Static Program Analysis Lecture 7: Dataflow Analysis VI (Undecidability of MOP Solution & Non-ACC Domains)

Thomas Noll

Lehrstuhl für Informatik 2 (Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Winter Semester 2014/15

1 Recap: The MOP Solution

- 2 Coincidence of MOP and Fixpoint Solution
- 3 Undecidability of the MOP Solution
- 4 Dataflow Analysis with Non-ACC Domains
- 5 Example: Interval Analysis
- 6 Formalising Interval Analysis
- 7 Applying Widening to Interval Analysis

RWTHAACHEN

The MOP Solution

Definition (MOP solution)

Let $S = (Lab, E, F, (D, \sqsubseteq), \iota, \varphi)$ be a dataflow system where $Lab = \{l_1, \ldots, l_n\}$. The MOP solution for S is determined by $mop(S) := (mop(l_1), \ldots, mop(l_n)) \in D^n$ where, for every $l \in Lab$, $mop(l) := | \{\varphi_{\pi}(\iota) \mid \pi \in Path(l)\}.$

Remark:

- *Path(1)* is generally infinite
- \implies not clear how to compute mop(l)
 - In fact: MOP solution generally undecidable (later)

Example (Constant Propagation)

```
c := if [z > 0]^{1} then
[x := 2;]^{2}
[y := 3;]^{3}
else
[x := 3;]^{4}
[y := 2;]^{5}
[z := x+y;]^{6}
[...]^{7}
```

Transfer functions (for $\delta = (\delta(\mathbf{x}), \delta(\mathbf{y}), \delta(\mathbf{z})) \in D$): $\varphi_1(a, b, c) = (a, b, c)$ $\varphi_2(a, b, c) = (2, b, c)$ $\varphi_3(a, b, c) = (a, 3, c)$ $\varphi_4(a, b, c) = (3, b, c)$ $\varphi_5(a, b, c) = (a, 2, c)$ $\varphi_6(a, b, c) = (a, b, a + b)$ Fixpoint solution: $\begin{array}{l} \mathsf{CP}_1 = \iota & = (\mathsf{T},\mathsf{T},\mathsf{T}) \\ \mathsf{CP}_2 = \varphi_1(\mathsf{CP}_1) & = (\mathsf{T},\mathsf{T},\mathsf{T}) \\ \mathsf{CP}_3 = \varphi_2(\mathsf{CP}_2) & = (2,\mathsf{T},\mathsf{T}) \\ \mathsf{CP}_4 = \varphi_1(\mathsf{CP}_1) & = (\mathsf{T},\mathsf{T},\mathsf{T}) \\ \mathsf{CP}_5 = \varphi_4(\mathsf{CP}_4) & = (3,\mathsf{T},\mathsf{T}) \\ \mathsf{CP}_6 = \varphi_3(\mathsf{CP}_3) \sqcup \varphi_5(\mathsf{CP}_5) \\ & = (2,3,\mathsf{T}) \sqcup (3,2,\mathsf{T}) = (\mathsf{T},\mathsf{T},\mathsf{T}) \\ \mathsf{CP}_7 = \varphi_6(\mathsf{CP}_6) & = (\mathsf{T},\mathsf{T},\mathsf{T}) \end{array}$

O MOP solution:

m

$$\begin{array}{l} \mathsf{pp}(7) = \varphi_{[1,2,3,6]}(\top,\top,\top) \sqcup \\ \varphi_{[1,4,5,6]}(\top,\top,\top) \\ = (2,3,5) \sqcup (3,2,5) \\ = (\top,\top,5) \end{array}$$

MOP vs. Fixpoint Solution II

Theorem (MOP vs. Fixpoint Solution)

Let $S = (Lab, E, F, (D, \sqsubseteq), \iota, \varphi)$ be a dataflow system. Then $mop(S) \sqsubseteq fix(\Phi_S)$

Reminder: by Definition 4.9,

$$\Phi_{S}: D^{n} \to D^{n}: (d_{1}, \dots, d_{n}) \mapsto (d'_{1}, \dots, d'_{n})$$

where $Lab = \{1, \dots, n\}$ and, for each $l \in Lab$,
$$d'_{l} := \begin{cases} \iota & \text{if } l \in E \\ \bigsqcup \{\varphi_{l'}(d_{l'}) \mid (l', l) \in F\} & \text{otherwise} \end{cases}$$

Proof.

on the board

Remark: as Example 6.2 shows, $mop(S) \neq fix(\Phi_S)$ is possible

Recap: The MOP Solution

2 Coincidence of MOP and Fixpoint Solution

- **3** Undecidability of the MOP Solution
- 4 Dataflow Analysis with Non-ACC Domains
- 5 Example: Interval Analysis
- 6 Formalising Interval Analysis
- 7 Applying Widening to Interval Analysis

A sufficient condition for the coincidence of MOP and Fixpoint Solution is the distributivity of the transfer functions.

Definition 7.1 (Distributivity)

Let (D, ⊑) and (D', ⊑') be complete lattices, and let F : D → D'. F is called distributive (w.r.t. (D, ⊑) and (D', ⊑')) if, for every d₁, d₂ ∈ D,

 $F(d_1 \sqcup_D d_2) = F(d_1) \sqcup_{D'} F(d_2).$

A dataflow system S = (Lab, E, F, (D, ⊑), ι, φ) is called distributive if every φ_l : D → D (l ∈ Lab) is so.

Distributivity of Transfer Functions II

Example 7.2

• The Available Expressions dataflow system is distributive:

$$\begin{aligned} \varphi_l(A_1 \sqcup A_2) &= \left((A_1 \cap A_2) \setminus \mathsf{kill}_{\mathsf{AE}}(B^l) \right) \cup \mathsf{gen}_{\mathsf{AE}}(B^l) \\ &= \left((A_1 \setminus \mathsf{kill}_{\mathsf{AE}}(B^l)) \cup \mathsf{gen}_{\mathsf{AE}}(B^l) \right) \cap \\ &\quad \left((A_2 \setminus \mathsf{kill}_{\mathsf{AE}}(B^l)) \cup \mathsf{gen}_{\mathsf{AE}}(B^l) \right) \\ &= \varphi_l(A_1) \sqcup \varphi_l(A_2) \end{aligned}$$

② The Live Variables dataflow system is distributive: similarly

The Constant Propagation dataflow system is not distributive (cf. Example 6.2):

$$\begin{aligned} (\top,\top,\top) &= \varphi_{\mathsf{z}:=\mathsf{x}+\mathsf{y}}((2,3,\top) \sqcup (3,2,\top)) \\ &\neq \varphi_{\mathsf{z}:=\mathsf{x}+\mathsf{y}}((2,3,\top)) \sqcup \varphi_{\mathsf{z}:=\mathsf{x}+\mathsf{y}}((3,2,\top)) \\ &= (\top,\top,5) \end{aligned}$$

Coincidence of MOP and Fixpoint Solution

Theorem 7.3 (MOP vs. Fixpoint Solution)

Let $S = (Lab, E, F, (D, \sqsubseteq), \iota, \varphi)$ be a distributive dataflow system. Then $mop(S) = fix(\Phi_S)$

Proof.

- $mop(S) \sqsubseteq fix(\Phi_S)$: Theorem 6.3
- fix(Φ_S) ⊑ mop(S): as fix(Φ_S) is the *least* fixpoint of Φ_S, it suffices to show that Φ_S(mop(S)) = mop(S) (on the board)

Recap: The MOP Solution

2 Coincidence of MOP and Fixpoint Solution

3 Undecidability of the MOP Solution

- 4 Dataflow Analysis with Non-ACC Domains
- 5 Example: Interval Analysis
- 6 Formalising Interval Analysis
- 7 Applying Widening to Interval Analysis

RWTHAACHEN

Undecidability of the MOP Solution

Theorem 7.4 (Undecidability of MOP solution)

The MOP solution for Constant Propagation is undecidable.

Proof.

Based on undecidability of Modified Post Correspondence Problem: Let Γ be some alphabet, $n \in \mathbb{N}$, and $u_1, \ldots, u_n, v_1, \ldots, v_n \in \Gamma^+$. Do there exist $i_1, \ldots, i_m \in \{1, \ldots, n\}$ with $m \ge 1$ and $i_1 = 1$ such that $u_{i_1}u_{i_2} \ldots u_{i_m} = v_{i_1}v_{i_2} \ldots v_{i_m}$? (on the board)

Recap: The MOP Solution

- 2 Coincidence of MOP and Fixpoint Solution
- 3 Undecidability of the MOP Solution
- 4 Dataflow Analysis with Non-ACC Domains
 - 5 Example: Interval Analysis
- 6 Formalising Interval Analysis
- 7 Applying Widening to Interval Analysis

RWTHAACHEN

- **Reminder:** (D, \sqsubseteq) satisfies ACC if each ascending chain $d_0 \sqsubseteq d_1 \sqsubseteq \ldots$ eventually stabilises, i.e., there exists $n \in \mathbb{N}$ such that $d_n = d_{n+1} = \ldots$
- If height (= maximal chain size 1) of (D, □) is m, then fixpoint computation terminates after at most |Lab| · m iterations
- But: if (D, ⊑) has non-stabilising ascending chains
 ⇒ algorithm may not terminate
- Solution: use widening operators to enforce termination

Widening Operators

Definition 7.5 (Widening operator)

Let (D, \sqsubseteq) be a complete lattice. A mapping $\nabla : D \times D \rightarrow D$ is called widening operator if

• for every $d_1, d_2 \in D$,

 $d_1 \sqcup d_2 \sqsubseteq d_1 \nabla d_2$

and

• for all ascending chains $d_0 \sqsubseteq d_1 \sqsubseteq \ldots$, the ascending chain $d_0^{\nabla} \sqsubseteq d_1^{\nabla} \sqsubseteq \ldots$ eventually stabilises where $d_0^{\nabla} := d_0$ and $d_{i+1}^{\nabla} := d_i^{\nabla} \nabla d_{i+1}$ for each $i \in \mathbb{N}$

Remarks:

• $(d_i^{\nabla})_{i \in \mathbb{N}}$ is clearly an ascending chain as

 $d_{i+1}^
abla = d_i^
abla
abla d_{i+1} \sqsupseteq d_i^
abla \sqcup d_{i+1} \sqsupseteq d_i^
abla$

- In contrast to □, ∇ does not have to be commutative, associative, monotonic, nor absorptive (d∇d = d)
- The requirement $d_1 \sqcup d_2 \sqsubseteq d_1 \nabla d_2$ guarantees soundness of widening

- 1 Recap: The MOP Solution
- 2 Coincidence of MOP and Fixpoint Solution
- 3 Undecidability of the MOP Solution
- 4 Dataflow Analysis with Non-ACC Domains
- 5 Example: Interval Analysis
 - 6 Formalising Interval Analysis
 - 7 Applying Widening to Interval Analysis

Interval Analysis

The goal of Interval Analysis is to determine, for each (interesting) program point, a safe interval for the values of the (interesting) program variables.

Interval analysis is actually a generalisation of constant propagation (\approx interval analysis with 1-element intervals)

Example 7.6 (Interval Analysis)

```
var a[100]: int;
...
i := 0;
while i <= 42 do
  if i >= 0 \lapha i < 100 then
      a[i] := i;
      i := i + 1;
```

Here: redundant array bounds check can be removed

The Domain of Interval Analysis

• The domain (Int, \subseteq) of intervals over \mathbb{Z} is defined by

 $Int := \{ [z_1, z_2] \mid z_1 \in \mathbb{Z} \cup \{-\infty\}, z_2 \in \mathbb{Z} \cup \{+\infty\} \}, z_1 \le z_2 \} \cup \{ \emptyset \}$ where

- $-\infty \leq z$ and $z \leq +\infty$ (for all $z \in \mathbb{Z}$)
- $\emptyset \subseteq J$ (for all $J \in Int$)
- $[y_1, y_2] \subseteq [z_1, z_2]$ iff $y_1 \ge z_1$ and $y_2 \le z_2$

• (Int, \subseteq) is a complete lattice with (for every $\mathcal{I} \subseteq Int$)

$$\Box \mathcal{I} = \begin{cases} \emptyset & \text{if } \mathcal{I} = \emptyset \text{ or } \mathcal{I} = \{\emptyset\} \\ [Z_1, Z_2] & \text{otherwise} \end{cases}$$

where

$$Z_1 := \bigcap_{\mathbb{Z} \cup \{-\infty\}} \{ z_1 \mid [z_1, z_2] \in \mathcal{I} \}$$
$$Z_2 := \bigcup_{\mathbb{Z} \cup \{+\infty\}} \{ z_2 \mid [z_1, z_2] \in \mathcal{I} \}$$

(and thus $\bot = \emptyset$, $\top = [-\infty, +\infty]$)

Clearly (*Int*, ⊆) has infinite ascending chains, such as

 $\emptyset \subseteq [1,1] \subseteq [1,2] \subseteq [1,3] \subseteq \dots$

The Complete Lattice of Interval Analysis

 $[-\infty, +\infty]$

1 Recap: The MOP Solution

- 2 Coincidence of MOP and Fixpoint Solution
- 3 Undecidability of the MOP Solution
- 4 Dataflow Analysis with Non-ACC Domains
- 5 Example: Interval Analysis
- 6 Formalising Interval Analysis
 - 7 Applying Widening to Interval Analysis

The dataflow system $S = (Lab, E, F, (D, \sqsubseteq), \iota, \varphi)$ is given by

- set of labels Lab := Lab_c
- extremal labels E := {init(c)} (forward problem)
- flow relation F := flow(c) (forward problem)
- complete lattice (*D*, ⊑) where
 - $D := \{ \delta \mid \delta : Var_c \rightarrow Int \}$
 - $\delta_1 \sqsubseteq \delta_2$ iff $\delta_1(x) \subseteq \delta_2(x)$ for every $x \in Var_c$
- $\iota := \top_D : Var_c \to Int : x \mapsto \top_{Int} (with \top_{Int} = [-\infty, +\infty])$
- φ : see next slide

Formalising Interval Analysis II

 $\begin{array}{l} \text{Transfer functions } \{\varphi_{l} \mid l \in Lab\} \text{ are defined by} \\ \varphi_{l}(\delta) := \begin{cases} \delta & \text{if } B^{l} = \text{skip or } B^{l} \in BExp \\ \delta[x \mapsto val_{\delta}(a)] & \text{if } B^{l} = (x := a) \end{cases} \\ \text{where} \\ \begin{array}{l} val_{\delta}(x) := \delta(x) & val_{\delta}(a_{1}+a_{2}) := val_{\delta}(a_{1}) \oplus val_{\delta}(a_{2}) \\ val_{\delta}(z) := [z, z] & val_{\delta}(a_{1}-a_{2}) := val_{\delta}(a_{1}) \oplus val_{\delta}(a_{2}) \\ val_{\delta}(a_{1}*a_{2}) := val_{\delta}(a_{1}) \odot val_{\delta}(a_{2}) \end{cases} \\ \text{with} \\ \begin{array}{l} \emptyset \oplus J := J \oplus \emptyset := \emptyset \oplus J := \ldots := \emptyset \\ [y_{1}, y_{2}] \oplus [z_{1}, z_{2}] := [y_{1}+z_{1}, y_{2}+z_{2}] \end{cases} \end{array}$

$$\begin{bmatrix} y_1, y_2 \end{bmatrix} \ominus \begin{bmatrix} z_1, z_2 \end{bmatrix} := \begin{bmatrix} y_1 - z_2, y_2 - z_1 \end{bmatrix} \\ \begin{bmatrix} y_1, y_2 \end{bmatrix} \odot \begin{bmatrix} z_1, z_2 \end{bmatrix} := \begin{bmatrix} \prod_{y \in [y_1, y_2], z \in [z_1, z_2]} y \cdot z, \bigcup_{y \in [y_1, y_2], z \in [z_1, z_2]} y \cdot z \end{bmatrix}$$
marks:

Remarks:

- Possible refinement of DFA to take conditional blocks b^l into account
 - essentially: b as edge label, $\varphi_l(\delta)(x) = \delta(x) \setminus \{z \in \mathbb{Z} \mid x = z \implies \neg b\}$ (cf. "DFA with Conditional Branches" later)
- Important: soundness and optimality of abstract operations, e.g., \oplus :
 - soundness: $z_1 \in J_1, z_2 \in J_2 \implies z_1 + z_2 \in J_1 \oplus J_2$
 - optimality: $J_1 \oplus J_2$ as small as possible

RWTHAACHEN

1 Recap: The MOP Solution

- 2 Coincidence of MOP and Fixpoint Solution
- 3 Undecidability of the MOP Solution
- 4 Dataflow Analysis with Non-ACC Domains
- 5 Example: Interval Analysis
- 6 Formalising Interval Analysis
- Applying Widening to Interval Analysis

Recap: Widening Operators

Definition (Widening operator)

Let (D, \sqsubseteq) be a complete lattice. A mapping $\nabla : D \times D \rightarrow D$ is called widening operator if

• for every $d_1, d_2 \in D$,

 $d_1 \sqcup d_2 \sqsubseteq d_1 \nabla d_2$

and

• for all ascending chains $d_0 \sqsubseteq d_1 \sqsubseteq \ldots$, the ascending chain $d_0^{\nabla} \sqsubseteq d_1^{\nabla} \sqsubseteq \ldots$ eventually stabilises where $d_0^{\nabla} := d_0$ and $d_{i+1}^{\nabla} := d_i^{\nabla} \nabla d_{i+1}$ for each $i \in \mathbb{N}$

Remarks:

• $(d_i^{\nabla})_{i \in \mathbb{N}}$ is clearly an ascending chain as

 $d_{i+1}^
abla = d_i^
abla
abla d_{i+1} \sqsupseteq d_i^
abla \sqcup d_{i+1} \sqsupseteq d_i^
abla$

- In contrast to □, ∇ does not have to be commutative, associative, monotonic, nor absorptive (d∇d = d)
- The requirement $d_1 \sqcup d_2 \sqsubseteq d_1 \nabla d_2$ guarantees soundness of widening

Applying Widening to Interval Analysis

- A widening operator: $\nabla : Int \times Int \rightarrow Int$ with $\emptyset \nabla J := J \nabla \emptyset := J$ $[x_1, x_2] \nabla [y_1, y_2] := [z_1, z_2]$ where $z_1 := \begin{cases} x_1 & \text{if } x_1 \leq y_1 \\ -\infty & \text{otherwise} \end{cases}$ $z_2 := \begin{cases} x_2 & \text{if } x_2 \geq y_2 \\ +\infty & \text{otherwise} \end{cases}$
- Widening turns infinite ascending chain

$$\begin{array}{l} J_{0}^{\vee} = J_{0} = \emptyset \\ J_{1}^{\nabla} = J_{0}^{\nabla} \nabla J_{1} = \emptyset \nabla [1,1] = [1,1] \\ J_{2}^{\nabla} = J_{1}^{\nabla} \nabla J_{2} = [1,1] \nabla [1,2] = [1,+\infty] \\ J_{3}^{\nabla} = J_{2}^{\nabla} \nabla J_{3} = [1,+\infty] \nabla [1,3] = [1,+\infty] \end{array}$$

• In fact, the maximal chain size arising with this operator is 4: $\emptyset \subseteq [3,7] \subseteq [3,+\infty] \subseteq [-\infty,+\infty]$

Worklist Algorithm with Widening I

Goal: extend Algorithm 5.3 by widening to ensure termination

Algorithm 7.7 (Worklist algorithm with widening)

Input: dataflow system $S = (Lab, E, F, (D, \subseteq), \iota, \varphi)$ Variables: $W \in (Lab \times Lab)^*$, $\{AI_I \in D \mid I \in Lab\}$ Procedure: $W := \varepsilon$; for $(I, I') \in F$ do $W := W \cdot (I, I')$; % Initialize W **for** $l \in Lab$ **do** % Initialise Al if $l \in E$ then $Al_l := \iota$ else $Al_l := \bot_D$; while $W \neq \varepsilon$ do $(I, I') := \mathbf{head}(W); W := \mathbf{tail}(W);$ **if** $\varphi_I(AI_I) \not\subseteq AI_{I'}$ **then** % Fixpoint not yet reached $AI_{l'} := AI_{l'} \nabla \varphi_l(AI_l);$ for $(I', I'') \in F$ do if (l', l'') not in W then $W := (l', l'') \cdot W$; Output: {Al₁ | $I \in Lab$ }, denoted by fix $\nabla(\Phi_S)$

Remark: due to widening, only fix $\nabla(\Phi_S) \supseteq$ fix (Φ_S) is guaranteed (cf. Thm. 5.6) RNTHAACHEN

Worklist Algorithm with Widening II

Example 7.8

Transfer functions (for $\delta(\mathbf{x}) = J$): $\varphi_1(J) = [1, 1]$ $\varphi_2(J) = J$ $\varphi_3(\emptyset) = \emptyset$ $\varphi_3([x_1, x_2]) = [x_1 + 1, x_2 + 1]$

Application of worklist algorithm (on the board)

- without widening: does not terminate
- 2 with widening: terminates with expected result for Al₂ ([1, $+\infty$])

