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Introducion

Introduction

@ Probabilistic programs use random variables
= Properties of probabilistic programs are hard to verify

@ Expectation invariants are expressions over the program variables that
stay non-negative all the time
= They can be used to verify properties

o Compute expectation invariants as fixed points

e The presented algorithm computes a set of expectation invariants
e Only works with some restrictions to the program
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Introducion

Probabilistic programs

The following notion will be used:

@ P: A probabilistic program
X ={x1,...,xm}: A finite set of program variables
R ={n,...,n}: A finite set of random variables

Drg: The joint distribution of random variables R

x,r: The vectors denoting the valuation of all program and random
variables respectively
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Probabilistic Loops

Probabilistic loops

Definition (Probabilistic loops)
A probabilistic loop of P is a tuple (T, Dg,n), with
o 7 :{m,...,7k}: A finite set of probabilistic transitions
@ Dy: The initial probability distribution of the program variables

@ n: A loop counter
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Probabilistic Loops

Probabilistic loops

Definition (Probabilistic loops)
A probabilistic loop of P is a tuple (T, Dg,n), with
o 7 :{m,...,7k}: A finite set of probabilistic transitions
@ Dy: The initial probability distribution of the program variables
@ n: A loop counter
A probabilistic transition 7; : (g;,F;) consists of
o A guard gj(x) over X

@ An update function Fi(x,r) s.t. after taking the transition it holds:
x' = Fi(x,r).
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Probabilistic Loops

Example

int x := rand (0,2)
while (x<=10){
x:= x + rand (0,2)
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Probabilistic Loops

Example

Can be expressed as (T, Dy,n)
o 7T =
int x := rand (0,2) {m}
while (x<=10){
x:= x + rand (0,2)
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Probabilistic Loops

Example

Can be expressed as (T, Dy,n)
o7 = {7'1}

int x := rand (0,2) o gi(x) = x < 10

while (x<=10){
x:= x + rand (0,2)
}

P. Florian Expectation Invariants as Fixed Points February 3, 2015 6 /33



Probabilistic Loops

Example

Can be expressed as (T, Dy,n)
o7 = {7'1}
o gi(x)=x<10
o Fi(x,r)=x+n
o n=U(02)

int x := rand (0,2)
while (x<=10){

x:= x + rand (0,2)
}
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Probabilistic Loops

Example

Can be expressed as (T, Dy,n)
o7 = {7'1}
o gi(x)=x<10
o Fi(x,r)=x+n
o n=U(02)

e Dy: (x) = Ul[0,2]

int x := rand (0,2)
while (x<=10){

x:= x + rand (0,2)
}
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Probabilistic Loops

Example

Can be expressed as (T, Dy,n)
o7 = {7'1}

int x := rand (0,2) o gi(x) = x < 10

while (x<=10){ ° =X
x:= x + rand (0,2) fl(oxi): U(O—j—2)r1
} e Dy: (x) = U][0,2]
en=20
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Probabilistic Loops

Piecewise linear transitions

Definition (Piecewise linear transitions)

7 : (g,F(x,r)) is a piecewise linear transition if:
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Probabilistic Loops

Piecewise linear transitions

Definition (Piecewise linear transitions)
7 : (g,F(x,r)) is a piecewise linear transition if:
@ g is a linear guard over X

e F(x,r) is a piecewise linear function and may be written as:

fi : Aix + Bir + di, with probability p;
‘F(X7r) =
fx : Akx + Ber + di, with probability px
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7 : (g,F(x,r)) is a piecewise linear transition if:
@ g is a linear guard over X

e F(x,r) is a piecewise linear function and may be written as:
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Probabilistic Loops

Piecewise linear transitions

Definition (Piecewise linear transitions)
7 : (g,F(x,r)) is a piecewise linear transition if:
@ g is a linear guard over X

e F(x,r) is a piecewise linear function and may be written as:

fi : Aix + Bir + di, with probability p;

‘F(X7r) = :
fx : Akx + Ber + di, with probability px
o fi,...,fx: ldentifier for different outcomes of Bernoulli choices
@ pi,...,px: Probabilities for choosing the corresponding fork
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Probabilistic Loops

Piecewise linear transitions

Definition (Piecewise linear transitions)
7 : (g,F(x,r)) is a piecewise linear transition if:
@ g is a linear guard over X
e F(x,r) is a piecewise linear function and may be written as:

fi : Aix + Bir + di, with probability p;

‘F(X7r) = :
fx : Akx + Ber + di, with probability px
o fi,...,fx: ldentifier for different outcomes of Bernoulli choices
@ pi,...,px: Probabilities for choosing the corresponding fork

o A e R™™ B; ¢ R™! d; € R™ are used to model the changes to the
program variables occurring in the loop.
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Probabilistic Loops

Example

P. Florian

int x := rand (-5,3)
int y := rand (-3,5)
int ¢ :=0

while (true){
if (x+y<=10)
if flip(3/4)
x:= x + rand (0,2)

yi=vy + 2
ct+t
else
do nothing
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Probabilistic Loops

Example (continued)

The corresponding piecewise linear transition 7 : (g,F)
e g(x)=x+y<10
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Probabilistic Loops

Example (continued)

The corresponding piecewise linear transition 7 : (g,F)

e g(x)=x+y<10

o F(x,r)=
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Probabilistic Loops

Example (continued)

The corresponding piecewise linear transition 7 : (g,F)
e g(x)=x+y<10

X rn 0
il y ]+ 0 ]+ 2 . pL=3
c 0 1

o F(x,r)=
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Probabilistic Loops

Example (continued)

The corresponding piecewise linear transition 7 : (g,F)
e g(x)=x+y<10

X rn 0
sl y |+ 0 |+ 2 ,pl—%
o F(x,r) = ‘ 0 :
Pely |+[0 L P2=
c 1
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Probabilistic Loops

Restrictions for this approach
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Probabilistic Loops

Restrictions for this approach

@ Probabilistic loops are not nested
e For simplicity
o For all nested loops there are equivalent unnested variants

@ All transitions are piecewise linear

o Exactly one transition can be taken in every iteration

e The loop might need to be modified
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Probabilistic Loops

Restrictions for this approach

@ Probabilistic loops are not nested
e For simplicity
o For all nested loops there are equivalent unnested variants

All transitions are piecewise linear

Exactly one transition can be taken in every iteration

e The loop might need to be modified

All expressions e(x) are linear expressions
° e(x) =+ EZO Ai - X, cg,Ai €ER
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Probabilistic Loops

Execution model

To model an execution of a probabilistic loop we use tuples (x,,n) as
states
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Probabilistic Loops

Execution model

To model an execution of a probabilistic loop we use tuples (x,,n) as
states, where:

@ Xx, represents the program variables at loop-iteration n
@ (x0,0) is an initial state if xg is drawn from Dy
e (x;,i) is predecessor of (x;11,i + 1) if for a transition 7 : (g, F(x,r))

°o Xi=g
o dr € Dg, Xit1 :]:(X,',f')
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Probabilistic Loops

Execution model

To model an execution of a probabilistic loop we use tuples (x,,n) as
states, where:

@ Xx, represents the program variables at loop-iteration n
@ (x0,0) is an initial state if xg is drawn from Dy
e (x;,i) is predecessor of (x;11,i + 1) if for a transition 7 : (g, F(x,r))

°o Xi=g
o dr € Dg, Xit1 :]:(X,',I')

D; = {x; | (xj,i) is reachable from an initial state}

o D; is the distribution of program variables at iteration i
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Probabilistic Loops

Example execution

One possible execution:

((3,3,0)7,0)

P. Florian Expectation Invariants as Fixed Points ruary 3, 2015 12 /33




Probabilistic Loops

Example execution

One possible execution:

((3,3,007,0) 2 ((4,5.1)7,1)
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Probabilistic Loops

Example execution

One possible execution:

((3,3,007,0) & ((451)7,1) &
((6,7,2)",2)
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Probabilistic Loops

Example execution

One possible execution:

T1

((3,3,007,0) & ((451)7,1) &
((6,7,2)7,2) 2 ((6,7,2)7,3)

P. Florian Expectation Invariants as Fixed Points February 3, 2015 12 /33



Probabilistic Loops

Example execution

One possible execution:

T

((3,3,007,0) & ((451)7,1) &

;
((6,7,2)7,2) 2 ((6,72)7,3) = ...

February 3, 2015 12 /33
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Probabilistic Loops

Pre-Expectations

@ Assume we are currently in state (x,n)
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Probabilistic Loops

Pre-Expectations

@ Assume we are currently in state (x,n)

@ What is the expected value of e(x’) evaluated over all successor
states (x’,n+ 1)

o With respect to a single transition?

o With respect to all transitions?
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Probabilistic Loops

Pre-Expectations

@ Assume we are currently in state (x,n)

@ What is the expected value of e(x’) evaluated over all successor
states (x’,n+ 1)

o With respect to a single transition?

o With respect to all transitions?

= Pre-expectation of e(x’)
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Pre-Expectations

Pre-Expectation

Definition (Pre-expectation for fixed PWL transitions)

For a PWL transition 7 the pre-expectation operator can be written as:

preE- (e(x') = 3 pEr(pre(e(x).£) | x)
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Pre-Expectations

Pre-Expectation

Definition (Pre-expectation for fixed PWL transitions)

For a PWL transition 7 the pre-expectation operator can be written as:
prek( ZPJ]ER pre(e(x’),f) | x)

where pre(e(x’),f;) denotes the expression obtained by applying # to all
variables of x occurring in e(x).
Eg(r) denotes the expectation of r over Dg.
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Pre-Expectations

Example

e(x’) =14 2x" -3y
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Pre-Expectations

Example

e(x’) =14 2x" -3y

T1 - <g1,.7:1> with:
g :x+y<10

( X n 0
Ay |+ 0 |+ 2  pL=13
c 0 1
°-7:1()(7”): % 0
el y |+ 0 . P2= %
c 1
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Pre-Expectations

Example (continued)

pref., (1 +2x" —3y’) =
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Pre-Expectations

Example (continued)

2

pref., (1 +2x" —3y’) = ij -Epg(pre(1+2x" —3y', ;) | x)
j=1
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Pre-Expectations

Example (continued)

2

pref., (1 +2x" —3y’) = ij -Epg(pre(1+2x" —3y', ;) | x)
j=1

:Z.EDR(1—|—2-(X+r1)—3'(Y+2))

1
—1—1 -Epg (14 2x —3y)
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Pre-Expectations

Example (continued)

2

pref., (1 +2x" —3y’) = ij -Epg(pre(1+2x" —3y', ;) | x)
j=1

:Z.EDR(1—|—2-(X+r1)—3'(Y+2))

1
—1—1 -Epg (14 2x —3y)

7 3
:—§+2X—3)/+§‘ER(rl)
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Pre-Expectations

Example (continued)

2
pref., (1 +2x" —3y’) = ij -Epg(pre(1+2x" —3y', ;) | x)
j=1

:Z.EDR(1—|—2-(X+r1)—3'(Y+2))

1
—1—1 -Epg (14 2x —3y)

7 3
:—§+2X—3)/+§‘ER(rl)

n = U[O,2] = IER(rl) =1
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Pre-Expectations

Example (continued)

2

pref., (1 +2x" —3y’) = ij -Epg(pre(1+2x" —3y', ;) | x)
j=1

:Z.EDR(1—|—2-(X+r1)—3'(Y+2))

1
—1—2 -Epg (14 2x —3y)

7 3
:—§+2X—3)/+§‘ER(rl)

n = U[O,2] = IER(rl) =1
preE,, (1 +2x —3y) = -2 +2x — 3y
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Pre-Expectations

Pre-expectation (continued)

Definition (Pre-expectation over all transitions)

The expected value of e over the post-state distribution starting from
state (x,,n) is the value of the pre-expectation preE(e’) evaluated over the
current state (x,,n):

Ep,(e) = preE(e Zﬂgr xn) - preE..(€')
€T
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Expectation Invariants

Expectation Invariants

Definition (Expectation invariants)

An expression e over the program variables X is called an expectation
invariant (El) if and only if Ep,(e) > 0 for all i > 0.
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Expectation Invariants

Expectation Invariants

Definition (Expectation invariants)

An expression e over the program variables X is called an expectation
invariant (El) if and only if Ep,(e) > 0 for all i > 0.

Example
We show that e(x) = 2y — x is an expectation invariant.
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Expectation Invariants

Expectation Invariants

Definition (Expectation invariants)
An expression e over the program variables X is called an expectation
invariant (El) if and only if Ep,(e) > 0 for all i > 0.
Example
We show that e(x) = 2y — x is an expectation invariant.
Q Ep,(2y —x) =2 Epy(y) —Ep,(x) =3=0
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Expectation Invariants

Expectation Invariants

Definition (Expectation invariants)

An expression e over the program variables X is called an expectation
invariant (El) if and only if Ep,(e) > 0 for all i > 0.

Example
We show that e(x) = 2y — x is an expectation invariant.
Q Ep,(2y —x) =2-Ep,(y) —Ep,(x) =3>0

@ Ep,(2y —x) =2-Ep,(y) —Ep,(x) >0 forall i >0 as Ep,(y) is
always larger than Ep,(x)
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Expectation Invariants

Expectation Invariants

Definition (Expectation invariants)

An expression e over the program variables X is called an expectation
invariant (El) if and only if Ep,(e) > 0 for all i > 0.

Example
We show that e(x) = 2y — x is an expectation invariant.

Q Epy(2y — x) =2-Epy(y) —Epy(x) =3 >0
@ Ep,(2y —x) =2-Ep,(y) —Ep,(x) >0 forall i >0 as Ep,(y) is
always larger than Ep,(x)

= e is an expectation invariant of P
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Expectation Invariants

Inductive Expectation Invariants

Definition (Inductive expectation invariants)

Let E = {ey,...,ex} be a set of expressions. The set E forms an inductive
expectation invariant iff for each e;j, j € [1,k] the following holds:

Q Epy(e) >0

k
Q preE(ej) = Xo+ > Aiei, Ai, >0
i=1
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Expectation Invariants

Inductive Expectation Invariants

Definition (Inductive expectation invariants)

Let E = {ey,...,ex} be a set of expressions. The set E forms an inductive
expectation invariant iff for each e;j, j € [1,k] the following holds:

Q Epy(e) >0

K
Q preE(ej) = Mo+ > Aiei, Ai, >0

i=1
Let E : {e1,...,em} be an inductive expectation invariant. It follows that

each e; € E is an expectation invariant.
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Expectation Invariants

Cones of expressions

Definition (Cones)

Let E = {ey,...,ex} be a finite set of program expressions over the
program variables x. The set of conic combinations (the finitely generated
cone) of E is defined as

k
Cone(E) ={Xo+ > Niei |\ eRT, 0<i<k
=1
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Expectation Invariants

Cones of expressions

Definition (Cones)

Let E = {ey,...,ex} be a finite set of program expressions over the
program variables x. The set of conic combinations (the finitely generated
cone) of E is defined as

k
Cone(E) = )\0+Z)\,-e,- | eRT,0<i<k
i=1

If E is an inductive expectation invariant, then e € Cone(E) is an
expectation invariant.
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Expectation Invariants

Example

E={eg:y—x,e:2y+c}
@ Without proof e, e, are Els
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Expectation Invariants

Example

E={eg:y—x,e:2y+c}
@ Without proof e, e, are Els

Considere =4y —2x+c=2-e1+ &
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Expectation Invariants

Example

E={eg:y—x,e:2y+c}
@ Without proof e, e, are Els

Considere =4y —2x+c=2-e1+ &
= e € Cone(E)
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Expectation Invariants

Example

E={eg:y—x,e:2y+c}
@ Without proof e, e, are Els

Considere =4y —2x+c=2-e1+ &
= e € Cone(E)

= e is an El
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Expectation Invariants

Pre-Expectation of cones

Definition (Pre-expectation over a single transitions)

Let E = {e1,...,em} be a set of expressions, and let 7 : (g,F) be a
transition. The pre-expectation of a cone / : Cone(E) with respect to 7 is
defined as:

preE, (1) = {(e,A) € A(x) x R™ [X >0 A 3 > 0(preE,(e)

=Y Ag+p)}
j=1
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Expectation Invariants

Pre-Expectation of cones (continued)

Definition (Pre-Expectation over all transitions)

Let / be a finitely generated cone of expressions. The pre-expectation over
all transitions in 7 = {71, ...,7x} can be computed as:

k
preE(/) = {e € A(x) | IXA > 0(e,\) € ﬂ preE. (1)}
j=1
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Fixed points for Expectation Invariants

Fixed points for Expectation Invariants

Algorithm
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Fixed points for Expectation Invariants

Fixed points for Expectation Invariants

Algorithm
o Create the initial cone Iy

/0 o Cone({l, X1 — EDQ(X1)7ED0(X1) — X1y,
Xpn — ]EDO (Xn)7EDO (Xn) - Xn})
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Fixed points for Expectation Invariants

Fixed points for Expectation Invariants

Algorithm

o Create the initial cone Iy
/0 o Cone({l, X1 — EDQ(X1)7ED0(X1) — X1y,
Xpn — ]EDO (Xn)7EDO (Xn) - Xn})

@ In each iteration
o Compute preE(/,)
o Compute /11 = preE(/,) N fy
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Fixed points for Expectation Invariants

Fixed points for Expectation Invariants

Algorithm

o Create the initial cone Iy
/0 o Cone({l, X1 — EDQ(X1)7ED0(X1) — X1y,
Xpn — ]EDO (Xn)7EDO (Xn) - Xn})

@ In each iteration
o Compute preE(/,)
o Compute /11 = preE(/,) N fy

@ Repeat until I* = [11 =1,
e Might not converge
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Fixed points for Expectation Invariants

Fixed points for Expectation Invariants

Algorithm

o Create the initial cone Iy
/0 o Cone({l, X1 — EDQ(X1)7ED0(X1) — X1y,
Xpn — ]EDO (Xn)7EDO (Xn) - Xn})

@ In each iteration
o Compute preE(/,)
o Compute /11 = preE(/,) N fy

@ Repeat until I* = [11 =1,
e Might not converge

= Resulting cone /* contains only Els
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Fixed points for Expectation Invariants

Example

lo = Cone({1,x — Ep,(x), Ep,(x) — x.Ep,(y) — y.y — Epy(y),
EDO(C) — C,C— EDO(C)})
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Fixed points for Expectation Invariants

Example

lo = Cone({LX - EDO(X)7]EDO(X) - XvEDo(y) — Y.y - ]EDo(y)7
EDO(C) - GC— EDO(C)})
=Cone({1x+1,-1—x,y—11-y,.c,—c})
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Fixed points for Expectation Invariants

Example

lo = Cone({1,x — Ep,(x), Ep,(x) — x,Ep,(y) — v,y — Epy(y),
Ep,(c) — c,c —Ep,(c)})
=Cone({1x+1,-1—x,y—11-y,.c,—c})
preE, (I) = {(1,(1,0,0,0,0,0)7),(x + 1,(0.75,1,0,0,0,0) "),
(y —1,(2.5,0,1,0,0,0)7),(1 — y,(1.5,0,0,1,0,0) "),
(¢,(1,0,0,0,1,007),.. .}
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Fixed points for Expectation Invariants

Example

lo = Cone({1,x — Epy(x), Epy(x) — x.Ep,(y) — y.y — Epy(y),
Ep,(c) — c,c —Ep,(c)})
=Cone({1x+1,-1—x,y—11-y,.c,—c})
preE., (I) = {(1,(1,0,0,0,0,0)7),(x + 1,(0.75,1,0,0,0,0) "),
(y —1,(2.5,0,1,0,0,0)7),(1 — y,(1.5,0,0,1,0,0) "),
(¢,(1,0,0,0,1,0)7),...}
preE,, (lo) = {(e,\) | Ve € Iy, A corresponding to e}
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Fixed points for Expectation Invariants

Example

lo = Cone({1,x — Ep,(x), Ep,(x) — x,Epy(y) — .y — Ep,(y),
Epy(c) — c.c — Eny(c)})
=Cone({1x+1,-1—x,y—11-y,.c,—c})

preE., (Io) = {(1,(1,0,0,0,0,0)7),(x + 1,(0.75,1,0,0,0,0) "),
(y —1,(25,0,1,0,0,0)7),(1 — y,(1.5,0,0,1,0,0) "),
(¢,(1,0,0,0,1,0)7),...}

preE,, (lo) = {(e,\) | Ve € Iy, A corresponding to e}

preE(h) ={1,x+ 1,y — 1,1 —y,c}

P. Florian Expectation Invariants as Fixed Points February 3, 2015



Fixed points for Expectation Invariants

Example

lo = Cone({1,x — Ep, (x), Ep, (x) — x,Epy(y) — v,y — Epy(y),
Eny(c) - c.c — Eny(c)})
=Cone({1x+1,-1—x,y—11-y,.c,—c})
preE., (lo) = {(1,(1,0,0,0,0,0)7),(x + 1,(0.75,1,0,0,0,0) "),
(y —1,(25,0,1,0,0,0)7),(1 — y,(1.5,0,0,1,0,0) "),
(c,(1,0,0,0,1,0)7),...}
preE,, (lo) = {(e,\) | Ve € Iy, A corresponding to e}
preE(h) ={1,x+ 1,y — 1,1 —y,c}
h=1lnpreE(l) ={1,x+1y—11—y,c}
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Fixed points for Expectation Invariants

Example

lo = Cone({1,x — Ep, (x), Ep, (x) — x,Epy(y) — v,y — Epy(y),
Eny(c) - c.c — Eny(c)})
=Cone({1x+1,-1—x,y—11-y,.c,—c})
preE., (lo) = {(1,(1,0,0,0,0,0)7),(x + 1,(0.75,1,0,0,0,0) "),
(y —1,(25,0,1,0,0,0)7),(1 — y,(1.5,0,0,1,0,0) "),
(c,(1,0,0,0,1,0)7),...}
preE,, (lo) = {(e,\) | Ve € Iy, A corresponding to e}
preE(h) ={1,x+ 1,y — 1,1 —y,c}
h=1lnpreE(l) ={1,x+1y—11—y,c}
I* =1 = hnpreE(l)
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Fixed points for Expectation Invariants

Standard dual widening

Definition (Standard dual widening)

Let /; = Cone(ey,...,ex) and l, = Cone(gi, - . .,gx) be two finitely
generated cones such that Q~l2.

The dual widening operator 1V, is defined as | = Cone(g; | gi € h).
Cone [ is the cone generated by generators of /; that are also in &
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Fixed points for Expectation Invariants

Standard dual widening

Definition (Standard dual widening)

Let /; = Cone(ey,...,ex) and l, = Cone(gi, - . .,gx) be two finitely
generated cones such that Q~l2.

The dual widening operator 1V, is defined as | = Cone(g; | gi € h).
Cone [ is the cone generated by generators of /; that are also in &

o IfVis applied to two successive cones in the algorithm the
convergence is ensured
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Fixed points for Expectation Invariants

Example

Assume P is a probabilistic program s.t. +(x — 1) € Iy and the
pre-expectations for these expressions alternate in each iteration.
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Fixed points for Expectation Invariants

Example

Assume P is a probabilistic program s.t. +(x — 1) € Iy and the
pre-expectations for these expressions alternate in each iteration.

h=Cone{lx—1}=h=---
h=Cone{l, —x+1} =l =---
LVl = Cone{1} = I*
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Fixed points for Expectation Invariants

Example

Assume P is a probabilistic program s.t. +(x — 1) € Iy and the
pre-expectations for these expressions alternate in each iteration.

h=Cone{lx—1}=h=---
h=Cone{l, —x+1} =l =---
LVl = Cone{1} = I*

= The problem of alternation is solved
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Fixed points for Expectation Invariants

Experimental results from [2]

|X|: Number of program variables |7]: Number of transitions

#: Number of needed iterations V: Dual widening used or not

Time: Runtime in seconds e = 0.05s
Name (X[ | |T]|# | V | Time
MOT-EXAMPLE 3 2 | 2| No| <¢
MOT-EX-LOOP-INV | 3 2 | 2| No | 0.10
MOT-EX-POLY 9 2 | 2| No | 0.18
2D-WALK 4 4 | 7 |Yes| <c¢
AGGREGATE-RV 3 2 | 2| No| <e¢
HARE-TURTLE 3 2 | 2| No| <e¢
COUPON5 2 5 12| No| <e¢
HAWK-DOVE-FAIR 6 2 | 2] No| <¢
HAWK-DOVE-BIAS 6 2 | 2| No| <¢
FAULTY-INCR 2 2 | 7 |VYes| <c¢
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Fixed points for Expectation Invariants

Comparrison with PRINSYS

@ Out of 26 tests only 3 IEIl could be found by PRINSYS
@ 26 IEl could be found with this approach

@ Not checked whether PRINSYS finds IEI, that this approach does not
find
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Conclusion

Conclusion

+ Expectation invariants can be found fast

+ Mostly without usage of dual widening

- Unknown time complexity
- Vague descriptions in the paper

- Implementation is not sufficiently tested
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Conclusion

Thanks for your attention!

If you have questions, feel free to ask.

P. Florian Expectation Invariants as Fixed Points February 3, 2015 31/33



Conclusion
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Dealing with finite loops

@ Need to guarantee that exactly one transition can be taken in every
iteration

@ No problem for infinite loops

@ Finite loops need to be modified

@ Create an infinite loop

@ Create an if-statement inside

© If the original loop-guard is valid execute original loop-body

@ Else preserve all program variables
= New transition that can be taken after the original loop would
have been exited
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Example
int x := rand (-5,3) int x := rand (-5,3)
int y := rand (—3,5) int y := rand (—-3,5)
int ¢c . =0 int ¢c . =0
while (x+y<=10){ while (true){
if flip(3/4) if (x+y<=10)
x:= x + rand (0,2) if flip(3/4)
yi=vy + 2 x:= x + rand (0,2)
c++ yi=1y + 2
} c+
else
do nothing
}
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