Static Program Analysis Lecture 5: Dataflow Analysis IV (Worklist Algorithm & MOP Solution)

Thomas Noll

Lehrstuhl für Informatik 2 (Software Modeling and Verification)



noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Winter Semester 2014/15

# Wanted: Software Engineering HiWis

- What we offer: work in
  - EU project D-MILS
    - Dependability and Security of Distributed Information and Communication Infrastructures
    - http://www.d-mils.org/
    - Goal: [design and] implementation of high-level specification language
  - ESA project CATSY
    - Catalogue of System and Software Properties
    - Successor of COMPASS project
      - (http://compass.informatik.rwth-aachen.de)
    - goal: support early V & V activities in model-based system development
- What we expect: prospective candidates
  - like formal methods (model checking, program/model transformations)
  - program efficiently (Python)
  - work 9–19 hrs/week

RNTHAACHEN

• Contact: Thomas Noll (noll@cs.rwth-aachen.de)





Static Program Analysis

### Outline

### 1 Recap: The Fixpoint Approach

- 2 Uniqueness of Solutions
- 3 Efficient Fixpoint Computation
- The MOP Solution
- 5 Another Analysis: Constant Propagation



# The Fixpoint Theorem



Alfred Tarski (1901-1983)



Theorem (Fixpoint Theorem by Tarski and Knaster)

Let  $(D, \sqsubseteq)$  be a complete lattice satisfying ACC and  $\Phi : D \to D$  monotonic. Then

$$\mathsf{fix}(\Phi) := igsqcup \left\{ \Phi^k\left(ot
ight) \mid k \in \mathbb{N} 
ight\}$$

Bronislaw Knaster (1893–1990)

is the least fixpoint of  $\Phi$  where

 $\Phi^{0}(d) := d \text{ and } \Phi^{k+1}(d) := \Phi(\Phi^{k}(d)).$ 

#### Function requirements for dataflow analysis

All transfer functions must be a monotonic

RWTHAACHEN

Static Program Analysis

### Definition (Dataflow system)

- A dataflow system  $S = (Lab, E, F, (D, \sqsubseteq), \iota, \varphi)$  consists of
  - a finite set of (program) labels Lab (here: Lab<sub>c</sub>),
  - a set of extremal labels  $E \subseteq Lab$  (here: {init(c)} or final(c)),
  - a flow relation  $F \subseteq Lab \times Lab$  (here: flow(c) or flow<sup>R</sup>(c)),
  - a complete lattice (D, ⊑) satisfying ACC (with LUB operator ∐ and least element ⊥),
  - an extremal value  $\iota \in D$  (for the extremal labels), and
  - a collection of monotonic transfer functions {φ<sub>I</sub> | I ∈ Lab} of type φ<sub>I</sub> : D → D.

# **Dataflow Systems and Fixpoints**

#### Definition (Dataflow equation system)

Given: dataflow system  $S = (Lab, E, F, (D, \sqsubseteq), \iota, \varphi)$ ,  $Lab = \{1, ..., n\}$  (w.l.o.g.)

• S determines the equation system (where  $l \in Lab$ )

$$\mathsf{AI}_{l} = \begin{cases} \iota & \text{if } l \in E \\ \bigsqcup \{\varphi_{l'}(\mathsf{AI}_{l'}) \mid (l', l) \in F\} & \text{otherwise} \end{cases}$$
  

$$\mathsf{o} \ (d_{1}, \ldots, d_{n}) \in D^{n} \text{ is called a solution if} \\ d_{l} = \begin{cases} \iota & \text{if } l \in E \\ \bigsqcup \{\varphi_{l'}(d_{l'}) \mid (l', l) \in F\} & \text{otherwise} \end{cases}$$

S determines the transformation

$$\Phi_S: D^n \to D^n: (d_1, \ldots, d_n) \mapsto (d'_1, \ldots, d'_n)$$

where

RNTHAACHEN

$$d'_{l} := \begin{cases} \iota & \text{if } l \in E \\ \bigsqcup \{ \varphi_{l'}(d_{l'}) \mid (l', l) \in F \} & \text{otherwise} \end{cases}$$

#### Corollary

 $(d_1, \ldots, d_n) \in D^n$  solves the equation system iff it is a fixpoint of  $\Phi_S$ 

#### **Remarks:**

- $(D, \sqsubseteq)$  being a complete lattice ensures that  $\Phi_S$  is well defined
- Since (D, □) is a complete lattice satisfying ACC, so is (D<sup>n</sup>, □<sup>n</sup>) (where (d<sub>1</sub>,..., d<sub>n</sub>) □<sup>n</sup> (d'<sub>1</sub>,..., d'<sub>n</sub>) iff d<sub>i</sub> □ d'<sub>i</sub> for every 1 ≤ i ≤ n)
- Monotonicity of transfer functions φ<sub>l</sub> in (D, ⊑) implies monotonicity of Φ<sub>S</sub> in (D<sup>n</sup>, ⊑<sup>n</sup>) (since ∐ also monotonic)
- Thus the (least) fixpoint is effectively computable by iteration:

$$\mathsf{fix}(\Phi_{\mathcal{S}}) = \bigsqcup \{ \Phi^k_{\mathcal{S}}(\perp_{D^n}) \mid k \in \mathbb{N} \}$$

where  $\perp_{D^n} = (\underbrace{\perp_D, \dots, \perp_D}_{n \text{ times}})$ 

• If height of  $(D, \sqsubseteq)$  is m

 $\implies$  height of  $(D^n, \sqsubseteq^n)$  is  $m \cdot n$ 

 $\implies$  fixpoint iteration requires at most  $m \cdot n$  steps

### Recap: The Fixpoint Approach

### 2 Uniqueness of Solutions

3 Efficient Fixpoint Computation

### The MOP Solution

5 Another Analysis: Constant Propagation



**Observation:** (non-minimal) solutions of dataflow equation systems are not always unique.

#### Example 5.1 (Available Expressions) $[z := x+y]^1;$ $\implies$ AE<sub>1</sub> = $\emptyset$ $\mathsf{AE}_2 = (\mathsf{AE}_1 \cup \{x + y\}) \cap \mathsf{AE}_3$ while $[true]^2$ do [skip]<sup>3</sup>; $AE_3 = AE_2$ $\implies$ AE<sub>1</sub> = $\emptyset$ $AE_2 = \{x+y\} \cap AE_3$ $AE_3 = AE_2$ $\implies$ Solutions: AE<sub>1</sub> = AE<sub>2</sub> = AE<sub>3</sub> = $\emptyset$ or $AE_1 = \emptyset, AE_2 = AE_3 = \{x+y\}$

Here: greatest solution  $\{x+y\}$  (maximal potential for optimisation)



#### Example 5.2 (Live Variables) while $[x>1]^1$ do $\implies$ LV<sub>1</sub> = LV<sub>2</sub> $\cup$ (LV<sub>3</sub> $\cup$ {x}) [skip]<sup>2</sup>; $LV_2 = LV_1 \cup \{x\}$ $[x := x+1]^3;$ $LV_3 = LV_4 \setminus \{v\}$ $LV_4 = \{x, y\}$ $[v := 0]^4$ $\implies$ LV<sub>3</sub> = {x} $\implies$ LV<sub>1</sub> = LV<sub>2</sub> $\cup$ {x} $= LV_1 \cup \{x\}$ $\implies$ Solutions: $LV_1 = LV_2 = (\{x\} \text{ or } \{x, y\}),$ $LV_3 = \{x\}, LV_4 = \{x, y\}$ Here: least solution $\{x\}$ (maximal potential for optimisation)



- Recap: The Fixpoint Approach
- 2 Uniqueness of Solutions
- 3 Efficient Fixpoint Computation
- The MOP Solution
- 5 Another Analysis: Constant Propagation



# A Worklist Algorithm I

**Observation:** fixpoint iteration re-computes every Al<sub>1</sub> in every step

- $\implies$  redundant if Al<sub>l'</sub> at no *F*-predecessor *l'* changed
- $\implies$  optimisation by worklist

### Algorithm 5.3 (Worklist algorithm)

Input: dataflow system  $S = (Lab, E, F, (D, \Box), \iota, \varphi)$ Variables:  $W \in (Lab \times Lab)^*$ ,  $\{AI_I \in D \mid I \in Lab\}$ Procedure:  $W := \varepsilon$ ; for  $(I, I') \in F$  do  $W := W \cdot (I, I')$ ; % Initialise W for  $l \in Lab$  do % Initialise Al if  $l \in E$  then  $Al_l := \iota$  else  $Al_l := \bot_D$ ; while  $W \neq \varepsilon$  do  $(I, I') := \mathbf{head}(W); W := \mathbf{tail}(W);$ if  $\varphi_1(Al_1) \not\subseteq Al_{l'}$  then % Fixpoint not yet reached  $AI_{l'} := AI_{l'} \sqcup \varphi_l(AI_l);$ for  $(I', I'') \in F$  do if (l', l'') not in W then  $W := (l', l'') \cdot W$ ; Output:  $\{AI_I \mid I \in Lab\}$ RNTHAACHEN Static Program Analysis Winter Semester 2014/15

### Example 5.4 (Worklist algorithm)

```
Available Expression analysis for c = [x := a+b]^1;

[y := a*b]^2;

while [y > a+b]^3 do

[a := a+1]^4;

[x := a+b]^5
```

(cf. Examples 2.9 and 4.11)

Transfer functions: 
$$\varphi_1(A) = A \cup \{a+b\}$$
  
 $\varphi_2(A) = A \cup \{a*b\}$   
 $\varphi_3(A) = A \cup \{a+b\}$   
 $\varphi_4(A) = A \setminus \{a+b, a*b, a+1\}$   
 $\varphi_5(A) = A \cup \{a+b\}$ 

Computation protocol: on the board



## An "Optimisation"

**Conjecture:** it suffices to initialise worklist with edges leaving extremal labels (such that analysis information will propagate through CFG)

But ...

### Example 5.5 (Counterexample)

Live Variables analysis for 
$$c = [x := 0]^1$$
;  

$$\begin{bmatrix} x := x + 1 \end{bmatrix}^2$$

$$\begin{bmatrix} x := 2 \end{bmatrix}^3$$

Solution:  $LV_1 = \{x\}, LV_2 = \emptyset, LV_3 = \{x\}$ 

"Optimised" worklist algorithm:

| W     | $LV_1$ | $LV_2$ | $LV_3$ |
|-------|--------|--------|--------|
| (3,2) | Ø      | Ø      | {x}    |
| ε     | Ø      | Ø      | {x}    |

⇒ wrong result!

RNTHAACHEN

Properties of the algorithm:

Theorem 5.6 (Correctness of worklist algorithm)

Given a dataflow system  $S = (Lab, E, F, (D, \sqsubseteq), \iota, \varphi)$ , Algorithm 5.3 always terminates and computes fix( $\Phi_S$ ).

#### Proof.

see [Nielson/Nielson/Hankin 2005, p. 75 ff]



- Recap: The Fixpoint Approach
- 2 Uniqueness of Solutions
- 3 Efficient Fixpoint Computation
- The MOP Solution
- 5 Another Analysis: Constant Propagation



# The MOP Solution I

- Other solution method for dataflow systems
- MOP = Meet Over all Paths
- Analysis information for block B<sup>1</sup>
  - = least upper bound over all paths leading to /
  - = most precise information for *l* ("reference solution")

#### Definition 5.7 (Paths)

Let  $S = (Lab, E, F, (D, \sqsubseteq), \iota, \varphi)$  be a dataflow system. For every  $l \in Lab$ , the set of paths up to l is given by

$$Path(I) := \{ [l_1, \dots, l_{k-1}] \mid k \ge 1, l_1 \in E, \\ (l_i, l_{i+1}) \in F \text{ for every } 1 \le i < k, l_k = I \}.$$

For a path  $\pi = [I_1, \ldots, I_{k-1}] \in Path(I)$ , we define the transfer function  $\varphi_{\pi} : D \to D$  by

$$\varphi_{\pi} := \varphi_{I_{k-1}} \circ \ldots \circ \varphi_{I_1} \circ \mathsf{id}_D$$

(so that  $\varphi_{[]} = \mathrm{id}_D$ ).

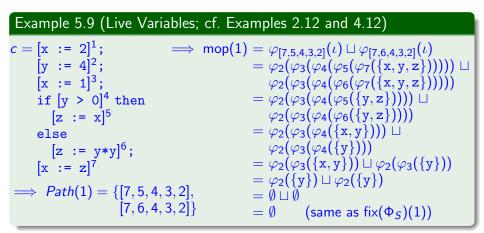
# The MOP Solution II

### Definition 5.8 (MOP solution)

Let  $S = (Lab, E, F, (D, \sqsubseteq), \iota, \varphi)$  be a dataflow system where  $Lab = \{l_1, \ldots, l_n\}$ . The MOP solution for S is determined by  $mop(S) := (mop(l_1), \ldots, mop(l_n)) \in D^n$ where, for every  $l \in Lab$ ,  $mop(l) := | \{\varphi_{\pi}(\iota) \mid \pi \in Path(l)\}.$ 

#### Remark:

- *Path(1)* is generally infinite
- $\implies$  not clear how to compute mop(l)
  - In fact: MOP solution generally undecidable (later)





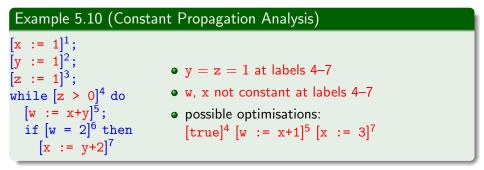
- Recap: The Fixpoint Approach
- 2 Uniqueness of Solutions
- 3 Efficient Fixpoint Computation
- The MOP Solution
- 5 Another Analysis: Constant Propagation



#### Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each program point, whether a variable has a constant value whenever execution reaches that point.

Used for Constant Folding: replace reference to variable by constant value and evaluate constant expressions



# Formalising Constant Propagation Analysis I

The dataflow system  $S = (Lab, E, F, (D, \sqsubseteq), \iota, \varphi)$  is given by

- set of labels  $Lab := Lab_c$ ,
- extremal labels E := {init(c)} (forward problem),
- flow relation F := flow(c) (forward problem),
- complete lattice  $(D, \sqsubseteq)$  where

• 
$$D := \{ \delta \mid \delta : Var_c \to \mathbb{Z} \cup \{ \bot, \top \} \}$$

- $\delta(x) = z \in \mathbb{Z}$ : x has constant value z
- $\delta(x) = \bot$ : x undefined
- $\delta(x) = \top$ : x overdefined (i.e., several possible values)
- $\sqsubseteq \subseteq D \times D$  defined by pointwise extension of  $\bot \sqsubseteq z \sqsubseteq \top$ (for every  $z \in \mathbb{Z}$ )

#### Example 5.11

RNNTHAACHEN

$$Var_{c} = \{w, x, y, z\},\$$
  

$$\delta_{1} = (\underbrace{\bot}_{w}, \underbrace{1}_{x}, \underbrace{2}_{y}, \underbrace{\top}_{z}), \delta_{2} = (\underbrace{3}_{w}, \underbrace{1}_{x}, \underbrace{4}_{y}, \underbrace{\top}_{z})$$
  

$$\implies \delta_{1} \sqcup \delta_{2} = (\underbrace{3}_{w}, \underbrace{1}_{x}, \underbrace{\top}_{y}, \underbrace{\top}_{z})$$

Static Program Analysis

Dataflow system  $S = (Lab, E, F, (D, \sqsubseteq), \iota, \varphi)$  (continued):

- extremal value  $\iota := \delta_{\top} \in D$  where  $\delta_{\top}(x) := \top$  for every  $x \in Var_c$  (i.e., every x has (unknown) default value)
- transfer functions  $\{\varphi_I \mid I \in Lab\}$  defined by

$$\varphi_{I}(\delta) := \begin{cases} \delta & \text{if } B^{I} = \text{skip or } B^{I} \in BExp\\ \delta[x \mapsto val_{\delta}(a)] & \text{if } B^{I} = (x := a) \end{cases}$$

where

$$\begin{array}{ll} \mathsf{val}_{\delta}(x) := \delta(x) \\ \mathsf{val}_{\delta}(z) := z \end{array} \quad \mathsf{val}_{\delta}(a_1 \ op \ a_2) := \begin{cases} z_1 \ op \ z_2 & \text{if } z_1, z_2 \in \mathbb{Z} \\ \bot & \text{if } z_1 = \bot \text{ or } z_2 = \bot \\ \top & \text{otherwise} \end{cases}$$
  
For  $z_1 := \mathsf{val}_{\delta}(a_1) \text{ and } z_2 := \mathsf{val}_{\delta}(a_2)$ 



### Formalising Constant Propagation Analysis III

