Static Program Analysis

Lecture 7: Dataflow Analysis VI

 (Undecidability of MOP Solution \& Non-ACC Domains)Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

$$
\begin{gathered}
\text { noll@cs.rwth-aachen.de } \\
\text { http://moves.rwth-aachen.de/teaching/ws-1415/spa/ }
\end{gathered}
$$

Winter Semester 2014/15

Outline

(1) Recap: The MOP Solution
(2) Coincidence of MOP and Fixpoint Solution
(3) Undecidability of the MOP Solution
(4) Dataflow Analysis with Non-ACC Domains
(5) Example: Interval Analysis

6 Formalising Interval Analysis
(7) Applying Widening to Interval Analysis

The MOP Solution

Definition (MOP solution)

Let $S=(L a b, E, F,(D, \sqsubseteq), \iota, \varphi)$ be a dataflow system where $L a b=\left\{I_{1}, \ldots, I_{n}\right\}$. The MOP solution for S is determined by

$$
\operatorname{mop}(S):=\left(\operatorname{mop}\left(I_{1}\right), \ldots, \operatorname{mop}\left(I_{n}\right)\right) \in D^{n}
$$

where, for every $I \in L a b$,

$$
\operatorname{mop}(I):=\bigsqcup\left\{\varphi_{\pi}(\iota) \mid \pi \in \operatorname{Path}(I)\right\} .
$$

Remark:

- Path $(/)$ is generally infinite
\Longrightarrow not clear how to compute mop (1)
- In fact: MOP solution generally undecidable (later)

MOP vs. Fixpoint Solution I

Example (Constant Propagation)

$c:=\operatorname{if}[z>0]^{1}$ then

$$
\begin{aligned}
& {\left[\begin{array}{ll}
\mathrm{x} & :=2 ;]^{2} \\
{[\mathrm{y}} & :=3 ;]^{3}
\end{array}\right.}
\end{aligned}
$$

else

$$
[\mathrm{x}:=3 ;]^{4}
$$

$$
[y:=2 ;]^{5}
$$

$$
[z \quad:=x+y ;]^{6}
$$

$$
[\ldots]^{7}
$$

Transfer functions (for $\delta=(\delta(\mathrm{x}), \delta(\mathrm{y}), \delta(\mathrm{z})) \in D)$:
$\varphi_{1}(a, b, c)=(a, b, c)$
$\varphi_{2}(a, b, c)=(2, b, c)$
$\varphi_{3}(a, b, c)=(a, 3, c)$
$\varphi_{4}(a, b, c)=(3, b, c)$
$\varphi_{5}(a, b, c)=(a, 2, c)$
$\varphi_{6}(a, b, c)=(a, b, a+b)$
(1) Fixpoint solution:

$C P_{1}=\iota$		$=(\top, \top, \top)$
$C P_{2}=\varphi_{1}\left(C P_{1}\right)$		$=(\top, \top, \top)$
$C P_{3}=\varphi_{2}\left(C P_{2}\right)$		$=(2, \top, \top)$
$C P_{4}=\varphi_{1}\left(C P_{1}\right)$		$=(3, \top, \top, \top)$
$C P_{5}$	$=\varphi_{4}\left(C P_{4}\right)$	
$C P_{6}$	$=\varphi_{3}\left(C P_{3}\right) \sqcup \varphi_{5}\left(C P_{5}\right)$	
	$=(2,3, \top) \sqcup(3,2, \top)$	$=(\top, \top, \top)$
$C P_{7}$	$=\varphi_{6}\left(C P_{6}\right)$	
		$=(\top, \top, \top)$

(2) MOP solution:

$$
\begin{aligned}
\operatorname{mop}(7)= & \varphi_{[1,2,3,6]}(\top, \top, \top) \sqcup \\
& \varphi_{[1,4,5,6]}(\top, \top, \top) \\
= & (2,3,5) \sqcup(3,2,5) \\
= & (\top, \top, 5)
\end{aligned}
$$

MOP vs. Fixpoint Solution II

Theorem (MOP vs. Fixpoint Solution)

Let $S=(L a b, E, F,(D, \sqsubseteq), \iota, \varphi)$ be a dataflow system. Then

$$
\operatorname{mop}(S) \sqsubseteq \operatorname{fix}\left(\Phi_{S}\right)
$$

Reminder: by Definition 4.9,

$$
\Phi_{S}: D^{n} \rightarrow D^{n}:\left(d_{1}, \ldots, d_{n}\right) \mapsto\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime}\right)
$$

where $L a b=\{1, \ldots, n\}$ and, for each $I \in L a b$,

$$
d_{l}^{\prime}:= \begin{cases}\iota & \text { if } I \in E \\ \bigsqcup\left\{\varphi_{l^{\prime}}\left(d_{l^{\prime}}\right) \mid\left(I^{\prime}, l\right) \in F\right\} & \text { otherwise }\end{cases}
$$

Proof.

on the board
Remark: as Example 6.2 shows, $\operatorname{mop}(S) \neq \operatorname{fix}\left(\Phi_{S}\right)$ is possible

Outline

(1) Recap: The MOP Solution
(2) Coincidence of MOP and Fixpoint Solution
(3) Undecidability of the MOP Solution
(4) Dataflow Analysis with Non-ACC Domains
(5) Example: Interval Analysis

6 Formalising Interval Analysis
(7) Applying Widening to Interval Analysis

Distributivity of Transfer Functions I

A sufficient condition for the coincidence of MOP and Fixpoint Solution is the distributivity of the transfer functions.

Definition 7.1 (Distributivity)

- Let (D, \sqsubseteq) and $\left(D^{\prime}, \sqsubseteq^{\prime}\right)$ be complete lattices, and let $F: D \rightarrow D^{\prime}$. F is called distributive (w.r.t. (D, \sqsubseteq) and $\left(D^{\prime}, \sqsubseteq^{\prime}\right)$) if, for every $d_{1}, d_{2} \in D$,

$$
F\left(d_{1} \sqcup_{D} d_{2}\right)=F\left(d_{1}\right) \sqcup_{D^{\prime}} F\left(d_{2}\right) .
$$

Distributivity of Transfer Functions I

A sufficient condition for the coincidence of MOP and Fixpoint Solution is the distributivity of the transfer functions.

Definition 7.1 (Distributivity)

- Let (D, \sqsubseteq) and $\left(D^{\prime}, \sqsubseteq^{\prime}\right)$ be complete lattices, and let $F: D \rightarrow D^{\prime}$. F is called distributive (w.r.t. (D, \sqsubseteq) and $\left(D^{\prime}, \sqsubseteq^{\prime}\right)$) if, for every $d_{1}, d_{2} \in D$,

$$
F\left(d_{1} \sqcup_{D} d_{2}\right)=F\left(d_{1}\right) \sqcup_{D^{\prime}} F\left(d_{2}\right) .
$$

- A dataflow system $S=(L a b, E, F,(D, \sqsubseteq), \iota, \varphi)$ is called distributive if every $\varphi_{I}: D \rightarrow D(I \in L a b)$ is so.

Distributivity of Transfer Functions II

Example 7.2

(1) The Available Expressions dataflow system is distributive:

$$
\begin{aligned}
\varphi_{I}\left(A_{1} \sqcup A_{2}\right)= & \left(\left(A_{1} \cap A_{2}\right) \backslash \operatorname{kill}_{\mathrm{AE}}\left(B^{\prime}\right)\right) \cup \operatorname{gen}_{\mathrm{AE}}\left(B^{\prime}\right) \\
= & \left(\left(A_{1} \backslash \operatorname{kill}_{\mathrm{AE}}\left(B^{\prime}\right)\right) \cup \operatorname{gen}_{\mathrm{AE}}\left(B^{\prime}\right)\right) \cap \\
& \left(\left(A_{2} \backslash \operatorname{kill}_{\mathrm{AE}}\left(B^{\prime}\right)\right) \cup \operatorname{gen}_{\mathrm{AE}}\left(B^{\prime}\right)\right) \\
= & \varphi_{I}\left(A_{1}\right) \sqcup \varphi_{I}\left(A_{2}\right)
\end{aligned}
$$

Distributivity of Transfer Functions II

Example 7.2

(1) The Available Expressions dataflow system is distributive:

$$
\begin{aligned}
\varphi_{I}\left(A_{1} \sqcup A_{2}\right)= & \left(\left(A_{1} \cap A_{2}\right) \backslash \operatorname{kill}_{\mathrm{AE}}\left(B^{\prime}\right)\right) \cup \operatorname{gen}_{\mathrm{AE}}\left(B^{\prime}\right) \\
= & \left(\left(A_{1} \backslash \operatorname{kill}_{\mathrm{AE}}\left(B^{\prime}\right)\right) \cup \operatorname{gen}_{\mathrm{AE}}\left(B^{\prime}\right)\right) \cap \\
& \left(\left(A_{2} \backslash \operatorname{kill}_{\mathrm{AE}}\left(B^{\prime}\right)\right) \cup \operatorname{gen}_{\mathrm{AE}}\left(B^{\prime}\right)\right) \\
= & \varphi_{I}\left(A_{1}\right) \sqcup \varphi_{I}\left(A_{2}\right)
\end{aligned}
$$

(2) The Live Variables dataflow system is distributive: similarly

Distributivity of Transfer Functions II

Example 7.2

(1) The Available Expressions dataflow system is distributive:

$$
\begin{aligned}
\varphi_{I}\left(A_{1} \sqcup A_{2}\right)= & \left(\left(A_{1} \cap A_{2}\right) \backslash \operatorname{kill}_{\mathrm{AE}}\left(B^{\prime}\right)\right) \cup \operatorname{gen}_{\mathrm{AE}}\left(B^{\prime}\right) \\
= & \left(\left(A_{1} \backslash \operatorname{kill}_{\mathrm{AE}}\left(B^{\prime}\right)\right) \cup \operatorname{gen}_{\mathrm{AE}}\left(B^{\prime}\right)\right) \cap \\
& \left(\left(A_{2} \backslash \operatorname{kill}_{\mathrm{AE}}\left(B^{\prime}\right)\right) \cup \operatorname{gen}_{\mathrm{AE}}\left(B^{\prime}\right)\right) \\
= & \varphi_{I}\left(A_{1}\right) \sqcup \varphi_{I}\left(A_{2}\right)
\end{aligned}
$$

(2) The Live Variables dataflow system is distributive: similarly
(3) The Constant Propagation dataflow system is not distributive (cf. Example 6.2):

$$
\begin{aligned}
(\top, \top, \top) & =\varphi_{z:=x+y}((2,3, \top) \sqcup(3,2, \top)) \\
& \neq \varphi_{z:=x+y}((2,3, \top)) \sqcup \varphi_{z:=x+y}((3,2, \top)) \\
& =(\top, \top, 5)
\end{aligned}
$$

Coincidence of MOP and Fixpoint Solution

> Theorem 7.3 (MOP vs. Fixpoint Solution) $\begin{aligned} & \text { Let } S=(L a b, E, F,(D, \sqsubseteq), \iota, \varphi) \text { be a distributive dataflow system. Then } \\ & \qquad \operatorname{mop}(S)=\operatorname{fix}\left(\Phi_{S}\right)\end{aligned}$

Coincidence of MOP and Fixpoint Solution

Theorem 7.3 (MOP vs. Fixpoint Solution)

Let $S=($ Lab, $E, F,(D, \sqsubseteq), \iota, \varphi)$ be a distributive dataflow system. Then

$$
\operatorname{mop}(S)=\operatorname{fix}\left(\Phi_{S}\right)
$$

Proof.

- $\operatorname{mop}(S) \sqsubseteq$ fix $\left(\Phi_{S}\right)$: Theorem 6.3
- $\operatorname{fix}\left(\Phi_{S}\right) \sqsubseteq \operatorname{mop}(S)$: as fix $\left(\Phi_{S}\right)$ is the least fixpoint of Φ_{S}, it suffices to show that $\Phi_{S}(\operatorname{mop}(S))=\operatorname{mop}(S)$ (on the board)

Outline

(1) Recap: The MOP Solution
(2) Coincidence of MOP and Fixpoint Solution
(3) Undecidability of the MOP Solution
4) Dataflow Analysis with Non-ACC Domains
(5) Example: Interval Analysis
(6) Formalising Interval Analysis
(7) Applying Widening to Interval Analysis

Undecidability of the MOP Solution

Theorem 7.4 (Undecidability of MOP solution)
The MOP solution for Constant Propagation is undecidable.

Undecidability of the MOP Solution

Theorem 7.4 (Undecidability of MOP solution)

The MOP solution for Constant Propagation is undecidable.

Proof.

Based on undecidability of Modified Post Correspondence Problem: Let Γ be some alphabet, $n \in \mathbb{N}$, and $u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n} \in \Gamma^{+}$.
Do there exist $i_{1}, \ldots, i_{m} \in\{1, \ldots, n\}$ with $m \geq 1$ and $i_{1}=1$ such that $u_{i_{1}} u_{i_{2}} \ldots u_{i_{m}}=v_{i_{1}} v_{i_{2}} \ldots v_{i_{m}}$?
(on the board)

Outline

(1) Recap: The MOP Solution
(2) Coincidence of MOP and Fixpoint Solution
(3) Undecidability of the MOP Solution

4 Dataflow Analysis with Non-ACC Domains
(5) Example: Interval Analysis
(6) Formalising Interval Analysis
(7) Applying Widening to Interval Analysis

Dataflow Analysis with Non-ACC Domains

- Reminder: (D, \sqsubseteq) satisfies ACC if each ascending chain $d_{0} \sqsubseteq d_{1} \sqsubseteq \ldots$ eventually stabilises, i.e., there exists $n \in \mathbb{N}$ such that $d_{n}=d_{n+1}=\ldots$
- If height (= maximal chain size -1) of (D, \sqsubseteq) is m, then fixpoint computation terminates after at most $|L a b| \cdot m$ iterations

Dataflow Analysis with Non-ACC Domains

- Reminder: (D, \sqsubseteq) satisfies ACC if each ascending chain $d_{0} \sqsubseteq d_{1} \sqsubseteq \ldots$ eventually stabilises, i.e., there exists $n \in \mathbb{N}$ such that $d_{n}=d_{n+1}=\ldots$
- If height (= maximal chain size -1) of (D, \sqsubseteq) is m, then fixpoint computation terminates after at most $|L a b| \cdot m$ iterations
- But: if (D, \sqsubseteq) has non-stabilising ascending chains
\Longrightarrow algorithm may not terminate

Dataflow Analysis with Non-ACC Domains

- Reminder: (D, \sqsubseteq) satisfies ACC if each ascending chain $d_{0} \sqsubseteq d_{1} \sqsubseteq \ldots$ eventually stabilises, i.e., there exists $n \in \mathbb{N}$ such that $d_{n}=d_{n+1}=\ldots$
- If height (= maximal chain size -1) of (D, \sqsubseteq) is m, then fixpoint computation terminates after at most $|L a b| \cdot m$ iterations
- But: if (D, \sqsubseteq) has non-stabilising ascending chains
\Longrightarrow algorithm may not terminate
- Solution: use widening operators to enforce termination

Widening Operators

Definition 7.5 (Widening operator)

Let (D, \sqsubseteq) be a complete lattice. A mapping $\nabla: D \times D \rightarrow D$ is called widening operator if

- for every $d_{1}, d_{2} \in D$,

$$
d_{1} \sqcup d_{2} \sqsubseteq d_{1} \nabla d_{2}
$$

and

- for all ascending chains $d_{0} \sqsubseteq d_{1} \sqsubseteq \ldots$, the ascending chain
$d_{0}^{\nabla} \sqsubseteq d_{1}^{\nabla} \sqsubseteq \ldots$ eventually stabilises where

$$
d_{0}^{\nabla}:=d_{0} \text { and } d_{i+1}^{\nabla}:=d_{i}^{\nabla} \nabla d_{i+1} \text { for each } i \in \mathbb{N}
$$

Widening Operators

Definition 7.5 (Widening operator)

Let (D, \sqsubseteq) be a complete lattice. A mapping $\nabla: D \times D \rightarrow D$ is called widening operator if

- for every $d_{1}, d_{2} \in D$,

$$
d_{1} \sqcup d_{2} \sqsubseteq d_{1} \nabla d_{2}
$$

and

- for all ascending chains $d_{0} \sqsubseteq d_{1} \sqsubseteq \ldots$, the ascending chain $d_{0}^{\nabla} \sqsubseteq d_{1}^{\nabla} \sqsubseteq \ldots$ eventually stabilises where

$$
d_{0}^{\nabla}:=d_{0} \text { and } d_{i+1}^{\nabla}:=d_{i}^{\nabla} \nabla d_{i+1} \text { for each } i \in \mathbb{N}
$$

Remarks:

- $\left(d_{i}^{\nabla}\right)_{i \in \mathbb{N}}$ is clearly an ascending chain as

$$
d_{i+1}^{\nabla}=d_{i}^{\nabla} \nabla d_{i+1} \sqsupseteq d_{i}^{\nabla} \sqcup d_{i+1} \sqsupseteq d_{i}^{\nabla}
$$

- In contrast to \sqcup, ∇ does not have to be commutative, associative, monotonic, nor absorptive $(d \nabla d=d)$
- The requirement $d_{1} \sqcup d_{2} \sqsubseteq d_{1} \nabla d_{2}$ guarantees soundness of widening

Outline

(1) Recap: The MOP Solution
(2) Coincidence of MOP and Fixpoint Solution
(3) Undecidability of the MOP Solution
(4) Dataflow Analysis with Non-ACC Domains
(5) Example: Interval Analysis
(6) Formalising Interval Analysis
(7) Applying Widening to Interval Analysis

Example: Interval Analysis

Interval Analysis

The goal of Interval Analysis is to determine, for each (interesting) program point, a safe interval for the values of the (interesting) program variables.

Interval analysis is actually a generalisation of constant propagation (\approx interval analysis with 1-element intervals)

Example: Interval Analysis

Interval Analysis

The goal of Interval Analysis is to determine, for each (interesting) program point, a safe interval for the values of the (interesting) program variables.

Interval analysis is actually a generalisation of constant propagation (\approx interval analysis with 1-element intervals)

Example 7.6 (Interval Analysis)

```
var a[100]: int;
i := 0;
while i <= 42 do
    if i >= 0 ^ i < 100 then
        a[i] := i;
    i := i + 1;
```


Example: Interval Analysis

Interval Analysis

The goal of Interval Analysis is to determine, for each (interesting) program point, a safe interval for the values of the (interesting) program variables.

Interval analysis is actually a generalisation of constant propagation (\approx interval analysis with 1-element intervals)

Example 7.6 (Interval Analysis)

```
var a[100]: int;
i := 0;
    while i <= 42 do
    if i >= 0 ^ i < 100 then
        a[i] := i;
    i := i + 1;
```

Here: redundant array bounds check can be removed

- The domain (Int, \subseteq) of intervals over \mathbb{Z} is defined by

$$
\text { Int } \left.:=\left\{\left[z_{1}, z_{2}\right] \mid z_{1} \in \mathbb{Z} \cup\{-\infty\}, z_{2} \in \mathbb{Z} \cup\{+\infty\}\right\}, z_{1} \leq z_{2}\right\} \cup\{\emptyset\}
$$

where

- $-\infty \leq z$ and $z \leq+\infty$ (for all $z \in \mathbb{Z}$)
- $\emptyset \subseteq J$ (for all $J \in \operatorname{Int})$
- $\left[y_{1}, y_{2}\right] \subseteq\left[z_{1}, z_{2}\right]$ iff $y_{1} \geq z_{1}$ and $y_{2} \leq z_{2}$
- The domain (Int, \subseteq) of intervals over \mathbb{Z} is defined by

$$
\text { Int } \left.:=\left\{\left[z_{1}, z_{2}\right] \mid z_{1} \in \mathbb{Z} \cup\{-\infty\}, z_{2} \in \mathbb{Z} \cup\{+\infty\}\right\}, z_{1} \leq z_{2}\right\} \cup\{\emptyset\}
$$

where

- $-\infty \leq z$ and $z \leq+\infty$ (for all $z \in \mathbb{Z}$)
- $\emptyset \subseteq J$ (for all $J \in \operatorname{Int})$
- $\left[y_{1}, y_{2}\right] \subseteq\left[z_{1}, z_{2}\right]$ iff $y_{1} \geq z_{1}$ and $y_{2} \leq z_{2}$
- ($\operatorname{Int}, \subseteq$) is a complete lattice with (for every $\mathcal{I} \subseteq \operatorname{Int}$)

$$
\bigsqcup \mathcal{I}= \begin{cases}\emptyset & \text { if } \mathcal{I}=\emptyset \text { or } \mathcal{I}=\{\emptyset\} \\ {\left[Z_{1}, Z_{2}\right]} & \text { otherwise }\end{cases}
$$

where

$$
\begin{aligned}
& Z_{1}:=\prod_{\mathbb{Z} \cup\{-\infty\}}\left\{z_{1} \mid\left[z_{1}, z_{2}\right] \in \mathcal{I}\right\} \\
& z_{2}:=\bigsqcup_{\mathbb{Z} \cup\{+\infty\}}\left\{z_{2} \mid\left[z_{1}, z_{2}\right] \in \mathcal{I}\right\}
\end{aligned}
$$

(and thus $\perp=\emptyset, \top=[-\infty,+\infty]$)

- The domain (Int, \subseteq) of intervals over \mathbb{Z} is defined by

$$
\text { Int } \left.:=\left\{\left[z_{1}, z_{2}\right] \mid z_{1} \in \mathbb{Z} \cup\{-\infty\}, z_{2} \in \mathbb{Z} \cup\{+\infty\}\right\}, z_{1} \leq z_{2}\right\} \cup\{\emptyset\}
$$

where

- $-\infty \leq z$ and $z \leq+\infty$ (for all $z \in \mathbb{Z}$)
- $\emptyset \subseteq J$ (for all $J \in \operatorname{Int})$
- $\left[y_{1}, y_{2}\right] \subseteq\left[z_{1}, z_{2}\right]$ iff $y_{1} \geq z_{1}$ and $y_{2} \leq z_{2}$
- $(\operatorname{Int}, \subseteq)$ is a complete lattice with (for every $\mathcal{I} \subseteq \operatorname{Int})$

$$
\bigsqcup \mathcal{I}= \begin{cases}\emptyset & \text { if } \mathcal{I}=\emptyset \text { or } \mathcal{I}=\{\emptyset\} \\ {\left[Z_{1}, Z_{2}\right]} & \text { otherwise }\end{cases}
$$

where

$$
\begin{aligned}
& Z_{1}:=\prod_{\mathbb{Z} \cup\{-\infty\}}\left\{z_{1} \mid\left[z_{1}, z_{2}\right] \in \mathcal{I}\right\} \\
& Z_{2}:=\bigsqcup_{\mathbb{Z} \cup\{+\infty\}}\left\{z_{2} \mid\left[z_{1}, z_{2}\right] \in \mathcal{I}\right\}
\end{aligned}
$$

(and thus $\perp=\emptyset, \top=[-\infty,+\infty]$)

- Clearly (Int, \subseteq) has infinite ascending chains, such as

$$
\emptyset \subseteq[1,1] \subseteq[1,2] \subseteq[1,3] \subseteq \ldots
$$

The Complete Lattice of Interval Analysis

$$
[-\infty,+\infty]
$$

Outline

(1) Recap: The MOP Solution
(2) Coincidence of MOP and Fixpoint Solution
(3) Undecidability of the MOP Solution
(4) Dataflow Analysis with Non-ACC Domains
(5) Example: Interval Analysis
(6) Formalising Interval Analysis
(7) Applying Widening to Interval Analysis

Formalising Interval Analysis I

The dataflow system $S=(L a b, E, F,(D, \sqsubseteq), \iota, \varphi)$ is given by

- set of labels $L a b:=L a b_{c}$
- extremal labels $E:=\{\operatorname{init}(c)\}$ (forward problem)
- flow relation $F:=$ flow(c) (forward problem)
- complete lattice (D, \sqsubseteq) where
- $D:=\left\{\delta \mid \delta: \operatorname{Var}_{c} \rightarrow I n t\right\}$
- $\delta_{1} \sqsubseteq \delta_{2}$ iff $\delta_{1}(x) \subseteq \delta_{2}(x)$ for every $x \in \operatorname{Var}_{c}$
- $\iota:=\top_{D}: \operatorname{Var}_{c} \rightarrow$ Int $: x \mapsto \top_{\text {Int }}\left(\right.$ with $\top_{\text {Int }}=[-\infty,+\infty]$)
- φ : see next slide

Formalising Interval Analysis II

Transfer functions $\left\{\varphi_{I} \mid I \in L a b\right\}$ are defined by

$$
\varphi_{I}(\delta):= \begin{cases}\delta & \text { if } B^{\prime}=\text { skip or } B^{\prime} \in B E x p \\ \delta\left[x \mapsto \operatorname{val}_{\delta}(a)\right] & \text { if } B^{\prime}=(x:=a)\end{cases}
$$

where

$$
\begin{array}{ll}
\operatorname{val}_{\delta}(x):=\delta(x) & \operatorname{val}_{\delta}\left(a_{1}+a_{2}\right):=\operatorname{val}_{\delta}\left(a_{1}\right) \oplus \operatorname{val}_{\delta}\left(a_{2}\right) \\
\operatorname{val}_{\delta}(z):=[z, z] & \operatorname{val}_{\delta}\left(a_{1}-a_{2}\right):=\operatorname{val}_{\delta}\left(a_{1}\right) \ominus \operatorname{val}_{\delta}\left(a_{2}\right) \\
\operatorname{val}_{\delta}\left(a_{1} * a_{2}\right):=\operatorname{val}_{\delta}\left(a_{1}\right) \odot \operatorname{val}_{\delta}\left(a_{2}\right)
\end{array}
$$

with

$$
\begin{aligned}
\emptyset \oplus J & :=J \oplus \emptyset:=\emptyset \ominus J:=\ldots:=\emptyset \\
{\left[y_{1}, y_{2}\right] \oplus\left[z_{1}, z_{2}\right] } & :=\left[y_{1}+z_{1}, y_{2}+z_{2}\right] \\
{\left[y_{1}, y_{2}\right] \ominus\left[z_{1}, z_{2}\right] } & :=\left[y_{1}-z_{2}, y_{2}-z_{1}\right] \\
{\left[y_{1}, y_{2}\right] \odot\left[z_{1}, z_{2}\right]: } & \left.: \prod_{y \in\left[y_{1}, y_{2}\right], z \in\left[z_{1}, z_{2}\right]} y \cdot z, \bigsqcup_{y \in\left[y_{1}, y_{2}\right], z \in\left[z_{1}, z_{2}\right]} y \cdot z\right]
\end{aligned}
$$

Formalising Interval Analysis II

Transfer functions $\left\{\varphi_{I} \mid I \in L a b\right\}$ are defined by

$$
\varphi_{I}(\delta):= \begin{cases}\delta & \text { if } B^{\prime}=\text { skip or } B^{\prime} \in B E x p \\ \delta\left[x \mapsto \operatorname{val}_{\delta}(a)\right] & \text { if } B^{\prime}=(x:=a)\end{cases}
$$

where

$$
\begin{array}{ll}
\operatorname{val}_{\delta}(x):=\delta(x) & \operatorname{val}_{\delta}\left(a_{1}+a_{2}\right):=\operatorname{val}_{\delta}\left(a_{1}\right) \oplus \operatorname{val}_{\delta}\left(a_{2}\right) \\
\operatorname{val}_{\delta}(z):=[z, z] & \operatorname{val}_{\delta}\left(a_{1}-a_{2}\right):=\operatorname{val}_{\delta}\left(a_{1}\right) \ominus \operatorname{val}_{\delta}\left(a_{2}\right) \\
\operatorname{val}_{\delta}\left(a_{1} * a_{2}\right):=\operatorname{val}_{\delta}\left(a_{1}\right) \odot \operatorname{val}_{\delta}\left(a_{2}\right)
\end{array}
$$

with

$$
\emptyset \oplus J:=J \oplus \emptyset:=\emptyset \ominus J:=\ldots:=\emptyset
$$

$$
\begin{aligned}
{\left[y_{1}, y_{2}\right] \oplus\left[z_{1}, z_{2}\right]:=\left[y_{1}+z_{1}, y_{2}+z_{2}\right] } \\
{\left[y_{1}, y_{2}\right] \ominus\left[z_{1}, z_{2}\right]:=\left[y_{1}-z_{2}, y_{2}-z_{1}\right] } \\
{\left[y_{1}, y_{2}\right] \odot\left[z_{1}, z_{2}\right]:=\left[\prod_{y \in\left[y_{1}, y_{2}\right], z \in\left[z_{1}, z_{2}\right]} y \cdot z, \bigsqcup_{y \in\left[y_{1}, y_{2}\right], z \in\left[z_{1}, z_{2}\right]} y \cdot z\right] }
\end{aligned}
$$

Remarks:

- Possible refinement of DFA to take conditional blocks b^{\prime} into account
- essentially: b as edge label, $\varphi_{1}(\delta)(x)=\delta(x) \backslash\{z \in \mathbb{Z} \mid x=z \Longrightarrow \neg b\}$ (cf. "DFA with Conditional Branches" later)
- Important: soundness and optimality of abstract operations, e.g., \oplus :
- soundness: $z_{1} \in J_{1}, z_{2} \in J_{2} \Longrightarrow z_{1}+z_{2} \in J_{1} \oplus J_{2}$
- optimality: $J_{1} \oplus J_{2}$ as small as possible

Outline

(1) Recap: The MOP Solution
(2) Coincidence of MOP and Fixpoint Solution
(3) Undecidability of the MOP Solution
(4) Dataflow Analysis with Non-ACC Domains
(5) Example: Interval Analysis
(6) Formalising Interval Analysis
(7) Applying Widening to Interval Analysis

Recap: Widening Operators

Definition (Widening operator)

Let (D, \sqsubseteq) be a complete lattice. A mapping $\nabla: D \times D \rightarrow D$ is called widening operator if

- for every $d_{1}, d_{2} \in D$,

$$
d_{1} \sqcup d_{2} \sqsubseteq d_{1} \nabla d_{2}
$$

and

- for all ascending chains $d_{0} \sqsubseteq d_{1} \sqsubseteq \ldots$, the ascending chain
$d_{0}^{\nabla} \sqsubseteq d_{1}^{\nabla} \sqsubseteq \ldots$ eventually stabilises where

$$
d_{0}^{\nabla}:=d_{0} \text { and } d_{i+1}^{\nabla}:=d_{i}^{\nabla} \nabla d_{i+1} \text { for each } i \in \mathbb{N}
$$

Recap: Widening Operators

Definition (Widening operator)

Let (D, \sqsubseteq) be a complete lattice. A mapping $\nabla: D \times D \rightarrow D$ is called widening operator if

- for every $d_{1}, d_{2} \in D$,

$$
d_{1} \sqcup d_{2} \sqsubseteq d_{1} \nabla d_{2}
$$

and

- for all ascending chains $d_{0} \sqsubseteq d_{1} \sqsubseteq \ldots$, the ascending chain
$d_{0}^{\nabla} \sqsubseteq d_{1}^{\nabla} \sqsubseteq \ldots$ eventually stabilises where

$$
d_{0}^{\nabla}:=d_{0} \text { and } d_{i+1}^{\nabla}:=d_{i}^{\nabla} \nabla d_{i+1} \text { for each } i \in \mathbb{N}
$$

Remarks:

- $\left(d_{i}^{\nabla}\right)_{i \in \mathbb{N}}$ is clearly an ascending chain as

$$
d_{i+1}^{\nabla}=d_{i}^{\nabla} \nabla d_{i+1} \sqsupseteq d_{i}^{\nabla} \sqcup d_{i+1} \sqsupseteq d_{i}^{\nabla}
$$

- In contrast to \sqcup, ∇ does not have to be commutative, associative, monotonic, nor absorptive $(d \nabla d=d)$
- The requirement $d_{1} \sqcup d_{2} \sqsubseteq d_{1} \nabla d_{2}$ guarantees soundness of widening

Applying Widening to Interval Analysis

- A widening operator: ∇ : Int \times Int \rightarrow Int with

$$
\begin{aligned}
\emptyset \nabla J & :=J \nabla \emptyset:=J \\
{\left[x_{1}, x_{2}\right] \nabla\left[y_{1}, y_{2}\right] } & :=\left[z_{1}, z_{2}\right] \\
z_{1} & := \begin{cases}x_{1} & \text { if } x_{1} \leq y_{1} \\
-\infty & \text { otherwise }\end{cases} \\
z_{2} & := \begin{cases}x_{2} & \text { if } x_{2} \geq y_{2} \\
+\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

Applying Widening to Interval Analysis

- A widening operator: $\nabla: \operatorname{Int} \times \operatorname{Int} \rightarrow \operatorname{Int}$ with

$$
\begin{aligned}
\emptyset \nabla J & :=J \nabla \emptyset:=J \\
{\left[x_{1}, x_{2}\right] \nabla\left[y_{1}, y_{2}\right] } & :=\left[z_{1}, z_{2}\right] \\
z_{1} & := \begin{cases}x_{1} & \text { if } x_{1} \leq y_{1} \\
-\infty & \text { otherwise }\end{cases} \\
z_{2} & := \begin{cases}x_{2} & \text { if } x_{2} \geq y_{2} \\
+\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

- Widening turns infinite ascending chain

$$
J_{0}=\emptyset \subseteq J_{1}=[1,1] \subseteq J_{2}=[1,2] \subseteq J_{3}=[1,3] \subseteq \ldots
$$

into a finite one:

$$
\begin{aligned}
& J_{0}^{\nabla}=J_{0}=\emptyset \\
& J_{1}^{\nabla}=J_{0}^{\nabla} \nabla J_{1}=\emptyset \nabla[1,1]=[1,1] \\
& J_{2}^{\nabla}=J_{1}^{\nabla} \nabla J_{2}=[1,1] \nabla[1,2]=[1,+\infty] \\
& J_{3}^{\nabla}=J_{2}^{\nabla} \nabla J_{3}=[1,+\infty] \nabla[1,3]=[1,+\infty]
\end{aligned}
$$

Applying Widening to Interval Analysis

- A widening operator: ∇ : Int \times Int \rightarrow Int with

$$
\begin{aligned}
\emptyset \nabla J & :=J \nabla \emptyset:=J \\
{\left[x_{1}, x_{2}\right] \nabla\left[y_{1}, y_{2}\right] } & :=\left[z_{1}, z_{2}\right] \\
z_{1} & := \begin{cases}x_{1} & \text { where } x_{1} \leq y_{1} \\
-\infty & \text { otherwise }\end{cases} \\
z_{2} & := \begin{cases}x_{2} & \text { if } x_{2} \geq y_{2} \\
+\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

- Widening turns infinite ascending chain

$$
J_{0}=\emptyset \subseteq J_{1}=[1,1] \subseteq J_{2}=[1,2] \subseteq J_{3}=[1,3] \subseteq \ldots
$$

into a finite one:

$$
\begin{aligned}
& J_{0}^{\nabla}=J_{0}=\emptyset \\
& J_{1}^{\nabla}=J_{0}^{\nabla} \nabla J_{1}=\emptyset \nabla[1,1]=[1,1] \\
& J_{2}^{\nabla}=J_{1}^{\nabla} \nabla J_{2}=[1,1] \nabla[1,2]=[1,+\infty] \\
& J_{3}^{\nabla}=J_{2}^{\nabla} \nabla J_{3}=[1,+\infty] \nabla[1,3]=[1,+\infty]
\end{aligned}
$$

- In fact, the maximal chain size arising with this operator is 4:

$$
\emptyset \subseteq[3,7] \subseteq[3,+\infty] \subseteq[-\infty,+\infty]
$$

Worklist Algorithm with Widening I

Goal: extend Algorithm 5.3 by widening to ensure termination

Worklist Algorithm with Widening I

Goal: extend Algorithm 5.3 by widening to ensure termination
Algorithm 7.7 (Worklist algorithm with widening)
Input: dataflow system $S=(L a b, E, F,(D, \sqsubseteq), \iota, \varphi)$

Worklist Algorithm with Widening I

Goal: extend Algorithm 5.3 by widening to ensure termination
Algorithm 7.7 (Worklist algorithm with widening)
Input: dataflow system $S=(L a b, E, F,(D, \sqsubseteq), \iota, \varphi)$
Variables: $W \in(L a b \times L a b)^{*},\left\{\mathrm{Al}_{I} \in D \mid I \in L a b\right\}$

Worklist Algorithm with Widening I

Goal: extend Algorithm 5.3 by widening to ensure termination
Algorithm 7.7 (Worklist algorithm with widening)
Input: dataflow system $S=(L a b, E, F,(D, \sqsubseteq), \iota, \varphi)$
Variables: $W \in(L a b \times L a b)^{*},\left\{\mathrm{Al}_{I} \in D \mid I \in L a b\right\}$
Procedure: $W:=\varepsilon ;$ for $\left(I, I^{\prime}\right) \in F$ do $W:=W \cdot\left(I, I^{\prime}\right) ;$ \% Initialize W for $I \in L a b$ do $\%$ Initialise AI
if $l \in E$ then $\mathrm{Al}_{l}:=\iota$ else $\mathrm{Al}_{l}:=\perp_{D}$;

Worklist Algorithm with Widening I

Goal: extend Algorithm 5.3 by widening to ensure termination
Algorithm 7.7 (Worklist algorithm with widening)
Input: dataflow system $S=(L a b, E, F,(D, \sqsubseteq), \iota, \varphi)$
Variables: $W \in(L a b \times L a b)^{*},\left\{\mathrm{Al}_{I} \in D \mid I \in L a b\right\}$
Procedure: $W:=\varepsilon ;$ for $\left(I, I^{\prime}\right) \in F$ do $W:=W \cdot\left(I, I^{\prime}\right) ;$ \% Initialize W for $I \in L a b$ do $\%$ Initialise AI
if $l \in E$ then $\mathrm{Al}_{l}:=\iota$ else $\mathrm{Al}_{I}:=\perp_{D}$;
while $W \neq \varepsilon$ do
$\left(I, I^{\prime}\right):=\boldsymbol{h e a d}(W) ; W:=\boldsymbol{\operatorname { t a i l }}(W)$;
if $\varphi_{l}\left(\mathrm{Al}_{I}\right) \nsubseteq \mathrm{Al}_{l}$, then \quad \% Fixpoint not yet reached $\mathrm{Al}_{l^{\prime}}:=\mathrm{Al}_{l^{\prime}} \nabla \varphi_{I}\left(\mathrm{Al}_{I}\right)$; for $\left(I^{\prime}, I^{\prime \prime}\right) \in F$ do
if $\left(I^{\prime}, I^{\prime \prime}\right)$ not in W then $W:=\left(I^{\prime}, I^{\prime \prime}\right) \cdot W$;

Worklist Algorithm with Widening I

Goal: extend Algorithm 5.3 by widening to ensure termination

Algorithm 7.7 (Worklist algorithm with widening)

Input: dataflow system $S=(L a b, E, F,(D, \sqsubseteq), \iota, \varphi)$
Variables: $W \in(L a b \times L a b)^{*},\left\{\mathrm{Al}_{I} \in D \mid I \in L a b\right\}$
Procedure: $W:=\varepsilon ;$ for $\left(I, I^{\prime}\right) \in F$ do $W:=W \cdot\left(I, I^{\prime}\right) ;$ \% Initialize W for $I \in L a b$ do $\%$ Initialise AI
if $l \in E$ then $\mathrm{Al}_{l}:=\iota$ else $\mathrm{Al}_{I}:=\perp_{D}$;
while $W \neq \varepsilon$ do
$\left(I, I^{\prime}\right):=\operatorname{head}(W) ; W:=\boldsymbol{\operatorname { t a i l }}(W)$;
if $\varphi_{l}\left(\mathrm{Al}_{I}\right) \nsubseteq \mathrm{Al}_{I}$, then \quad \% Fixpoint not yet reached $\mathrm{Al}_{l^{\prime}}:=\mathrm{Al}_{l^{\prime}} \nabla \varphi_{l}\left(\mathrm{Al}_{l}\right)$;
for $\left(I^{\prime}, I^{\prime \prime}\right) \in F$ do
if $\left(I^{\prime}, I^{\prime \prime}\right)$ not in W then $W:=\left(I^{\prime}, I^{\prime \prime}\right) \cdot W$;
Output: $\left\{\mathrm{Al}_{I} \mid I \in L a b\right\}$, denoted by fix ${ }^{\nabla}\left(\Phi_{S}\right)$

Worklist Algorithm with Widening I

Goal: extend Algorithm 5.3 by widening to ensure termination

Algorithm 7.7 (Worklist algorithm with widening)

Input: dataflow system $S=(L a b, E, F,(D, \sqsubseteq), \iota, \varphi)$
Variables: $W \in(L a b \times L a b)^{*},\left\{\mathrm{Al}_{I} \in D \mid I \in L a b\right\}$
Procedure: $W:=\varepsilon ;$ for $\left(I, I^{\prime}\right) \in F$ do $W:=W \cdot\left(I, I^{\prime}\right) ;$ \% Initialize W for $I \in L a b$ do $\%$ Initialise AI
if $l \in E$ then $\mathrm{Al}_{l}:=\iota$ else $\mathrm{Al}_{l}:=\perp_{D}$;
while $W \neq \varepsilon$ do
$\left(I, I^{\prime}\right):=\operatorname{head}(W) ; W:=\boldsymbol{\operatorname { t a i l }}(W)$;
if $\varphi_{l}\left(\mathrm{Al}_{I}\right) \nsubseteq \mathrm{Al}_{I}$, then \quad \% Fixpoint not yet reached $\mathrm{Al}_{l^{\prime}}:=\mathrm{Al}_{l^{\prime}} \nabla \varphi_{I}\left(\mathrm{Al}_{l}\right)$;
for $\left(I^{\prime}, I^{\prime \prime}\right) \in F$ do
if $\left(I^{\prime}, I^{\prime \prime}\right)$ not in W then $W:=\left(I^{\prime}, I^{\prime \prime}\right) \cdot W$;
Output: $\left\{\mathrm{Al}_{I} \mid I \in L a b\right\}$, denoted by $\mathrm{fix}^{\nabla}\left(\Phi_{S}\right)$
Remark: due to widening, only fix ${ }^{\nabla}\left(\Phi_{S}\right) \sqsupseteq$ fix $\left(\Phi_{S}\right)$ is guaranteed (cf. Thm. 5.6)

Worklist Algorithm with Widening II

Example 7.8

Transfer functions (for $\delta(\mathrm{x})=J$):

$$
\begin{aligned}
\varphi_{1}(J) & =[1,1] \\
\varphi_{2}(J) & =J \\
\varphi_{3}(\emptyset) & =\emptyset \\
\varphi_{3}\left(\left[x_{1}, x_{2}\right]\right) & =\left[x_{1}+1, x_{2}+1\right]
\end{aligned}
$$

Worklist Algorithm with Widening II

Example 7.8

Transfer functions (for $\delta(\mathrm{x})=J$):

$$
\begin{aligned}
\varphi_{1}(J) & =[1,1] \\
\varphi_{2}(J) & =J \\
\varphi_{3}(\emptyset) & =\emptyset \\
\varphi_{3}\left(\left[x_{1}, x_{2}\right]\right) & =\left[x_{1}+1, x_{2}+1\right]
\end{aligned}
$$

Application of worklist algorithm (on the board)
(1) without widening: does not terminate
(2) with widening: terminates with expected result for $\mathrm{Al}_{2}([1,+\infty])$

