Static Program Analysis

Lecture 8: Dataflow Analysis VII (Narrowing \& DFA with Conditional Branches)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWMHAACHEN UNIVERSITY

noll@cs.rwth-aachen.de
http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Winter Semester 2014/15

Outline

(1) Recap: Interval Analysis
(3) Taking Conditional Branches into Account

44 Constant Propagation Analysis with Assertions

- The domain (Int, \subseteq) of intervals over \mathbb{Z} is defined by

$$
\text { Int } \left.:=\left\{\left[z_{1}, z_{2}\right] \mid z_{1} \in \mathbb{Z} \cup\{-\infty\}, z_{2} \in \mathbb{Z} \cup\{+\infty\}\right\}, z_{1} \leq z_{2}\right\} \cup\{\emptyset\}
$$

where

- $-\infty \leq z$ and $z \leq+\infty$ (for all $z \in \mathbb{Z}$)
- $\emptyset \subseteq J$ (for all $J \in \operatorname{Int})$
- $\left[y_{1}, y_{2}\right] \subseteq\left[z_{1}, z_{2}\right]$ iff $y_{1} \geq z_{1}$ and $y_{2} \leq z_{2}$
- $(\operatorname{Int}, \subseteq)$ is a complete lattice with (for every $\mathcal{I} \subseteq \operatorname{Int})$

$$
\bigsqcup \mathcal{I}= \begin{cases}\emptyset & \text { if } \mathcal{I}=\emptyset \text { or } \mathcal{I}=\{\emptyset\} \\ {\left[Z_{1}, Z_{2}\right]} & \text { otherwise }\end{cases}
$$

where

$$
\begin{aligned}
& Z_{1}:=\prod_{\mathbb{Z} \cup\{-\infty\}}\left\{z_{1} \mid\left[z_{1}, z_{2}\right] \in \mathcal{I}\right\} \\
& Z_{2}:=\bigsqcup_{\mathbb{Z} \cup\{+\infty\}}\left\{z_{2} \mid\left[z_{1}, z_{2}\right] \in \mathcal{I}\right\}
\end{aligned}
$$

(and thus $\perp=\emptyset, \top=[-\infty,+\infty]$)

- Clearly (Int, \subseteq) has infinite ascending chains, such as

$$
\emptyset \subseteq[1,1] \subseteq[1,2] \subseteq[1,3] \subseteq \ldots
$$

The Complete Lattice of Interval Analysis

$$
[-\infty,+\infty]
$$

Formalising Interval Analysis I

The dataflow system $S=(L a b, E, F,(D, \sqsubseteq), \iota, \varphi)$ is given by

- set of labels $L a b:=L a b_{c}$
- extremal labels $E:=\{\operatorname{init}(c)\}$ (forward problem)
- flow relation $F:=$ flow(c) (forward problem)
- complete lattice (D, \sqsubseteq) where
- $D:=\left\{\delta \mid \delta: \operatorname{Var}_{c} \rightarrow I n t\right\}$
- $\delta_{1} \sqsubseteq \delta_{2}$ iff $\delta_{1}(x) \subseteq \delta_{2}(x)$ for every $x \in \operatorname{Var}_{c}$
- $\iota:=\top_{D}: \operatorname{Var}_{c} \rightarrow$ Int $: x \mapsto \top_{\text {Int }}\left(\right.$ with $\top_{\text {Int }}=[-\infty,+\infty]$)
- φ : see next slide

Formalising Interval Analysis II

Transfer functions $\left\{\varphi_{l} \mid I \in L a b\right\}$ are defined by

$$
\varphi_{I}(\delta):= \begin{cases}\delta & \text { if } B^{\prime}=\text { skip or } B^{\prime} \in B E x p \\ \delta\left[x \mapsto \operatorname{val}_{\delta}(a)\right] & \text { if } B^{\prime}=(x:=a)\end{cases}
$$

where

$$
\begin{array}{ll}
\operatorname{val}_{\delta}(x):=\delta(x) & \operatorname{val}_{\delta}\left(a_{1}+a_{2}\right):=\operatorname{val}_{\delta}\left(a_{1}\right) \oplus \operatorname{val}_{\delta}\left(a_{2}\right) \\
\operatorname{val}_{\delta}(z):=[z, z] & \operatorname{val}_{\delta}\left(a_{1}-a_{2}\right):=\operatorname{val}_{\delta}\left(a_{1}\right) \ominus \operatorname{val}_{\delta}\left(a_{2}\right) \\
\operatorname{val}_{\delta}\left(a_{1} * a_{2}\right):=\operatorname{val}_{\delta}\left(a_{1}\right) \odot \operatorname{val}_{\delta}\left(a_{2}\right)
\end{array}
$$

with

$$
\emptyset \oplus J:=J \oplus \emptyset:=\emptyset \ominus J:=\ldots:=\emptyset
$$

$$
\left[y_{1}, y_{2}\right] \oplus\left[z_{1}, z_{2}\right]:=\left[y_{1}+z_{1}, y_{2}+z_{2}\right]
$$

$$
\left[y_{1}, y_{2}\right] \ominus\left[z_{1}, z_{2}\right]:=\left[y_{1}-z_{2}, y_{2}-z_{1}\right]
$$

$$
\left[y_{1}, y_{2}\right] \odot\left[z_{1}, z_{2}\right]:=\left[П\left\{y_{1} z_{1}, y_{1} z_{2}, y_{2} z_{1}, y_{2} z_{2}\right\}, \bigsqcup\left\{y_{1} z_{1}, y_{1} z_{2}, y_{2} z_{1}, y_{2} z_{2}\right\}\right]
$$

Remarks:

- Possible refinement of DFA to take conditional blocks b^{\prime} into account
- essentially: b as edge label, $\varphi_{l}(\delta)(x)=\delta(x) \backslash\{z \in \mathbb{Z} \mid x=z \Longrightarrow \neg b\}$ (cf. "DFA with Conditional Branches" later)
- Important: soundness and optimality of abstract operations, e.g., \oplus :
- soundness: $z_{1} \in J_{1}, z_{2} \in J_{2} \Longrightarrow z_{1}+z_{2} \in J_{1} \oplus J_{2}$
- optimality: $J_{1} \oplus J_{2}$ as small as possible

Widening Operators

Definition (Widening operator)

Let (D, \sqsubseteq) be a complete lattice. A mapping $\nabla: D \times D \rightarrow D$ is called widening operator if

- for every $d_{1}, d_{2} \in D$,

$$
d_{1} \sqcup d_{2} \sqsubseteq d_{1} \nabla d_{2}
$$

and

- for all ascending chains $d_{0} \sqsubseteq d_{1} \sqsubseteq \ldots$, the ascending chain $d_{0}^{\nabla} \sqsubseteq d_{1}^{\nabla} \sqsubseteq \ldots$ eventually stabilises where

$$
d_{0}^{\nabla}:=d_{0} \text { and } d_{i+1}^{\nabla}:=d_{i}^{\nabla} \nabla d_{i+1} \text { for each } i \in \mathbb{N}
$$

Remarks:

- $\left(d_{i}^{\nabla}\right)_{i \in \mathbb{N}}$ is clearly an ascending chain as

$$
d_{i+1}^{\nabla}=d_{i}^{\nabla} \nabla d_{i+1} \sqsupseteq d_{i}^{\nabla} \sqcup d_{i+1} \sqsupseteq d_{i}^{\nabla}
$$

- In contrast to \sqcup, ∇ does not have to be commutative, associative, monotonic, nor absorptive $(d \nabla d=d)$
- The requirement $d_{1} \sqcup d_{2} \sqsubseteq d_{1} \nabla d_{2}$ guarantees soundness of widening

Applying Widening to Interval Analysis

- A widening operator: ∇ : Int \times Int \rightarrow Int with

$$
\begin{aligned}
\emptyset \nabla J & :=J \nabla \emptyset:=J \\
{\left[x_{1}, x_{2}\right] \nabla\left[y_{1}, y_{2}\right] } & :=\left[z_{1}, z_{2}\right] \\
z_{1} & := \begin{cases}x_{1} & \text { where } x_{1} \leq y_{1} \\
-\infty & \text { otherwise }\end{cases} \\
z_{2} & := \begin{cases}x_{2} & \text { if } x_{2} \geq y_{2} \\
+\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

- Widening turns infinite ascending chain

$$
J_{0}=\emptyset \subseteq J_{1}=[1,1] \subseteq J_{2}=[1,2] \subseteq J_{3}=[1,3] \subseteq \ldots
$$

into a finite one:

$$
\begin{aligned}
& J_{0}^{\nabla}=J_{0}=\emptyset \\
& J_{1}^{\nabla}=J_{0}^{\nabla} \nabla J_{1}=\emptyset \nabla[1,1]=[1,1] \\
& J_{2}^{\nabla}=J_{1}^{\nabla} \nabla J_{2}=[1,1] \nabla[1,2]=[1,+\infty] \\
& J_{3}^{\nabla}=J_{2}^{\nabla} \nabla J_{3}=[1,+\infty] \nabla[1,3]=[1,+\infty]
\end{aligned}
$$

- In fact, the maximal chain size arising with this operator is 4:

$$
\emptyset \subseteq[3,7] \subseteq[3,+\infty] \subseteq[-\infty,+\infty]
$$

Worklist Algorithm with Widening

Goal: extend Algorithm 5.3 by widening to ensure termination
Algorithm (Worklist algorithm with widening)
Input: dataflow system $S=(L a b, E, F,(D, \sqsubseteq), \iota, \varphi)$
Variables: $W \in(L a b \times L a b)^{*},\left\{A I_{,} \in D \mid I \in L a b\right\}$
Procedure: $W:=\varepsilon$; for $\left(I, I^{\prime}\right) \in F$ do $W:=W \cdot\left(I, I^{\prime}\right) ; \%$ Initialize W for $I \in \operatorname{Lab}$ do \% Initialise AI
if $l \in E$ then $\mathrm{Al}_{l}:=\iota$ else $\mathrm{Al}_{l}:=\perp_{D}$;
while $W \neq \varepsilon$ do
$\left(I, I^{\prime}\right):=\boldsymbol{h e a d}(W) ; W:=\boldsymbol{\operatorname { t a i l }}(W)$;
if $\varphi_{l}\left(\mathrm{Al}_{l}\right) \notin \mathrm{Al}_{l}$, then $\quad \%$ Fixpoint not yet reached $\mathrm{Al}_{\mu}:=\mathrm{Al}_{\mu} \nabla \varphi_{l}\left(\mathrm{Al}_{l}\right)$; for $\left(I^{\prime}, I^{\prime \prime}\right) \in F$ do if $\left(I^{\prime}, l^{\prime \prime}\right)$ not in W then $W:=\left(I^{\prime}, I^{\prime \prime}\right) \cdot W$; Output: $\left\{\mathrm{Al}_{I} \mid I \in L a b\right\}$, denoted by $\mathrm{fix}^{\nabla}\left(\Phi_{S}\right)$

Remark: due to widening, only fix $^{\nabla}\left(\Phi_{S}\right) \sqsupseteq$ fix $\left(\Phi_{S}\right)$ is guaranteed (cf. Thm. 5.6)

Outline

(1) Recap: Interval Analysis

(3) Taking Conditional Branches into Account

4 Constant Propagation Analysis with Assertions

Another Widening Example

Example 8.1

Transfer functions (for $\delta(\mathrm{x})=J$):

$$
\begin{aligned}
\varphi_{1}(J) & =[1,1] \\
\varphi_{2}(J) & =J \\
\varphi_{3}(J) & =[2,2] \\
\varphi_{4}(\emptyset) & =\emptyset \\
\varphi_{4}\left(\left[x_{1}, x_{2}\right]\right) & =\left[x_{1}+1, x_{2}+1\right]
\end{aligned}
$$

Application of worklist algorithm
(1) without widening (omitted): terminates with expected result for $\mathrm{Al}_{2}([1,3])$
(2) with widening (on the board): terminates with unexpected result for $\mathrm{Al}_{2}([1,+\infty])$

- Observation: widening can lead to unnecessarily imprecise results
- Solution: improvement by iterating again from the result obtained by widening (i.e., from fix ${ }^{\nabla}\left(\Phi_{S}\right)$)
\Longrightarrow compute $\Phi_{S}^{k}\left(\right.$ fix $\left.^{\nabla}\left(\Phi_{S}\right)\right)$ for $k=1,2, \ldots$
- Soundness: $\mathrm{fix}^{\nabla}\left(\Phi_{S}\right) \sqsupseteq$ fix $\left(\Phi_{S}\right)$ (cf. Alg. 7.7)
$\Longrightarrow \Phi_{S}^{k}\left(\mathrm{fix}^{\nabla}\left(\Phi_{S}\right)\right) \sqsupseteq \Phi_{S}^{k}\left(\mathrm{fix}\left(\Phi_{S}\right)\right)=\mathrm{fix}\left(\Phi_{S}\right)$
(since Φ_{S} and thus Φ_{S}^{k} monotonic)

Narrowing Example

Example 8.2 (cf. Example 8.1)

Transfer functions (for $\delta(\mathrm{x})=J$):

$$
\begin{aligned}
\varphi_{1}(J) & =[1,1] \\
\varphi_{2}(J) & =J \\
\varphi_{3}(J) & =[2,2] \\
\varphi_{4}(\emptyset) & =\emptyset \\
\varphi_{4}\left(\left[x_{1}, x_{2}\right]\right) & =\left[x_{1}+1, x_{2}+1\right]
\end{aligned}
$$

Narrowing:

	Al_{1}	Al_{2}	Al_{3}	Al_{4}
fix $^{\nabla}\left(\Phi_{S}\right)$	$[-\infty,+\infty]$	$[1,+\infty]$	$[1,+\infty]$	$[2,2]$
$\Phi_{S}\left(\right.$ fix $\left.^{\nabla}\left(\Phi_{S}\right)\right)$	$[-\infty,+\infty]$	$[1,3]$	$[1,+\infty]$	$[2,2]$
$\Phi_{S}^{2}\left(\right.$ fix $\left.^{\nabla}\left(\Phi_{S}\right)\right)$	$[-\infty,+\infty]$	$[1,3]$	$[1,3]$	$[2,2]$
$\Phi_{S}^{3}\left(\right.$ fix $\left.^{\nabla}\left(\Phi_{S}\right)\right)$	$[-\infty,+\infty]$	$[1,3]$	$[1,3]$	$[2,2]$

- Problem: narrowing may not terminate (due to infinite descending chains)
- But: possible to stop after every step without losing soundness
- In practice: termination often ensured by using narrowing operators (\approx counterpart of widening operator; definition omitted)

Outline

(1) Recap: Interval Analysis
(2) Narrowing
(3) Taking Conditional Branches into Account

4 Constant Propagation Analysis with Assertions

Taking Conditional Branches into Account I

- So far: values of conditions have been ignored in analysis
- Essentially: if and while statements treated as nondeterministic choice between the two branches

Example 8.3

- Interval analysis (with widening) yields for I :

$$
\begin{aligned}
& y:=0 ; \\
& z:=0 ; \\
& \text { while }[x>0]^{\prime} \text { do } \\
& \quad \text { if } y<17 \text { then } \\
& y:=y+1 ; \\
& z \quad:=z+x ; \\
& x \quad:=x-1 ;
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{x} \in[-\infty,+\infty] \\
& \mathrm{y} \in[0,+\infty] \\
& \mathrm{z} \in[-\infty,+\infty]
\end{aligned}
$$

- Too pessimistic! In fact,

$$
\begin{aligned}
& \mathrm{x} \in[-\infty,+\infty] \\
& \mathrm{y} \in[0,17] \\
& \mathrm{z} \in[0,+\infty]
\end{aligned}
$$

- Solution: introduce transfer functions for branches
- First approach: attach (negated) conditions as labels to control flow edges
- advantage: no language modification required
- disadvantage: entails extension of DFA framework
- will not further be considered here
- Second approach: encode conditions as assertions (statements)
- advantage: DFA framework can be reused
- disadvantage: entails extension of WHILE language
- the way we will follow

First Approach: Conditions as Edge Labels

Example 8.4 (cf. Example 8.3)

Second Approach: Conditions as Assertions

Example 8.5 (cf. Example 8.3)

$$
\begin{aligned}
& \mathrm{y}:=0 ; \\
& \mathrm{z}:=0 ; \\
& \text { while } \mathrm{x}>0 \text { do } \\
& \text { assert } \mathrm{x}>0 ; \\
& \text { if } \mathrm{y}<17 \text { then } \\
& \text { assert } \mathrm{y}<17 ; \\
& \mathrm{y}:=\mathrm{y}+1 ; \\
& \mathrm{z}:=\mathrm{z}+\mathrm{x} ; \\
& \mathrm{x}:=\mathrm{x}-1 ; \\
& \text { assert } \neg(\mathrm{x}>0) ;
\end{aligned}
$$

Extending the Syntax of WHILE Programs

Definition 8.6 (Labelled WHILE programs with assertions)

The syntax of labelled WHILE programs with assertions is defined by the following context-free grammar:

$$
\begin{aligned}
a:: & =z|x| a_{1}+a_{2}\left|a_{1}-a_{2}\right| a_{1} * a_{2} \in A E x p \\
b::= & t\left|a_{1}=a_{2}\right| a_{1}>a_{2}|\neg b| b_{1} \wedge b_{2} \mid b_{1} \vee b_{2} \in B E x p \\
c::= & {\left[\text { skip] }\left|[x:=a]^{\prime}\right| c_{1} ; c_{2} \mid\right.} \\
& \text { if }[b]^{\prime} \text { then } c_{1} \text { else } c_{2} \mid \text { while }[b]^{\prime} \text { do } c \mid[\text { assert } b]^{\prime} \in C m d
\end{aligned}
$$

To be done:

- Definition of transfer functions for assert blocks (depending on analysis problem)
- Idea: assertions as filters that let only "valid" information pass

Outline

(1) Recap: Interval Analysis
(2) Narrowing
(3) Taking Conditional Branches into Account

44 Constant Propagation Analysis with Assertions

Constant Propagation Analysis with Assertions I

So far:

- Complete lattice (D, \sqsubseteq) where
- $D:=\left\{\delta \mid \delta: \operatorname{Var}_{c} \rightarrow \mathbb{Z} \cup\{\perp, \top\}\right\}$
- $\delta(x)=z \in \mathbb{Z}: x$ has constant value z
- $\delta(x)=\perp: x$ undefined
- $\delta(x)=\mathrm{T}: x$ overdefined (i.e., different possible values)
- $\sqsubseteq \subseteq D \times D$ defined by pointwise extension of $\perp \sqsubseteq z \sqsubseteq \top$ (for every $z \in \mathbb{Z}$)
- Transfer functions $\left\{\varphi_{I} \mid I \in L a b\right\}$ defined by

$$
\varphi_{I}(\delta):= \begin{cases}\delta & \text { if } B^{\prime}=\text { skip or } B^{\prime} \in B E x p \\ \delta\left[x \mapsto \operatorname{val}_{\delta}(a)\right] & \text { if } B^{\prime}=(x:=a)\end{cases}
$$

where

$$
\begin{aligned}
& \operatorname{val}_{\delta}(x):=\delta(x) \quad \operatorname{val}_{\delta}\left(a_{1} \text { op } a_{2}\right):= \begin{cases}z_{1} \text { op } z_{2} & \text { if } z_{1}, z_{2} \in \mathbb{Z} \\
\perp & \text { if } z_{1}=\perp \text { or } z_{2}=\perp \\
\operatorname{val}_{\delta}(z):=z & \text { otherwise }\end{cases} \\
& \text { for } z_{1}:=\operatorname{val}_{\delta}\left(a_{1}\right) \text { and } z_{2}:=\operatorname{val}_{\delta}\left(a_{2}\right)
\end{aligned}
$$

Constant Propagation Analysis with Assertions II

Additionally for $B^{\prime}=($ assert $b), \delta: \operatorname{Var}_{c} \rightarrow \mathbb{Z} \cup\{\perp, \top\}$ and $x \in \operatorname{Var}_{c}$:

$$
\varphi_{I}(\delta)(x):= \begin{cases}\perp & \text { if } \nexists \sigma \in \Sigma_{\delta}: \operatorname{val}_{\sigma}(b)=\text { true } \\ z & \text { if } \forall \sigma \in \Sigma_{\delta}: v a l_{\sigma}(b)=\text { true } \\ T & \text { otherwise }\end{cases}
$$

where

- the set of δ-assignments is given by

$$
\Sigma_{\delta}:=\left\{\sigma: \operatorname{Var}_{c} \rightarrow \mathbb{Z} \mid \forall y \in \operatorname{Var}_{c}: \sigma(y) \in\left\{\begin{array}{ll}
\emptyset & \text { if } \delta(y)=\perp \\
\{z\} & \text { if } \delta(y)=z \\
\mathbb{Z} & \text { if } \delta(y)=T
\end{array}\right\}\right.
$$

(and thus $\Sigma_{\delta}=\emptyset$ iff $\delta(y)=\perp$ for some $y \in \operatorname{Var}_{c}$)

- the evaluation function val ${ }_{\sigma}: B E x p \rightarrow \mathbb{B}$ is defined by

$$
\left.\begin{array}{rl}
\operatorname{val}_{\sigma}(t):=t & \operatorname{val}_{\sigma}(\neg b):= \\
\operatorname{val}_{\sigma}\left(a_{1}=a_{2}\right):=\left(\text { val }_{\sigma}\left(a_{1}\right)=\right. \\
\left.\operatorname{val}_{\sigma}\left(a_{2}\right)\right) \\
\text { true } & \text { if val }{ }_{\sigma}(b)= \\
\text { false } & \text { otherwise }
\end{array}\right\}
$$

etc.

Constant Propagation Analysis with Assertions III

Example 8.7

(1) $\operatorname{Var}_{c}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}, \delta=(\underbrace{\perp}_{\mathrm{x}}, \underbrace{1}_{\mathrm{y}}, \underbrace{\top}_{\mathrm{z}})$
$\Longrightarrow \Sigma_{\delta}=\emptyset$
$\Longrightarrow \varphi_{\text {assert }} b(\delta)=(\perp, \perp, \perp)$ for every $b \in B E x p$
(2) $\operatorname{Var}_{c}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}, \delta=(\underbrace{1}_{\mathrm{x}}, \underbrace{2}_{\mathrm{y}}, \underbrace{\top}_{\mathrm{z}})$
$\Longrightarrow \Sigma_{\delta}=\{(1,2, z) \mid z \in \mathbb{Z}\}$
$\Longrightarrow \quad \varphi_{\text {assert } \mathrm{x}=\mathrm{y}}(\delta)=(\perp, \perp, \perp)$
$\varphi_{\text {assert } \mathrm{y}=\mathrm{z}}(\delta)=(1,2,2)$
$\varphi_{\text {assert } \mathrm{y}<\mathrm{z}}(\delta)=(1,2, \top)$
$\varphi_{\text {assert }} \mathrm{x}<=\mathrm{z} \wedge \mathrm{y}>\mathrm{z}(\delta)=(1,2,1)$
(3) $\operatorname{Var}_{c}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}, \delta=(\underbrace{1}_{\mathrm{x}}, \underbrace{\top}_{\mathrm{y}}, \underbrace{\top}_{\mathrm{z}})$
$\Longrightarrow \Sigma_{\delta}=\left\{\left(1, z_{1}, z_{2}\right) \mid z_{1}, z_{2} \in \mathbb{Z}\right\}$
$\Longrightarrow \varphi_{\text {assert } \mathrm{x}=\mathrm{y}}(\delta)=(1,1, \top)$
$\varphi_{\text {assert } \mathrm{y}=\mathrm{z}}(\delta)=(1, \top, \top)$
RWIHAACHEN

Constant Propagation Analysis with Assertions IV

Remarks:

- For $B^{\prime}=($ assert $b)$ and $\delta: \operatorname{Var}_{c} \rightarrow \mathbb{Z} \cup\{\perp, \top\}$, $\varphi_{I}(\delta) \sqsubseteq \delta$ and hence $\Sigma_{\varphi_{I}(\delta)} \subseteq \Sigma_{\delta}$ ("filter")
- Constant propagation captures interdependencies between variables only when both are constant (cf. "assert y=z" in Example 8.7)
- $\varphi_{I}(\delta)$ can be determined (or at least approximated) by Satisfiability Modulo Theories (SMT) techniques
- If $\mathrm{CP}_{l}(x)=\perp$ for some $I \in L a b_{c}$ and $x \in \operatorname{Var}_{c}$, then I is unreachable (and $\mathrm{CP}_{l}(y)=\perp$ for all $y \in \operatorname{Var}_{c}$)

