition (Expectation invariants)

An expression e over the program variables X is called an expectation invariant (*EI*) if and only if $\mathbb{E}_{\mathcal{D}_i}(e) \ge 0$ for all $i \ge 0$.

Example

We show that e(x) = 2y - x is an expectation invariant.

Definition (Expectation invariants)

An expression e over the program variables X is called an expectation invariant (*EI*) if and only if $\mathbb{E}_{\mathcal{D}_i}(e) \ge 0$ for all $i \ge 0$.

Example

We show that $e(\mathbf{x}) = 2y - x$ is an expectation invariant.

Definition (Expectation invariants)

An expression e over the program variables X is called an expectation invariant (*EI*) if and only if $\mathbb{E}_{\mathcal{D}_i}(e) \ge 0$ for all $i \ge 0$.

Example

We show that $e(\mathbf{x}) = 2y - x$ is an expectation invariant.

Definition (Expectation invariants)

An expression e over the program variables X is called an expectation invariant (*EI*) if and only if $\mathbb{E}_{\mathcal{D}_i}(e) \ge 0$ for all $i \ge 0$.

Example

We show that $e(\mathbf{x}) = 2y - x$ is an expectation invariant.

② $\mathbb{E}_{D_i}(2y - x) = 2 \cdot \mathbb{E}_{D_i}(y) - \mathbb{E}_{D_i}(x) \ge 0$ for all *i* ≥ 0 as $\mathbb{E}_{D_i}(y)$ is always larger than $\mathbb{E}_{D_i}(x)$

 \Rightarrow *e* is an expectation invariant of ${\cal P}$

Inductive Expectation Invariants

Definition (Inductive expectation invariants)

Let $E = \{e_1, \ldots, e_k\}$ be a set of expressions. The set E forms an inductive expectation invariant iff for each e_j , $j \in [1,k]$ the following holds:

•
$$\mathbb{E}_{\mathcal{D}_0}(e_j) \ge 0$$

• $\operatorname{pre}\mathbb{E}(e_j) = \lambda_0 + \sum_{i=1}^k \lambda_i e_i, \ \lambda_i, \ge 0$

Inductive Expectation Invariants

Definition (Inductive expectation invariants)

Let $E = \{e_1, \ldots, e_k\}$ be a set of expressions. The set E forms an inductive expectation invariant iff for each e_j , $j \in [1,k]$ the following holds:

•
$$\mathbb{E}_{\mathcal{D}_0}(e_j) \ge 0$$

• $\operatorname{pre}\mathbb{E}(e_j) = \lambda_0 + \sum_{i=1}^k \lambda_i e_i, \ \lambda_i, \ge 0$

Theorem

Let $E : \{e_1, \ldots, e_m\}$ be an inductive expectation invariant. It follows that each $e_j \in E$ is an expectation invariant.

Cones of expressions

Definition (Cones)

Let $E = \{e_1, \ldots, e_k\}$ be a finite set of program expressions over the program variables \mathbf{x} . The set of conic combinations (the finitely generated cone) of E is defined as

$$\mathsf{Cone}(E) = \left\{ \lambda_0 + \sum_{i=1}^k \lambda_i e_i \mid \lambda_i \in \mathbb{R}^+, \, 0 \le i \le k \right\}$$

Cones of expressions

Definition (Cones)

Let $E = \{e_1, \ldots, e_k\}$ be a finite set of program expressions over the program variables x. The set of conic combinations (the finitely generated cone) of E is defined as

$$\mathsf{Cone}(E) = \left\{ \lambda_0 + \sum_{i=1}^k \lambda_i e_i \mid \lambda_i \in \mathbb{R}^+, \, 0 \leq i \leq k
ight\}$$

Theorem

If E is an inductive expectation invariant, then $e \in Cone(E)$ is an expectation invariant.

$$E = \{e_1 : y - x, e_2 : 2y + c\}$$

• Without proof e_1 , e_2 are Els

$$E = \{e_1 : y - x, e_2 : 2y + c\}$$

• Without proof e_1 , e_2 are Els

Consider $e = 4y - 2x + c = 2 \cdot e_1 + e_2$

$$E = \{e_1 : y - x, e_2 : 2y + c\}$$

• Without proof e_1 , e_2 are Els
Consider $e = 4y - 2x + c = 2 \cdot e_1 + e_2$
 $\Rightarrow e \in \text{Cone}(E)$

$$E = \{e_1 : y - x, e_2 : 2y + c\}$$
• Without proof e_1, e_2 are Els
Consider $e = 4y - 2x + c = 2 \cdot e_1 + e_2$
 $\Rightarrow e \in \text{Cone}(E)$
 $\Rightarrow e \text{ is an El}$

Pre-Expectation of cones

Definition (Pre-expectation over a single transitions)

Let $E = \{e_1, \ldots, e_m\}$ be a set of expressions, and let $\tau : \langle \mathbf{g}, \mathcal{F} \rangle$ be a transition. The pre-expectation of a cone I: Cone(E) with respect to τ is defined as:

$$\mathsf{pre}\mathbb{E}_{ au}(I) = \{(e, oldsymbol{\lambda}) \in \mathbb{A}(oldsymbol{x}) imes \mathbb{R}^m \mid oldsymbol{\lambda} \ge 0 \land \exists \mu \ge 0 (\mathsf{pre}\mathbb{E}_{ au}(e))$$

 $\equiv \sum_{j=1}^m \lambda_j e_j + \mu)\}$

Pre-Expectation of cones (continued)

Definition (Pre-Expectation over all transitions)

Let *I* be a finitely generated cone of expressions. The pre-expectation over all transitions in $\mathcal{T} = \{\tau_1, \ldots, \tau_k\}$ can be computed as:

$$\mathsf{pre}\mathbb{E}(I) = \{e \in \mathbb{A}(\mathbf{x}) \mid \exists \mathbf{\lambda} \geq \mathsf{O}(e, \mathbf{\lambda}) \in igcap_{j=1}^k \mathsf{pre}\mathbb{E}_{ au_j}(I)\}$$

Fixed points for Expectation Invariants

Algorithm

Algorithm

• Create the initial cone I_0

$$l_0: \mathsf{Cone}(\{1, x_1 - \mathbb{E}_{\mathcal{D}_0}(x_1), \mathbb{E}_{\mathcal{D}_0}(x_1) - x_1, \dots, x_n - \mathbb{E}_{\mathcal{D}_0}(x_n), \mathbb{E}_{\mathcal{D}_0}(x_n) - x_n\})$$

Algorithm

• Create the initial cone I_0

$$I_0: \mathsf{Cone}(\{1, x_1 - \mathbb{E}_{\mathcal{D}_0}(x_1), \mathbb{E}_{\mathcal{D}_0}(x_1) - x_1, \dots, x_n - \mathbb{E}_{\mathcal{D}_0}(x_n), \mathbb{E}_{\mathcal{D}_0}(x_n) - x_n\})$$

In each iteration

- Compute $\operatorname{pre}\mathbb{E}(I_n)$
- Compute $I_{n+1} = \operatorname{pre}\mathbb{E}(I_n) \cap I_0$

Algorithm

• Create the initial cone I_0

$$I_0: \mathsf{Cone}(\{1, x_1 - \mathbb{E}_{\mathcal{D}_0}(x_1), \mathbb{E}_{\mathcal{D}_0}(x_1) - x_1, \dots, x_n - \mathbb{E}_{\mathcal{D}_0}(x_n), \mathbb{E}_{\mathcal{D}_0}(x_n) - x_n\})$$

- In each iteration
 - Compute $\operatorname{pre}\mathbb{E}(I_n)$
 - Compute $I_{n+1} = \operatorname{pre}\mathbb{E}(I_n) \cap I_0$
- Repeat until $I^* = I_{n+1} = I_n$
 - Might not converge

Algorithm

• Create the initial cone I_0

$$I_0: \mathsf{Cone}(\{1, x_1 - \mathbb{E}_{\mathcal{D}_0}(x_1), \mathbb{E}_{\mathcal{D}_0}(x_1) - x_1, \dots, x_n - \mathbb{E}_{\mathcal{D}_0}(x_n), \mathbb{E}_{\mathcal{D}_0}(x_n) - x_n\})$$

- In each iteration
 - Compute $\operatorname{pre}\mathbb{E}(I_n)$
 - Compute $I_{n+1} = \operatorname{pre}\mathbb{E}(I_n) \cap I_0$
- Repeat until $I^* = I_{n+1} = I_n$
 - Might not converge
- \Rightarrow Resulting cone I^* contains only Els

$$\begin{split} I_0 &= \mathsf{Cone}(\{1, x - \mathbb{E}_{\mathcal{D}_0}(x), \mathbb{E}_{\mathcal{D}_0}(x) - x, \mathbb{E}_{\mathcal{D}_0}(y) - y, y - \mathbb{E}_{\mathcal{D}_0}(y), \\ & \mathbb{E}_{\mathcal{D}_0}(c) - c, c - \mathbb{E}_{\mathcal{D}_0}(c)\}) \end{split}$$

$$\begin{split} l_0 &= \mathsf{Cone}(\{1, x - \mathbb{E}_{\mathcal{D}_0}(x), \mathbb{E}_{\mathcal{D}_0}(x) - x, \mathbb{E}_{\mathcal{D}_0}(y) - y, y - \mathbb{E}_{\mathcal{D}_0}(y), \\ & \mathbb{E}_{\mathcal{D}_0}(c) - c, c - \mathbb{E}_{\mathcal{D}_0}(c)\}) \\ &= \mathsf{Cone}(\{1, x + 1, -1 - x, y - 1, 1 - y, c, -c\}) \end{split}$$

$$\begin{split} I_0 &= \mathsf{Cone}(\{1, x - \mathbb{E}_{\mathcal{D}_0}(x), \mathbb{E}_{\mathcal{D}_0}(x) - x, \mathbb{E}_{\mathcal{D}_0}(y) - y, y - \mathbb{E}_{\mathcal{D}_0}(y), \\ & \mathbb{E}_{\mathcal{D}_0}(c) - c, c - \mathbb{E}_{\mathcal{D}_0}(c)\}) \\ &= \mathsf{Cone}(\{1, x + 1, -1 - x, y - 1, 1 - y, c, -c\}) \\ \mathsf{pre}\mathbb{E}_{\tau_1}(I_0) &= \{(1, (1, 0, 0, 0, 0)^T), (x + 1, (0.75, 1, 0, 0, 0, 0)^T), \\ & (y - 1, (2.5, 0, 1, 0, 0, 0)^T), (1 - y, (1.5, 0, 0, 1, 0, 0)^T), \\ & (c, (1, 0, 0, 0, 1, 0)^T), \ldots\} \end{split}$$

$$\begin{split} I_0 &= \operatorname{Cone}(\{1, x - \mathbb{E}_{\mathcal{D}_0}(x), \mathbb{E}_{\mathcal{D}_0}(x) - x, \mathbb{E}_{\mathcal{D}_0}(y) - y, y - \mathbb{E}_{\mathcal{D}_0}(y), \\ & \mathbb{E}_{\mathcal{D}_0}(c) - c, c - \mathbb{E}_{\mathcal{D}_0}(c)\}) \\ &= \operatorname{Cone}(\{1, x + 1, -1 - x, y - 1, 1 - y, c, -c\}) \\ \mathsf{pre}\mathbb{E}_{\tau_1}(I_0) &= \{(1, (1, 0, 0, 0, 0)^T), (x + 1, (0.75, 1, 0, 0, 0, 0)^T), \\ & (y - 1, (2.5, 0, 1, 0, 0, 0)^T), (1 - y, (1.5, 0, 0, 1, 0, 0)^T), \\ & (c, (1, 0, 0, 0, 1, 0)^T), \ldots\} \\ \mathsf{pre}\mathbb{E}_{\tau_2}(I_0) &= \{(e, \lambda) \mid \forall e \in I_0, \lambda \text{ corresponding to } e\} \end{split}$$

$$\begin{split} l_0 &= \operatorname{Cone}(\{1, x - \mathbb{E}_{\mathcal{D}_0}(x), \mathbb{E}_{\mathcal{D}_0}(x) - x, \mathbb{E}_{\mathcal{D}_0}(y) - y, y - \mathbb{E}_{\mathcal{D}_0}(y), \\ & \mathbb{E}_{\mathcal{D}_0}(c) - c, c - \mathbb{E}_{\mathcal{D}_0}(c)\}) \\ &= \operatorname{Cone}(\{1, x + 1, -1 - x, y - 1, 1 - y, c, -c\}) \\ \mathsf{pre}\mathbb{E}_{\tau_1}(l_0) &= \{(1, (1, 0, 0, 0, 0, 0)^T), (x + 1, (0.75, 1, 0, 0, 0, 0, 0)^T), \\ & (y - 1, (2.5, 0, 1, 0, 0, 0)^T), (1 - y, (1.5, 0, 0, 1, 0, 0)^T), \\ & (c, (1, 0, 0, 0, 1, 0)^T), \dots\} \\ \mathsf{pre}\mathbb{E}_{\tau_2}(l_0) &= \{(e, \lambda) \mid \forall e \in l_0, \lambda \text{ corresponding to } e\} \\ \mathsf{pre}\mathbb{E}(l_0) &= \{1, x + 1, y - 1, 1 - y, c\} \end{split}$$

$$\begin{split} l_0 &= \operatorname{Cone}(\{1, x - \mathbb{E}_{\mathcal{D}_0}(x), \mathbb{E}_{\mathcal{D}_0}(x) - x, \mathbb{E}_{\mathcal{D}_0}(y) - y, y - \mathbb{E}_{\mathcal{D}_0}(y), \\ &= \mathbb{E}_{\mathcal{D}_0}(c) - c, c - \mathbb{E}_{\mathcal{D}_0}(c)\}) \\ &= \operatorname{Cone}(\{1, x + 1, -1 - x, y - 1, 1 - y, c, -c\}) \\ \text{pre}\mathbb{E}_{\tau_1}(l_0) &= \{(1, (1, 0, 0, 0, 0, 0)^T), (x + 1, (0.75, 1, 0, 0, 0, 0, 0)^T), \\ &\quad (y - 1, (2.5, 0, 1, 0, 0, 0)^T), (1 - y, (1.5, 0, 0, 1, 0, 0)^T), \\ &\quad (c, (1, 0, 0, 0, 1, 0)^T), \dots\} \\ \text{pre}\mathbb{E}_{\tau_2}(l_0) &= \{(e, \lambda) \mid \forall e \in I_0, \lambda \text{ corresponding to } e\} \\ \text{pre}\mathbb{E}(l_0) &= \{1, x + 1, y - 1, 1 - y, c\} \\ l_1 &= l_0 \cap \operatorname{pre}\mathbb{E}(l_0) = \{1, x + 1, y - 1, 1 - y, c\} \end{split}$$

$$\begin{split} l_0 &= \operatorname{Cone}(\{1, x - \mathbb{E}_{\mathcal{D}_0}(x), \mathbb{E}_{\mathcal{D}_0}(x) - x, \mathbb{E}_{\mathcal{D}_0}(y) - y, y - \mathbb{E}_{\mathcal{D}_0}(y), \\ &= \mathbb{E}_{\mathcal{D}_0}(c) - c, c - \mathbb{E}_{\mathcal{D}_0}(c)\}) \\ &= \operatorname{Cone}(\{1, x + 1, -1 - x, y - 1, 1 - y, c, -c\}) \\ \text{pre}\mathbb{E}_{\tau_1}(l_0) &= \{(1, (1, 0, 0, 0, 0, 0)^T), (x + 1, (0.75, 1, 0, 0, 0, 0, 0)^T), \\ &\quad (y - 1, (2.5, 0, 1, 0, 0, 0)^T), (1 - y, (1.5, 0, 0, 1, 0, 0)^T), \\ &\quad (c, (1, 0, 0, 0, 1, 0)^T), \dots\} \\ \text{pre}\mathbb{E}_{\tau_2}(l_0) &= \{(e, \lambda) \mid \forall e \in l_0, \lambda \text{ corresponding to } e\} \\ \text{pre}\mathbb{E}(l_0) &= \{1, x + 1, y - 1, 1 - y, c\} \\ l_1 &= l_0 \cap \operatorname{pre}\mathbb{E}(l_0) = \{1, x + 1, y - 1, 1 - y, c\} \\ l^* &= l_1 = l_1 \cap \operatorname{pre}\mathbb{E}(l_0) \end{split}$$

Standard dual widening

Definition (Standard dual widening)

Let $I_1 = \text{Cone}(e_1, \ldots, e_k)$ and $I_2 = \text{Cone}(g_1, \ldots, g_k)$ be two finitely generated cones such that $I_1 \supseteq I_2$. The dual widening operator $I_1 \widetilde{\nabla} I_2$ is defined as $I = \text{Cone}(g_i \mid g_i \in I_2)$. Cone I is the cone generated by generators of I_1 that are also in I_2

Standard dual widening

Definition (Standard dual widening)

Let $I_1 = \text{Cone}(e_1, \ldots, e_k)$ and $I_2 = \text{Cone}(g_1, \ldots, g_k)$ be two finitely generated cones such that $I_1 \supseteq I_2$. The dual widening operator $I_1 \widetilde{\nabla} I_2$ is defined as $I = \text{Cone}(g_i \mid g_i \in I_2)$. Cone I is the cone generated by generators of I_1 that are also in I_2

• If $\widetilde{\nabla}$ is applied to two successive cones in the algorithm the convergence is ensured

Assume \mathcal{P} is a probabilistic program s.t. $\pm(x-1) \in I_0$ and the pre-expectations for these expressions alternate in each iteration.

Assume \mathcal{P} is a probabilistic program s.t. $\pm(x-1) \in I_0$ and the pre-expectations for these expressions alternate in each iteration.

$$I_1 = \text{Cone}\{1, x - 1\} = I_3 = \cdots$$

 $I_2 = \text{Cone}\{1, -x + 1\} = I_4 = \cdots$
 $I_1 \widetilde{\nabla} I_2 = \text{Cone}\{1\} = I^*$

Assume \mathcal{P} is a probabilistic program s.t. $\pm(x-1) \in I_0$ and the pre-expectations for these expressions alternate in each iteration.

$$I_1 = \text{Cone}\{1, x - 1\} = I_3 = \cdots$$

 $I_2 = \text{Cone}\{1, -x + 1\} = I_4 = \cdots$
 $I_1 \widetilde{\nabla} I_2 = \text{Cone}\{1\} = I^*$

 \Rightarrow The problem of alternation is solved

Experimental results from [2]

|X|: Number of program variables#: Number of needed iterationsTime: Runtime in seconds

 $\begin{array}{l} |\mathcal{T}| \colon \text{Number of transitions} \\ \widetilde{\nabla} \colon \text{Dual widening used or not} \\ \varepsilon = 0.05s \end{array}$

Name	X	$ \mathcal{T} $	#	$\widetilde{\nabla}$	Time
MOT-EXAMPLE	3	2	2	No	$\leq \varepsilon$
MOT-EX-LOOP-INV	3	2	2	No	0.10
MOT-EX-POLY	9	2	2	No	0.18
2D-WALK	4	4	7	Yes	$\leq \varepsilon$
AGGREGATE-RV	3	2	2	No	$\leq \varepsilon$
HARE-TURTLE	3	2	2	No	$\leq \varepsilon$
COUPON5	2	5	2	No	$\leq \varepsilon$
HAWK-DOVE-FAIR	6	2	2	No	$\leq \varepsilon$
HAWK-DOVE-BIAS	6	2	2	No	$\leq \varepsilon$
FAULTY-INCR	2	2	7	Yes	$\leq \varepsilon$

Comparrison with PRINSYS

- Out of 26 tests only 3 IEI could be found by PRINSYS
- 26 IEI could be found with this approach
- Not checked whether PRINSYS finds IEI, that this approach does not find

Conclusion

- + Expectation invariants can be found fast
- + Mostly without usage of dual widening

- Unknown time complexity
- Vague descriptions in the paper
- Implementation is not sufficiently tested

Thanks for your attention!

If you have questions, feel free to ask.

Sources

- Aleksandar Chakarov and Sriram Sankaranarayanan.
 Expectation invariants for probabilistic program loops as fixed points.
 In Static Analysis 21st International Symposium, SAS 2014, Munich, Germany, September 11-13, 2014. Proceedings, pages 85–100, 2014.
- Aleksander Chakarov and Sriram Sankaranarayanan.
 Expectation invariants for probabilistic program loops as fixed points (extended version).
 Technical report, University of Colerado, 2014.
 - Thomas G. Dietterich.
 - Ensemble methods in machine learning.
 - In Multiple Classifier Systems, First International Workshop, MCS 2000, Cagliari, Italy, June 21-23, 2000, Proceedings, pages 1–15, 2000.

Semantics of probabilistic programs. J. Comput. Syst. Sci., 22(3):328–350, 1981.

Piotr Mardziel, Stephen Magill, Michael Hicks, and Mudhakar Srivatsa.

Dynamic enforcement of knowledge-based security policies.

In Proceedings of the 24th IEEE Computer Security Foundations Symposium, CSF 2011, Cernay-Ia-Ville, France, 27-29 June, 2011, pages 114–128, 2011.

Rajeev Motwani and Prabhakar Raghavan. *Randomized Algorithms.* Cambridge University Press, 1995.

Dealing with finite loops

- Need to guarantee that exactly one transition can be taken in every iteration
- No problem for infinite loops
- Finite loops need to be modified
 - Create an infinite loop
 - 2 Create an if-statement inside
 - If the original loop-guard is valid execute original loop-body
 - Else preserve all program variables

 \Rightarrow New transition that can be taken after the original loop would have been exited