
Static Program Analysis
Lecture 7: Dataflow Analysis VI

(Undecidability of MOP Solution & Non-ACC Domains)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Winter Semester 2014/15

noll@cs.rwth-aachen.de
http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Outline

1 Recap: The MOP Solution

2 Coincidence of MOP and Fixpoint Solution

3 Undecidability of the MOP Solution

4 Dataflow Analysis with Non-ACC Domains

5 Example: Interval Analysis

6 Formalising Interval Analysis

7 Applying Widening to Interval Analysis

Static Program Analysis Winter Semester 2014/15 7.2

The MOP Solution

Definition (MOP solution)

Let S = (Lab,E ,F , (D,v), ι, ϕ) be a dataflow system where
Lab = {l1, . . . , ln}. The MOP solution for S is determined by

mop(S) := (mop(l1), . . . ,mop(ln)) ∈ Dn

where, for every l ∈ Lab,

mop(l) :=
⊔
{ϕπ(ι) | π ∈ Path(l)}.

Remark:

Path(l) is generally infinite

=⇒ not clear how to compute mop(l)

In fact: MOP solution generally undecidable (later)

Static Program Analysis Winter Semester 2014/15 7.3

MOP vs. Fixpoint Solution I

Example (Constant Propagation)

c := if [z > 0]1 then
[x := 2;]2

[y := 3;]3

else
[x := 3;]4

[y := 2;]5

[z := x+y;]6

[. . .]7

Transfer functions
(for δ = (δ(x), δ(y), δ(z)) ∈ D):
ϕ1(a, b, c) = (a, b, c)
ϕ2(a, b, c) = (2, b, c)
ϕ3(a, b, c) = (a, 3, c)
ϕ4(a, b, c) = (3, b, c)
ϕ5(a, b, c) = (a, 2, c)
ϕ6(a, b, c) = (a, b, a + b)

1 Fixpoint solution:
CP1 = ι = (>,>,>)
CP2 = ϕ1(CP1) = (>,>,>)
CP3 = ϕ2(CP2) = (2,>,>)
CP4 = ϕ1(CP1) = (>,>,>)
CP5 = ϕ4(CP4) = (3,>,>)
CP6 = ϕ3(CP3) t ϕ5(CP5)

= (2, 3,>) t (3, 2,>) = (>,>,>)
CP7 = ϕ6(CP6) = (>,>,>)

2 MOP solution:
mop(7) = ϕ[1,2,3,6](>,>,>)t

ϕ[1,4,5,6](>,>,>)
= (2, 3, 5) t (3, 2, 5)
= (>,>, 5)

Static Program Analysis Winter Semester 2014/15 7.4

MOP vs. Fixpoint Solution II

Theorem (MOP vs. Fixpoint Solution)

Let S = (Lab,E ,F , (D,v), ι, ϕ) be a dataflow system. Then

mop(S) v fix(ΦS)

Reminder: by Definition 4.9,

ΦS : Dn → Dn : (d1, . . . , dn) 7→ (d ′1, . . . , d
′
n)

where Lab = {1, . . . , n} and, for each l ∈ Lab,

d ′l :=

{
ι if l ∈ E⊔
{ϕl ′(dl ′) | (l ′, l) ∈ F} otherwise

Proof.

on the board

Remark: as Example 6.2 shows, mop(S) 6= fix(ΦS) is possible

Static Program Analysis Winter Semester 2014/15 7.5

Outline

1 Recap: The MOP Solution

2 Coincidence of MOP and Fixpoint Solution

3 Undecidability of the MOP Solution

4 Dataflow Analysis with Non-ACC Domains

5 Example: Interval Analysis

6 Formalising Interval Analysis

7 Applying Widening to Interval Analysis

Static Program Analysis Winter Semester 2014/15 7.6

Distributivity of Transfer Functions I

A sufficient condition for the coincidence of MOP and Fixpoint Solution is
the distributivity of the transfer functions.

Definition 7.1 (Distributivity)

Let (D,v) and (D ′,v′) be complete lattices, and let F : D → D ′. F
is called distributive (w.r.t. (D,v) and (D ′,v′)) if, for every
d1, d2 ∈ D,

F (d1 tD d2) = F (d1) tD′ F (d2).

A dataflow system S = (Lab,E ,F , (D,v), ι, ϕ) is called distributive if
every ϕl : D → D (l ∈ Lab) is so.

Static Program Analysis Winter Semester 2014/15 7.7

Distributivity of Transfer Functions II

Example 7.2

1 The Available Expressions dataflow system is distributive:

ϕl(A1 t A2) = ((A1 ∩ A2) \ killAE(B l)) ∪ genAE(B l)
= ((A1 \ killAE(B l)) ∪ genAE(B l))∩

((A2 \ killAE(B l)) ∪ genAE(B l))
= ϕl(A1) t ϕl(A2)

2 The Live Variables dataflow system is distributive: similarly

3 The Constant Propagation dataflow system is not distributive (cf.
Example 6.2):

(>,>,>) = ϕz:=x+y((2, 3,>) t (3, 2,>))
6= ϕz:=x+y((2, 3,>)) t ϕz:=x+y((3, 2,>))
= (>,>, 5)

Static Program Analysis Winter Semester 2014/15 7.8

Coincidence of MOP and Fixpoint Solution

Theorem 7.3 (MOP vs. Fixpoint Solution)

Let S = (Lab,E ,F , (D,v), ι, ϕ) be a distributive dataflow system. Then

mop(S) = fix(ΦS)

Proof.

mop(S) v fix(ΦS): Theorem 6.3

fix(ΦS) v mop(S): as fix(ΦS) is the least fixpoint of ΦS , it suffices to
show that ΦS(mop(S)) = mop(S) (on the board)

Static Program Analysis Winter Semester 2014/15 7.9

Outline

1 Recap: The MOP Solution

2 Coincidence of MOP and Fixpoint Solution

3 Undecidability of the MOP Solution

4 Dataflow Analysis with Non-ACC Domains

5 Example: Interval Analysis

6 Formalising Interval Analysis

7 Applying Widening to Interval Analysis

Static Program Analysis Winter Semester 2014/15 7.10

Undecidability of the MOP Solution

Theorem 7.4 (Undecidability of MOP solution)

The MOP solution for Constant Propagation is undecidable.

Proof.

Based on undecidability of Modified Post Correspondence Problem:
Let Γ be some alphabet, n ∈ N, and u1, . . . , un, v1, . . . , vn ∈ Γ+.
Do there exist i1, . . . , im ∈ {1, . . . , n} with m ≥ 1 and i1 = 1 such that
ui1ui2 . . . uim = vi1vi2 . . . vim?

(on the board)

Static Program Analysis Winter Semester 2014/15 7.11

Outline

1 Recap: The MOP Solution

2 Coincidence of MOP and Fixpoint Solution

3 Undecidability of the MOP Solution

4 Dataflow Analysis with Non-ACC Domains

5 Example: Interval Analysis

6 Formalising Interval Analysis

7 Applying Widening to Interval Analysis

Static Program Analysis Winter Semester 2014/15 7.12

Dataflow Analysis with Non-ACC Domains

Reminder: (D,v) satisfies ACC if each ascending chain
d0 v d1 v . . . eventually stabilises, i.e., there exists n ∈ N such that
dn = dn+1 = . . .

If height (= maximal chain size - 1) of (D,v) is m, then fixpoint
computation terminates after at most |Lab| ·m iterations

But: if (D,v) has non-stabilising ascending chains
=⇒ algorithm may not terminate

Solution: use widening operators to enforce termination

Static Program Analysis Winter Semester 2014/15 7.13

Widening Operators

Definition 7.5 (Widening operator)

Let (D,v) be a complete lattice. A mapping ∇ : D × D → D is called
widening operator if

for every d1, d2 ∈ D,
d1 t d2 v d1∇d2

and

for all ascending chains d0 v d1 v . . ., the ascending chain
d∇0 v d∇1 v . . . eventually stabilises where

d∇0 := d0 and d∇i+1 := d∇i ∇di+1 for each i ∈ N

Remarks:

(d∇i)i∈N is clearly an ascending chain as
d∇i+1 = d∇i ∇di+1 w d∇i t di+1 w d∇i

In contrast to t, ∇ does not have to be commutative, associative,
monotonic, nor absorptive (d∇d = d)

The requirement d1 t d2 v d1∇d2 guarantees soundness of widening

Static Program Analysis Winter Semester 2014/15 7.14

Outline

1 Recap: The MOP Solution

2 Coincidence of MOP and Fixpoint Solution

3 Undecidability of the MOP Solution

4 Dataflow Analysis with Non-ACC Domains

5 Example: Interval Analysis

6 Formalising Interval Analysis

7 Applying Widening to Interval Analysis

Static Program Analysis Winter Semester 2014/15 7.15

Example: Interval Analysis

Interval Analysis

The goal of Interval Analysis is to determine, for each (interesting)
program point, a safe interval for the values of the (interesting) program
variables.

Interval analysis is actually a generalisation of constant propagation
(≈ interval analysis with 1-element intervals)

Example 7.6 (Interval Analysis)

var a[100]: int;
. . .
i := 0;
while i <= 42 do
if i >= 0 ∧ i < 100 then ⇐=
a[i] := i;

i := i + 1;

Here: redundant array bounds check can be removed

Static Program Analysis Winter Semester 2014/15 7.16

The Domain of Interval Analysis

The domain (Int,⊆) of intervals over Z is defined by

Int := {[z1, z2] | z1 ∈ Z ∪ {−∞}, z2 ∈ Z ∪ {+∞}}, z1 ≤ z2} ∪ {∅}
where

−∞ ≤ z and z ≤ +∞ (for all z ∈ Z)
∅ ⊆ J (for all J ∈ Int)
[y1, y2] ⊆ [z1, z2] iff y1 ≥ z1 and y2 ≤ z2

(Int,⊆) is a complete lattice with (for every I ⊆ Int)⊔
I =

{
∅ if I = ∅ or I = {∅}
[Z1,Z2] otherwise

where
Z1 :=

d
Z∪{−∞}{z1 | [z1, z2] ∈ I}

Z2 :=
⊔

Z∪{+∞}{z2 | [z1, z2] ∈ I}
(and thus ⊥ = ∅, > = [−∞,+∞])
Clearly (Int,⊆) has infinite ascending chains, such as

∅ ⊆ [1, 1] ⊆ [1, 2] ⊆ [1, 3] ⊆ . . .

Static Program Analysis Winter Semester 2014/15 7.17

The Complete Lattice of Interval Analysis

∅

[−2,−2] [−1,−1] [0, 0] [1, 1] [2, 2]

[−2,−1] [−1, 0] [0, 1] [1, 2]

[−2, 0] [−1, 1] [0, 2]

[−2, 1] [−1, 2]

[−2, 2]

[−∞,−1]

[−∞, 0]

[−∞, 1] [−1,+∞]

[0,+∞]

[1,+∞]

[−∞,+∞]

Static Program Analysis Winter Semester 2014/15 7.18

Outline

1 Recap: The MOP Solution

2 Coincidence of MOP and Fixpoint Solution

3 Undecidability of the MOP Solution

4 Dataflow Analysis with Non-ACC Domains

5 Example: Interval Analysis

6 Formalising Interval Analysis

7 Applying Widening to Interval Analysis

Static Program Analysis Winter Semester 2014/15 7.19

Formalising Interval Analysis I

The dataflow system S = (Lab,E ,F , (D,v), ι, ϕ) is given by

set of labels Lab := Labc

extremal labels E := {init(c)} (forward problem)

flow relation F := flow(c) (forward problem)

complete lattice (D,v) where

D := {δ | δ : Var c → Int}
δ1 v δ2 iff δ1(x) ⊆ δ2(x) for every x ∈ Var c

ι := >D : Var c → Int : x 7→ >Int (with >Int = [−∞,+∞])

ϕ: see next slide

Static Program Analysis Winter Semester 2014/15 7.20

Formalising Interval Analysis II

Transfer functions {ϕl | l ∈ Lab} are defined by

ϕl(δ) :=

{
δ if B l = skip or B l ∈ BExp
δ[x 7→ valδ(a)] if B l = (x := a)

where

valδ(x) := δ(x)
valδ(z) := [z , z]

valδ(a1+a2) := valδ(a1)⊕ valδ(a2)
valδ(a1-a2) := valδ(a1)	 valδ(a2)
valδ(a1*a2) := valδ(a1)� valδ(a2)

with
∅ ⊕ J := J ⊕ ∅ := ∅ 	 J := . . . := ∅

[y1, y2]⊕ [z1, z2] := [y1 + z1, y2 + z2]
[y1, y2]	 [z1, z2] := [y1 − z2, y2 − z1]

[y1, y2]� [z1, z2] :=
[d

y∈[y1,y2],z∈[z1,z2] y · z ,
⊔

y∈[y1,y2],z∈[z1,z2] y · z
]

Remarks:
Possible refinement of DFA to take conditional blocks bl into account

essentially: b as edge label, ϕl(δ)(x) = δ(x) \ {z ∈ Z | x = z =⇒ ¬b}
(cf. “DFA with Conditional Branches” later)

Important: soundness and optimality of abstract operations, e.g., ⊕:
soundness: z1 ∈ J1, z2 ∈ J2 =⇒ z1 + z2 ∈ J1 ⊕ J2

optimality: J1 ⊕ J2 as small as possible
Static Program Analysis Winter Semester 2014/15 7.21

Outline

1 Recap: The MOP Solution

2 Coincidence of MOP and Fixpoint Solution

3 Undecidability of the MOP Solution

4 Dataflow Analysis with Non-ACC Domains

5 Example: Interval Analysis

6 Formalising Interval Analysis

7 Applying Widening to Interval Analysis

Static Program Analysis Winter Semester 2014/15 7.22

Recap: Widening Operators

Definition (Widening operator)

Let (D,v) be a complete lattice. A mapping ∇ : D × D → D is called
widening operator if

for every d1, d2 ∈ D,
d1 t d2 v d1∇d2

and

for all ascending chains d0 v d1 v . . ., the ascending chain
d∇0 v d∇1 v . . . eventually stabilises where

d∇0 := d0 and d∇i+1 := d∇i ∇di+1 for each i ∈ N

Remarks:

(d∇i)i∈N is clearly an ascending chain as
d∇i+1 = d∇i ∇di+1 w d∇i t di+1 w d∇i

In contrast to t, ∇ does not have to be commutative, associative,
monotonic, nor absorptive (d∇d = d)

The requirement d1 t d2 v d1∇d2 guarantees soundness of widening

Static Program Analysis Winter Semester 2014/15 7.23

Applying Widening to Interval Analysis

A widening operator: ∇ : Int × Int → Int with
∅∇J := J∇∅ := J

[x1, x2]∇[y1, y2] := [z1, z2] where

z1 :=

{
x1 if x1 ≤ y1

−∞ otherwise

z2 :=

{
x2 if x2 ≥ y2

+∞ otherwise

Widening turns infinite ascending chain
J0 = ∅ ⊆ J1 = [1, 1] ⊆ J2 = [1, 2] ⊆ J3 = [1, 3] ⊆ . . .

into a finite one:
J∇0 = J0 = ∅
J∇1 = J∇0 ∇J1 = ∅∇[1, 1] = [1, 1]
J∇2 = J∇1 ∇J2 = [1, 1]∇[1, 2] = [1,+∞]
J∇3 = J∇2 ∇J3 = [1,+∞]∇[1, 3] = [1,+∞]

In fact, the maximal chain size arising with this operator is 4:
∅ ⊆ [3, 7] ⊆ [3,+∞] ⊆ [−∞,+∞]

Static Program Analysis Winter Semester 2014/15 7.24

Worklist Algorithm with Widening I

Goal: extend Algorithm 5.3 by widening to ensure termination

Algorithm 7.7 (Worklist algorithm with widening)

Input: dataflow system S = (Lab,E ,F , (D,v), ι, ϕ)
Variables: W ∈ (Lab × Lab)∗, {AIl ∈ D | l ∈ Lab}

Procedure: W := ε; for (l , l ′) ∈ F do W := W · (l , l ′); % Initialize W
for l ∈ Lab do % Initialise AI

if l ∈ E then AIl := ι else AIl := ⊥D ;
while W 6= ε do

(l , l ′) := head(W);W := tail(W);
if ϕl(AIl) 6v AIl ′ then % Fixpoint not yet reached

AIl ′ := AIl ′∇ϕl(AIl);
for (l ′, l ′′) ∈ F do

if (l ′, l ′′) not in W then W := (l ′, l ′′) ·W ;

Output: {AIl | l ∈ Lab}, denoted by fix∇(ΦS)

Remark: due to widening, only fix∇(ΦS) w fix(ΦS) is guaranteed
(cf. Thm. 5.6)

Static Program Analysis Winter Semester 2014/15 7.25

Worklist Algorithm with Widening II

Example 7.8

[x := 1]1

while [. . .]2

[x := x + 1]3

Transfer functions (for δ(x) = J):

ϕ1(J) = [1, 1]

ϕ2(J) = J

ϕ3(∅) = ∅
ϕ3([x1, x2]) = [x1 + 1, x2 + 1]

Application of worklist algorithm (on the board)

1 without widening: does not terminate

2 with widening: terminates with expected result for AI2 ([1,+∞])

Static Program Analysis Winter Semester 2014/15 7.26

	Recap: The MOP Solution
	Coincidence of MOP and Fixpoint Solution
	Undecidability of the MOP Solution
	Dataflow Analysis with Non-ACC Domains
	Example: Interval Analysis
	Formalising Interval Analysis
	Applying Widening to Interval Analysis

