
Static Program Analysis
Lecture 5: Dataflow Analysis IV

(Worklist Algorithm & MOP Solution)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Winter Semester 2014/15

noll@cs.rwth-aachen.de
http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Wanted: Software Engineering HiWis

What we offer: work in
EU project D-MILS

Dependability and Security of Distributed
Information and Communication Infrastructures
http://www.d-mils.org/

Goal: [design and] implementation of high-level
specification language

ESA project CATSY

Catalogue of System and Software Properties
Successor of COMPASS project
(http://compass.informatik.rwth-aachen.de)
goal: support early V & V activities in model-based
system development

What we expect: prospective candidates

like formal methods (model checking,
program/model transformations)
program efficiently (Python)
work 9–19 hrs/week

Contact: Thomas Noll (noll@cs.rwth-aachen.de)
Static Program Analysis Winter Semester 2014/15 5.2

http://www.d-mils.org/
http://compass.informatik.rwth-aachen.de
noll@cs.rwth-aachen.de

Outline

1 Recap: The Fixpoint Approach

2 Uniqueness of Solutions

3 Efficient Fixpoint Computation

4 The MOP Solution

5 Another Analysis: Constant Propagation

Static Program Analysis Winter Semester 2014/15 5.3

The Fixpoint Theorem

Alfred Tarski (1901–1983)

Bronislaw Knaster (1893–1990)

Theorem (Fixpoint Theorem by Tarski and Knaster)

Let (D,v) be a complete lattice satisfying ACC and Φ : D → D
monotonic. Then

fix(Φ) :=
⊔{

Φk (⊥) | k ∈ N
}

is the least fixpoint of Φ where

Φ0(d) := d and Φk+1(d) := Φ(Φk(d)).

Function requirements for dataflow analysis

All transfer functions must be a monotonic

Static Program Analysis Winter Semester 2014/15 5.4

Dataflow Systems

Definition (Dataflow system)

A dataflow system S = (Lab,E ,F , (D,v), ι, ϕ) consists of

a finite set of (program) labels Lab (here: Labc),

a set of extremal labels E ⊆ Lab (here: {init(c)} or final(c)),

a flow relation F ⊆ Lab × Lab (here: flow(c) or flowR(c)),

a complete lattice (D,v) satisfying ACC
(with LUB operator

⊔
and least element ⊥),

an extremal value ι ∈ D (for the extremal labels), and

a collection of monotonic transfer functions {ϕl | l ∈ Lab} of type
ϕl : D → D.

Static Program Analysis Winter Semester 2014/15 5.5

Dataflow Systems and Fixpoints

Definition (Dataflow equation system)

Given: dataflow system S = (Lab,E ,F , (D,v), ι, ϕ), Lab = {1, ..., n}
(w.l.o.g.)

S determines the equation system (where l ∈ Lab)

AIl =

{
ι if l ∈ E⊔
{ϕl ′(AIl ′) | (l ′, l) ∈ F} otherwise

(d1, . . . , dn) ∈ Dn is called a solution if

dl =

{
ι if l ∈ E⊔
{ϕl ′(dl ′) | (l ′, l) ∈ F} otherwise

S determines the transformation
ΦS : Dn → Dn : (d1, . . . , dn) 7→ (d ′1, . . . , d

′
n)

where

d ′l :=

{
ι if l ∈ E⊔
{ϕl ′(dl ′) | (l ′, l) ∈ F} otherwise

Corollary

(d1, . . . , dn) ∈ Dn solves the equation system iff it is a fixpoint of ΦS

Static Program Analysis Winter Semester 2014/15 5.6

Solving Dataflow Problems by Fixpoint Iteration

Remarks:

(D,v) being a complete lattice ensures that ΦS is well defined

Since (D,v) is a complete lattice satisfying ACC, so is (Dn,vn)
(where (d1, . . . , dn) vn (d ′1, . . . , d

′
n) iff di v d ′i for every 1 ≤ i ≤ n)

Monotonicity of transfer functions ϕl in (D,v) implies monotonicity
of ΦS in (Dn,vn) (since

⊔
also monotonic)

Thus the (least) fixpoint is effectively computable by iteration:

fix(ΦS) =
⊔
{Φk

S(⊥Dn) | k ∈ N}

where ⊥Dn = (⊥D , . . . ,⊥D︸ ︷︷ ︸
n times

)

If height of (D,v) is m
=⇒ height of (Dn,vn) is m · n
=⇒ fixpoint iteration requires at most m · n steps

Static Program Analysis Winter Semester 2014/15 5.7

Outline

1 Recap: The Fixpoint Approach

2 Uniqueness of Solutions

3 Efficient Fixpoint Computation

4 The MOP Solution

5 Another Analysis: Constant Propagation

Static Program Analysis Winter Semester 2014/15 5.8

Uniqueness of Solutions I

Observation: (non-minimal) solutions of dataflow equation systems are
not always unique.

Example 5.1 (Available Expressions)

[z := x+y]1;
while [true]2 do

[skip]3;

=⇒ AE1 = ∅
AE2 = (AE1 ∪ {x+y}) ∩ AE3

AE3 = AE2

=⇒ AE1 = ∅
AE2 = {x+y} ∩ AE3

AE3 = AE2

=⇒ Solutions: AE1 = AE2 = AE3 = ∅ or
AE1 = ∅,AE2 = AE3 = {x+y}

Here: greatest solution {x+y} (maximal potential for optimisation)

Static Program Analysis Winter Semester 2014/15 5.9

Uniqueness of Solutions II

Example 5.2 (Live Variables)

while [x>1]1 do

[skip]2;
[x := x+1]3;
[y := 0]4

=⇒ LV1 = LV2 ∪ (LV3 ∪ {x})
LV2 = LV1 ∪ {x}
LV3 = LV4 \ {y}
LV4 = {x, y}

=⇒ LV3 = {x}
=⇒ LV1 = LV2 ∪ {x}

= LV1 ∪ {x}
=⇒ Solutions: LV1 = LV2 = ({x} or {x, y}),

LV3 = {x}, LV4 = {x, y}
Here: least solution {x} (maximal potential for optimisation)

Static Program Analysis Winter Semester 2014/15 5.10

Outline

1 Recap: The Fixpoint Approach

2 Uniqueness of Solutions

3 Efficient Fixpoint Computation

4 The MOP Solution

5 Another Analysis: Constant Propagation

Static Program Analysis Winter Semester 2014/15 5.11

A Worklist Algorithm I

Observation: fixpoint iteration re-computes every AIl in every step
=⇒ redundant if AIl ′ at no F -predecessor l ′ changed
=⇒ optimisation by worklist

Algorithm 5.3 (Worklist algorithm)

Input: dataflow system S = (Lab,E ,F , (D,v), ι, ϕ)

Variables: W ∈ (Lab × Lab)∗, {AIl ∈ D | l ∈ Lab}
Procedure: W := ε; for (l , l ′) ∈ F do W := W · (l , l ′); % Initialise W

for l ∈ Lab do % Initialise AI
if l ∈ E then AIl := ι else AIl := ⊥D ;

while W 6= ε do
(l , l ′) := head(W);W := tail(W);
if ϕl(AIl) 6v AIl ′ then % Fixpoint not yet reached

AIl ′ := AIl ′ t ϕl(AIl);
for (l ′, l ′′) ∈ F do

if (l ′, l ′′) not in W then W := (l ′, l ′′) ·W ;

Output: {AIl | l ∈ Lab}
Static Program Analysis Winter Semester 2014/15 5.12

A Worklist Algorithm II

Example 5.4 (Worklist algorithm)

Available Expression analysis for c = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

(cf. Examples 2.9 and 4.11)

Transfer functions: ϕ1(A) = A ∪ {a+b}
ϕ2(A) = A ∪ {a*b}
ϕ3(A) = A ∪ {a+b}
ϕ4(A) = A \ {a+b, a*b, a+1}
ϕ5(A) = A ∪ {a+b}

Computation protocol: on the board

Static Program Analysis Winter Semester 2014/15 5.13

An “Optimisation”

Conjecture: it suffices to initialise worklist with edges leaving extremal
labels (such that analysis information will propagate through CFG)

But ...

Example 5.5 (Counterexample)

Live Variables analysis for c = [x := 0]1;
[x := x + 1]2;
[x := 2]3

Solution: LV1 = {x}, LV2 = ∅, LV3 = {x}

“Optimised” worklist algorithm:

W LV1 LV2 LV3

(3, 2) ∅ ∅ {x}
ε ∅ ∅ {x}

=⇒ wrong result!

Static Program Analysis Winter Semester 2014/15 5.14

Correctness of Worklist Algorithm

Properties of the algorithm:

Theorem 5.6 (Correctness of worklist algorithm)

Given a dataflow system S = (Lab,E ,F , (D,v), ι, ϕ), Algorithm 5.3
always terminates and computes fix(ΦS).

Proof.

see [Nielson/Nielson/Hankin 2005, p. 75 ff]

Static Program Analysis Winter Semester 2014/15 5.15

Outline

1 Recap: The Fixpoint Approach

2 Uniqueness of Solutions

3 Efficient Fixpoint Computation

4 The MOP Solution

5 Another Analysis: Constant Propagation

Static Program Analysis Winter Semester 2014/15 5.16

The MOP Solution I

Other solution method for dataflow systems

MOP = Meet Over all Paths

Analysis information for block B l

= least upper bound over all paths leading to l
= most precise information for l (“reference solution”)

Definition 5.7 (Paths)

Let S = (Lab,E ,F , (D,v), ι, ϕ) be a dataflow system. For every l ∈ Lab,
the set of paths up to l is given by

Path(l) := {[l1, . . . , lk−1] | k ≥ 1, l1 ∈ E ,
(li , li+1) ∈ F for every 1 ≤ i < k, lk = l}.

For a path π = [l1, . . . , lk−1] ∈ Path(l), we define the transfer function
ϕπ : D → D by

ϕπ := ϕlk−1
◦ . . . ◦ ϕl1 ◦ idD

(so that ϕ[] = idD).

Static Program Analysis Winter Semester 2014/15 5.17

The MOP Solution II

Definition 5.8 (MOP solution)

Let S = (Lab,E ,F , (D,v), ι, ϕ) be a dataflow system where
Lab = {l1, . . . , ln}. The MOP solution for S is determined by

mop(S) := (mop(l1), . . . ,mop(ln)) ∈ Dn

where, for every l ∈ Lab,

mop(l) :=
⊔
{ϕπ(ι) | π ∈ Path(l)}.

Remark:

Path(l) is generally infinite

=⇒ not clear how to compute mop(l)

In fact: MOP solution generally undecidable (later)

Static Program Analysis Winter Semester 2014/15 5.18

The MOP Solution III

Example 5.9 (Live Variables; cf. Examples 2.12 and 4.12)

c = [x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

=⇒ Path(1) = {[7, 5, 4, 3, 2],
[7, 6, 4, 3, 2]}

=⇒ mop(1) = ϕ[7,5,4,3,2](ι) t ϕ[7,6,4,3,2](ι)
= ϕ2(ϕ3(ϕ4(ϕ5(ϕ7({x, y, z}))))) t
ϕ2(ϕ3(ϕ4(ϕ6(ϕ7({x, y, z})))))

= ϕ2(ϕ3(ϕ4(ϕ5({y, z})))) t
ϕ2(ϕ3(ϕ4(ϕ6({y, z}))))

= ϕ2(ϕ3(ϕ4({x, y}))) t
ϕ2(ϕ3(ϕ4({y})))

= ϕ2(ϕ3({x, y})) t ϕ2(ϕ3({y}))
= ϕ2({y}) t ϕ2({y})
= ∅ t ∅
= ∅ (same as fix(ΦS)(1))

Static Program Analysis Winter Semester 2014/15 5.19

Outline

1 Recap: The Fixpoint Approach

2 Uniqueness of Solutions

3 Efficient Fixpoint Computation

4 The MOP Solution

5 Another Analysis: Constant Propagation

Static Program Analysis Winter Semester 2014/15 5.20

Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each
program point, whether a variable has a constant value whenever
execution reaches that point.

Used for Constant Folding: replace reference to variable by constant value
and evaluate constant expressions

Example 5.10 (Constant Propagation Analysis)

[x := 1]1;
[y := 1]2;
[z := 1]3;
while [z > 0]4 do

[w := x+y]5;
if [w = 2]6 then

[x := y+2]7

y = z = 1 at labels 4–7

w, x not constant at labels 4–7

possible optimisations:
[true]4 [w := x+1]5 [x := 3]7

Static Program Analysis Winter Semester 2014/15 5.21

Formalising Constant Propagation Analysis I

The dataflow system S = (Lab,E ,F , (D,v), ι, ϕ) is given by

set of labels Lab := Labc ,
extremal labels E := {init(c)} (forward problem),
flow relation F := flow(c) (forward problem),
complete lattice (D,v) where

D := {δ | δ : Var c → Z ∪ {⊥,>}}
δ(x) = z ∈ Z: x has constant value z
δ(x) = ⊥: x undefined
δ(x) = >: x overdefined (i.e., several possible values)

v⊆ D × D defined by pointwise extension of ⊥ v z v >
(for every z ∈ Z)

Example 5.11

Var c = {w, x, y, z},
δ1 = (⊥︸︷︷︸

w

, 1︸︷︷︸
x

, 2︸︷︷︸
y

, >︸︷︷︸
z

), δ2 = (3︸︷︷︸
w

, 1︸︷︷︸
x

, 4︸︷︷︸
y

, >︸︷︷︸
z

)

=⇒ δ1 t δ2 = (3︸︷︷︸
w

, 1︸︷︷︸
x

, >︸︷︷︸
y

, >︸︷︷︸
z

)

Static Program Analysis Winter Semester 2014/15 5.22

Formalising Constant Propagation Analysis II

Dataflow system S = (Lab,E ,F , (D,v), ι, ϕ) (continued):

extremal value ι := δ> ∈ D where δ>(x) := > for every x ∈ Var c
(i.e., every x has (unknown) default value)

transfer functions {ϕl | l ∈ Lab} defined by

ϕl(δ) :=

{
δ if B l = skip or B l ∈ BExp
δ[x 7→ valδ(a)] if B l = (x := a)

where

valδ(x) := δ(x)
valδ(z) := z

valδ(a1 op a2) :=

z1 op z2 if z1, z2 ∈ Z
⊥ if z1 = ⊥ or z2 = ⊥
> otherwise

for z1 := valδ(a1) and z2 := valδ(a2)

Static Program Analysis Winter Semester 2014/15 5.23

Formalising Constant Propagation Analysis III

Example 5.12

If δ = (⊥︸︷︷︸
w

, 1︸︷︷︸
x

, 2︸︷︷︸
y

, >︸︷︷︸
z

), then

ϕl(δ) =



(0︸︷︷︸
w

, 1︸︷︷︸
x

, 2︸︷︷︸
y

, >︸︷︷︸
z

) if B l = (w := 0)

(3︸︷︷︸
w

, 1︸︷︷︸
x

, 2︸︷︷︸
y

, >︸︷︷︸
z

) if B l = (w := y+1)

(⊥︸︷︷︸
w

, 1︸︷︷︸
x

, 2︸︷︷︸
y

, >︸︷︷︸
z

) if B l = (w := w+x)

(>︸︷︷︸
w

, 1︸︷︷︸
x

, 2︸︷︷︸
y

, >︸︷︷︸
z

) if B l = (w := z+2)

Static Program Analysis Winter Semester 2014/15 5.24

	Recap: The Fixpoint Approach
	Uniqueness of Solutions
	Efficient Fixpoint Computation
	The MOP Solution
	Another Analysis: Constant Propagation

