Static Program Analysis Lecture 8: Dataflow Analysis VII (Narrowing & DFA with Conditional Branches)

Thomas Noll

Lehrstuhl für Informatik 2 (Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Winter Semester 2014/15

1 Recap: Interval Analysis

2 Narrowing

- 3 Taking Conditional Branches into Account
- 4 Constant Propagation Analysis with Assertions

The Domain of Interval Analysis

• The domain (Int, \subseteq) of intervals over \mathbb{Z} is defined by

 $Int := \{ [z_1, z_2] \mid z_1 \in \mathbb{Z} \cup \{-\infty\}, z_2 \in \mathbb{Z} \cup \{+\infty\} \}, z_1 \le z_2 \} \cup \{ \emptyset \}$ where

- $-\infty \leq z$ and $z \leq +\infty$ (for all $z \in \mathbb{Z}$)
- $\emptyset \subseteq J$ (for all $J \in Int$)
- $[y_1, y_2] \subseteq [z_1, z_2]$ iff $y_1 \ge z_1$ and $y_2 \le z_2$

• (Int, \subseteq) is a complete lattice with (for every $\mathcal{I} \subseteq Int$)

$$\Box \mathcal{I} = \begin{cases} \emptyset & \text{if } \mathcal{I} = \emptyset \text{ or } \mathcal{I} = \{\emptyset\} \\ [Z_1, Z_2] & \text{otherwise} \end{cases}$$

where

$$Z_1 := \bigcap_{\mathbb{Z} \cup \{-\infty\}} \{ z_1 \mid [z_1, z_2] \in \mathcal{I} \}$$
$$Z_2 := \bigcup_{\mathbb{Z} \cup \{+\infty\}} \{ z_2 \mid [z_1, z_2] \in \mathcal{I} \}$$

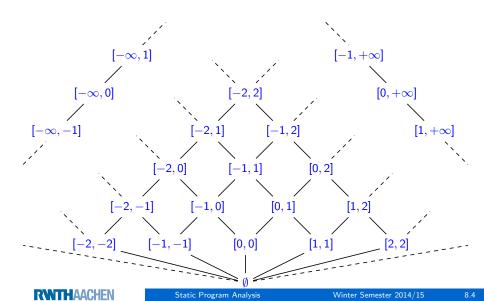
(and thus $\bot = \emptyset$, $\top = [-\infty, +\infty]$)

Clearly (*Int*, ⊆) has infinite ascending chains, such as

 $\emptyset \subseteq [1,1] \subseteq [1,2] \subseteq [1,3] \subseteq \dots$

The Complete Lattice of Interval Analysis

 $[-\infty, +\infty]$



The dataflow system $S = (Lab, E, F, (D, \sqsubseteq), \iota, \varphi)$ is given by

- set of labels Lab := Lab_c
- extremal labels E := {init(c)} (forward problem)
- flow relation F := flow(c) (forward problem)
- complete lattice (*D*, ⊑) where
 - $D := \{\delta \mid \delta : Var_c \rightarrow Int\}$
 - $\delta_1 \sqsubseteq \delta_2$ iff $\delta_1(x) \subseteq \delta_2(x)$ for every $x \in Var_c$
- $\iota := \top_D : Var_c \to Int : x \mapsto \top_{Int} (with \top_{Int} = [-\infty, +\infty])$
- φ : see next slide

Formalising Interval Analysis II

Transfer functions $\{\varphi_l \mid l \in Lab\}$ are defined by $\varphi_l(\delta) := \begin{cases} \delta & \text{if } B^l = \text{skip or } B^l \in BExp \\ \delta[x \mapsto val_{\delta}(a)] & \text{if } B^l = (x := a) \end{cases}$

where

 $\begin{array}{ll} \mathsf{val}_{\delta}(x) := \delta(x) \\ \mathsf{val}_{\delta}(z) := [z,z] \end{array} \qquad \begin{array}{l} \mathsf{val}_{\delta}(a_1+a_2) := \mathsf{val}_{\delta}(a_1) \oplus \mathsf{val}_{\delta}(a_2) \\ \mathsf{val}_{\delta}(a_1-a_2) := \mathsf{val}_{\delta}(a_1) \oplus \mathsf{val}_{\delta}(a_2) \\ \mathsf{val}_{\delta}(a_1*a_2) := \mathsf{val}_{\delta}(a_1) \odot \mathsf{val}_{\delta}(a_2) \end{array}$

with

$$\emptyset \oplus J := J \oplus \emptyset := \emptyset \ominus J := \ldots := \emptyset$$

$$\begin{bmatrix} y_1, y_2 \end{bmatrix} \oplus \begin{bmatrix} z_1, z_2 \end{bmatrix} := \begin{bmatrix} y_1 + z_1, y_2 + z_2 \end{bmatrix}$$

$$\begin{bmatrix} y_1, y_2 \end{bmatrix} \ominus \begin{bmatrix} z_1, z_2 \end{bmatrix} := \begin{bmatrix} y_1 - z_2, y_2 - z_1 \end{bmatrix}$$

$$\begin{bmatrix} y_1, y_2 \end{bmatrix} \odot \begin{bmatrix} z_1, z_2 \end{bmatrix} := \begin{bmatrix} \bigcap \{y_1 z_1, y_1 z_2, y_2 z_1, y_2 z_2\}, \bigsqcup \{y_1 z_1, y_1 z_2, y_2 z_1, y_2 z_2\} \end{bmatrix}$$

Remarks:

- Possible refinement of DFA to take conditional blocks b^{l} into account
 - essentially: b as edge label, φ_l(δ)(x) = δ(x) \ {z ∈ Z | x = z ⇒ ¬b} (cf. "DFA with Conditional Branches" later)
- Important: soundness and optimality of abstract operations, e.g., ⊕:
 - soundness: $z_1 \in J_1, z_2 \in J_2 \implies z_1 + z_2 \in J_1 \oplus J_2$
 - optimality: $J_1 \oplus J_2$ as small as possible

RWITHAACHEN

Widening Operators

Definition (Widening operator)

Let (D, \sqsubseteq) be a complete lattice. A mapping $\nabla : D \times D \rightarrow D$ is called widening operator if

• for every $d_1, d_2 \in D$,

 $d_1 \sqcup d_2 \sqsubseteq d_1 \nabla d_2$

and

• for all ascending chains $d_0 \sqsubseteq d_1 \sqsubseteq \ldots$, the ascending chain $d_0^{\nabla} \sqsubseteq d_1^{\nabla} \sqsubseteq \ldots$ eventually stabilises where $d_0^{\nabla} := d_0$ and $d_{i+1}^{\nabla} := d_i^{\nabla} \nabla d_{i+1}$ for each $i \in \mathbb{N}$

Remarks:

• $(d_i^{\nabla})_{i \in \mathbb{N}}$ is clearly an ascending chain as

 $d_{i+1}^
abla = d_i^
abla
abla d_{i+1} \sqsupseteq d_i^
abla \sqcup d_{i+1} \sqsupseteq d_i^
abla$

- In contrast to □, ∇ does not have to be commutative, associative, monotonic, nor absorptive (d∇d = d)
- The requirement $d_1 \sqcup d_2 \sqsubseteq d_1 \nabla d_2$ guarantees soundness of widening

Applying Widening to Interval Analysis

- A widening operator: $\nabla : Int \times Int \rightarrow Int$ with $\emptyset \nabla J := J \nabla \emptyset := J$ $[x_1, x_2] \nabla [y_1, y_2] := [z_1, z_2]$ where $z_1 := \begin{cases} x_1 & \text{if } x_1 \leq y_1 \\ -\infty & \text{otherwise} \end{cases}$ $z_2 := \begin{cases} x_2 & \text{if } x_2 \geq y_2 \\ +\infty & \text{otherwise} \end{cases}$
- Widening turns infinite ascending chain

 $J_0 = \emptyset \subseteq J_1 = [1,1] \subseteq J_2 = [1,2] \subseteq J_3 = [1,3] \subseteq \dots$ into a finite one:

$$\begin{array}{l} J_{0}^{\vee} = J_{0} = \emptyset \\ J_{1}^{\nabla} = J_{0}^{\nabla} \nabla J_{1} = \emptyset \nabla [1,1] = [1,1] \\ J_{2}^{\nabla} = J_{1}^{\nabla} \nabla J_{2} = [1,1] \nabla [1,2] = [1,+\infty] \\ J_{3}^{\nabla} = J_{2}^{\nabla} \nabla J_{3} = [1,+\infty] \nabla [1,3] = [1,+\infty] \end{array}$$

• In fact, the maximal chain size arising with this operator is 4: $\emptyset \subseteq [3,7] \subseteq [3,+\infty] \subseteq [-\infty,+\infty]$

Worklist Algorithm with Widening

Goal: extend Algorithm 5.3 by widening to ensure termination

Algorithm (Worklist algorithm with widening)

```
Input: dataflow system S = (Lab, E, F, (D, \Box), \iota, \varphi)
 Variables: W \in (Lab \times Lab)^*, \{AI_I \in D \mid I \in Lab\}
Procedure: W := \varepsilon; for (I, I') \in F do W := W \cdot (I, I'); % Initialize W
               for l \in Lab do % Initialise AI
                  if l \in E then Al_l := \iota else Al_l := \bot_D;
               while W \neq \varepsilon do
                  (I, I') := \mathbf{head}(W); W := \mathbf{tail}(W);
                  if \varphi_1(Al_1) \not\subseteq Al_{l'} then % Fixpoint not yet reached
                     AI_{l'} := AI_{l'} \nabla \varphi_l(AI_l);
                     for (l', l'') \in F do
                        if (l', l'') not in W then W := (l', l'') \cdot W;
   Output: {Al<sub>1</sub> | I \in Lab}, denoted by fix \nabla(\Phi_s)
```

Remark: due to widening, only $fix^{\nabla}(\Phi_{S}) \supseteq fix(\Phi_{S})$ is guaranteed (cf. Thm. 5.6)

RWITHAACHEN

Recap: Interval Analysis

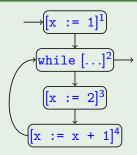
2 Narrowing

3 Taking Conditional Branches into Account

4 Constant Propagation Analysis with Assertions

Another Widening Example

Example 8.1



Transfer functions (for $\delta(\mathbf{x}) = J$): $\varphi_1(J) = [1, 1]$ $\varphi_2(J) = J$ $\varphi_3(J) = [2, 2]$ $\varphi_4(\emptyset) = \emptyset$ $\varphi_4([x_1, x_2]) = [x_1 + 1, x_2 + 1]$

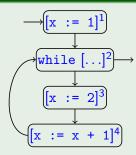
Application of worklist algorithm

- without widening (omitted): terminates with expected result for Al₂ ([1,3])
- with widening (on the board): terminates with unexpected result for Al₂ ([1, +∞])

- Observation: widening can lead to unnecessarily imprecise results
- Solution: improvement by iterating again from the result obtained by widening (i.e., from fix[∇](Φ_S))
 ⇒ compute Φ^k_S(fix[∇](Φ_S)) for k = 1, 2, ...
- Soundness: $fix^{\nabla}(\Phi_S) \supseteq fix(\Phi_S)$ (cf. Alg. 7.7) $\implies \Phi_S^k(fix^{\nabla}(\Phi_S)) \supseteq \Phi_S^k(fix(\Phi_S)) = fix(\Phi_S)$ (since Φ_S and thus Φ_S^k monotonic)

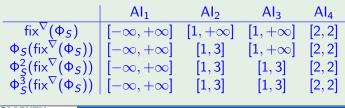
Narrowing Example

Example 8.2 (cf. Example 8.1)



Transfer functions (for $\delta(\mathbf{x}) = J$): $\varphi_1(J) = [1, 1]$ $\varphi_2(J) = J$ $\varphi_3(J) = [2, 2]$ $\varphi_4(\emptyset) = \emptyset$ $\varphi_4([x_1, x_2]) = [x_1 + 1, x_2 + 1]$

Narrowing:



RNTHAACHEN

- **Problem:** narrowing may not terminate (due to infinite descending chains)
- But: possible to stop after every step without losing soundness
- In practice: termination often ensured by using narrowing operators (≈ counterpart of widening operator; definition omitted)

1 Recap: Interval Analysis

2 Narrowing

3 Taking Conditional Branches into Account

4 Constant Propagation Analysis with Assertions

Taking Conditional Branches into Account I

- So far: values of conditions have been ignored in analysis
- Essentially: if and while statements treated as nondeterministic choice between the two branches

Example 8.3

```
y := 0;
z := 0;
while [x > 0]<sup>/</sup> do
    if y < 17 then
    y := y + 1;
z := z + x;
x := x - 1;
```

- Interval analysis (with widening) yields for *I*: $\begin{array}{c} \mathbf{x} \in [-\infty, +\infty] \\ \mathbf{y} \in [0, +\infty] \\ \mathbf{z} \in [-\infty, +\infty] \end{array}$
- Too pessimistic! In fact,

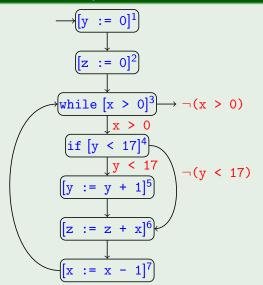
```
 \begin{array}{l} \mathbf{x} \in [-\infty, +\infty] \\ \mathbf{y} \in [0, 17] \\ \mathbf{z} \in [0, +\infty] \end{array}
```

Taking Conditional Branches into Account II

- Solution: introduce transfer functions for branches
- First approach: attach (negated) conditions as labels to control flow edges
 - advantage: no language modification required
 - disadvantage: entails extension of DFA framework
 - will not further be considered here
- Second approach: encode conditions as assertions (statements)
 - advantage: DFA framework can be reused
 - disadvantage: entails extension of WHILE language
 - the way we will follow

First Approach: Conditions as Edge Labels

Example 8.4 (cf. Example 8.3)



RWTHAACHEN

Second Approach: Conditions as Assertions

Example 8.5 (cf. Example 8.3)

```
y := 0;
z := 0;
while x > 0 do
  assert x > 0;
  if y < 17 then
    assert y < 17;
    y := y + 1;
    z := z + x;
    x := x - 1;
    assert ¬(x > 0);
```


Extending the Syntax of WHILE Programs

Definition 8.6 (Labelled WHILE programs with assertions)

The syntax of labelled WHILE programs with assertions is defined by the following context-free grammar:

 $\begin{array}{l} a ::= z \mid x \mid a_1 + a_2 \mid a_1 - a_2 \mid a_1 * a_2 \in AExp \\ b ::= t \mid a_1 = a_2 \mid a_1 > a_2 \mid \neg b \mid b_1 \land b_2 \mid b_1 \lor b_2 \in BExp \\ c ::= [skip]^{l} \mid [x := a]^{l} \mid c_1; c_2 \mid \\ & \quad \text{if } [b]^{l} \text{ then } c_1 \text{ else } c_2 \mid \text{while } [b]^{l} \text{ do } c \mid [\texttt{assert } b]^{l} \in Cmd \end{array}$

To be done:

- Definition of transfer functions for assert blocks (depending on analysis problem)
- Idea: assertions as filters that let only "valid" information pass

Recap: Interval Analysis

2 Narrowing

3 Taking Conditional Branches into Account

4 Constant Propagation Analysis with Assertions

Constant Propagation Analysis with Assertions I

So far:

- Complete lattice (D, \sqsubseteq) where
 - $D := \{ \delta \mid \delta : Var_c \to \mathbb{Z} \cup \{\bot, \top\} \}$
 - $\delta(x) = z \in \mathbb{Z}$: x has constant value z
 - $\delta(x) = \bot$: x undefined
 - $\delta(x) = \top$: x overdefined (i.e., different possible values)
 - $\sqsubseteq \subseteq D \times D$ defined by pointwise extension of $\bot \sqsubseteq z \sqsubseteq \top$ (for every $z \in \mathbb{Z}$)
- Transfer functions $\{\varphi_I \mid I \in Lab\}$ defined by

$$\varphi_{l}(\delta) := \begin{cases} \delta & \text{if } B^{l} = \text{skip or } B^{l} \in BExp\\ \delta[x \mapsto val_{\delta}(a)] & \text{if } B^{l} = (x := a) \end{cases}$$

where

$$\begin{array}{ll} \mathsf{val}_{\delta}(x) := \delta(x) \\ \mathsf{val}_{\delta}(z) := z \end{array} \quad \mathsf{val}_{\delta}(\mathsf{a}_1 \ \mathsf{op} \ \mathsf{a}_2) := \begin{cases} z_1 \ \mathsf{op} \ z_2 & \text{if} \ z_1, z_2 \in \mathbb{Z} \\ \bot & \text{if} \ z_1 = \bot \ \mathsf{or} \ z_2 = \bot \\ \top & \text{otherwise} \end{cases}$$

for $z_1 := val_{\delta}(a_1)$ and $z_2 := val_{\delta}(a_2)$

Constant Propagation Analysis with Assertions II

Additionally for $B' = (\texttt{assert } b), \ \delta : Var_c \to \mathbb{Z} \cup \{\bot, \top\} \text{ and } x \in Var_c:$

$$\varphi_{l}(\delta)(x) := \begin{cases} \bot & \text{if } \nexists \sigma \in \Sigma_{\delta} : val_{\sigma}(b) = \text{true} \\ z & \text{if } \forall \sigma \in \Sigma_{\delta} : val_{\sigma}(b) = \text{true} \implies \sigma(x) = z \\ \top & \text{otherwise} \end{cases}$$

where

• the set of δ -assignments is given by

$$\Sigma_{\delta} := \left\{ \sigma : Var_{c} \to \mathbb{Z} \middle| \forall y \in Var_{c} : \sigma(y) \in \begin{cases} \emptyset & \text{if } \delta(y) = \bot \\ \{z\} & \text{if } \delta(y) = z \\ \mathbb{Z} & \text{if } \delta(y) = \top \end{cases} \right\}$$

(and thus $\Sigma_{\delta} = \emptyset$ iff $\delta(y) = \bot$ for some $y \in Var_c$)

• the evaluation function $val_{\sigma}: BExp \to \mathbb{B}$ is defined by

$$\begin{array}{ccc} val_{\sigma}(t) := t & val_{\sigma}(\neg b) := \begin{cases} \mathsf{true} & \mathsf{if} \ val_{\sigma}(b) = \\ \mathsf{false} & \mathsf{false} \\ \mathsf{false} & \mathsf{otherwise} \end{cases} \\ val_{\sigma}(a_1 = a_2) := (val_{\sigma}(a_1) = \\ val_{\sigma}(a_2)) & val_{\sigma}(b_1 \land b_2) := \begin{cases} \mathsf{true} & \mathsf{if} \ val_{\sigma}(b_1) = \\ val_{\sigma}(b_2) = \mathsf{true} \\ \mathsf{false} & \mathsf{otherwise} \end{cases} \end{cases}$$

Constant Propagation Analysis with Assertions III

Example 8.7

•
$$Var_c = \{x, y, z\}, \ \delta = (\underbrace{\bot}_x, \underbrace{1}_y, \underbrace{\top}_z)$$

 $\Rightarrow \Sigma_{\delta} = \emptyset$
 $\Rightarrow \varphi_{assert \ b}(\delta) = (\bot, \bot, \bot) \text{ for every } b \in BExp$
• $Var_c = \{x, y, z\}, \ \delta = (\underbrace{1}_x, \underbrace{2}_y, \underbrace{\top}_z)$
 $\Rightarrow \Sigma_{\delta} = \{(1, 2, z) \mid z \in \mathbb{Z}\}$
 $\Rightarrow \varphi_{assert \ x=y}(\delta) = (\bot, \bot, \bot)$
 $\varphi_{assert \ y=z}(\delta) = (1, 2, 2)$
 $\varphi_{assert \ y
• $Var_c = \{x, y, z\}, \ \delta = (\underbrace{1}_x, \underbrace{\top}_y, \underbrace{\top}_z)$
 $\Rightarrow \Sigma_{\delta} = \{(1, z_1, z_2) \mid z_1, z_2 \in \mathbb{Z}\}$
 $\Rightarrow \varphi_{assert \ x=y}(\delta) = (1, 1, \top)$
 $\varphi_{assert \ y=z}(\delta) = (1, -1, T)$
 $\varphi_{assert \ y=z}(\delta) = (1, -1, T)$
• $Var_c = \{x, y, z\}, \ \delta = (\underbrace{1}_x, \underbrace{-1}_y, \underbrace{-$$

Remarks:

- For $B^{I} = (\text{assert } b) \text{ and } \delta : Var_{c} \to \mathbb{Z} \cup \{\bot, \top\}, \varphi_{I}(\delta) \sqsubseteq \delta \text{ and hence } \Sigma_{\varphi_{I}(\delta)} \subseteq \Sigma_{\delta} (\text{"filter"})$
- Constant propagation captures interdependencies between variables only when both are constant (cf. "assert y=z" in Example 8.7)
- φ_l(δ) can be determined (or at least approximated) by Satisfiability Modulo Theories (SMT) techniques
- If CP_I(x) = ⊥ for some I ∈ Lab_c and x ∈ Var_c, then I is unreachable (and CP_I(y) = ⊥ for all y ∈ Var_c)