Static Program Analysis

Lecture 5: Dataflow Analysis IV
(Worklist Algorithm & MOP Solution)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTHAACHEN
UNIVERSITY

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Winter Semester 2014/15

noll@cs.rwth-aachen.de
http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Wanted: Software Engineering HiWis

o What we offer: work in
e EU project D-MILS
o Dependability and Security of Distributed
Information and Communication Infrastructures
@ http://www.d-mils.org/ B=M L
o Goal: [design and] implementation of high-level G oo NATRORE
specification language
e ESA project CATSY
o Catalogue of System and Software Properties
@ Successor of COMPASS project
(http://compass.informatik.rwth-aachen.de)
e goal: support early V&V activities in model-based
system development
@ What we expect: prospective candidates

o like formal methods (model checking,
program/model transformations)

e program efficiently (Python)

o work 9-19 hrs/week

e Contact: Thomas Noll (noll@cs.rwth-aachen.de)
RWTHAACHEN Static Program Analysis Winter Semester 2014/15 5.2

http://www.d-mils.org/
http://compass.informatik.rwth-aachen.de
noll@cs.rwth-aachen.de

0 Recap: The Fixpoint Approach

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 583

The Fixpoint Theorem

AT AT K]
Alfred Tarski (1901-1983) (LS \

Bronislaw Knaster (1893-1990)

Theorem (Fixpoint Theorem by Tarski and Knaster)

Let (D,C) be a complete lattice satisfying ACC and ® : D — D
monotonic. Then

fix(®) = | | {CD" (L) | ke N}
is the least fixpoint of ® where
®0(d) := d and dKF1(d) := d(P*(d)).

Function requirements for dataflow analysis
All transfer functions must be a monotonic

RWNTH HE Static Program Analysis Winter Semester 2014/15 5.4

Dataflow Systems

Definition (Dataflow system)

A dataflow system S = (Lab, E, F,(D,C),t,) consists of
o a finite set of (program) labels Lab (here: Lab.),
@ a set of extremal labels E C Lab (here: {init(c)} or final(c)),
e a flow relation F C Lab x Lab (here: flow(c) or flowR(c)),

@ a complete lattice (D, C) satisfying ACC
(with LUB operator | | and least element L),

@ an extremal value ¢ € D (for the extremal labels), and

@ a collection of monotonic transfer functions {p; | | € Lab} of type
w;:D— D.

RWTHAACHE Static Program Analysis Winter Semester 2014/15 5.5

Dataflow Systems and Fixpoints

Definition (Dataflow equation system)
Given: dataflow system S = (Lab, E, F,(D,C), ¢,), Lab= {1, ..., n}
(w.l.o.g.)
@ S determines the equation system (where | € Lab)
Al = {L if | € E
LI{er(Aly) | (I']) € F} otherwise
o (di,...,dp) € D" is called a solution if

4 — {L if e E
P71 er(dr) | (I,1) € F} otherwise
@ S determines the transformation
®s: D" — D" (dh,...,dp) — (dy,...,d])

where
d =1t if e E
7 W er(dr) | (1) € F} - otherwise
(di,...,dn) € D" solves the equation system iff it is a fixpoint of ®g

RWNTH Static Program Analysis Winter Semester 2014/15

Solving Dataflow Problems by Fixpoint lteration

Remarks:
e (D,C) being a complete lattice ensures that ®s is well defined
@ Since (D,LC) is a complete lattice satisfying ACC, so is (D", C")
(where (di,...,dn) C" (di,...,d}) iff dj C d for every 1 < i < n)
@ Monotonicity of transfer functions ; in (D, C) implies monotonicity
of g in (D", ") (since | | also monotonic)
@ Thus the (least) fixpoint is effectively computable by iteration:
fix(®s) = | [{®5(Lon) | k € N}
where J_Dn = (J_D, e J_D)
H,—/
n times
@ If height of (D,C) is m
— height of (D",C")is m-n
— fixpoint iteration requires at most m - n steps

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 5.7

© Uniqueness of Solutions

RWIHAACHEN Static Program Analysis Winter Semester 2014/15 5.8

Uniqueness of Solutions |

Observation: (non-minimal) solutions of dataflow equation systems are
not always unique.

Example 5.1 (Available Expressions)

[z := x+y]*; — AE; =10
while [true]? do AE; = (AE; U {x+y}) N AE3
[skip]®; AEs = AE;
= AE1 = @
AE, = {X+y} N AEs
AE; = AE;

— Solutions: AE; = AE, = AE3 = () or
AE1 = @7AE2 = AE3 = {X+y}

Here: greatest solution {x+y} (maximal potential for optimisation)

RWTHAACHEN Static Program Analysis Winter Semester 2014 /15 5.9

Uniqueness of Solutions Il

Example 5.2 (Live Variables)

while [x>1]! do = LV; = Vo U (LV3 U {x})
[skip]?; LV = LV U {x}
[x := x+1]3; LV3 = LV4 \ {y}
[y := o] Va4 = {x,y}
= LV3 = {X}
— LV; =LVLU {X}
=LV U {X}
= Solutions: LV; = LVy = ({x} or {x,y}),
LV3 = {X}7 LV4 = {va}
Here: least solution {x} (maximal potential for optimisation)

RWTHAACHEN Static Program Analysis Winter Semester 2014 /15 5.10

© Efficient Fixpoint Computation

RWIHAACHEN Static Program Analysis Winter Semester 2014/15 5.11

A Worklist Algorithm |

Observation: fixpoint iteration re-computes every Al; in every step
— redundant if Al at no F-predecessor /" changed
— optimisation by worklist

Algorithm 5.3 (Worklist algorithm)

Input: dataflow system S = (Lab, E, F,(D,C), ¢, ¢)
Variables: W € (Lab x Lab)*, {Al; € D | | € Lab}

Procedure: W :=¢;for (I,I') € F do W := W - (I,I'); % Initialise W
for / € Lab do % Initialise Al
if | € E then Al, := . else Al, := 1 p;
while W # ¢ do
(1,I) := head(W); W := tail(W);
if o/(Al)) Z Al then % Fixpoint not yet reached
Al = Al L gO/(All);
for (I',1") € F do
if (I,1") not in W then W :=(/',1") - W;
Output: {Al, |/ € Lab}

RWNTH Static Program Analysis Winter Semester 2014/15 5.12

A Worklist Algorithm Il

Example 5.4 (Worklist algorithm)

Available Expression analysis for ¢ = [x := a+b]!;
[y := a*b]?;
while [y > a+b]® do
[a := a+1]*;
[x := a+b]®

(cf. Examples 2.9 and 4.11)

Transfer functions: ¢1(A) = AU {a+b}

22(A) = AU {axb}
g03(A) AU {a+b}
va(A) = A\ {atb,axb, a+1}
v5(A) = AU {a+b}

Computation protocol: on the board

RWNTH HE Static Program Analysis Winter Semester 2014/15 5.13

Conjecture: it suffices to initialise worklist with edges leaving extremal

labels (such that analysis information will propagate through CFG)

But ...

Example 5.5 (Counterexample)

Live Variables analysis for ¢ = [x := 0]!;
[x := x + 1]2;
[x := 2]3

Solution: LV; = {x},LVo = 0,LV3 = {x}

“Optimised” worklist algorithm:
W |LVi LV, LV3
32 0 0 {x}
€ 0 0 {x}

— wrong result!

RWTHAACHE Static Program Analysis Winter Semester 2014/15

5.14

Correctness of Worklist Algorithm

Properties of the algorithm:

Theorem 5.6 (Correctness of worklist algorithm)

Given a dataflow system S = (Lab, E, F,(D,C),,¢), Algorithm 5.3
always terminates and computes fix(®s).

see [Nielson/Nielson/Hankin 2005, p. 75 ff] O \

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 5.15

@ The MOP Solution

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 5.16

The MOP Solution |

@ Other solution method for dataflow systems
@ MOP = Meet Over all Paths
@ Analysis information for block B’
= least upper bound over all paths leading to /
= most precise information for / (“reference solution™)

Definition 5.7 (Paths)
Let S = (Lab, E,F,(D,C), ¢,) be a dataflow system. For every | € Lab,
the set of paths up to / is given by
Path(l) :={[h,..., k1] | k > 1,h € E,
(liylix1) € F forevery 1 < i < k, I, = 1}
For a path m = [/, ..., k1] € Path(l), we define the transfer function
oz : D — D by

SD7T = Solkfl ©...0 80/1 S IdD
(so that ¢y = idp).

RWTHAACHE Static Program Analysis Winter Semester 2014/15 5.17

The MOP Solution Il

Definition 5.8 (MOP solution)

Let S = (Lab,E,F,(D,C),t,¢) be a dataflow system where
Lab={h,...,In}. The MOP solution for S is determined by

mop(S) := (mop(h), ..., mop(/y)) € D"

where, for every | € Lab,

mop(/) := | [{x(t) | w € Path(l)}.

Remark:
e Path(/) is generally infinite
= not clear how to compute mop(/)

@ In fact: MOP solution generally undecidable (later)

RWTHAACHEN Static Program Analysis Winter Semester 2014 /15 5.18

The MOP Solution 111

Example 5.9 (Live Variables; cf. Examples 2.12 and 4.12)

c=[x := 2]1§ — mop(1) = 80[7,5,4,3,2]@) U <P[7,6,4,3,2](L)
[y := 4% = 2(p3(pa(es(er({x,y,2}))))) U
[x := 1]3; 2(p3(pa(we(er({x,7,2})))))
if [y > 0]* then = p2(p3(palws({y,z})))) U
[z := x]° p2(03(pa(pe({y. 2}))))
else = 802(903(904({3(737}))) U
[z := y*y]® p2(3(pa({y})))
[x := z]’ = ¢2(p3({x,y})) U p2(3({y}))
— Path(1) = {[7,5,4,3,2)], — ﬁ(%’}) Hea(iy))
[7,6,4,3,2]} =10 (same as fix(®s)(1))

;“L‘:\;‘] :’ Static Program Analysis Winter Semester 2014/15

© Another Analysis: Constant Propagation

RWIHAACHEN Static Program Analysis Winter Semester 2014/15 5.20

Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each
program point, whether a variable has a constant value whenever
execution reaches that point.

Used for Constant Folding: replace reference to variable by constant value
and evaluate constant expressions

Example 5.10 (Constant Propagation Analysis)

[x := 1]1;
.= 1]2.
{z - Haf o y =z =1 at labels 4-7
while [z > 0]* do @ w, x not constant at labels 4-7
[w := X*Y]ﬁs; @ possible optimisations:
if [w = 2]° then [true]* [w := x+1]° [x := 3]’
[x := y+2]7

v

RWTHAACHE Static Program Analysis Winter Semester 2014 /15 5.21

Formalising Constant Propagation Analysis |

The dataflow system S = (Lab, E, F,(D,C),,) is given by
@ set of labels Lab := Lab,
@ extremal labels E := {init(c)} (forward problem),
o flow relation F := flow(c) (forward problem),
e complete lattice (D, C) where
o D:={6|0:Varc - ZU{L, T}}
e §(x) =z € Z: x has constant value z
@ §(x) = L: x undefined
@ 0(x) = T: x overdefined (i.e., several possible values)
e T C D x D defined by pointwise extension of 1L C zC T

(for every z € Z)

Var. = {w,x,y,2},

=2)=)

nerAACHEN Static Program Analysis Winter Semester 2014/15 5.22

Formalising Constant Propagation Analysis |l

Dataflow system S = (Lab, E, F,(D,C),t,) (continued):
e extremal value ¢ := 6 € D where d7(x) := T for every x € Var,
(i.e., every x has (unknown) default value)
e transfer functions {; | | € Lab} defined by
{6 if B! = skip or B! € BExp
#i(0) = {(5[x — vals(a)] if Bl = (x := a)

where
— znopzy iz, z0€Z
33;6%2(; — () vals(aiop az) := q L ifzz=_1lorz=1
N T otherwise

for z; := vals(a1) and z := vals(az)

RWIHAACHEN Static Program Analysis Winter Semester 2014/15 5.23

Formalising Constant Propagation Analysis 11l

Example 5.12

fo=(L, 1, 2 T), then
w X y Z
(0, 1,2 T) ifB'=(w:=0)
=~~~
w X y 4
(3, 1,2, T) ifB=(w :=y+1)
=~~~
_ w X y 4
POV=9 (1L 1, 2, T) ifB =(w := wrx)
w X y 4
(T, 1,2 T) ifB = :=2z+2)
~— ==~
L w X y 4

Static Program Analysis Winter Semester 2014/15 5.24

	Recap: The Fixpoint Approach
	Uniqueness of Solutions
	Efficient Fixpoint Computation
	The MOP Solution
	Another Analysis: Constant Propagation

