Static Program Analysis

Lecture 9: Dataflow Analysis VIII

(Conditional Interval Analysis \& Java Virtual Machine)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RMNHAACHEN UNIVERSITY

noll@cs.rwth-aachen.de
http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Winter Semester 2014/15

Outline

(1) Recap: Taking Conditional Branches into Account
(2) Interval Analysis with Assertions
(3) The Java Virtual Machine

4 The Java Bytecode Verifier
(5) The Type-Level Abstract Interpreter

- Solution: introduce transfer functions for branches
- First approach: attach (negated) conditions as labels to control flow edges
- advantage: no language modification required
- disadvantage: entails extension of DFA framework
- will not further be considered here
- Second approach: encode conditions as assertions (statements)
- advantage: DFA framework can be reused
- disadvantage: entails extension of WHILE language
- the way we will follow

Extending the Syntax of WHILE Programs

Definition (Labelled WHILE programs with assertions)

The syntax of labelled WHILE programs with assertions is defined by the following context-free grammar:

$$
\begin{aligned}
a::= & z|x| a_{1}+a_{2}\left|a_{1}-a_{2}\right| a_{1} * a_{2} \in A E x p \\
b::= & t\left|a_{1}=a_{2}\right| a_{1}>a_{2}|\neg b| b_{1} \wedge b_{2} \mid b_{1} \vee b_{2} \in B E x p \\
c::= & {\left[\text { skip] }\left|[x:=a]^{\prime}\right| c_{1} ; c_{2} \mid\right.} \\
& \text { if }[b]^{\prime} \text { then } c_{1} \text { else } c_{2} \mid \text { while }[b]^{\prime} \text { do } c \mid[\text { assert } b]^{\prime} \in C m d
\end{aligned}
$$

To be done:

- Definition of transfer functions for assert blocks (depending on analysis problem)
- Idea: assertions as filters that let only "valid" information pass

Outline

(1) Recap: Taking Conditional Branches into Account
(2) Interval Analysis with Assertions
(3) The Java Virtual Machine

4 The Java Bytecode Verifier
(5) The Type-Level Abstract Interpreter

Interval Analysis with Assertions I

So far:

- The domain (Int, \subseteq) of intervals over \mathbb{Z} is defined by

$$
\text { Int } \left.:=\left\{\left[z_{1}, z_{2}\right] \mid z_{1} \in \mathbb{Z} \cup\{-\infty\}, z_{2} \in \mathbb{Z} \cup\{+\infty\}\right\}, z_{1} \leq z_{2}\right\} \cup\{\emptyset\}
$$

where

- $-\infty \leq z, z \leq+\infty$, and $-\infty \leq+\infty($ for all $z \in \mathbb{Z})$
- $\emptyset \subseteq J$ (for all $J \in \operatorname{Int}$)
- $\left[y_{1}, y_{2}\right] \subseteq\left[z_{1}, z_{2}\right]$ iff $y_{1} \geq z_{1}$ and $y_{2} \leq z_{2}$
- Transfer functions $\left\{\varphi_{I} \mid I \in L a b\right\}$ are defined by

$$
\varphi_{I}(\delta):= \begin{cases}\delta & \text { if } B^{\prime}=\text { skip or } B^{\prime} \in B E x p \\ \delta\left[x \mapsto \operatorname{val}_{\delta}(a)\right] & \text { if } B^{\prime}=(x:=a)\end{cases}
$$

where

$$
\begin{array}{ll}
\operatorname{val}_{\delta}(x):=\delta(x) & \operatorname{val}_{\delta}\left(a_{1}+a_{2}\right):=\operatorname{val}_{\delta}\left(a_{1}\right) \oplus \operatorname{val}_{\delta}\left(a_{2}\right) \\
\operatorname{val}_{\delta}(z):=[z, z] & \operatorname{val}_{\delta}\left(a_{1}-a_{2}\right):=\operatorname{val}_{\delta}\left(a_{1}\right) \ominus \operatorname{val}_{\delta}\left(a_{2}\right) \\
\operatorname{val}_{\delta}\left(a_{1} * a_{2}\right):=\operatorname{val}_{\delta}\left(a_{1}\right) \odot \operatorname{val}_{\delta}\left(a_{2}\right)
\end{array}
$$

with

$$
\emptyset \oplus J:=J \oplus \emptyset:=\emptyset \ominus J:=\ldots:=\emptyset
$$

$\left[y_{1}, y_{2}\right] \oplus\left[z_{1}, z_{2}\right]:=\left[y_{1}+z_{1}, y_{2}+z_{2}\right]$
$\left[y_{1}, y_{2}\right] \ominus\left[z_{1}, z_{2}\right]:=\left[y_{1}-z_{2}, y_{2}-z_{1}\right]$
$\left[y_{1}, y_{2}\right] \odot\left[z_{1}, z_{2}\right]:=\left[\prod\left\{y_{1} z_{1}, y_{1} z_{2}, y_{2} z_{1}, y_{2} z_{2}\right\}, \bigsqcup\left\{y_{1} z_{1}, y_{1} z_{2}, y_{2} z_{1}, y_{2} z_{2}\right\}\right]$

Interval Analysis with Assertions II

Additionally for $B^{\prime}=(\operatorname{assert} b), \delta: \operatorname{Var}_{c} \rightarrow \operatorname{Int}$ and $x \in \operatorname{Var}_{c}$:

$$
\varphi_{\prime}(\delta)(x):= \begin{cases}\emptyset & \text { if } Z=\emptyset \\ {\left[\prod_{\mathbb{Z} \cup\{-\infty\}} Z, \bigsqcup_{\mathbb{Z} \cup\{+\infty\}} Z\right]} & \text { otherwise }\end{cases}
$$

where

- $Z:=\left\{\sigma(x) \mid \sigma \in \Sigma_{\delta}\right.$, val $_{\sigma}(b)=$ true $\}$
- $\Sigma_{\delta}:=\left\{\sigma: \operatorname{Var}_{c} \rightarrow \mathbb{Z} \mid \forall y \in \operatorname{Var}_{c}: \sigma(y) \in \delta(y)\right\}$
(and thus $\Sigma_{\delta}=\emptyset$ iff $\delta(y)=\emptyset$ for some $y \in \operatorname{Var}_{c}$)
- val ${ }_{\sigma}: B E x p \rightarrow \mathbb{B}$ as before

Interval Analysis with Assertions III

Example 9.1

$$
\begin{aligned}
& \operatorname{Var}_{c}=\{\mathrm{x}, \mathrm{y}\}, \delta=(\underbrace{[-\infty, 2]}_{\mathrm{x}}, \underbrace{[0,+\infty]}_{\mathrm{y}}) \\
& \Longrightarrow \varphi_{\text {assert } \mathrm{x}>0}(\delta)=([1,2],[0,+\infty]) \\
& \varphi_{\text {assert } \mathrm{x}=\mathrm{y}}(\delta)=([0,2],[0,2]) \\
& \varphi_{\text {assert } \mathrm{x}>\mathrm{y}}(\delta)=([1,2],[0,1]) \\
& \varphi_{\text {assert } \mathrm{x}<\mathrm{y}}(\delta)=([-\infty, 2],[0,+\infty])
\end{aligned}
$$

Interval Analysis with Assertions III

Example 9.1

$$
\begin{aligned}
& \operatorname{Var}_{c}=\{\mathrm{x}, \mathrm{y}\}, \delta=(\underbrace{[-\infty, 2]}_{\mathrm{x}}, \underbrace{[0,+\infty]}_{\mathrm{y}}) \\
& \Longrightarrow \varphi_{\text {assert } \mathrm{x}>0}(\delta)=([1,2],[0,+\infty]) \\
& \varphi_{\text {assert } \mathrm{x}=\mathrm{y}}(\delta)=([0,2],[0,2]) \\
& \varphi_{\text {assert } \mathrm{x}>\mathrm{y}}(\delta)=([1,2],[0,1]) \\
& \varphi_{\text {assert } \mathrm{x}<\mathrm{y}}(\delta)=([-\infty, 2],[0,+\infty])
\end{aligned}
$$

Remarks:

- Again for $B^{\prime}=($ assert $b)$ and $\delta: \operatorname{Var}_{c} \rightarrow I n t, \varphi_{I}(\delta) \sqsubseteq \delta$ and hence $\Sigma_{\varphi /(\delta)} \subseteq \Sigma_{\delta}$ ("filter")
- Again if $\mathrm{Al}_{(}(x)=\emptyset$ for some $I \in L a b_{c}$ and $x \in \operatorname{Var}_{c}$, then I is unreachable (and $\mathrm{Al}_{l}(y)=\emptyset$ for all $y \in \operatorname{Var}_{c}$)

Interval Analysis with Assertions IV

Example 9.2 (Interval analysis for array index; cf. Example 7.6)

Interval Analysis with Assertions IV

Example 9.2 (Interval analysis for array index; cf. Example 7.6)

$$
\begin{aligned}
\varphi_{1}(J) & =[0,0] \\
\varphi_{2}(J) & =J \\
\varphi_{3}(J) & =J \cap[-\infty, 42] \\
\varphi_{4}(J) & =J \\
\varphi_{5}(\emptyset) & =\emptyset \\
\varphi_{5}\left(\left[i_{1}, i_{2}\right]\right) & =\left[i_{1}+1, i_{2}+1\right] \\
\varphi_{6}(J) & =J \cap[43,+\infty]
\end{aligned}
$$

Interval Analysis with Assertions IV

Example 9.2 (Interval analysis for array index; cf. Example 7.6)

Interval Analysis with Assertions IV

Example 9.2 (Interval analysis for array index; cf. Example 7.6)

Interval Analysis with Assertions IV

Example 9.2 (Interval analysis for array index; cf. Example 7.6)

Interval Analysis with Assertions IV

Example 9.2 (Interval analysis for array index; cf. Example 7.6)

Interval Analysis with Assertions IV

Example 9.2 (Interval analysis for array index; cf. Example 7.6)

Interval Analysis with Assertions IV

Example 9.2 (Interval analysis for array index; cf. Example 7.6)

Worklist algorithm with widening:

W	Al_{1}	Al_{2}	Al_{3}	Al_{4}	Al_{5}	Al_{6}	Al_{7}
$12,23,34,45,52,26,67$	$[-\infty,+\infty]$	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset
$23,34,45,52,26,67$	$[-\infty,+\infty]$	$[0,0]$	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset
$34,45,52,26,67$	$[-\infty,+\infty]$	$[0,0]$	$[0,0]$	\emptyset	\emptyset	\emptyset	\emptyset
$45,52,26,67$	$[-\infty,+\infty]$	$[0,0]$	$[0,0]$	$[0,0]$	\emptyset	\emptyset	\emptyset
$52,26,67$	$[-\infty,+\infty]$	$[0,0]$	$[0,0]$	$[0,0]$	$[0,0]$	\emptyset	\emptyset
$23,26,67$	$[-\infty,+\infty]$	$[0,+\infty]$	$[0,0]$	$[0,0]$	$[0,0]$	\emptyset	\emptyset

Interval Analysis with Assertions IV

Example 9.2 (Interval analysis for array index; cf. Example 7.6)

Interval Analysis with Assertions IV

Example 9.2 (Interval analysis for array index; cf. Example 7.6)

$\longrightarrow\left[\begin{array}{lll}\mathrm{i} & :=0\end{array}\right]^{1}$					$=$		
while $[i<=42]^{2}$	\rightarrow [asser	i > 4			$\left\{\begin{array}{l} =\mathrm{J} \\ =\mathrm{J} \end{array}\right.$		
		kip^{7}			$\left\{\begin{array}{l} =J \\ =\emptyset \end{array}\right.$		
$\left[\begin{array}{ccc} {[\mathrm{a}[\mathrm{i}]} & := & \ldots]^{4} \\ & & \\ \hline \end{array}\right.$				$\begin{array}{r} \varphi_{5}\left(\left[i_{1},\right.\right. \\ \varphi_{6} \end{array}$	$\begin{aligned} & =\left[i_{1}\right. \\ & =\mathrm{J} \end{aligned}$		
([i $:=\mathrm{i}+1]^{5}$	Worklist	gorith	m with	widening			
W	Al_{1}	Al_{2}	Al_{3}	Al_{4}	Al_{5}	Al_{6}	Al_{7}
12, 23, 34, 45, 52, 26, 67	$[-\infty,+\infty]$	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset
23, 34, 45, 52, 26, 67	$[-\infty,+\infty]$	[0, 0]	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset
34, 45, 52, 26, 67	$[-\infty,+\infty]$	[0, 0]	[0, 0]	\emptyset	\emptyset	\emptyset	\emptyset
45, 52, 26, 67	$[-\infty,+\infty]$	[0, 0]	[0, 0]	[0, 0]	\emptyset	\emptyset	\emptyset
52, 26, 67	$[-\infty,+\infty]$	[0, 0]	[0, 0]	[0, 0]	[0, 0]	\emptyset	\emptyset
23, 26, 67	$[-\infty,+\infty]$	$[0,+\infty]$	[0, 0]	[0, 0]	[0, 0]	\emptyset	\emptyset
34, 26, 67	$[-\infty,+\infty]$	[$0,+\infty$]	$[0,+\infty]$	[0, 0]	[0, 0]	\emptyset	\emptyset
45, 26, 67	$[-\infty,+\infty]$	[$0,+\infty$]	$[0,+\infty]$	$[0,+\infty]$	[0, 0]	\emptyset	\emptyset

Interval Analysis with Assertions IV

Example 9.2 (Interval analysis for array index; cf. Example 7.6)

Interval Analysis with Assertions IV

Example 9.2 (Interval analysis for array index; cf. Example 7.6)

Interval Analysis with Assertions IV

Example 9.2 (Interval analysis for array index; cf. Example 7.6)

Interval Analysis with Assertions IV

Example 9.2 (Interval analysis for array index; cf. Example 7.6)

Interval Analysis with Assertions V

Example 9.2 (Interval analysis for array index; continued)

Interval Analysis with Assertions V

Example 9.2 (Interval analysis for array index; continued)

$$
\begin{aligned}
\varphi_{1}(J) & =[0,0] \\
\varphi_{2}(J) & =J \\
\varphi_{3}(J) & =J \cap[-\infty, 42] \\
\varphi_{4}(J) & =J \\
\varphi_{5}(\emptyset) & =\emptyset \\
\varphi_{5}\left(\left[i_{1}, i_{2}\right]\right) & =\left[i_{1}+1, i_{2}+1\right] \\
\varphi_{6}(J) & =J \cap[43,+\infty]
\end{aligned}
$$

Interval Analysis with Assertions V

Example 9.2 (Interval analysis for array index; continued)

$$
\begin{aligned}
\varphi_{1}(J) & =[0,0] \\
\varphi_{2}(J) & =J \\
\varphi_{3}(J) & =J \cap[-\infty, 42] \\
\varphi_{4}(J) & =J \\
\varphi_{5}(\emptyset) & =\emptyset \\
\varphi_{5}\left(\left[i_{1}, i_{2}\right]\right) & =\left[i_{1}+1, i_{2}+1\right] \\
\varphi_{6}(J) & =J \cap[43,+\infty]
\end{aligned}
$$

Narrowing:

| | Al_{1} | Al_{2} | Al_{3} | Al_{4} | Al_{5} |
| :---: | :---: | :---: | :---: | :---: | :---: | $\mathrm{Al}_{6} \quad \mathrm{Al}_{7}{ }^{7}\left(\Phi_{S}\right) \quad[-\infty,+\infty][0,+\infty][0,+\infty][0,+\infty][0,+\infty][0,+\infty][43,+\infty]$

Interval Analysis with Assertions V

Example 9.2 (Interval analysis for array index; continued)

$$
\begin{aligned}
\varphi_{1}(J) & =[0,0] \\
\varphi_{2}(J) & =J \\
\varphi_{3}(J) & =J \cap[-\infty, 42] \\
\varphi_{4}(J) & =J \\
\varphi_{5}(\emptyset) & =\emptyset \\
\varphi_{5}\left(\left[i_{1}, i_{2}\right]\right) & =\left[i_{1}+1, i_{2}+1\right] \\
\varphi_{6}(J) & =J \cap[43,+\infty]
\end{aligned}
$$

Narrowing:

	Al_{1}	Al_{2}	Al_{3}	Al_{4}	Al_{5}	Al_{6}	Al_{7}
$\mathrm{fix}^{\nabla}\left(\Phi_{S}\right)$	$[-\infty,+\infty]$	$[0,+\infty]$	$[0,+\infty]$	$[0,+\infty]$	[$0,+\infty$]	$[0,+\infty]$	[43, + ${ }^{\text {a }}$]
$\Phi_{S}\left(\mathrm{fix}^{\nabla}\left(\Phi_{S}\right)\right)$	$[-\infty,+\infty]$	$[0,+\infty]$	[0, +]	[0, 42]	[0, +]	$[0,+\infty]$	$[43,+\infty]$

Interval Analysis with Assertions V

Example 9.2 (Interval analysis for array index; continued)

$$
\begin{aligned}
\varphi_{1}(J) & =[0,0] \\
\varphi_{2}(J) & =J \\
\varphi_{3}(J) & =J \cap[-\infty, 42] \\
\varphi_{4}(J) & =J \\
\varphi_{5}(\emptyset) & =\emptyset \\
\varphi_{5}\left(\left[i_{1}, i_{2}\right]\right) & =\left[i_{1}+1, i_{2}+1\right] \\
\varphi_{6}(J) & =J \cap[43,+\infty]
\end{aligned}
$$

Narrowing:

	Al_{1}	Al_{2}	Al_{3}	Al_{4}	Al_{5}	Al_{6}	Al_{7}
$\mathrm{fix}^{\nabla}\left(\Phi_{S}\right)$	$[-\infty,+\infty]$	[0,+m]	[0, +]	[0, +]	[$0,+\infty$]	[0, +]	[43, + ${ }^{\text {a }}$]
$\Phi_{S}\left(\mathrm{fix}^{\nabla}\left(\Phi_{S}\right)\right)$	$[-\infty,+\infty]$	$[0,+\infty]$	$[0,+\infty]$	[0, 42]	[$0,+\infty$]	$[0,+\infty]$	$[43,+\infty]$
$\Phi_{S}^{2}\left(\mathrm{fix}^{\nabla}\left(\Phi_{S}\right)\right)$	$[-\infty,+\infty]$	$[0,+\infty]$	$[0,+\infty]$	[0, 42]	[0, 42]	$[0,+\infty]$	$[43,+\infty]$

Interval Analysis with Assertions V

Example 9.2 (Interval analysis for array index; continued)

$$
\begin{aligned}
\varphi_{1}(J) & =[0,0] \\
\varphi_{2}(J) & =J \\
\varphi_{3}(J) & =J \cap[-\infty, 42] \\
\varphi_{4}(J) & =J \\
\varphi_{5}(\emptyset) & =\emptyset \\
\varphi_{5}\left(\left[i_{1}, i_{2}\right]\right) & =\left[i_{1}+1, i_{2}+1\right] \\
\varphi_{6}(J) & =J \cap[43,+\infty]
\end{aligned}
$$

Narrowing:

	Al_{1}	Al_{2}	Al_{3}	Al_{4}	Al_{5}	Al_{6}	Al_{7}
$\mathrm{fix}^{\nabla}\left(\Phi_{S}\right)$	$[-\infty,+\infty]$	[0, +]	[0, +]	[$0,+\infty$]	[0, +]	[0, +]	$[43,+\infty]$
$\Phi_{S}\left(\mathrm{fix}^{\nabla}\left(\Phi_{S}\right)\right)$	$[-\infty,+\infty]$	$[0,+\infty]$	$[0,+\infty]$	[0, 42]	$[0,+\infty]$	$[0,+\infty]$	$[43,+\infty]$
$\Phi_{S}^{2}\left(\mathrm{fix}^{\nabla}\left(\Phi_{S}\right)\right)$	$[-\infty,+\infty]$	$[0,+\infty]$	$[0,+\infty]$	[0, 42]	[0, 42]	$[0,+\infty]$	$[43,+\infty]$
$\Phi_{S}^{3}\left(\mathrm{fix}^{\nabla}\left(\Phi_{S}\right)\right)$	$[-\infty,+\infty]$	[0, 43]	$[0,+\infty]$	[0, 42]	[0, 42]	$[0,+\infty]$	$[43,+\infty]$

Interval Analysis with Assertions V

Example 9.2 (Interval analysis for array index; continued)

$$
\begin{aligned}
\varphi_{1}(J) & =[0,0] \\
\varphi_{2}(J) & =J \\
\varphi_{3}(J) & =J \cap[-\infty, 42] \\
\varphi_{4}(J) & =J \\
\varphi_{5}(\emptyset) & =\emptyset \\
\varphi_{5}\left(\left[i_{1}, i_{2}\right]\right) & =\left[i_{1}+1, i_{2}+1\right] \\
\varphi_{6}(J) & =J \cap[43,+\infty]
\end{aligned}
$$

Narrowing:

	Al_{1}	Al_{2}	Al_{3}	Al_{4}	Al_{5}	Al_{6}	Al_{7}
$\mathrm{fix}^{\nabla}\left(\Phi_{S}\right)$	$[-\infty,+\infty]$	[$0,+\infty$]	$[0,+\infty]$	$[0,+\infty]$	[0, +]	[0, +]	[43, $+\infty$]
$\Phi_{S}\left(\mathrm{fix}^{\nabla}\left(\Phi_{S}\right)\right)$	$[-\infty,+\infty]$	$[0,+\infty]$	$[0,+\infty]$	[0, 42]	$[0,+\infty]$	$[0,+\infty]$	$[43,+\infty]$
$\Phi_{S}^{2}\left(\mathrm{fix}^{\nabla}\left(\Phi_{S}\right)\right)$	$[-\infty,+\infty]$	$[0,+\infty]$	$[0,+\infty]$	[0, 42]	[0, 42]	$[0,+\infty]$	$[43,+\infty]$
$\Phi_{S}^{3}\left(\mathrm{fix}^{\nabla}\left(\Phi_{S}\right)\right)$	$[-\infty,+\infty]$	$[0,43]$	$[0,+\infty]$	[0, 42]	[0, 42]	$[0,+\infty]$	$[43,+\infty]$
$\Phi_{S}^{4}\left(\mathrm{fix}^{\nabla}\left(\Phi_{S}\right)\right)$	$[-\infty,+\infty]$	[0, 43]	$[0,43]$	[0, 42]	[0, 42]	[0, 43]	$[43,+\infty]$

Interval Analysis with Assertions V

Example 9.2 (Interval analysis for array index; continued)

$$
\begin{aligned}
\varphi_{1}(J) & =[0,0] \\
\varphi_{2}(J) & =J \\
\varphi_{3}(J) & =J \cap[-\infty, 42] \\
\varphi_{4}(J) & =J \\
\varphi_{5}(\emptyset) & =\emptyset \\
\varphi_{5}\left(\left[i_{1}, i_{2}\right]\right) & =\left[i_{1}+1, i_{2}+1\right] \\
\varphi_{6}(J) & =J \cap[43,+\infty]
\end{aligned}
$$

Narrowing:

| | Al_{1} | Al_{2} | Al_{3} | Al_{4} | Al_{5} | Al_{6} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | Al_{7}

Interval Analysis with Assertions V

Example 9.2 (Interval analysis for array index; continued)

$$
\begin{aligned}
\varphi_{1}(J) & =[0,0] \\
\varphi_{2}(J) & =J \\
\varphi_{3}(J) & =J \cap[-\infty, 42] \\
\varphi_{4}(J) & =J \\
\varphi_{5}(\emptyset) & =\emptyset \\
\varphi_{5}\left(\left[i_{1}, i_{2}\right]\right) & =\left[i_{1}+1, i_{2}+1\right] \\
\varphi_{6}(J) & =J \cap[43,+\infty]
\end{aligned}
$$

Narrowing:

	Al_{1}	Al_{2}	Al_{3}	Al_{4}	Al_{5}	Al_{6}	AI
$\mathrm{fix}^{\nabla}\left(\Phi_{S}\right)$	$[-\infty,+\infty]$	$[0,+\infty]$	$[0,+\infty]$	$[0,+\infty]$	[0, +]	[0, +]	[43, $+\infty$]
$\Phi_{S}\left(\mathrm{fix}^{\nabla}\left(\Phi_{S}\right)\right)$	$[-\infty,+\infty]$	$[0,+\infty]$	$[0,+\infty]$	[0, 42]	$[0,+\infty]$	$[0,+\infty]$	$[43,+\infty]$
$\Phi_{S}^{2}\left(\mathrm{fix}^{\nabla}\left(\Phi_{S}\right)\right.$)	$[-\infty,+\infty]$	$[0,+\infty]$	$[0,+\infty]$	[0, 42]	[0, 42]	$[0,+\infty]$	$[43,+\infty]$
$\Phi_{S}^{3}\left(\mathrm{fix}^{\nabla}\left(\Phi_{S}\right)\right.$)	$[-\infty,+\infty]$	[0, 43]	$[0,+\infty]$	[0, 42]	[0, 42]	$[0,+\infty]$	$[43,+\infty]$
$\Phi_{S}^{4}\left(\mathrm{fix}^{\nabla}\left(\Phi_{S}\right)\right.$)	$[-\infty,+\infty]$	[0, 43]	$[0,43]$	[0, 42]	[0, 42]	[0, 43]	$[43,+\infty]$
$\Phi_{S}^{5}\left(\mathrm{fix}^{\nabla}\left(\Phi_{S}\right)\right.$)	$[-\infty,+\infty]$	[0, 43]	[0, 43]	[0, 42]	[0, 42]	[0, 43]	[43, 43]
$\Phi_{S}^{6}\left(\mathrm{fix}^{\nabla}\left(\Phi_{S}\right)\right.$)	$[-\infty,+\infty]$	[0, 43]	[0, 43]	[0, 42]	[0, 42]	[0, 43]	[43, 43]

Outline

(1) Recap: Taking Conditional Branches into Account
(2) Interval Analysis with Assertions
(3) The Java Virtual Machine

44 The Java Bytecode Verifier
(5) The Type-Level Abstract Interpreter

Java Bytecode

- Intermediate language between high-level language and machine code
- Execution on Java Virtual Machine (JVM)

Java Bytecode

- Intermediate language between high-level language and machine code
- Execution on Java Virtual Machine (JVM)
- Advantages:
- architecture independency (especially for web applications)
- faster than pure (i.e., source code) interpretation
- Problem: security issues
- destruction of data
- modification of data
- disclosure of personal information
- modification of other programs

Java Security: the Sandbox

- Insulation layer providing indirect access to system resources
- Hardware access via API classes and methods
- Bytecode verification upon uploading
- well-typedness
- proper object referencing
- proper control flow

- Conventional stack-based abstract machine
- Supports object-oriented features: classes, methods, etc.
- Stack for intermediate results of expression evaluations
- Registers for source-level local variables and method parameters
- Both part of method activation record (and thus preserved across method calls)
- Method entry point specifies required number of registers $\left(m_{r}\right)$ and stack slots (m_{s}; for memory allocation)
- (Most) instructions are typed

Example: Factorial Function

Example 9.3 (Factorial function)

Java source code:
static int factorial(int n)
\{ int res;
for (res = 1; n > 0; n--) res = res * n; return res; \}

Example 9.3 (Factorial function)

Java source code:
static int factorial (int n)
\{ int res;
for (res $=1 ; \mathrm{n}>0 ; \mathrm{n}-$-) res $=$ res $* \mathrm{n}$; return res; \}

Corresponding JVM bytecode:
method static int factorial(int), 2 registers, 2 stack slots
1: istore $0 \quad / /$ store n in register 0
2: iconst_1 // push constant 1
3: istore 1 // store res in register 1
4: iload 0 // push n
5: ifle 12 // if <= 0, go to end
6: iload 1 // push res
7: iload 0 // push n
8: imul // res $* \mathrm{n}$ on top of stack
9: istore 1 // store in res
10: iinc 0, -1 // decrement n
11: goto 4 // go to loop header
12: iload 1 // push res
13: ireturn // return res to caller

JVM Instruction Set (excerpt)

iload n : push integer from register n
istore n : pop integer into register n
iconst_z: push integer z
aconst_null: push null reference
iadd: add two topmost integers on stack and push sum
getfield $C f \tau$: pops reference to object (of class C) and pushes value of field f (of type τ)
putfield $C f \tau$: pops value v (of type τ) and reference to object o (of class C) and assigns v to field f of o
new C : creates new object (of class C) and pushes reference invoke $C M \tau_{0}\left(\tau_{1}, \ldots, \tau_{n}\right)$: pops values v_{1}, \ldots, v_{n} (of type $\tau_{1}, \ldots, \tau_{n}$) and reference to object (of class C), calls method M with parameters v_{1}, \ldots, v_{n}, and pushes return value (of type τ_{0})
if_icmpeq $/$: pop two topmost integers from stack and jump to line / if equal
ireturn: return to caller with integer result on top of stack
$(\approx 200$ instructions in total)
RWTHAACHEN

Malicious Bytecode

Example 9.4 (Malicious bytecode)

1: iconst_5
2: iconst_1
3: putfield A f int
interprets second stack entry (5) as reference to object of class A and assigns first stack entry (1) to field f of this object

Outline

(1) Recap: Taking Conditional Branches into Account
(2) Interval Analysis with Assertions
(3) The Java Virtual Machine

4 The Java Bytecode Verifier
(5) The Type-Level Abstract Interpreter

Correctness of Bytecode

Conditions to ensure proper operation:
Type correctness: arguments of instructions always of expected type
No stack over-/underflow: never push to full stack or pop from empty stack

Code containment: PC must always point into the method code Register initialization: load from non-parameter register only after store Object initialization: constructor must be invoked before using class instance

Access control: operations must respect visibility modifiers (private/protected/public)

Correctness of Bytecode

Conditions to ensure proper operation:
Type correctness: arguments of instructions always of expected type No stack over-/underflow: never push to full stack or pop from empty stack

Code containment: PC must always point into the method code
Register initialization: load from non-parameter register only after store Object initialization: constructor must be invoked before using class instance

Access control: operations must respect visibility modifiers
(private/protected/public)

Options:

- dynamic checking at execution time ("defensive JVM approach")
- expensive, slows down execution
- static checking at loading time (here)
- verified code executable at full speed without extra dynamic checks

Summary: dataflow analysis applied to type-level abstract interpretation of JVM
(1) Association of type information with register and stack contents

- set of types forms a complete lattice
(2) Simulation of execution of instructions at type level
(3) Use dataflow analysis to cover all concrete executions
(9) Modularity: analysis proceeds method per method
(see X. Leroy: Java Bytecode Verification: Algorithms and Formalizations, Journal of Automated Reasoning 30(3-4), 2003, 235-269)

Outline

(1) Recap: Taking Conditional Branches into Account
(2) Interval Analysis with Assertions
(3) The Java Virtual Machine

4 The Java Bytecode Verifier
(5) The Type-Level Abstract Interpreter

The set of types, Typ, is composed of

- Primitive types:
- int (covering boolean, byte, char, short)
- long
- float
- double

The set of types, Typ, is composed of

- Primitive types:
- int (covering boolean, byte, char, short)
- long
- float
- double
- Object reference types: C for every class name C

Types

The set of types, Typ, is composed of

- Primitive types:
- int (covering boolean, byte, char, short)
- long
- float
- double
- Object reference types: C for every class name C
- Array types: τ [] for every primitive or object reference type τ

Types

The set of types, Typ, is composed of

- Primitive types:
- int (covering boolean, byte, char, short)
- long
- float
- double
- Object reference types: C for every class name C
- Array types: τ [] for every primitive or object reference type τ
- Method types: $\tau_{0}\left(\tau_{1}, \ldots, \tau_{n}\right)$ for $n \in \mathbb{N}, \tau_{i} \in$ Typ

Types

The set of types, Typ, is composed of

- Primitive types:
- int (covering boolean, byte, char, short)
- long
- float
- double
- Object reference types: C for every class name C
- Array types: τ [] for every primitive or object reference type τ
- Method types: $\tau_{0}\left(\tau_{1}, \ldots, \tau_{n}\right)$ for $n \in \mathbb{N}, \tau_{i} \in$ Typ
- Special types:
- null (null reference)
- Object (any object)
- T (contents of uninitialized registers, i.e., any value)
- \perp (absence of any value)

The Subtyping Relation (excerpt)
(C, D, E user-defined classes; D, E extending C)

Notation: $\tau_{1} \sqsubseteq_{t} \tau_{2}$

- Idea: execute JVM instructions on types (rather than concrete values)
- stack type $S \in \operatorname{Typ}{ }^{\leq m_{s}}$ (top to the left)
- register type $R:\left\{0, \ldots, m_{r}-1\right\} \rightarrow$ Typ
- Idea: execute JVM instructions on types (rather than concrete values)
- stack type $S \in T y p^{\leq m_{s}}$ (top to the left)
- register type $R:\left\{0, \ldots, m_{r}-1\right\} \rightarrow$ Typ
- Represented as transition relation

$$
i:(S, R) \rightarrow\left(S^{\prime}, R^{\prime}\right)
$$

where

- i : current instruction
- (S, R) : stack/register type before execution
- $\left(S^{\prime}, R^{\prime}\right)$: stack/register type after execution
- Idea: execute JVM instructions on types (rather than concrete values)
- stack type $S \in T y p \leq m_{s}$ (top to the left)
- register type $R:\left\{0, \ldots, m_{r}-1\right\} \rightarrow$ Typ
- Represented as transition relation

$$
i:(S, R) \rightarrow\left(S^{\prime}, R^{\prime}\right)
$$

where

- i : current instruction
- (S, R) : stack/register type before execution
- $\left(S^{\prime}, R^{\prime}\right)$: stack/register type after execution
- Errors (type mismatch, stack over-/underflow, ...) denoted by absence of transition

Some transition rules:

iconst_z	$(S, R) \rightarrow$ int.S, R $)$	if $\|S\|<m_{s}$
aconst_null:	$(S, R) \rightarrow($ null.S, R)	if $\|S\|<m_{s}$
iadd	(int.int.S, R) \rightarrow (int.S, R)	
if_icmpeq / :	(int.int.S, R) $\rightarrow(S, R)$	
iload n	$(S, R) \rightarrow($ int.S,R)	

if $0 \leq n<m_{r}, R(n) \sqsubseteq_{t}$ Object, $|S|<m_{s}$ $($ int.S,$R) \rightarrow(S, R[n \mapsto i n t]) \quad$ if $0 \leq n<m_{r}$
$(\tau . S, R) \rightarrow(S, R[n \mapsto \tau])$

$$
\text { if } 0 \leq n<m_{r}, \tau \sqsubseteq_{t} \text { Object }
$$

getfield C $f \tau$:

$$
\begin{aligned}
(D . S, R) & \rightarrow(\tau . S, R) & \text { if } D \sqsubseteq_{t} C \\
\left.-^{\prime} . D . S, R\right) & \rightarrow(S, R) & \text { if } \tau^{\prime} \sqsubseteq_{t} \tau, D \sqsubseteq_{t} C
\end{aligned}
$$

invoke C M $\sigma: \quad\left(\tau_{n}^{\prime} \ldots \tau_{1}^{\prime} \cdot \tau^{\prime} \cdot S, R\right) \rightarrow\left(\tau_{0} \cdot S, R\right)$
if $\sigma=\tau_{0}\left(\tau_{1}, \ldots, \tau_{n}\right), \tau_{i}^{\prime} \sqsubseteq_{t} \tau_{i}$ for $1 \leq i \leq n, \tau^{\prime} \sqsubseteq_{t} C$

Some Theoretical Properties

Lemma 9.5

(1) $\left(T y p, \sqsubseteq_{t}\right)$ is a complete lattice satisfying ACC.

Some Theoretical Properties

Lemma 9.5

(1) $\left(T y p, \sqsubseteq_{t}\right)$ is a complete lattice satisfying ACC.
(2) (Determinacy) The transitions of the abstract interpreter define a partial function: If $i:(S, R) \rightarrow\left(S_{1}, R_{1}\right)$ and $i:(S, R) \rightarrow\left(S_{2}, R_{2}\right)$, then $S_{1}=S_{2}$ and $R_{1}=R_{2}$.

Some Theoretical Properties

Lemma 9.5

(1) (Typ, $\left.\sqsubseteq_{t}\right)$ is a complete lattice satisfying ACC.
(2) (Determinacy) The transitions of the abstract interpreter define a partial function: If $i:(S, R) \rightarrow\left(S_{1}, R_{1}\right)$ and $i:(S, R) \rightarrow\left(S_{2}, R_{2}\right)$, then $S_{1}=S_{2}$ and $R_{1}=R_{2}$.
(3) (Soundness) If $i:(S, R) \rightarrow\left(S^{\prime}, R^{\prime}\right)$, then for all concrete states (s, r) matching (S, R), the defensive JVM will not stop with a run-time type exception when applying i to (s, r) (but rather change to some $\left(s^{\prime}, r^{\prime}\right)$ matching $\left(S^{\prime}, R^{\prime}\right)$).

Some Theoretical Properties

Lemma 9.5

(1) (Typ, $\left.\sqsubseteq_{t}\right)$ is a complete lattice satisfying ACC.
(2) (Determinacy) The transitions of the abstract interpreter define a partial function: If $i:(S, R) \rightarrow\left(S_{1}, R_{1}\right)$ and $i:(S, R) \rightarrow\left(S_{2}, R_{2}\right)$, then $S_{1}=S_{2}$ and $R_{1}=R_{2}$.
(3) (Soundness) If $i:(S, R) \rightarrow\left(S^{\prime}, R^{\prime}\right)$, then for all concrete states (s, r) matching (S, R), the defensive JVM will not stop with a run-time type exception when applying i to (s, r) (but rather change to some $\left(s^{\prime}, r^{\prime}\right)$ matching $\left(S^{\prime}, R^{\prime}\right)$).

Proof.

see X. Leroy: Java Bytecode Verification: Algorithms and Formalizations

