Static Program Analysis

Lecture 7: Dataflow Analysis VI
(Undecidability of MOP Solution & Non-ACC Domains)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTHAACHEN
UNIVERSITY

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Winter Semester 2014/15

noll@cs.rwth-aachen.de
http://moves.rwth-aachen.de/teaching/ws-1415/spa/

@ Recap: The MOP Solution

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 7.2

The MOP Solution

Definition (MOP solution)

Let S = (Lab,E,F,(D,C),t,¢) be a dataflow system where
Lab={h,...,In}. The MOP solution for S is determined by

mop(S) := (mop(h), ..., mop(/y)) € D"

where, for every | € Lab,

mop(/) := | [{x(t) | w € Path(l)}.

Remark:
e Path(/) is generally infinite
= not clear how to compute mop(/)

@ In fact: MOP solution generally undecidable (later)

RWTHAACHEN Static Program Analysis Winter Semester 2014 /15 7.3

MOP vs. Fixpoint Solution |

Example (Constant Propagation)

c:=1if [z > O]! then
[x := 2?]2 @ Fixpoint solution:
e]_[sye:= 3;] CP1 =1 :(TaTvT)
L 14 CP2 = gol(CPl) = (T,T,T)
[X = 3,]5 CP3 = g02(CP2) = (27T7T)
[y = 2P CP,4 = ¢1(CPy) = (T,T,T)
e o o] CPs = G(CPy) = (6T.7)
[CPs = (3(CP3) U 5(CPs)
Transfer functions =(2,3,T)U(3,2,T) = (T,T,T)
(for 0 = (6(x),8(y).0(z)) € D): CPr = 2s(CPo) = (LT
¢1(a, b, c) = (a,b,¢) @ MOP solution:
v2(a, b, c) = (2,b,¢) mop(7) = ¢p,23,6(T, T, T)U
@3(37 b7 C) - (‘97 3a C) (P[l 45 6](T T T)
¢a(a, b, c) = (3,b,¢) — (2,3.8)U(3,2,5)
¢s(a, b, c) = (a,2,¢) —(T.T.5)
we(a, b,c) = (a,b,a+ b) n

RWTHAACHE Static Program Analysis Winter Semester 2014/15 7.4

MOP vs. Fixpoint Solution Il

Theorem (MOP vs. Fixpoint Solution)
Let S = (Lab,E,F,(D,C),t,¢) be a dataflow system. Then
mop(S) C fix(Ps)

Reminder: by Definition 4.9,
®s: D" — D": (d,...,dn) = (dy,...,d))
where Lab = {1,...,n} and, for each | € Lab,

g ifleE
T YW er(dr) | (1) € FY otherwise

on the board

Remark: as Example 6.2 shows, mop(S) # fix(®s) is possible

RWNTH!/ Static Program Analysis Winter Semester 2014/15 7.5

© Coincidence of MOP and Fixpoint Solution

RWIHAACHEN Static Program Analysis Winter Semester 2014/15 7.6

Distributivity of Transfer Functions |

A sufficient condition for the coincidence of MOP and Fixpoint Solution is
the distributivity of the transfer functions.

Definition 7.1 (Distributivity)
o Let (D,C) and (D', ') be complete lattices, and let F: D — D'. F
is called distributive (w.r.t. (D,C) and (D', ")) if, for every
di,dr € D,

F(dl Lip d2) = F(dl) Upr F(dz)

o A dataflow system S = (Lab, E, F,(D,C),¢,) is called distributive if
every ¢y : D — D (I € Lab) is so.

v

RWTHAACHEN Static Program Analysis Winter Semester 2014 /15 7.7

Distributivity of Transfer Functions Il

Example 7.2

© The Available Expressions dataflow system is distributive:
©i1(A1 U A2) = ((A1 N A2) \ killag(B")) U genag(B')
= ((A1 \ killag(B")) U genag(B')) N
(A2 \ killae(B')) U genae(B'))
= @i(A1) U @i(A2)

@ The Live Variables dataflow system is distributive: similarly

© The Constant Propagation dataflow system is not distributive (cf.
Example 6.2):
(T, T,T) = z=xy((2,3, T) U (3,2, T))
7é 902:=X+Y((27 37 T)) U 9022=X+Y((37 27 T))

RWNTH HE Static Program Analysis Winter Semester 2014/15 7.8

Coincidence of MOP and Fixpoint Solution

Theorem 7.3 (MOP vs. Fixpoint Solution)

Let S = (Lab,E,F,(D,C),t,¢) be a distributive dataflow system. Then
mop(S) = fix(Ps)

e mop(S) C fix(®s): Theorem 6.3

o fix(Ps) C mop(S): as fix(Ps) is the least fixpoint of $g, it suffices to
show that ®s(mop(S)) = mop(S) (on the board)

Ol

RWTHAACHE Static Program Analysis Winter Semester 2014/15 7.9

© Undecidability of the MOP Solution

RWIHAACHEN Static Program Analysis Winter Semester 2014/15 7.10

Undecidability of the MOP Solution

Theorem 7.4 (Undecidability of MOP solution)

The MOP solution for Constant Propagation is undecidable.

Based on undecidability of Modified Post Correspondence Problem:

Let I be some alphabet, n € N, and v, ..., up,v1,..., v, €T,

Do there exist i1,...,im € {1,...,n} with m > 1 and /4 = 1 such that
Uplp, ... Uj, = ViV ... V,'m?

(on the board) O

RWTHAACHEN Static Program Analysis Winter Semester 2014 /15 7.11

@ Dataflow Analysis with Non-ACC Domains

RWIHAACHEN Static Program Analysis Winter Semester 2014/15 7.12

Dataflow Analysis with Non-ACC Domains

e Reminder: (D, C) satisfies ACC if each ascending chain
do C di C ... eventually stabilises, i.e., there exists n € N such that
dn = Un4+1 — -+

@ If height (= maximal chain size - 1) of (D,C) is m, then fixpoint
computation terminates after at most |Lab| - m iterations

@ But: if (D, C) has non-stabilising ascending chains
— algorithm may not terminate

@ Solution: use widening operators to enforce termination

nerAACHEN Static Program Analysis Winter Semester 2014/15 7.13

Widening Operators

Definition 7.5 (Widening operator)

Let (D,C) be a complete lattice. A mapping V : D x D — D is called
widening operator if
o for every di,dr € D,
diUd, C diVdy
and
o for all ascending chains dy = d; C ..., the ascending chain
dy T dY C ... eventually stabilises where
dov ‘= dp and dv1 = d Vdj;q for each i € N

Remarks:

o (d¥)jen is clearly an ascending chain as
d¥, =d¥Vdip1 3 dY Udiyy JdY
@ In contrast to LI, V does not have to be commutative, associative,
monotonic, nor absorptive (dVd = d)
@ The requirement di U dr C dqVd> guarantees soundness of widening

RWNTH HE Static Program Analysis Winter Semester 2014/15 7.14

© Example: Interval Analysis

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 7.15

Example: Interval Analysis

Interval Analysis

The goal of Interval Analysis is to determine, for each (interesting)
program point, a safe interval for the values of the (interesting) program
variables.

Interval analysis is actually a generalisation of constant propagation
(=~ interval analysis with 1-element intervals)

Example 7.6 (Interval Analysis)

var a[100]: int;

i := 0;

while i <= 42 do
if 1 >= 0 A i < 100 then =
ali]l := 1i;
i=1i+ 1;

Here: redundant array bounds check can be removed

RWNTH Static Program Analysis Winter Semester 2014/15 7.16

The Domain of Interval Analysis

@ The domain (/nt, C) of intervals over Z is defined by

Int :={[z1,2] | 71 € ZU{—x},20 € ZU{+00}},z1 < 2} U {0}
where
o —o0 < zand z < 4oo (for all z € Z)
o () C J (for all J € Int)
-] [y17y2] g [21722] Iff n Z zZ1 and Y2 S Vi)
e (Int,C) is a complete lattice with (for every Z C Int)

L0 if 7=0orZ={0}
|_| 1[4, 22] otherwise

2= Napg-oyiar | 21, 22] € T}
22 = pupie{z2 | [21, 22] € T}
(and thus L =0, T = [—o00,+0oq])
o Clearly (Int, C) has infinite ascending chains, such as

PCL,1C,2]CL3]C...

where

RWIHAACHEN Static Program Analysis Winter Semester 2014/15 7.17

The Complete Lattice of Interval Analysis

[—OO,+OO]
[—OO,/].] N L [—174-00]
/ \
[—O0,0] N [_2’2] L [O’+OO]
/ N AN
[790’71] N [725 1] [71’2] , [1’+OO]
‘ SN N
[-2,0] [-1,1] [0,2]
SN SN SN
[-2,-1] [-1,0] [0,1] [1,2]
SN SN SN SN
"*~--_[___2’_2] [-1,-1] [0,0] [1,1] [2,2 -

""""" =

RWIHAACHEN Static Program Analysis Winter Semester 2014/15 7.18

@ Formalising Interval Analysis

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 7.19

Formalising Interval Analysis |

The dataflow system S = (Lab, E, F,(D,C),¢,) is given by
@ set of labels Lab := Lab.
e extremal labels E := {init(c)} (forward problem)

o flow relation F := flow(c) (forward problem)
e complete lattice (D, C) where

o D:={6|d: Varc — Int}

e 1 C &y iff 01(x) C da(x) for every x € Var,

@ 1:=Tp: Varc — Int: x — Tpe (With Ty = [—00, +0])

@ : see next slide

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 7.20

Formalising Interval Analysis Il

Transfer functions {¢; | | € Lab} are defined by
(5) =) if B! = skip or B' € BExp
POV = 6[x s valg(a)] if B! = (x := a)

where I5(ar+as) i vals(ay) @ vals(as)
L vals(ai+arz) := vals(air) @ vals(az
‘\Z?g; _ ?z(xz] vals(ai-az) := vals(a1) © vals(az)
J ’ vals(ai*ay) := vals(a1) ® vals(az)
with

el =Jed=0d:=....=10
1, 2] @ [z1,) == [y1 + z1, 2 + 2]
y1,y2] © |21,) == [y1 — 22,2 — 21]

1,)2] © [z1, 2] := [I_lye[yl,yg],ze[z1,22] Y-z Llye[yl,yg],ze[zl,ZQ] y: Z}
Remarks:

@ Possible refinement of DFA to take conditional blocks b into account

o essentially: b as edge label, ¢/(d)(x) =0(x)\{z € Z | x =z = —b}
(cf. “DFA with Conditional Branches” later)

@ Important: soundness and optimality of abstract operations, e.g., &:
e soundness: z1 € h,znn € b — z1+2€ LD b
e optimality: J; @ J as small as possible

RWIHAACHEN Static Program Analysis Winter Semester 2014/15 7.21

@ Applying Widening to Interval Analysis

RWIHAACHEN Static Program Analysis Winter Semester 2014/15 7.22

Recap: Widening Operators

Definition (Widening operator)

Let (D,C) be a complete lattice. A mapping V : D x D — D is called
widening operator if
o for every di,dr € D,
diUd, C diVdy
and
o for all ascending chains dy = d; C ..., the ascending chain
dy T dY C ... eventually stabilises where
dov ‘= dp and dv1 = d Vdj;q for each i € N

Remarks:

o (d¥)jen is clearly an ascending chain as
d¥, =d¥Vdip1 3 dY Udiyy JdY
@ In contrast to LI, V does not have to be commutative, associative,
monotonic, nor absorptive (dVd = d)
@ The requirement di U dr C dqVd> guarantees soundness of widening

RWNTH HE Static Program Analysis Winter Semester 2014/15 7.23

Applying Widening to Interval Analysis

@ A widening operator: V : Int X Int — Int with
0VJ :=JIVD:=J
[x1,x]Viy1, y2] == [z1,22] where
Lo dx ifxasyn
L —o0 otherwise
Lo dxe ifxx>y
27) +o0o otherwise
@ Widening turns infinite ascending chain
ho=0Ch=[L1ChL=[12]C hs=][L3]C...
into a finite one:
i =Jo=10
JY = JyYVh =0V[L,1] = [1,1]
By =V =[1,1]V[L,2] = [1, +]
Jy = JYV I =[1,+]V][L,3] = [1, +]
@ In fact, the maximal chain size arising with this operator is 4:
0 C[3,7] € [3,+o0] C [~o0, +d]

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 7.24

Worklist Algorithm with Widening |

Goal: extend Algorithm 5.3 by widening to ensure termination

Algorithm 7.7 (Worklist algorithm with widening)

Input: dataflow system S = (Lab, E, F,(D,C), ¢, ¢)
Variables: W € (Lab x Lab)*, {Al; € D | | € Lab}
Procedure: W :=¢;for (I,I'Y € F do W := W - (I,I'); % Initialize W
for | € Lab do % Initialise Al
if /| € E then Al; := . else Al,; := 1 p;
while W # ¢ do
(1,I') := head(W); W := tail(W);
if ©/(Al}) Z Aly then % Fixpoint not yet reached
Alp = Al Ve (Al));
for (,1") € F do
if (', 1) not in W then W := (I',I") - W;
Output: {Al; | I € Lab}, denoted by fix"¥ (®s)

Remark: due to widening, only fix¥ (®s) I fix(®s) is guaranteed
(cf. Thm. 5.6)

RWNTH Static Program Analysis Winter Semester 2014/15

7.25

Worklist Algorithm with Widening II

Example 7.8

Transfer functions (for 6(x) = J):

e1(J) = [1,1]
p2(J) =J
e3(0) =0
p3([xa, %)) = [x1 + 1, % + 1]

Application of worklist algorithm (on the board)
© without widening: does not terminate
@ with widening: terminates with expected result for Aly ([1, +o0])

RWTHAACHEN Static Program Analysis Winter Semester 2014/15

7.26

	Recap: The MOP Solution
	Coincidence of MOP and Fixpoint Solution
	Undecidability of the MOP Solution
	Dataflow Analysis with Non-ACC Domains
	Example: Interval Analysis
	Formalising Interval Analysis
	Applying Widening to Interval Analysis

