Static Program Analysis

Lecture 5: Dataflow Analysis IV (Worklist Algorithm \& MOP Solution)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de
http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Winter Semester 2014/15

Wanted: Software Engineering HiWis

- What we offer: work in
- EU project D-MILS
- Dependability and Security of Distributed Information and Communication Infrastructures
- http://www.d-mils.org/
- Goal: [design and] implementation of high-level specification language
- ESA project CATSY
- Catalogue of System and Software Properties
- Successor of COMPASS project (http://compass.informatik.rwth-aachen.de)
- goal: support early V \& V activities in model-based system development
- What we expect: prospective candidates
- like formal methods (model checking, program/model transformations)
 AND COMMUNICATION INFRASTRUCTURES

- program efficiently (Python)
- work 9-19 hrs/week
- Contact: Thomas Noll (noll@cs.rwth-aachen.de)

Outline

(1) Recap: The Fixpoint Approach
(2) Uniqueness of Solutions
3) Efficient Fixpoint Computation
(4) The MOP Solution
(5) Another Analysis: Constant Propagation

Alfred Tarski (1901-1983)

Bronislaw Knaster (1893-1990)

Theorem (Fixpoint Theorem by Tarski and Knaster)
Let (D, \sqsubseteq) be a complete lattice satisfying $A C C$ and $\Phi: D \rightarrow D$ monotonic. Then

$$
\operatorname{fix}(\Phi):=\bigsqcup\left\{\Phi^{k}(\perp) \mid k \in \mathbb{N}\right\}
$$

is the least fixpoint of Φ where

$$
\Phi^{0}(d):=d \text { and } \Phi^{k+1}(d):=\Phi\left(\Phi^{k}(d)\right)
$$

Function requirements for dataflow analysis
All transfer functions must be a monotonic

Dataflow Systems

Definition (Dataflow system)

A dataflow system $S=(L a b, E, F,(D, \sqsubseteq), \iota, \varphi)$ consists of

- a finite set of (program) labels $L a b$ (here: $L a b_{c}$),
- a set of extremal labels $E \subseteq \operatorname{Lab}$ (here: $\{\operatorname{init}(c)\}$ or final (c)),
- a flow relation $F \subseteq \operatorname{Lab} \times \operatorname{Lab}$ (here: flow(c) or flow ${ }^{R}(c)$),
- a complete lattice (D, \sqsubseteq) satisfying ACC (with LUB operator \bigsqcup and least element \perp),
- an extremal value $\iota \in D$ (for the extremal labels), and
- a collection of monotonic transfer functions $\left\{\varphi_{1} \mid I \in \operatorname{Lab}\right\}$ of type $\varphi_{l}: D \rightarrow D$.

Dataflow Systems and Fixpoints

Definition (Dataflow equation system)

Given: dataflow system $S=(\operatorname{Lab}, E, F,(D, \sqsubseteq), \iota, \varphi), \operatorname{Lab}=\{1, \ldots, n\}$ (w.l.o.g.)

- S determines the equation system (where $I \in L a b$)

$$
\mathrm{Al}_{I}= \begin{cases}\iota & \text { if } I \in E \\ \bigsqcup\left\{\varphi_{I^{\prime}}\left(\mathrm{Al}_{\prime^{\prime}}\right) \mid\left(I^{\prime}, I\right) \in F\right\} & \text { otherwise }\end{cases}
$$

- $\left(d_{1}, \ldots, d_{n}\right) \in D^{n}$ is called a solution if

$$
d_{l}= \begin{cases}\iota & \text { if } I \in E \\ \bigsqcup\left\{\varphi_{I^{\prime}}\left(d_{l^{\prime}}\right) \mid\left(I^{\prime}, I\right) \in F\right\} & \text { otherwise }\end{cases}
$$

- S determines the transformation

$$
\Phi_{S}: D^{n} \rightarrow D^{n}:\left(d_{1}, \ldots, d_{n}\right) \mapsto\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime}\right)
$$

where

$$
d_{l}^{\prime}:= \begin{cases}\iota & \text { if } I \in E \\ \bigsqcup\left\{\varphi_{l^{\prime}}\left(d_{l^{\prime}}\right) \mid\left(l^{\prime}, l\right) \in F\right\} & \text { otherwise }\end{cases}
$$

Corollary

$\left(d_{1}, \ldots, d_{n}\right) \in D^{n}$ solves the equation system iff it is a fixpoint of Φ_{S}

Solving Dataflow Problems by Fixpoint Iteration

Remarks:

- (D, \sqsubseteq) being a complete lattice ensures that Φ_{S} is well defined
- Since (D, \sqsubseteq) is a complete lattice satisfying ACC, so is $\left(D^{n}, \sqsubseteq^{n}\right)$ (where $\left(d_{1}, \ldots, d_{n}\right) \sqsubseteq^{n}\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime}\right)$ iff $d_{i} \sqsubseteq d_{i}^{\prime}$ for every $1 \leq i \leq n$)
- Monotonicity of transfer functions φ_{l} in (D, \sqsubseteq) implies monotonicity of Φ_{S} in $\left(D^{n}, \sqsubseteq^{n}\right)$ (since \bigsqcup also monotonic)
- Thus the (least) fixpoint is effectively computable by iteration:

$$
\operatorname{fix}\left(\Phi_{S}\right)=\bigsqcup\left\{\Phi_{S}^{k}\left(\perp_{D^{n}}\right) \mid k \in \mathbb{N}\right\}
$$

where $\perp_{D^{n}}=(\underbrace{\perp_{D}, \ldots, \perp_{D}}_{n \text { times }})$

- If height of (D, \sqsubseteq) is m
\Longrightarrow height of $\left(D^{n}, \sqsubseteq^{n}\right)$ is $m \cdot n$
\Longrightarrow fixpoint iteration requires at most $m \cdot n$ steps

Outline

(1) Recap: The Fixpoint Approach
(2) Uniqueness of Solutions
(3) Efficient Fixpoint Computation
(4) The MOP Solution
(5) Another Analysis: Constant Propagation

Uniqueness of Solutions I

Observation: (non-minimal) solutions of dataflow equation systems are not always unique.

Uniqueness of Solutions I

Observation: (non-minimal) solutions of dataflow equation systems are not always unique.

Example 5.1 (Available Expressions)

[z := x+y] ${ }^{1}$;
while [true] ${ }^{2}$ do [skip] ${ }^{3}$;

Uniqueness of Solutions I

Observation: (non-minimal) solutions of dataflow equation systems are not always unique.

Example 5.1 (Available Expressions)

[z := x+y] ${ }^{1}$;
while [true] ${ }^{2}$ do [skip] ${ }^{3}$;
$\Longrightarrow A E_{1}=\emptyset$
$A E_{2}=\left(A E_{1} \cup\{x+y\}\right) \cap A E_{3}$
$A E_{3}=A E_{2}$

Uniqueness of Solutions I

Observation: (non-minimal) solutions of dataflow equation systems are not always unique.

Example 5.1 (Available Expressions)

[z := x+y] ${ }^{1}$;
while [true] ${ }^{2}$ do [skip] ${ }^{3}$;

$$
\begin{aligned}
\Longrightarrow A E_{1} & =\emptyset \\
A E_{2} & =\left(A E_{1} \cup\{x+y\}\right) \cap A E_{3} \\
A E_{3} & =A E_{2} \\
\Longrightarrow A E_{1} & =\emptyset \\
A E_{2} & =\{x+y\} \cap A E_{3} \\
A E_{3} & =A E_{2}
\end{aligned}
$$

Uniqueness of Solutions I

Observation: (non-minimal) solutions of dataflow equation systems are not always unique.

Example 5.1 (Available Expressions)

[z := x+y] ${ }^{1}$;
while [true] ${ }^{2}$ do [skip] ${ }^{3}$;

$$
\begin{aligned}
& \Longrightarrow A E_{1}=\emptyset \\
& A E_{2}=\left(A E_{1} \cup\{x+y\}\right) \cap A E_{3} \\
& A E_{3}=A E_{2} \\
& \Longrightarrow A E_{1}=\emptyset \\
& A E_{2}=\{x+y\} \cap A E_{3} \\
& A E_{3}=A E_{2}
\end{aligned}
$$

\Longrightarrow Solutions: $\mathrm{AE}_{1}=A E_{2}=A E_{3}=\emptyset$ or

$$
\mathrm{AE}_{1}=\emptyset, \mathrm{AE}_{2}=\mathrm{AE} 3=\{\mathrm{x}+\mathrm{y}\}
$$

Uniqueness of Solutions I

Observation: (non-minimal) solutions of dataflow equation systems are not always unique.

Example 5.1 (Available Expressions)

[$\mathrm{z}:=\mathrm{x}+\mathrm{y}]^{1}$;
while [true] ${ }^{2}$ do [skip] ${ }^{3}$;

$$
\begin{aligned}
\Longrightarrow A E_{1} & =\emptyset \\
A E_{2} & =\left(A E_{1} \cup\{x+y\}\right) \cap A E_{3}
\end{aligned}
$$

$$
\mathrm{AE}_{3}=\mathrm{AE} E_{2}
$$

$$
\Longrightarrow A E_{1}=\emptyset
$$

$$
\mathrm{AE}_{2}=\{x+y\} \cap A E_{3}
$$

$$
\mathrm{AE}_{3}=\mathrm{AE} E_{2}
$$

\Longrightarrow Solutions: $A E_{1}=A E_{2}=A E_{3}=\emptyset$ or

$$
\mathrm{AE}_{1}=\emptyset, \mathrm{AE}_{2}=\mathrm{AE} E_{3}=\{\mathrm{x}+\mathrm{y}\}
$$

Here: greatest solution $\{x+y\}$ (maximal potential for optimisation)

Uniqueness of Solutions II

```
Example 5.2 (Live Variables)
while [x>1] }\mp@subsup{}{}{1}\mathrm{ do
    [skip]}\mp@subsup{}{}{2}
[x := x+1] 3
[y := 0] }\mp@subsup{}{}{4
```


Uniqueness of Solutions II

$$
\begin{array}{ll}
\text { Example } 5.2 \text { (Live Variables) } \\
\left.\begin{array}{ll}
\text { while }[\mathrm{x}>1]^{1} \text { do } & \Longrightarrow \\
\mathrm{LV}_{1}=\mathrm{LV}_{2} \cup(\mathrm{LV} \\
\text { [skip }
\end{array} \mathrm{L}^{2} \cup\{\mathrm{x}\}\right) \\
{[\mathrm{x}:=\mathrm{x}+1]^{3} ;} & \mathrm{LV}_{2}=\mathrm{LV}_{1} \cup\{\mathrm{x}\} \\
{[\mathrm{y}:=0]^{4}} & \mathrm{LV}_{3}=\mathrm{LV} 4 \backslash\{\mathrm{y}\} \\
& \mathrm{LV}_{4}=\{\mathrm{x}, \mathrm{y}\}
\end{array}
$$

Uniqueness of Solutions II

$$
\begin{aligned}
& \text { Example } 5.2 \text { (Live Variables) } \\
& \text { while }[\mathrm{x}>1]^{1} \text { do } \quad \Longrightarrow \quad \mathrm{LV}_{1}=\mathrm{LV}_{2} \cup\left(\mathrm{LV}_{3} \cup\{\mathrm{x}\}\right) \\
& \text { [skip] }{ }^{2} \text {; } \\
& \text { [x := x+1] }{ }^{3} \text {; } \\
& \mathrm{LV}_{2}=\mathrm{LV}_{1} \cup\{\mathrm{x}\} \\
& \mathrm{LV}_{3}=\mathrm{LV}_{4} \backslash\{\mathrm{y}\} \\
& {[y ~:=0]^{4}} \\
& \mathrm{LV}_{4}=\{\mathrm{x}, \mathrm{y}\} \\
& \Longrightarrow \mathrm{LV}_{3}=\{\mathrm{x}\}
\end{aligned}
$$

Uniqueness of Solutions II

$$
\begin{aligned}
& \text { Example } 5.2 \text { (Live Variables) } \\
& \text { while }[\mathrm{x}>1]^{1} \text { do } \quad \Longrightarrow \quad \mathrm{LV}_{1}=\mathrm{LV}_{2} \cup\left(\mathrm{LV}_{3} \cup\{\mathrm{x}\}\right) \\
& \text { [skip] }{ }^{2} \text {; } \\
& \text { [x := x+1] }{ }^{3} \text {; } \\
& \mathrm{LV}_{2}=\mathrm{LV}_{1} \cup\{\mathrm{x}\} \\
& \mathrm{LV}_{3}=\mathrm{LV}_{4} \backslash\{\mathrm{y}\} \\
& {[y ~:=0]^{4}} \\
& \mathrm{LV}_{4}=\{\mathrm{x}, \mathrm{y}\} \\
& \Longrightarrow \mathrm{LV}_{3}=\{\mathrm{x}\} \\
& \Longrightarrow \mathrm{LV}_{1}=\mathrm{LV}_{2} \cup\{\mathrm{x}\} \\
& =\mathrm{LV}_{1} \cup\{\mathrm{x}\}
\end{aligned}
$$

Uniqueness of Solutions II

Example 5.2 (Live Variables)

$$
\begin{aligned}
& \text { while }[x>1]^{1} \text { do } \\
& \Longrightarrow \mathrm{LV}_{1}=\mathrm{LV}_{2} \cup\left(\mathrm{LV}_{3} \cup\{\mathrm{x}\}\right) \\
& \text { [skip] }{ }^{2} \text {; } \\
& \text { [x := x+1] }{ }^{3} \text {; } \\
& \mathrm{LV}_{2}=\mathrm{LV}_{1} \cup\{\mathrm{x}\} \\
& \mathrm{LV}_{3}=\mathrm{LV}_{4} \backslash\{\mathrm{y}\} \\
& {[y:=0]^{4}} \\
& \mathrm{LV}_{4}=\{\mathrm{x}, \mathrm{y}\} \\
& \Longrightarrow \mathrm{LV}_{3}=\{\mathrm{x}\} \\
& \Longrightarrow \mathrm{LV}_{1}=\mathrm{LV}_{2} \cup\{\mathrm{x}\} \\
& =\mathrm{LV}_{1} \cup\{\mathrm{x}\}
\end{aligned}
$$

\Longrightarrow Solutions: $\mathrm{LV}_{1}=\mathrm{LV}_{2}=(\{\mathrm{x}\}$ or $\{\mathrm{x}, \mathrm{y}\})$,

$$
\mathrm{LV}_{3}=\{\mathrm{x}\}, \mathrm{LV}_{4}=\{\mathrm{x}, \mathrm{y}\}
$$

Uniqueness of Solutions II

Example 5.2 (Live Variables)

$$
\begin{aligned}
& \text { while }[x>1]^{1} \text { do } \\
& \Longrightarrow \mathrm{LV}_{1}=\mathrm{LV}_{2} \cup\left(\mathrm{LV}_{3} \cup\{\mathrm{x}\}\right) \\
& \mathrm{LV}_{2}=\mathrm{LV}_{1} \cup\{\mathrm{x}\} \\
& {[\mathrm{x}:=\mathrm{x}+1]^{3} \text {; }} \\
& \mathrm{LV}_{3}=\mathrm{LV}_{4} \backslash\{\mathrm{y}\} \\
& {[\mathrm{y}:=0]^{4}} \\
& \mathrm{LV}_{4}=\{\mathrm{x}, \mathrm{y}\} \\
& \Longrightarrow \mathrm{LV}_{3}=\{\mathrm{x}\} \\
& \Longrightarrow \mathrm{LV}_{1}=\mathrm{LV}_{2} \cup\{\mathrm{x}\} \\
& =\mathrm{LV}_{1} \cup\{\mathrm{x}\}
\end{aligned}
$$

\Longrightarrow Solutions: $\mathrm{LV}_{1}=\mathrm{LV}_{2}=(\{\mathrm{x}\}$ or $\{\mathrm{x}, \mathrm{y}\})$,

$$
\mathrm{LV}_{3}=\{\mathrm{x}\}, \mathrm{LV}_{4}=\{\mathrm{x}, \mathrm{y}\}
$$

Here: least solution $\{\mathrm{x}\}$ (maximal potential for optimisation)

Outline

(1) Recap: The Fixpoint Approach
(2) Uniqueness of Solutions
(3) Efficient Fixpoint Computation

4 The MOP Solution
(5) Another Analysis: Constant Propagation

A Worklist Algorithm I

Observation: fixpoint iteration re-computes every $\mathrm{Al}_{/}$in every step

A Worklist Algorithm I

Observation: fixpoint iteration re-computes every $\mathrm{Al}_{/}$in every step \Longrightarrow redundant if $\mathrm{Al}_{\| \prime}$ at no F-predecessor I' changed

A Worklist Algorithm I

Observation: fixpoint iteration re-computes every $\mathrm{Al}_{/}$in every step
\Longrightarrow redundant if $\mathrm{Al}_{\prime \prime}$ at no F-predecessor I^{\prime} changed
\Longrightarrow optimisation by worklist

A Worklist Algorithm I

Observation: fixpoint iteration re-computes every $\mathrm{Al}_{/}$in every step
\Longrightarrow redundant if $\mathrm{Al}_{\prime \prime}$ at no F-predecessor I^{\prime} changed
\Longrightarrow optimisation by worklist

Algorithm 5.3 (Worklist algorithm)

Input: dataflow system $S=(L a b, E, F,(D, \sqsubseteq), \iota, \varphi)$

A Worklist Algorithm I

Observation: fixpoint iteration re-computes every $\mathrm{Al}_{/}$in every step
\Longrightarrow redundant if $\mathrm{Al}_{\prime \prime}$ at no F-predecessor I^{\prime} changed
\Longrightarrow optimisation by worklist

Algorithm 5.3 (Worklist algorithm)

Input: dataflow system $S=(L a b, E, F,(D, \sqsubseteq), \iota, \varphi)$
Variables: $W \in(L a b \times L a b)^{*},\left\{\mathrm{Al}_{I} \in D \mid I \in L a b\right\}$

A Worklist Algorithm I

Observation: fixpoint iteration re-computes every $\mathrm{Al}_{/}$in every step
\Longrightarrow redundant if $\mathrm{Al}_{\prime \prime}$ at no F-predecessor I^{\prime} changed
\Longrightarrow optimisation by worklist

Algorithm 5.3 (Worklist algorithm)

Input: dataflow system $S=(L a b, E, F,(D, \sqsubseteq), \iota, \varphi)$
Variables: $W \in(L a b \times L a b)^{*},\left\{\mathrm{Al}_{I} \in D \mid I \in L a b\right\}$
Procedure: $W:=\varepsilon$; for $\left(I, I^{\prime}\right) \in F$ do $W:=W \cdot\left(I, I^{\prime}\right) ; \%$ Initialise W for $I \in L a b$ do $\quad \%$ Initialise AI
if $l \in E$ then $\mathrm{Al}_{l}:=\iota$ else $\mathrm{Al}_{l}:=\perp_{D}$;

A Worklist Algorithm I

Observation: fixpoint iteration re-computes every $\mathrm{Al}_{/}$in every step
\Longrightarrow redundant if $\mathrm{Al}_{\prime \prime}$ at no F-predecessor I^{\prime} changed
\Longrightarrow optimisation by worklist

Algorithm 5.3 (Worklist algorithm)

Input: dataflow system $S=($ Lab, $E, F,(D, \sqsubseteq), \iota, \varphi)$
Variables: $W \in(L a b \times L a b)^{*},\left\{\mathrm{Al}_{I} \in D \mid I \in L a b\right\}$
Procedure: $W:=\varepsilon$; for $\left(I, I^{\prime}\right) \in F$ do $W:=W \cdot\left(I, I^{\prime}\right) ; \%$ Initialise W for $I \in L a b$ do $\quad \%$ Initialise AI
if $l \in E$ then $\mathrm{Al}_{l}:=\iota$ else $\mathrm{Al}_{l}:=\perp_{D}$;
while $W \neq \varepsilon$ do
$\left(I, I^{\prime}\right):=\operatorname{head}(W) ; W:=\boldsymbol{\operatorname { t a i l }}(W)$;
if $\varphi_{l}\left(\mathrm{Al}_{I}\right) \nsubseteq \mathrm{Al}_{I}$, then \quad \% Fixpoint not yet reached $\mathrm{Al}_{l^{\prime}}:=\mathrm{Al}_{l^{\prime}} \sqcup \varphi_{l}\left(\mathrm{Al}_{l}\right) ;$ for $\left(I^{\prime}, I^{\prime \prime}\right) \in F$ do
if $\left(I^{\prime}, I^{\prime \prime}\right)$ not in W then $W:=\left(I^{\prime}, I^{\prime \prime}\right) \cdot W$;

A Worklist Algorithm I

Observation: fixpoint iteration re-computes every $\mathrm{Al}_{/}$in every step
\Longrightarrow redundant if $\mathrm{Al}_{\prime \prime}$ at no F-predecessor I^{\prime} changed
\Longrightarrow optimisation by worklist

Algorithm 5.3 (Worklist algorithm)

Input: dataflow system $S=($ Lab, $E, F,(D, \sqsubseteq), \iota, \varphi)$
Variables: $W \in(L a b \times L a b)^{*},\left\{\mathrm{Al}_{l} \in D \mid I \in L a b\right\}$
Procedure: $W:=\varepsilon$; for $\left(I, I^{\prime}\right) \in F$ do $W:=W \cdot\left(I, I^{\prime}\right) ; \%$ Initialise W for $I \in L a b$ do $\%$ Initialise AI
if $l \in E$ then $\mathrm{Al}_{l}:=\iota$ else $\mathrm{Al}_{I}:=\perp_{D}$;
while $W \neq \varepsilon$ do
$\left(I, I^{\prime}\right):=\operatorname{head}(W) ; W:=\boldsymbol{\operatorname { t a i l }}(W)$;
if $\varphi_{l}\left(\mathrm{Al}_{I}\right) \nsubseteq \mathrm{Al}_{I}$, then \quad \% Fixpoint not yet reached $\mathrm{Al}_{l^{\prime}}:=\mathrm{Al}_{l \prime} \sqcup \varphi_{l}\left(\mathrm{Al}_{l}\right)$; for $\left(I^{\prime}, I^{\prime \prime}\right) \in F$ do
if $\left(I^{\prime}, I^{\prime \prime}\right)$ not in W then $W:=\left(I^{\prime}, I^{\prime \prime}\right) \cdot W$;
Output: $\left\{\mathrm{Al}_{I} \mid l \in L a b\right\}$
RWIHAACHEN

A Worklist Algorithm II

Example 5.4 (Worklist algorithm)

Available Expression analysis for $c=[\mathrm{x}:=\mathrm{a}+\mathrm{b}]^{1}$;

$$
[\mathrm{y}:=\mathrm{a} * \mathrm{~b}]^{2} ;
$$

$$
\text { while }[y>a+b]^{3} \text { do }
$$

$$
[\mathrm{a}:=\mathrm{a}+1]^{4} ;
$$

$$
[\mathrm{x}:=\mathrm{a}+\mathrm{b}]^{5}
$$

(cf. Examples 2.9 and 4.11)
Transfer functions: $\varphi_{1}(A)=A \cup\{\mathrm{a}+\mathrm{b}\}$

$$
\begin{aligned}
& \varphi_{2}(A)=A \cup\{\mathrm{a} * \mathrm{~b}\} \\
& \varphi_{3}(A)=A \cup\{\mathrm{a}+\mathrm{b}\} \\
& \varphi_{4}(A)=A \backslash\{\mathrm{a}+\mathrm{b}, \mathrm{a} * \mathrm{~b}, \mathrm{a}+1\} \\
& \varphi_{5}(A)=A \cup\{\mathrm{a}+\mathrm{b}\}
\end{aligned}
$$

Computation protocol: on the board

An "Optimisation"

Conjecture: it suffices to initialise worklist with edges leaving extremal labels (such that analysis information will propagate through CFG)

An "Optimisation"

Conjecture: it suffices to initialise worklist with edges leaving extremal labels (such that analysis information will propagate through CFG)

But ...

Example 5.5 (Counterexample)

Live Variables analysis for $c=\left[\begin{array}{ll}\mathrm{x} & :=0\end{array}\right]^{1}$;
$[\mathrm{x}:=\mathrm{x}+1]^{2}$;
$[\mathrm{x}:=2]^{3}$
Solution: $\mathrm{LV}_{1}=\{\mathrm{x}\}, \mathrm{LV}_{2}=\emptyset, \mathrm{LV}_{3}=\{\mathrm{x}\}$

An "Optimisation"

Conjecture: it suffices to initialise worklist with edges leaving extremal labels (such that analysis information will propagate through CFG)

But ...

Example 5.5 (Counterexample)

Live Variables analysis for $c=[\mathrm{x}:=0]^{1}$;

$$
[\mathrm{x}:=\mathrm{x}+1]^{2} ;
$$

$$
[\mathrm{x}:=2]^{3}
$$

Solution: $\mathrm{LV}_{1}=\{\mathrm{x}\}, \mathrm{LV}_{2}=\emptyset, \mathrm{LV}_{3}=\{\mathrm{x}\}$
"Optimised" worklist algorithm:

W	LV_{1}	LV_{2}	LV_{3}
$(3,2)$	\emptyset	\emptyset	$\{\mathrm{x}\}$

An "Optimisation"

Conjecture: it suffices to initialise worklist with edges leaving extremal labels (such that analysis information will propagate through CFG)

But ...

Example 5.5 (Counterexample)

Live Variables analysis for $c=[\mathrm{x}:=0]^{1}$;

$$
[\mathrm{x}:=\mathrm{x}+1]^{2} ;
$$

$$
[\mathrm{x}:=2]^{3}
$$

Solution: $\mathrm{LV}_{1}=\{\mathrm{x}\}, \mathrm{LV}_{2}=\emptyset, \mathrm{LV}_{3}=\{\mathrm{x}\}$
"Optimised" worklist algorithm:

W	LV_{1}	LV_{2}	LV_{3}
$(3,2)$	\emptyset	\emptyset	$\{\mathrm{x}\}$
ε	\emptyset	\emptyset	$\{\mathrm{x}\}$

\Longrightarrow wrong result!

Correctness of Worklist Algorithm

Properties of the algorithm:
Theorem 5.6 (Correctness of worklist algorithm)
Given a dataflow system $S=($ Lab, $E, F,(D, \sqsubseteq), \iota, \varphi)$, Algorithm 5.3 always terminates and computes fix $\left(\Phi_{S}\right)$.

Correctness of Worklist Algorithm

Properties of the algorithm:
Theorem 5.6 (Correctness of worklist algorithm)
Given a dataflow system $S=($ Lab, $E, F,(D, \sqsubseteq), \iota, \varphi)$, Algorithm 5.3 always terminates and computes fix $\left(\Phi_{S}\right)$.

Proof.

see [Nielson/Nielson/Hankin 2005, p. 75 ff]

Outline

(1) Recap: The Fixpoint Approach
(2) Uniqueness of Solutions
(3) Efficient Fixpoint Computation
(4) The MOP Solution
(5) Another Analysis: Constant Propagation

The MOP Solution I

- Other solution method for dataflow systems

The MOP Solution I

- Other solution method for dataflow systems
- MOP = Meet Over all Paths
- Other solution method for dataflow systems
- MOP = Meet Over all Paths
- Analysis information for block B^{\prime}
$=$ least upper bound over all paths leading to I
$=$ most precise information for I ("reference solution")

The MOP Solution I

- Other solution method for dataflow systems
- MOP = Meet Over all Paths
- Analysis information for block B^{\prime}
$=$ least upper bound over all paths leading to I
$=$ most precise information for I ("reference solution")

Definition 5.7 (Paths)

Let $S=(L a b, E, F,(D, \sqsubseteq), \iota, \varphi)$ be a dataflow system. For every $I \in L a b$, the set of paths up to l is given by

$$
\begin{aligned}
\operatorname{Path}(I):=\left\{\left[I_{1}, \ldots, I_{k-1}\right] \mid\right. & k \geq 1, I_{1} \in E, \\
& \left.\left(I_{i}, I_{i+1}\right) \in F \text { for every } 1 \leq i<k, I_{k}=I\right\} .
\end{aligned}
$$

The MOP Solution I

- Other solution method for dataflow systems
- MOP = Meet Over all Paths
- Analysis information for block B^{\prime}
$=$ least upper bound over all paths leading to I
$=$ most precise information for I ("reference solution")

Definition 5.7 (Paths)

Let $S=(L a b, E, F,(D, \sqsubseteq), \iota, \varphi)$ be a dataflow system. For every $I \in L a b$, the set of paths up to l is given by

$$
\begin{aligned}
\operatorname{Path}(I):=\left\{\left[I_{1}, \ldots, I_{k-1}\right] \mid\right. & k \geq 1, I_{1} \in E, \\
& \left.\left(I_{i}, I_{i+1}\right) \in F \text { for every } 1 \leq i<k, I_{k}=I\right\} .
\end{aligned}
$$

For a path $\pi=\left[I_{1}, \ldots, I_{k-1}\right] \in \operatorname{Path}(I)$, we define the transfer function $\varphi_{\pi}: D \rightarrow D$ by

$$
\varphi_{\pi}:=\varphi_{I_{k-1}} \circ \ldots \circ \varphi_{I_{1}} \circ \mathrm{id}_{D}
$$

(so that $\varphi_{[]}=\mathrm{id}_{D}$).

The MOP Solution II

Definition 5.8 (MOP solution)

Let $S=(L a b, E, F,(D, \sqsubseteq), \iota, \varphi)$ be a dataflow system where $L a b=\left\{I_{1}, \ldots, I_{n}\right\}$. The MOP solution for S is determined by

$$
\operatorname{mop}(S):=\left(\operatorname{mop}\left(I_{1}\right), \ldots, \operatorname{mop}\left(I_{n}\right)\right) \in D^{n}
$$

where, for every $I \in L a b$,

$$
\operatorname{mop}(I):=\bigsqcup\left\{\varphi_{\pi}(\iota) \mid \pi \in \operatorname{Path}(I)\right\} .
$$

The MOP Solution II

Definition 5.8 (MOP solution)

Let $S=(L a b, E, F,(D, \sqsubseteq), \iota, \varphi)$ be a dataflow system where $L a b=\left\{I_{1}, \ldots, I_{n}\right\}$. The MOP solution for S is determined by

$$
\operatorname{mop}(S):=\left(\operatorname{mop}\left(I_{1}\right), \ldots, \operatorname{mop}\left(I_{n}\right)\right) \in D^{n}
$$

where, for every $I \in L a b$,

$$
\operatorname{mop}(I):=\bigsqcup\left\{\varphi_{\pi}(\iota) \mid \pi \in \operatorname{Path}(I)\right\} .
$$

Remark:

- Path $(/)$ is generally infinite
\Longrightarrow not clear how to compute $\operatorname{mop}(I)$

The MOP Solution II

Definition 5.8 (MOP solution)

Let $S=(L a b, E, F,(D, \sqsubseteq), \iota, \varphi)$ be a dataflow system where $L a b=\left\{I_{1}, \ldots, I_{n}\right\}$. The MOP solution for S is determined by

$$
\operatorname{mop}(S):=\left(\operatorname{mop}\left(I_{1}\right), \ldots, \operatorname{mop}\left(I_{n}\right)\right) \in D^{n}
$$

where, for every $I \in L a b$,

$$
\operatorname{mop}(I):=\bigsqcup\left\{\varphi_{\pi}(\iota) \mid \pi \in \operatorname{Path}(I)\right\} .
$$

Remark:

- Path $(/)$ is generally infinite
\Longrightarrow not clear how to compute mop($/$)
- In fact: MOP solution generally undecidable (later)

Example 5.9 (Live Variables; cf. Examples 2.12 and 4.12)

$$
\begin{aligned}
& c=[\mathrm{x}:=2]^{1} \text {; } \\
& {[y:=4]^{2} ;} \\
& \text { [} \mathrm{x}:=1]^{3} \text {; } \\
& \text { if }[y>0]^{4} \text { then } \\
& {[z:=x]^{5}} \\
& \text { else } \\
& \text { [z := y*y] }{ }^{6} \text {; } \\
& \text { [} \mathrm{x}:=\mathrm{z}]^{7}
\end{aligned}
$$

Example 5.9 (Live Variables; cf. Examples 2.12 and 4.12)

$$
\begin{aligned}
& c=\left[\begin{array}{ll}
\mathrm{x} & :=2
\end{array}\right]^{1} \text {; } \\
& {[y:=4]^{2} \text {; }} \\
& {[\mathrm{x}:=1]^{3} \text {; }} \\
& \text { if }[y>0]^{4} \text { then } \\
& {[z:=x]^{5}} \\
& \text { else } \\
& {[\mathrm{z}:=\mathrm{y} * \mathrm{y}]^{6} \text {; }} \\
& {[\mathrm{x}:=\mathrm{z}]^{7}}
\end{aligned}
$$

$\Longrightarrow \operatorname{Path}(1)=\{[7,5,4,3,2]$,
[7, 6, 4, 3, 2]\}

Example 5.9 (Live Variables; cf. Examples 2.12 and 4.12)

$$
\left.\begin{array}{rl}
c= & {\left[\begin{array}{lll}
\mathrm{x} & :=2
\end{array}\right]^{1} ;} \\
& {[\mathrm{y}:=4]^{2} ;} \\
& {[\mathrm{x}:=1]^{3} ;} \\
& \text { if }[\mathrm{y}>0
\end{array}\right]^{4} \text { then } \mathrm{mop}(1)=\varphi_{[7,5,4,3,2]}(\iota) \sqcup \varphi_{[7,6,4,3,2]}(\iota)
$$

$$
\Longrightarrow \operatorname{Path}(1)=\{[7,5,4,3,2],
$$

$$
[7,6,4,3,2]\}
$$

Example 5.9 (Live Variables; cf. Examples 2.12 and 4.12)

$$
[\mathrm{z}:=\mathrm{y} * \mathrm{y}]^{6} ;
$$

$$
[\mathrm{x}:=\mathrm{z}]^{7}
$$

$\Longrightarrow \operatorname{Path}(1)=\{[7,5,4,3,2]$,
$[7,6,4,3,2]\}$

$$
\begin{aligned}
& c=\left[\begin{array}{lll}
\mathrm{x} & :=2
\end{array}\right]^{1} \text {; } \\
& \Longrightarrow \operatorname{mop}(1)=\varphi_{[7,5,4,3,2]}(\iota) \sqcup \varphi_{[7,6,4,3,2]}(\iota) \\
& \text { [y := 4] }{ }^{2} \text {; } \\
& {[\mathrm{x}:=1]^{3} \text {; }} \\
& =\varphi_{2}\left(\varphi_{3}\left(\varphi_{4}\left(\varphi_{5}\left(\varphi_{7}(\{\mathrm{x}, \mathrm{y}, \mathrm{z}\})\right)\right)\right)\right) \sqcup \\
& \varphi_{2}\left(\varphi_{3}\left(\varphi_{4}\left(\varphi_{6}\left(\varphi_{7}(\{\mathrm{x}, \mathrm{y}, \mathrm{z}\})\right)\right)\right)\right) \\
& \text { if }[y>0]^{4} \text { then } \\
& {[\mathrm{z}:=\mathrm{x}]^{5}} \\
& \text { else }
\end{aligned}
$$

Example 5.9 (Live Variables; cf. Examples 2.12 and 4.12)

$$
\begin{array}{rlrl}
c= & {[\mathrm{x}:=2]^{1} ;} & \Longrightarrow \operatorname{mop}(1) & =\varphi_{[7,5,4,3,2]}(\iota) \sqcup \varphi_{[7,6,4,3,2]}(\iota) \\
& {[\mathrm{y}:=4]^{2} ;} & & \varphi_{2}\left(\varphi_{3}\left(\varphi_{4}\left(\varphi_{5}\left(\varphi_{7}(\{\mathrm{x}, \mathrm{y}, \mathrm{z}\})\right)\right)\right)\right) \sqcup \\
& {[\mathrm{x}:=1]^{3} ;} & & \varphi_{2}\left(\varphi_{3}\left(\varphi_{4}\left(\varphi_{6}\left(\varphi_{7}(\{\mathrm{x}, \mathrm{y}, \mathrm{z}\})\right)\right)\right)\right) \\
& \text { if }[\mathrm{y}>0]^{4} \text { then } & & =\varphi_{2}\left(\varphi_{3}\left(\varphi_{4}\left(\varphi_{5}(\{\mathrm{y}, \mathrm{z}\})\right)\right)\right) \sqcup \\
& & \varphi_{2}\left(\varphi_{3}\left(\varphi_{4}\left(\varphi_{6}(\{\mathrm{y}, \mathrm{z}\})\right)\right)\right) \\
& \text { else } \mathrm{x}]^{5} & &
\end{array}
$$

$$
[\mathrm{z}:=\mathrm{y} * \mathrm{y}]^{6} ;
$$

$$
\left[\begin{array}{ll}
\mathrm{x} & := \\
z
\end{array}\right]^{7}
$$

$\Longrightarrow \operatorname{Path}(1)=\{[7,5,4,3,2]$,
$[7,6,4,3,2]\}$

Example 5.9 (Live Variables; cf. Examples 2.12 and 4.12)

$$
\left.\begin{array}{rl}
c= & {\left[\begin{array}{lll}
\mathrm{x} & := & 2
\end{array}\right]^{1} ;} \\
& {[\mathrm{y}:=} \\
& {\left[\begin{array}{ll}
2
\end{array}\right.} \\
& \mathrm{x}:=1
\end{array}\right]^{3} ;
$$

$\Longrightarrow \operatorname{Path}(1)=\{[7,5,4,3,2]$,
[7, 6, 4, 3, 2]\}

Example 5.9 (Live Variables; cf. Examples 2.12 and 4.12)

$$
\begin{aligned}
& c=\left[\begin{array}{ll}
\mathrm{x} & :=2
\end{array}\right]^{1} \text {; } \\
& {[y:=4]^{2} \text {; }} \\
& {[\mathrm{x}:=1]^{3} \text {; }} \\
& \text { if }[\mathrm{y}>0]^{4} \text { then } \\
& {[z:=x]^{5}} \\
& \text { else } \\
& {[\mathrm{z}:=\mathrm{y} * \mathrm{y}]^{6} \text {; }} \\
& {[\mathrm{x}:=\mathrm{z}]^{7}} \\
& \Longrightarrow \operatorname{mop}(1)=\varphi_{[7,5,4,3,2]}(\iota) \sqcup \varphi_{[7,6,4,3,2]}(\iota) \\
& =\varphi_{2}\left(\varphi_{3}\left(\varphi_{4}\left(\varphi_{5}\left(\varphi_{7}(\{\mathrm{x}, \mathrm{y}, \mathrm{z}\})\right)\right)\right)\right) \sqcup \\
& \varphi_{2}\left(\varphi_{3}\left(\varphi_{4}\left(\varphi_{6}\left(\varphi_{7}(\{x, y, z\})\right)\right)\right)\right) \\
& =\varphi_{2}\left(\varphi_{3}\left(\varphi_{4}\left(\varphi_{5}(\{y, z\})\right)\right) \sqcup\right. \\
& \varphi_{2}\left(\varphi_{3}\left(\varphi_{4}\left(\varphi_{6}(\{y, z\})\right)\right)\right) \\
& =\varphi_{2}\left(\varphi_{3}\left(\varphi_{4}(\{\mathrm{x}, \mathrm{y}\})\right)\right) \sqcup \\
& \varphi_{2}\left(\varphi_{3}\left(\varphi_{4}(\{y\})\right)\right) \\
& =\varphi_{2}\left(\varphi_{3}(\{\mathrm{x}, \mathrm{y}\})\right) \sqcup \varphi_{2}\left(\varphi_{3}(\{\mathrm{y}\})\right)
\end{aligned}
$$

$\Longrightarrow \operatorname{Path}(1)=\{[7,5,4,3,2]$,
$[7,6,4,3,2]\}$

Example 5.9 (Live Variables; cf. Examples 2.12 and 4.12)

$$
\begin{gathered}
c=\left[\begin{array}{ll}
\mathrm{x}: & :=2]^{1} ; \\
{[\mathrm{y}:=\mathrm{l}]^{2} ;} \\
{[\mathrm{x}:=} &]^{3} ; \\
\text { if }[\mathrm{y} & >0
\end{array}\right]^{4} \text { then } \\
{[\mathrm{z}:=\mathrm{x}]^{5}} \\
\text { else } \\
{[\mathrm{z}:=\mathrm{y} * \mathrm{y}]^{6} ;} \\
{[\mathrm{x}:=\mathrm{z}]^{4}}
\end{gathered}
$$

$\Longrightarrow \operatorname{Path}(1)=\{[7,5,4,3,2]$,
$[7,6,4,3,2]\}$

$$
\begin{aligned}
\Longrightarrow \operatorname{mop}(1)= & \varphi_{[7,5,4,3,2]}(\iota) \sqcup \varphi_{[7,6,4,3,2]}(\iota) \\
= & \varphi_{2}\left(\varphi_{3}\left(\varphi_{4}\left(\varphi_{5}\left(\varphi_{7}(\{\mathrm{x}, \mathrm{y}, \mathrm{z}\})\right)\right)\right)\right) \sqcup \\
& \varphi_{2}\left(\varphi_{3}\left(\varphi_{4}\left(\varphi_{6}\left(\varphi_{7}(\{\mathrm{x}, \mathrm{y}, \mathrm{z}\})\right)\right)\right)\right) \\
= & \varphi_{2}\left(\varphi_{3}\left(\varphi_{4}\left(\varphi_{5}(\{\mathrm{y}, \mathrm{z}\})\right)\right)\right) \sqcup \\
& \varphi_{2}\left(\varphi_{3}\left(\varphi_{4}\left(\varphi_{6}(\{\mathrm{y}, \mathrm{z}\})\right)\right)\right) \\
= & \varphi_{2}\left(\varphi_{3}\left(\varphi_{4}(\{\mathrm{x}, \mathrm{y}\})\right)\right) \sqcup \\
& \varphi_{2}\left(\varphi_{3}\left(\varphi_{4}(\{\mathrm{y}\})\right)\right) \\
= & \varphi_{2}\left(\varphi_{3}(\{\mathrm{x}, \mathrm{y}\})\right) \sqcup \varphi_{2}\left(\varphi_{3}(\{\mathrm{y}\})\right) \\
= & \varphi_{2}(\{\mathrm{y}\}) \sqcup \varphi_{2}(\{\mathrm{y}\})
\end{aligned}
$$

Example 5.9 (Live Variables; cf. Examples 2.12 and 4.12)

$$
\begin{aligned}
& c=\left[\begin{array}{ll}
\mathrm{x} & :=2
\end{array}\right]^{1} \text {; } \\
& {[y:=4]^{2} \text {; }} \\
& {[\mathrm{x}:=1]^{3} \text {; }} \\
& \text { if }[y>0]^{4} \text { then } \\
& {[z:=x]^{5}} \\
& \text { else } \\
& {[\mathrm{z}:=\mathrm{y} * \mathrm{y}]^{6} \text {; }} \\
& {[\mathrm{x}:=\mathrm{z}]^{7}} \\
& \Longrightarrow \operatorname{Path}(1)=\{[7,5,4,3,2], \\
& \text { [7, 6, 4, 3, 2]\} } \\
& \Longrightarrow \operatorname{mop}(1)=\varphi_{[7,5,4,3,2]}(\iota) \sqcup \varphi_{[7,6,4,3,2]}(\iota) \\
& =\varphi_{2}\left(\varphi_{3}\left(\varphi_{4}\left(\varphi_{5}\left(\varphi_{7}(\{\mathrm{x}, \mathrm{y}, \mathrm{z}\})\right)\right)\right)\right) \sqcup \\
& \varphi_{2}\left(\varphi_{3}\left(\varphi_{4}\left(\varphi_{6}\left(\varphi_{7}(\{\mathrm{x}, \mathrm{y}, \mathrm{z}\})\right)\right)\right)\right) \\
& =\varphi_{2}\left(\varphi_{3}\left(\varphi_{4}\left(\varphi_{5}(\{y, z\})\right)\right)\right) \sqcup \\
& \varphi_{2}\left(\varphi_{3}\left(\varphi_{4}\left(\varphi_{6}(\{y, z\})\right)\right)\right) \\
& =\varphi_{2}\left(\varphi_{3}\left(\varphi_{4}(\{\mathrm{x}, \mathrm{y}\})\right)\right) \sqcup \\
& \varphi_{2}\left(\varphi_{3}\left(\varphi_{4}(\{y\})\right)\right) \\
& =\varphi_{2}\left(\varphi_{3}(\{\mathrm{x}, \mathrm{y}\})\right) \sqcup \varphi_{2}\left(\varphi_{3}(\{\mathrm{y}\})\right) \\
& =\varphi_{2}(\{\mathrm{y}\}) \sqcup \varphi_{2}(\{\mathrm{y}\}) \\
& =\emptyset \sqcup \emptyset
\end{aligned}
$$

Example 5.9 (Live Variables; cf. Examples 2.12 and 4.12)

$$
\begin{aligned}
& c=\left[\begin{array}{ll}
\mathrm{x} & :=2
\end{array}\right]^{1} \text {; } \\
& {[y:=4]^{2} \text {; }} \\
& \text { [x := 1] }{ }^{3} \text {; } \\
& \text { if }[y>0]^{4} \text { then } \\
& {[\mathrm{z}:=\mathrm{x}]^{5}} \\
& \text { else } \\
& \text { [z := y*y] }{ }^{6} \text {; } \\
& {[\mathrm{x}:=\mathrm{z}]^{7}} \\
& \Longrightarrow \operatorname{Path}(1)=\{[7,5,4,3,2], \\
& [7,6,4,3,2]\} \quad=\emptyset \quad\left(\text { same as } \operatorname{fix}\left(\Phi_{S}\right)(1)\right)
\end{aligned}
$$

Outline

(1) Recap: The Fixpoint Approach
(2) Uniqueness of Solutions
(3) Efficient Fixpoint Computation

4 The MOP Solution
(5) Another Analysis: Constant Propagation

Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each program point, whether a variable has a constant value whenever execution reaches that point.

Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each program point, whether a variable has a constant value whenever execution reaches that point.

Used for Constant Folding: replace reference to variable by constant value and evaluate constant expressions

Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each program point, whether a variable has a constant value whenever execution reaches that point.

Used for Constant Folding: replace reference to variable by constant value and evaluate constant expressions

Example 5.10 (Constant Propagation Analysis)

```
[x := 1] ]
[y := 1] ';
[z := 1]';
while [z > 0] }\mp@subsup{}{}{4}\mathrm{ do
    [w := x+y]];
    if [w = 2] }\mp@subsup{}{6}{6}\mathrm{ then
        [x := y+2]}\mp@subsup{}{}{7
```


Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each program point, whether a variable has a constant value whenever execution reaches that point.

Used for Constant Folding: replace reference to variable by constant value and evaluate constant expressions

Example 5.10 (Constant Propagation Analysis)

$[\mathrm{x}:=1]^{1}$;
$[y:=1]^{2}$;
$[z:=1]^{3}$;

- $\mathrm{y}=\mathrm{z}=1$ at labels 4-7
while $[z>0]^{4}$ do
[w := x+y] ${ }^{5}$;
if $[\mathrm{w}=2]^{6}$ then
$[\mathrm{x}:=\mathrm{y}+2]^{7}$

Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each program point, whether a variable has a constant value whenever execution reaches that point.

Used for Constant Folding: replace reference to variable by constant value and evaluate constant expressions

Example 5.10 (Constant Propagation Analysis)

$[\mathrm{x}:=1]^{1}$;
$[\mathrm{y}:=1]^{2}$;
$[z:=1]^{3}$;
while $[z>0]^{4}$ do

- $\mathrm{y}=\mathrm{z}=1$ at labels 4-7
[w := x+y] ${ }^{5}$;
if $[\mathrm{w}=2]^{6}$ then
$[\mathrm{x}:=\mathrm{y}+2]^{7}$
- w, x not constant at labels $4-7$

Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each program point, whether a variable has a constant value whenever execution reaches that point.

Used for Constant Folding: replace reference to variable by constant value and evaluate constant expressions

Example 5.10 (Constant Propagation Analysis)

$[\mathrm{x}:=1]^{1}$;
$[\mathrm{y}:=1]^{2}$;
$[z:=1]^{3}$;
while $[z>0]^{4}$ do

- w, x not constant at labels $4-7$
[w := x+y] ${ }^{5}$;
if $[\mathrm{w}=2]^{6}$ then
$[\mathrm{x}:=\mathrm{y}+2]^{7}$
- $\mathrm{y}=\mathrm{z}=1$ at labels 4-7
- possible optimisations:
$[\text { true }]^{4}[\mathrm{w}:=\mathrm{x}+1]^{5}[\mathrm{x}:=3]^{7}$

Formalising Constant Propagation Analysis I

The dataflow system $S=(L a b, E, F,(D, \sqsubseteq), \iota, \varphi)$ is given by

- set of labels $L a b:=L a b_{c}$,
- extremal labels $E:=\{\operatorname{init}(c)\}$ (forward problem),
- flow relation $F:=$ flow(c) (forward problem),
- complete lattice (D, \sqsubseteq) where
- $D:=\left\{\delta \mid \delta: \operatorname{Var}_{c} \rightarrow \mathbb{Z} \cup\{\perp, \top\}\right\}$
- $\delta(x)=z \in \mathbb{Z}$: x has constant value z
- $\delta(x)=\perp: x$ undefined
- $\delta(x)=\top$: x overdefined (i.e., several possible values)
- $\subseteq \subseteq D \times D$ defined by pointwise extension of $\perp \sqsubseteq z \sqsubseteq \top$ (for every $z \in \mathbb{Z}$)

Formalising Constant Propagation Analysis I

The dataflow system $S=(L a b, E, F,(D, \sqsubseteq), \iota, \varphi)$ is given by

- set of labels $L a b:=L a b_{c}$,
- extremal labels $E:=\{\operatorname{init}(c)\}$ (forward problem),
- flow relation $F:=$ flow(c) (forward problem),
- complete lattice (D, \sqsubseteq) where
- $D:=\left\{\delta \mid \delta: \operatorname{Var}_{c} \rightarrow \mathbb{Z} \cup\{\perp, \top\}\right\}$
- $\delta(x)=z \in \mathbb{Z}: x$ has constant value z
- $\delta(x)=\perp: x$ undefined
- $\delta(x)=\mathrm{T}: x$ overdefined (i.e., several possible values)
- $\sqsubseteq \subseteq D \times D$ defined by pointwise extension of $\perp \sqsubseteq z \sqsubseteq \top$ (for every $z \in \mathbb{Z}$)

Example 5.11

$$
\begin{aligned}
& \operatorname{Var}_{c}=\{\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z}\}, \\
& \delta_{1}=(\underbrace{\perp}_{\mathrm{w}}, \underbrace{1}_{\mathrm{x}}, \underbrace{2}_{\mathrm{y}}, \underbrace{\top}_{\mathrm{z}}), \delta_{2}=(\underbrace{3}_{\mathrm{w}}, \underbrace{1}_{\mathrm{x}}, \underbrace{4}_{\mathrm{y}}, \underbrace{\top}_{\mathrm{x}}) \\
& \Longrightarrow \delta_{1} \sqcup \delta_{2}=(\underbrace{3}_{\mathrm{y}}, \underbrace{1}_{\mathrm{z}}, \underbrace{\top}, \underbrace{\top})
\end{aligned}
$$

Dataflow system $S=(L a b, E, F,(D, \sqsubseteq), \iota, \varphi)$ (continued):

- extremal value $\iota:=\delta_{\top} \in D$ where $\delta_{\top}(x):=\top$ for every $x \in \operatorname{Var}_{c}$ (i.e., every x has (unknown) default value)
- transfer functions $\left\{\varphi_{l} \mid I \in L a b\right\}$ defined by

$$
\varphi_{l}(\delta):= \begin{cases}\delta & \text { if } B^{\prime}=\text { skip or } B^{\prime} \in B E x p \\ \delta\left[x \mapsto v a l_{\delta}(a)\right] & \text { if } B^{\prime}=(x:=a)\end{cases}
$$

where

$$
\begin{array}{ll}
\operatorname{val}_{\delta}(x):=\delta(x) & \operatorname{val}_{\delta}\left(a_{1} \text { op } a_{2}\right):=\left\{\begin{array}{ll}
z_{1} \text { op } z_{2} & \text { if } z_{1}, z_{2} \in \mathbb{Z} \\
\perp & \text { if } z_{1}=\perp \text { or } z_{2}=\perp \\
\operatorname{val}_{\delta}(z):=z & \text { otherwise }
\end{array} \text { } \quad\right. \text { (z }
\end{array}
$$

$$
\text { for } z_{1}:=\operatorname{val}_{\delta}\left(a_{1}\right) \text { and } z_{2}:=\operatorname{val}_{\delta}\left(a_{2}\right)
$$

Formalising Constant Propagation Analysis III

Example 5.12

If $\delta=(\underbrace{\perp}_{\mathrm{w}}, \underbrace{1}_{\mathrm{x}}, \underbrace{2}_{\mathrm{y}}, \underbrace{\top}_{\mathrm{z}})$, then

$$
\varphi_{\prime}(\delta)= \begin{cases}(\underbrace{0}_{\mathrm{w}}, \underbrace{1}_{\mathrm{x}}, \underbrace{2}_{\mathrm{y}}, \underbrace{\top^{\top}}_{\mathrm{z}}) & \text { if } B^{\prime}=\left(\begin{array}{l}
\mathrm{w}:=0
\end{array}\right) \\
(\underbrace{3}_{\mathrm{x}}, \underbrace{1}_{\mathrm{y}}, \underbrace{2}_{\mathrm{z}}, \underbrace{\top}_{\mathrm{x}}) & \text { if } B^{\prime}=\left(\begin{array}{l}
\mathrm{w}:=\mathrm{y}+1
\end{array}\right) \\
(\underbrace{\perp}_{\mathrm{w}}, \underbrace{1}_{\mathrm{x}}, \underbrace{2}_{\mathrm{y}}, \underbrace{\underbrace{\top}_{\mathrm{z}}}_{\mathrm{z}}) & \text { if } B^{\prime}=\left(\begin{array}{l}
\mathrm{w}:=\mathrm{w}+\mathrm{x})
\end{array}\right. \\
(\underbrace{\top}_{\mathrm{y}}, \underbrace{1}_{\mathrm{z}}) & \text { if } B^{\prime}=(\mathrm{w}:=\mathrm{z}+2)\end{cases}
$$

