
Static Program Analysis
Lecture 4: Dataflow Analysis III (The Framework)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Winter Semester 2014/15

noll@cs.rwth-aachen.de
http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Wanted: Software Engineering HiWis

What we offer: work in
EU project D-MILS

Dependability and Security of Distributed
Information and Communication Infrastructures
http://www.d-mils.org/

Goal: [design and] implementation of high-level
specification language

ESA project CATSY

Catalogue of System and Software Properties
Successor of COMPASS project
(http://compass.informatik.rwth-aachen.de)
goal: support early V & V activities in model-based
system development

What we expect: prospective candidates

like formal methods (model checking,
program/model transformations)
program efficiently (Python)
work 9–19 hrs/week

Contact: Thomas Noll (noll@cs.rwth-aachen.de)
Static Program Analysis Winter Semester 2014/15 4.2

http://www.d-mils.org/
http://compass.informatik.rwth-aachen.de
noll@cs.rwth-aachen.de

Outline

1 Recapitulation: Heading for a Dataflow Analysis Framework

2 Recapitulation: Order-Theoretic Foundations: The Domain

3 Order-Theoretic Foundations: The Function

4 Application to Dataflow Analysis

Static Program Analysis Winter Semester 2014/15 4.3

Similarities Between Analysis Problems

Observation: the analyses presented so far have some similarities

=⇒ Look for underlying framework

Advantage: possibility for designing (efficient) generic algorithms for
solving dataflow equations

Overall pattern: for c ∈ Cmd and l ∈ Labc , the analysis information
(AI) is described by equations of the form

AIl =

{
ι if l ∈ E⊔
{ϕl ′(AIl ′) | (l ′, l) ∈ F} otherwise

where

the set of extremal labels, E , is {init(c)} or final(c)
ι specifies the extremal analysis information
the combination operator,

⊔
, is
⋂

or
⋃

ϕl′ denotes the transfer function of block B l′

the flow relation F is flow(c) or flowR(c) (:= {(l ′, l) | (l , l ′) ∈ flow(c)})

Static Program Analysis Winter Semester 2014/15 4.4

Roadmap

Goal: solve dataflow equation system by fixpoint iteration

1 Characterize solution of equation system as fixpoint of a
transformation

2 Introduce partial order for comparing analysis results

3 Establish least upper bound as combination operator

4 Ensure monotonicity of transfer functions

5 Guarantee termination of fixpoint iteration by ascending chain
condition

6 Optimize fixpoint iteration by worklist algorithm

Static Program Analysis Winter Semester 2014/15 4.5

Outline

1 Recapitulation: Heading for a Dataflow Analysis Framework

2 Recapitulation: Order-Theoretic Foundations: The Domain

3 Order-Theoretic Foundations: The Function

4 Application to Dataflow Analysis

Static Program Analysis Winter Semester 2014/15 4.6

Partial Orders

The domain of analysis information usually forms a partial order where the
ordering relation compares the “precision” of information.

Definition (Partial order)

A partial order (PO) (D,v) consists of a set D, called domain, and of a
relation v ⊆ D × D such that, for every d1, d2, d3 ∈ D,

reflexivity: d1 v d1

transitivity: d1 v d2 and d2 v d3 =⇒ d1 v d3

antisymmetry: d1 v d2 and d2 v d1 =⇒ d1 = d2

It is called total if, in addition, always d1 v d2 or d2 v d1.

Example

1 (N,≤) is a total partial order

2 (N, <) is not a partial order (since not reflexive)

3 (Live Variables) (2Var c ,⊆) is a (non-total) partial order

4 (Available Expressions) (2CExpc ,⊇) is a (non-total) partial order

Static Program Analysis Winter Semester 2014/15 4.7

Upper Bounds

In the dataflow equation system, analysis information from several
predecessors is combined by taking the least upper bound.

Definition ((Least) upper bound)

Let (D,v) be a partial order and S ⊆ D.

1 An element d ∈ D is called an upper bound of S if s v d for every
s ∈ S (notation: S v d).

2 An upper bound d of S is called least upper bound (LUB) or
supremum of S if d v d ′ for every upper bound d ′ of S
(notation: d =

⊔
S).

Example

1 S ⊆ N has a LUB in (N,≤) iff it is finite
2 (Live Variables) (D,v) = (2Var c ,⊆). Given V1, . . . ,Vn ⊆ Var c ,⊔

{V1, . . . ,Vn} =
⋃
{V1, . . . ,Vn}

3 (Avail. Expr.) (D,v) = (2CExpc ,⊇). Given A1, . . . ,An ⊆ CExpc ,⊔
{A1, . . . ,An} =

⋂
{A1, . . . ,An}

Static Program Analysis Winter Semester 2014/15 4.8

Complete Lattices

Since {ϕl ′(AIl ′) | (l ′, l) ∈ F} can contain arbitrary elements, the existence
of least upper bounds must be ensured for arbitrary subsets.

Definition (Complete lattice)

A complete lattice is a partial order (D,v) such that all subsets of D have
least upper bounds. In this case,

⊥ :=
⊔
∅

denotes the least element of D.

Example

1 (N,≤) is not a complete lattice as, e.g., N does not have a LUB

2 (Live Variables)
(D,v) = (2Var c ,⊆) is a complete lattice with ⊥ = ∅

3 (Available Expressions)
(D,v) = (2CExpc ,⊇) is a complete lattice with ⊥ = CExpc

Static Program Analysis Winter Semester 2014/15 4.9

Chains

Chains are generated by the approximation of the analysis information in
the fixpoint iteration.

Definition (Chain)

Let (D,v) be a partial order.

A subset S ⊆ D is called a chain in D if, for every d1, d2 ∈ S ,
d1 v d2 or d2 v d1

(that is, S is a totally ordered subset of D).

(D,v) has finite height if all chains are finite. In this case, its height
is max{|S | | S chain in D} − 1.

Example

1 Every S ⊆ N is a chain in (N,≤) (which is of infinite height)

2 {∅, {0}, {0, 1}, {0, 1, 2}, . . .} is a chain in (2N,⊆)

3 {∅, {0}, {1}} is not a chain in (2N,⊆)

Static Program Analysis Winter Semester 2014/15 4.10

The Ascending Chain Condition

Termination of fixpoint iteration is guaranteed by the following condition.

Definition (Ascending Chain Condition)

A sequence (di)i∈N is called an ascending chain in D if di v di+1 for
each i ∈ N.

A partial order (D,v) satisfies the Ascending Chain Condition (ACC)
if each ascending chain d0 v d1 v . . . eventually stabilizes, i.e., there
exists n ∈ N such that dn = dn+1 = . . .

Notes:

The finite height property implies ACC, but not vice versa (as there
might be non-stabilizing descending chains)

The complete lattice and ACC properties are orthogonal

Static Program Analysis Winter Semester 2014/15 4.11

Outline

1 Recapitulation: Heading for a Dataflow Analysis Framework

2 Recapitulation: Order-Theoretic Foundations: The Domain

3 Order-Theoretic Foundations: The Function

4 Application to Dataflow Analysis

Static Program Analysis Winter Semester 2014/15 4.12

Monotonicity of Functions

The monotonicity of transfer functions excludes “oscillating behavior” in
fixpoint iteration.

Definition 4.1 (Monotonicity)

Let (D,v) and (D ′,v′) be partial orders, and let Φ : D → D ′. Φ is called
monotonic (w.r.t. (D,v) and (D ′,v′)) if, for every d1, d2 ∈ D,

d1 v d2 =⇒ Φ(d1) v′ Φ(d2).

Example 4.2

1 Let T := {S ⊆ N | S finite}. Then Φ1 : T → N : S 7→
∑

n∈S n is
monotonic w.r.t. (2N,⊆) and (N,≤).

2 Φ2 : 2N → 2N : S 7→ N \ S is not monotonic w.r.t. (2N,⊆)
(since, e.g., ∅ ⊆ N but Φ2(∅) = N 6⊆ Φ2(N) = ∅).

3 (Live Variables) (D,v) = (D ′,v′) = (2Var c ,⊆)
Each transfer function ϕl ′(V) := (V \ killLV(B l ′)) ∪ genLV(B l ′) is
obviously monotonic

4 (Available Expressions) (D,v) = (D ′,v′) = (2CExpc ,⊇) ditto

Static Program Analysis Winter Semester 2014/15 4.13

Monotonicity of Functions

The monotonicity of transfer functions excludes “oscillating behavior” in
fixpoint iteration.

Definition 4.1 (Monotonicity)

Let (D,v) and (D ′,v′) be partial orders, and let Φ : D → D ′. Φ is called
monotonic (w.r.t. (D,v) and (D ′,v′)) if, for every d1, d2 ∈ D,

d1 v d2 =⇒ Φ(d1) v′ Φ(d2).

Example 4.2

1 Let T := {S ⊆ N | S finite}. Then Φ1 : T → N : S 7→
∑

n∈S n is
monotonic w.r.t. (2N,⊆) and (N,≤).

2 Φ2 : 2N → 2N : S 7→ N \ S is not monotonic w.r.t. (2N,⊆)
(since, e.g., ∅ ⊆ N but Φ2(∅) = N 6⊆ Φ2(N) = ∅).

3 (Live Variables) (D,v) = (D ′,v′) = (2Var c ,⊆)
Each transfer function ϕl ′(V) := (V \ killLV(B l ′)) ∪ genLV(B l ′) is
obviously monotonic

4 (Available Expressions) (D,v) = (D ′,v′) = (2CExpc ,⊇) ditto

Static Program Analysis Winter Semester 2014/15 4.13

Monotonicity of Functions

The monotonicity of transfer functions excludes “oscillating behavior” in
fixpoint iteration.

Definition 4.1 (Monotonicity)

Let (D,v) and (D ′,v′) be partial orders, and let Φ : D → D ′. Φ is called
monotonic (w.r.t. (D,v) and (D ′,v′)) if, for every d1, d2 ∈ D,

d1 v d2 =⇒ Φ(d1) v′ Φ(d2).

Example 4.2

1 Let T := {S ⊆ N | S finite}. Then Φ1 : T → N : S 7→
∑

n∈S n is
monotonic w.r.t. (2N,⊆) and (N,≤).

2 Φ2 : 2N → 2N : S 7→ N \ S is not monotonic w.r.t. (2N,⊆)
(since, e.g., ∅ ⊆ N but Φ2(∅) = N 6⊆ Φ2(N) = ∅).

3 (Live Variables) (D,v) = (D ′,v′) = (2Var c ,⊆)
Each transfer function ϕl ′(V) := (V \ killLV(B l ′)) ∪ genLV(B l ′) is
obviously monotonic

4 (Available Expressions) (D,v) = (D ′,v′) = (2CExpc ,⊇) ditto

Static Program Analysis Winter Semester 2014/15 4.13

Monotonicity of Functions

The monotonicity of transfer functions excludes “oscillating behavior” in
fixpoint iteration.

Definition 4.1 (Monotonicity)

Let (D,v) and (D ′,v′) be partial orders, and let Φ : D → D ′. Φ is called
monotonic (w.r.t. (D,v) and (D ′,v′)) if, for every d1, d2 ∈ D,

d1 v d2 =⇒ Φ(d1) v′ Φ(d2).

Example 4.2

1 Let T := {S ⊆ N | S finite}. Then Φ1 : T → N : S 7→
∑

n∈S n is
monotonic w.r.t. (2N,⊆) and (N,≤).

2 Φ2 : 2N → 2N : S 7→ N \ S is not monotonic w.r.t. (2N,⊆)
(since, e.g., ∅ ⊆ N but Φ2(∅) = N 6⊆ Φ2(N) = ∅).

3 (Live Variables) (D,v) = (D ′,v′) = (2Var c ,⊆)
Each transfer function ϕl ′(V) := (V \ killLV(B l ′)) ∪ genLV(B l ′) is
obviously monotonic

4 (Available Expressions) (D,v) = (D ′,v′) = (2CExpc ,⊇) ditto

Static Program Analysis Winter Semester 2014/15 4.13

Monotonicity of Functions

The monotonicity of transfer functions excludes “oscillating behavior” in
fixpoint iteration.

Definition 4.1 (Monotonicity)

Let (D,v) and (D ′,v′) be partial orders, and let Φ : D → D ′. Φ is called
monotonic (w.r.t. (D,v) and (D ′,v′)) if, for every d1, d2 ∈ D,

d1 v d2 =⇒ Φ(d1) v′ Φ(d2).

Example 4.2

1 Let T := {S ⊆ N | S finite}. Then Φ1 : T → N : S 7→
∑

n∈S n is
monotonic w.r.t. (2N,⊆) and (N,≤).

2 Φ2 : 2N → 2N : S 7→ N \ S is not monotonic w.r.t. (2N,⊆)
(since, e.g., ∅ ⊆ N but Φ2(∅) = N 6⊆ Φ2(N) = ∅).

3 (Live Variables) (D,v) = (D ′,v′) = (2Var c ,⊆)
Each transfer function ϕl ′(V) := (V \ killLV(B l ′)) ∪ genLV(B l ′) is
obviously monotonic

4 (Available Expressions) (D,v) = (D ′,v′) = (2CExpc ,⊇) ditto

Static Program Analysis Winter Semester 2014/15 4.13

Fixpoints

Definition 4.3 (Fixpoint)

Let D be some domain, d ∈ D, and Φ : D → D. If

Φ(d) = d

then d is called a fixpoint of Φ.

Example 4.4

The (only) fixpoints of Φ : N→ N : n 7→ n2 are 0 and 1

Static Program Analysis Winter Semester 2014/15 4.14

Fixpoints

Definition 4.3 (Fixpoint)

Let D be some domain, d ∈ D, and Φ : D → D. If

Φ(d) = d

then d is called a fixpoint of Φ.

Example 4.4

The (only) fixpoints of Φ : N→ N : n 7→ n2 are 0 and 1

Static Program Analysis Winter Semester 2014/15 4.14

The Fixpoint Theorem I

Alfred Tarski (1901–1983)

Bronislaw Knaster (1893–1990)

Theorem 4.5 (Fixpoint Theorem by Tarski and Knaster)

Let (D,v) be a complete lattice satisfying ACC and Φ : D → D
monotonic. Then

fix(Φ) :=
⊔{

Φk (⊥) | k ∈ N
}

is the least fixpoint of Φ where

Φ0(d) := d and Φk+1(d) := Φ(Φk(d)).

Function requirements for dataflow analysis

All transfer functions must be a monotonic

Static Program Analysis Winter Semester 2014/15 4.15

The Fixpoint Theorem I

Alfred Tarski (1901–1983)

Bronislaw Knaster (1893–1990)

Theorem 4.5 (Fixpoint Theorem by Tarski and Knaster)

Let (D,v) be a complete lattice satisfying ACC and Φ : D → D
monotonic. Then

fix(Φ) :=
⊔{

Φk (⊥) | k ∈ N
}

is the least fixpoint of Φ where

Φ0(d) := d and Φk+1(d) := Φ(Φk(d)).

Function requirements for dataflow analysis

All transfer functions must be a monotonic

Static Program Analysis Winter Semester 2014/15 4.15

The Fixpoint Theorem II

The proof of Theorem 4.5 requires the following lemma.

Lemma 4.6

Let (D,v) be a complete lattice satisfying ACC, S ⊆ D a chain, and
Φ : D → D monotonic. Then

Φ(
⊔
S) =

⊔
Φ(S)

Proof (Lemma 4.6).

on the board

Proof (Theorem 4.5).

on the board

Remark: ACC =⇒
(
Φk(⊥)

)
k∈N stabilizes at some k0 ∈ N with

fix(Φ) = Φk0(⊥) (where k0 bounded by height of (D,v))

Static Program Analysis Winter Semester 2014/15 4.16

The Fixpoint Theorem II

The proof of Theorem 4.5 requires the following lemma.

Lemma 4.6

Let (D,v) be a complete lattice satisfying ACC, S ⊆ D a chain, and
Φ : D → D monotonic. Then

Φ(
⊔
S) =

⊔
Φ(S)

Proof (Lemma 4.6).

on the board

Proof (Theorem 4.5).

on the board

Remark: ACC =⇒
(
Φk(⊥)

)
k∈N stabilizes at some k0 ∈ N with

fix(Φ) = Φk0(⊥) (where k0 bounded by height of (D,v))

Static Program Analysis Winter Semester 2014/15 4.16

The Fixpoint Theorem II

The proof of Theorem 4.5 requires the following lemma.

Lemma 4.6

Let (D,v) be a complete lattice satisfying ACC, S ⊆ D a chain, and
Φ : D → D monotonic. Then

Φ(
⊔
S) =

⊔
Φ(S)

Proof (Lemma 4.6).

on the board

Proof (Theorem 4.5).

on the board

Remark: ACC =⇒
(
Φk(⊥)

)
k∈N stabilizes at some k0 ∈ N with

fix(Φ) = Φk0(⊥) (where k0 bounded by height of (D,v))

Static Program Analysis Winter Semester 2014/15 4.16

The Fixpoint Theorem II

The proof of Theorem 4.5 requires the following lemma.

Lemma 4.6

Let (D,v) be a complete lattice satisfying ACC, S ⊆ D a chain, and
Φ : D → D monotonic. Then

Φ(
⊔
S) =

⊔
Φ(S)

Proof (Lemma 4.6).

on the board

Proof (Theorem 4.5).

on the board

Remark: ACC =⇒
(
Φk(⊥)

)
k∈N stabilizes at some k0 ∈ N with

fix(Φ) = Φk0(⊥) (where k0 bounded by height of (D,v))

Static Program Analysis Winter Semester 2014/15 4.16

Outline

1 Recapitulation: Heading for a Dataflow Analysis Framework

2 Recapitulation: Order-Theoretic Foundations: The Domain

3 Order-Theoretic Foundations: The Function

4 Application to Dataflow Analysis

Static Program Analysis Winter Semester 2014/15 4.17

Dataflow Systems I

Definition 4.7 (Dataflow system)

A dataflow system S = (Lab,E ,F , (D,v), ι, ϕ) consists of

a finite set of (program) labels Lab (here: Labc),

a set of extremal labels E ⊆ Lab (here: {init(c)} or final(c)),

a flow relation F ⊆ Lab × Lab (here: flow(c) or flowR(c)),

a complete lattice (D,v) satisfying ACC
(with LUB operator

⊔
and least element ⊥),

an extremal value ι ∈ D (for the extremal labels), and

a collection of monotonic transfer functions {ϕl | l ∈ Lab} of type
ϕl : D → D.

Static Program Analysis Winter Semester 2014/15 4.18

Dataflow Systems II

Example 4.8

Problem Available Expressions Live Variables

E {init(c)} final(c)
F flow(c) flowR(c)
D 2CExpc 2Var c

v ⊇ ⊆⊔ ⋂ ⋃
⊥ CExpc ∅
ι ∅ Var c
ϕl ϕl(d) = (d \ kill(B l)) ∪ gen(B l)

Static Program Analysis Winter Semester 2014/15 4.19

Dataflow Systems and Fixpoints

Definition 4.9 (Dataflow equation system)

Given: dataflow system S = (Lab,E ,F , (D,v), ι, ϕ), Lab = {1, ..., n}
(w.l.o.g.)

S determines the equation system (where l ∈ Lab)

AIl =

{
ι if l ∈ E⊔
{ϕl ′(AIl ′) | (l ′, l) ∈ F} otherwise

(d1, . . . , dn) ∈ Dn is called a solution if

dl =

{
ι if l ∈ E⊔
{ϕl ′(dl ′) | (l ′, l) ∈ F} otherwise

S determines the transformation
ΦS : Dn → Dn : (d1, . . . , dn) 7→ (d ′

1, . . . , d
′
n)

where

d ′
l :=

{
ι if l ∈ E⊔
{ϕl ′(dl ′) | (l ′, l) ∈ F} otherwise

Corollary 4.10

(d1, . . . , dn) ∈ Dn solves the equation system iff it is a fixpoint of ΦS

Static Program Analysis Winter Semester 2014/15 4.20

Dataflow Systems and Fixpoints

Definition 4.9 (Dataflow equation system)

Given: dataflow system S = (Lab,E ,F , (D,v), ι, ϕ), Lab = {1, ..., n}
(w.l.o.g.)

S determines the equation system (where l ∈ Lab)

AIl =

{
ι if l ∈ E⊔
{ϕl ′(AIl ′) | (l ′, l) ∈ F} otherwise

(d1, . . . , dn) ∈ Dn is called a solution if

dl =

{
ι if l ∈ E⊔
{ϕl ′(dl ′) | (l ′, l) ∈ F} otherwise

S determines the transformation
ΦS : Dn → Dn : (d1, . . . , dn) 7→ (d ′

1, . . . , d
′
n)

where

d ′
l :=

{
ι if l ∈ E⊔
{ϕl ′(dl ′) | (l ′, l) ∈ F} otherwise

Corollary 4.10

(d1, . . . , dn) ∈ Dn solves the equation system iff it is a fixpoint of ΦS

Static Program Analysis Winter Semester 2014/15 4.20

Dataflow Systems and Fixpoints

Definition 4.9 (Dataflow equation system)

Given: dataflow system S = (Lab,E ,F , (D,v), ι, ϕ), Lab = {1, ..., n}
(w.l.o.g.)

S determines the equation system (where l ∈ Lab)

AIl =

{
ι if l ∈ E⊔
{ϕl ′(AIl ′) | (l ′, l) ∈ F} otherwise

(d1, . . . , dn) ∈ Dn is called a solution if

dl =

{
ι if l ∈ E⊔
{ϕl ′(dl ′) | (l ′, l) ∈ F} otherwise

S determines the transformation
ΦS : Dn → Dn : (d1, . . . , dn) 7→ (d ′

1, . . . , d
′
n)

where

d ′
l :=

{
ι if l ∈ E⊔
{ϕl ′(dl ′) | (l ′, l) ∈ F} otherwise

Corollary 4.10

(d1, . . . , dn) ∈ Dn solves the equation system iff it is a fixpoint of ΦS

Static Program Analysis Winter Semester 2014/15 4.20

Dataflow Systems and Fixpoints

Definition 4.9 (Dataflow equation system)

Given: dataflow system S = (Lab,E ,F , (D,v), ι, ϕ), Lab = {1, ..., n}
(w.l.o.g.)

S determines the equation system (where l ∈ Lab)

AIl =

{
ι if l ∈ E⊔
{ϕl ′(AIl ′) | (l ′, l) ∈ F} otherwise

(d1, . . . , dn) ∈ Dn is called a solution if

dl =

{
ι if l ∈ E⊔
{ϕl ′(dl ′) | (l ′, l) ∈ F} otherwise

S determines the transformation
ΦS : Dn → Dn : (d1, . . . , dn) 7→ (d ′

1, . . . , d
′
n)

where

d ′
l :=

{
ι if l ∈ E⊔
{ϕl ′(dl ′) | (l ′, l) ∈ F} otherwise

Corollary 4.10

(d1, . . . , dn) ∈ Dn solves the equation system iff it is a fixpoint of ΦS

Static Program Analysis Winter Semester 2014/15 4.20

Solving Dataflow Problems by Fixpoint Iteration

Remarks:

(D,v) being a complete lattice ensures that ΦS is well defined

Since (D,v) is a complete lattice satisfying ACC, so is (Dn,vn)
(where (d1, . . . , dn) vn (d ′

1, . . . , d
′
n) iff di v d ′

i for every 1 ≤ i ≤ n)

Monotonicity of transfer functions ϕl in (D,v) implies monotonicity
of ΦS in (Dn,vn) (since

⊔
also monotonic)

Thus the (least) fixpoint is effectively computable by iteration:

fix(ΦS) =
⊔
{Φk

S(⊥Dn) | k ∈ N}

where ⊥Dn = (⊥D , . . . ,⊥D︸ ︷︷ ︸
n times

)

If height of (D,v) is m
=⇒ height of (Dn,vn) is m · n
=⇒ fixpoint iteration requires at most m · n steps

Static Program Analysis Winter Semester 2014/15 4.21

Solving Dataflow Problems by Fixpoint Iteration

Remarks:

(D,v) being a complete lattice ensures that ΦS is well defined

Since (D,v) is a complete lattice satisfying ACC, so is (Dn,vn)
(where (d1, . . . , dn) vn (d ′

1, . . . , d
′
n) iff di v d ′

i for every 1 ≤ i ≤ n)

Monotonicity of transfer functions ϕl in (D,v) implies monotonicity
of ΦS in (Dn,vn) (since

⊔
also monotonic)

Thus the (least) fixpoint is effectively computable by iteration:

fix(ΦS) =
⊔
{Φk

S(⊥Dn) | k ∈ N}

where ⊥Dn = (⊥D , . . . ,⊥D︸ ︷︷ ︸
n times

)

If height of (D,v) is m
=⇒ height of (Dn,vn) is m · n
=⇒ fixpoint iteration requires at most m · n steps

Static Program Analysis Winter Semester 2014/15 4.21

Solving Dataflow Problems by Fixpoint Iteration

Remarks:

(D,v) being a complete lattice ensures that ΦS is well defined

Since (D,v) is a complete lattice satisfying ACC, so is (Dn,vn)
(where (d1, . . . , dn) vn (d ′

1, . . . , d
′
n) iff di v d ′

i for every 1 ≤ i ≤ n)

Monotonicity of transfer functions ϕl in (D,v) implies monotonicity
of ΦS in (Dn,vn) (since

⊔
also monotonic)

Thus the (least) fixpoint is effectively computable by iteration:

fix(ΦS) =
⊔
{Φk

S(⊥Dn) | k ∈ N}

where ⊥Dn = (⊥D , . . . ,⊥D︸ ︷︷ ︸
n times

)

If height of (D,v) is m
=⇒ height of (Dn,vn) is m · n
=⇒ fixpoint iteration requires at most m · n steps

Static Program Analysis Winter Semester 2014/15 4.21

Solving Dataflow Problems by Fixpoint Iteration

Remarks:

(D,v) being a complete lattice ensures that ΦS is well defined

Since (D,v) is a complete lattice satisfying ACC, so is (Dn,vn)
(where (d1, . . . , dn) vn (d ′

1, . . . , d
′
n) iff di v d ′

i for every 1 ≤ i ≤ n)

Monotonicity of transfer functions ϕl in (D,v) implies monotonicity
of ΦS in (Dn,vn) (since

⊔
also monotonic)

Thus the (least) fixpoint is effectively computable by iteration:

fix(ΦS) =
⊔
{Φk

S(⊥Dn) | k ∈ N}

where ⊥Dn = (⊥D , . . . ,⊥D︸ ︷︷ ︸
n times

)

If height of (D,v) is m
=⇒ height of (Dn,vn) is m · n
=⇒ fixpoint iteration requires at most m · n steps

Static Program Analysis Winter Semester 2014/15 4.21

Solving Dataflow Problems by Fixpoint Iteration

Remarks:

(D,v) being a complete lattice ensures that ΦS is well defined

Since (D,v) is a complete lattice satisfying ACC, so is (Dn,vn)
(where (d1, . . . , dn) vn (d ′

1, . . . , d
′
n) iff di v d ′

i for every 1 ≤ i ≤ n)

Monotonicity of transfer functions ϕl in (D,v) implies monotonicity
of ΦS in (Dn,vn) (since

⊔
also monotonic)

Thus the (least) fixpoint is effectively computable by iteration:

fix(ΦS) =
⊔
{Φk

S(⊥Dn) | k ∈ N}

where ⊥Dn = (⊥D , . . . ,⊥D︸ ︷︷ ︸
n times

)

If height of (D,v) is m
=⇒ height of (Dn,vn) is m · n
=⇒ fixpoint iteration requires at most m · n steps

Static Program Analysis Winter Semester 2014/15 4.21

Example: Available Expressions

Example 4.11 (Available Expressions; cf. Example 2.9)

Program:

c = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

Equation system:

AE1 = ∅
AE2 = AE1 ∪ {a+b}
AE3 = (AE2 ∪ {a*b}) ∩ (AE5 ∪ {a+b})
AE4 = AE3 ∪ {a+b}
AE5 = AE4 \ {a+b, a*b, a+1}

Fixpoint iteration:

i 1 2 3 4 5
0 CExpc CExpc CExpc CExpc CExpc
1 ∅ CExpc CExpc CExpc ∅
2 ∅ {a+b} {a+b} CExpc ∅
3 ∅ {a+b} {a+b} {a+b} ∅
4 ∅ {a+b} {a+b} {a+b} ∅

Static Program Analysis Winter Semester 2014/15 4.22

Example: Available Expressions

Example 4.11 (Available Expressions; cf. Example 2.9)

Program:

c = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

Equation system:

AE1 = ∅
AE2 = AE1 ∪ {a+b}
AE3 = (AE2 ∪ {a*b}) ∩ (AE5 ∪ {a+b})
AE4 = AE3 ∪ {a+b}
AE5 = AE4 \ {a+b, a*b, a+1}

Fixpoint iteration:

i 1 2 3 4 5
0 CExpc CExpc CExpc CExpc CExpc
1 ∅ CExpc CExpc CExpc ∅
2 ∅ {a+b} {a+b} CExpc ∅
3 ∅ {a+b} {a+b} {a+b} ∅
4 ∅ {a+b} {a+b} {a+b} ∅

Static Program Analysis Winter Semester 2014/15 4.22

Example: Available Expressions

Example 4.11 (Available Expressions; cf. Example 2.9)

Program:

c = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

Equation system:

AE1 = ∅
AE2 = AE1 ∪ {a+b}
AE3 = (AE2 ∪ {a*b}) ∩ (AE5 ∪ {a+b})
AE4 = AE3 ∪ {a+b}
AE5 = AE4 \ {a+b, a*b, a+1}

Fixpoint iteration:

i 1 2 3 4 5
0 CExpc CExpc CExpc CExpc CExpc

1 ∅ CExpc CExpc CExpc ∅
2 ∅ {a+b} {a+b} CExpc ∅
3 ∅ {a+b} {a+b} {a+b} ∅
4 ∅ {a+b} {a+b} {a+b} ∅

Static Program Analysis Winter Semester 2014/15 4.22

Example: Available Expressions

Example 4.11 (Available Expressions; cf. Example 2.9)

Program:

c = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

Equation system:

AE1 = ∅
AE2 = AE1 ∪ {a+b}
AE3 = (AE2 ∪ {a*b}) ∩ (AE5 ∪ {a+b})
AE4 = AE3 ∪ {a+b}
AE5 = AE4 \ {a+b, a*b, a+1}

Fixpoint iteration:

i 1 2 3 4 5
0 CExpc CExpc CExpc CExpc CExpc
1 ∅ CExpc CExpc CExpc ∅

2 ∅ {a+b} {a+b} CExpc ∅
3 ∅ {a+b} {a+b} {a+b} ∅
4 ∅ {a+b} {a+b} {a+b} ∅

Static Program Analysis Winter Semester 2014/15 4.22

Example: Available Expressions

Example 4.11 (Available Expressions; cf. Example 2.9)

Program:

c = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

Equation system:

AE1 = ∅
AE2 = AE1 ∪ {a+b}
AE3 = (AE2 ∪ {a*b}) ∩ (AE5 ∪ {a+b})
AE4 = AE3 ∪ {a+b}
AE5 = AE4 \ {a+b, a*b, a+1}

Fixpoint iteration:

i 1 2 3 4 5
0 CExpc CExpc CExpc CExpc CExpc
1 ∅ CExpc CExpc CExpc ∅
2 ∅ {a+b} {a+b} CExpc ∅

3 ∅ {a+b} {a+b} {a+b} ∅
4 ∅ {a+b} {a+b} {a+b} ∅

Static Program Analysis Winter Semester 2014/15 4.22

Example: Available Expressions

Example 4.11 (Available Expressions; cf. Example 2.9)

Program:

c = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

Equation system:

AE1 = ∅
AE2 = AE1 ∪ {a+b}
AE3 = (AE2 ∪ {a*b}) ∩ (AE5 ∪ {a+b})
AE4 = AE3 ∪ {a+b}
AE5 = AE4 \ {a+b, a*b, a+1}

Fixpoint iteration:

i 1 2 3 4 5
0 CExpc CExpc CExpc CExpc CExpc
1 ∅ CExpc CExpc CExpc ∅
2 ∅ {a+b} {a+b} CExpc ∅
3 ∅ {a+b} {a+b} {a+b} ∅

4 ∅ {a+b} {a+b} {a+b} ∅

Static Program Analysis Winter Semester 2014/15 4.22

Example: Available Expressions

Example 4.11 (Available Expressions; cf. Example 2.9)

Program:

c = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

Equation system:

AE1 = ∅
AE2 = AE1 ∪ {a+b}
AE3 = (AE2 ∪ {a*b}) ∩ (AE5 ∪ {a+b})
AE4 = AE3 ∪ {a+b}
AE5 = AE4 \ {a+b, a*b, a+1}

Fixpoint iteration:

i 1 2 3 4 5
0 CExpc CExpc CExpc CExpc CExpc
1 ∅ CExpc CExpc CExpc ∅
2 ∅ {a+b} {a+b} CExpc ∅
3 ∅ {a+b} {a+b} {a+b} ∅
4 ∅ {a+b} {a+b} {a+b} ∅

Static Program Analysis Winter Semester 2014/15 4.22

Example: Live Variables

Example 4.12 (Live Variables; cf. Example 2.12)

Program:

[x := 2]1;[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

Equation system:

LV1 = LV2 \ {y}
LV2 = LV3 \ {x}
LV3 = LV4 ∪ {y}
LV4 = ((LV5 \ {z}) ∪ {x}) ∪ ((LV6 \ {z}) ∪ {y})
LV5 = (LV7 \ {x}) ∪ {z}
LV6 = (LV7 \ {x}) ∪ {z}
LV7 = {x, y, z}

Fixpoint iteration:

i 1 2 3 4 5 6 7
0 ∅ ∅ ∅ ∅ ∅ ∅ ∅
1 ∅ ∅ {y} {x, y} {z} {z} {x, y, z}
2 ∅ {y} {x, y} {x, y} {y, z} {y, z} {x, y, z}
3 ∅ {y} {x, y} {x, y} {y, z} {y, z} {x, y, z}

Static Program Analysis Winter Semester 2014/15 4.23

Example: Live Variables

Example 4.12 (Live Variables; cf. Example 2.12)

Program:

[x := 2]1;[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

Equation system:

LV1 = LV2 \ {y}
LV2 = LV3 \ {x}
LV3 = LV4 ∪ {y}
LV4 = ((LV5 \ {z}) ∪ {x}) ∪ ((LV6 \ {z}) ∪ {y})
LV5 = (LV7 \ {x}) ∪ {z}
LV6 = (LV7 \ {x}) ∪ {z}
LV7 = {x, y, z}

Fixpoint iteration:

i 1 2 3 4 5 6 7
0 ∅ ∅ ∅ ∅ ∅ ∅ ∅
1 ∅ ∅ {y} {x, y} {z} {z} {x, y, z}
2 ∅ {y} {x, y} {x, y} {y, z} {y, z} {x, y, z}
3 ∅ {y} {x, y} {x, y} {y, z} {y, z} {x, y, z}

Static Program Analysis Winter Semester 2014/15 4.23

Example: Live Variables

Example 4.12 (Live Variables; cf. Example 2.12)

Program:

[x := 2]1;[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

Equation system:

LV1 = LV2 \ {y}
LV2 = LV3 \ {x}
LV3 = LV4 ∪ {y}
LV4 = ((LV5 \ {z}) ∪ {x}) ∪ ((LV6 \ {z}) ∪ {y})
LV5 = (LV7 \ {x}) ∪ {z}
LV6 = (LV7 \ {x}) ∪ {z}
LV7 = {x, y, z}

Fixpoint iteration:

i 1 2 3 4 5 6 7
0 ∅ ∅ ∅ ∅ ∅ ∅ ∅

1 ∅ ∅ {y} {x, y} {z} {z} {x, y, z}
2 ∅ {y} {x, y} {x, y} {y, z} {y, z} {x, y, z}
3 ∅ {y} {x, y} {x, y} {y, z} {y, z} {x, y, z}

Static Program Analysis Winter Semester 2014/15 4.23

Example: Live Variables

Example 4.12 (Live Variables; cf. Example 2.12)

Program:

[x := 2]1;[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

Equation system:

LV1 = LV2 \ {y}
LV2 = LV3 \ {x}
LV3 = LV4 ∪ {y}
LV4 = ((LV5 \ {z}) ∪ {x}) ∪ ((LV6 \ {z}) ∪ {y})
LV5 = (LV7 \ {x}) ∪ {z}
LV6 = (LV7 \ {x}) ∪ {z}
LV7 = {x, y, z}

Fixpoint iteration:

i 1 2 3 4 5 6 7
0 ∅ ∅ ∅ ∅ ∅ ∅ ∅
1 ∅ ∅ {y} {x, y} {z} {z} {x, y, z}

2 ∅ {y} {x, y} {x, y} {y, z} {y, z} {x, y, z}
3 ∅ {y} {x, y} {x, y} {y, z} {y, z} {x, y, z}

Static Program Analysis Winter Semester 2014/15 4.23

Example: Live Variables

Example 4.12 (Live Variables; cf. Example 2.12)

Program:

[x := 2]1;[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

Equation system:

LV1 = LV2 \ {y}
LV2 = LV3 \ {x}
LV3 = LV4 ∪ {y}
LV4 = ((LV5 \ {z}) ∪ {x}) ∪ ((LV6 \ {z}) ∪ {y})
LV5 = (LV7 \ {x}) ∪ {z}
LV6 = (LV7 \ {x}) ∪ {z}
LV7 = {x, y, z}

Fixpoint iteration:

i 1 2 3 4 5 6 7
0 ∅ ∅ ∅ ∅ ∅ ∅ ∅
1 ∅ ∅ {y} {x, y} {z} {z} {x, y, z}
2 ∅ {y} {x, y} {x, y} {y, z} {y, z} {x, y, z}

3 ∅ {y} {x, y} {x, y} {y, z} {y, z} {x, y, z}

Static Program Analysis Winter Semester 2014/15 4.23

Example: Live Variables

Example 4.12 (Live Variables; cf. Example 2.12)

Program:

[x := 2]1;[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

Equation system:

LV1 = LV2 \ {y}
LV2 = LV3 \ {x}
LV3 = LV4 ∪ {y}
LV4 = ((LV5 \ {z}) ∪ {x}) ∪ ((LV6 \ {z}) ∪ {y})
LV5 = (LV7 \ {x}) ∪ {z}
LV6 = (LV7 \ {x}) ∪ {z}
LV7 = {x, y, z}

Fixpoint iteration:

i 1 2 3 4 5 6 7
0 ∅ ∅ ∅ ∅ ∅ ∅ ∅
1 ∅ ∅ {y} {x, y} {z} {z} {x, y, z}
2 ∅ {y} {x, y} {x, y} {y, z} {y, z} {x, y, z}
3 ∅ {y} {x, y} {x, y} {y, z} {y, z} {x, y, z}

Static Program Analysis Winter Semester 2014/15 4.23

	Recapitulation: Heading for a Dataflow Analysis Framework
	Recapitulation: Order-Theoretic Foundations: The Domain
	Order-Theoretic Foundations: The Function
	Application to Dataflow Analysis

