Static Program Analysis
 Lecture 4: Dataflow Analysis III (The Framework)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWIHAACHEN UNIVERSITY

noll@cs.rwth-aachen.de
http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Winter Semester 2014/15

Wanted: Software Engineering HiWis

- What we offer: work in
- EU project D-MILS
- Dependability and Security of Distributed Information and Communication Infrastructures
- http://www.d-mils.org/
- Goal: [design and] implementation of high-level specification language
- ESA project CATSY
- Catalogue of System and Software Properties
- Successor of COMPASS project (http://compass.informatik.rwth-aachen.de)
- goal: support early V \& V activities in model-based system development
- What we expect: prospective candidates
- like formal methods (model checking, program/model transformations)
 AND COMMUNICATION INFRASTRUCTURES

- program efficiently (Python)
- work 9-19 hrs/week
- Contact: Thomas Noll (noll@cs.rwth-aachen.de)

Outline

(1) Recapitulation: Heading for a Dataflow Analysis Framework
(2) Recapitulation: Order-Theoretic Foundations: The Domain
(3) Order-Theoretic Foundations: The Function

4 Application to Dataflow Analysis

Similarities Between Analysis Problems

- Observation: the analyses presented so far have some similarities
\Longrightarrow Look for underlying framework
- Advantage: possibility for designing (efficient) generic algorithms for solving dataflow equations
- Overall pattern: for $c \in C m d$ and $I \in L a b_{c}$, the analysis information (Al) is described by equations of the form

$$
\mathrm{Al}_{I}= \begin{cases}\iota & \text { if } I \in E \\ \bigsqcup\left\{\varphi_{I^{\prime}}\left(\mathrm{Al}_{\prime^{\prime}}\right) \mid\left(I^{\prime}, I\right) \in F\right\} & \text { otherwise }\end{cases}
$$

where

- the set of extremal labels, E, is $\{\operatorname{init}(c)\}$ or final(c)
- ι specifies the extremal analysis information
- the combination operator, \bigsqcup, is \bigcap or \bigcup
- $\varphi^{\prime \prime}$ denotes the transfer function of block $B^{\prime \prime}$
- the flow relation F is flow (c) or flow ${ }^{R}(c)\left(:=\left\{\left(I^{\prime}, I\right) \mid\left(I, I^{\prime}\right) \in\right.\right.$ flow $\left.\left.(c)\right\}\right)$

Goal: solve dataflow equation system by fixpoint iteration
(1) Characterize solution of equation system as fixpoint of a transformation
(2) Introduce partial order for comparing analysis results
(3) Establish least upper bound as combination operator
(1) Ensure monotonicity of transfer functions
(3) Guarantee termination of fixpoint iteration by ascending chain condition
(0) Optimize fixpoint iteration by worklist algorithm

Outline

(1) Recapitulation: Heading for a Dataflow Analysis Framework
(2) Recapitulation: Order-Theoretic Foundations: The Domain
(3) Order-Theoretic Foundations: The Function

4 Application to Dataflow Analysis

Partial Orders

The domain of analysis information usually forms a partial order where the ordering relation compares the "precision" of information.

Definition (Partial order)

A partial order (PO) (D, \sqsubseteq) consists of a set D, called domain, and of a relation $\sqsubseteq \subseteq D \times D$ such that, for every $d_{1}, d_{2}, d_{3} \in D$,
reflexivity: $d_{1} \sqsubseteq d_{1}$
transitivity: $d_{1} \sqsubseteq d_{2}$ and $d_{2} \sqsubseteq d_{3} \Longrightarrow d_{1} \sqsubseteq d_{3}$
antisymmetry: $d_{1} \sqsubseteq d_{2}$ and $d_{2} \sqsubseteq d_{1} \Longrightarrow d_{1}=d_{2}$
It is called total if, in addition, always $d_{1} \sqsubseteq d_{2}$ or $d_{2} \sqsubseteq d_{1}$.

Example

(1) (\mathbb{N}, \leq) is a total partial order
(2) ($\mathbb{N},<)$ is not a partial order (since not reflexive)
(3) (Live Variables) $\left(2^{\mathrm{Var}_{c}}, \subseteq\right)$ is a (non-total) partial order
(9) (Available Expressions) $\left(2^{C E x p} c, \supseteq\right)$ is a (non-total) partial order

Upper Bounds

In the dataflow equation system, analysis information from several predecessors is combined by taking the least upper bound.

Definition ((Least) upper bound)

Let (D, \sqsubseteq) be a partial order and $S \subseteq D$.
(1) An element $d \in D$ is called an upper bound of S if $s \sqsubseteq d$ for every $s \in S$ (notation: $S \sqsubseteq d$).
(2) An upper bound d of S is called least upper bound (LUB) or supremum of S if $d \sqsubseteq d^{\prime}$ for every upper bound d^{\prime} of S (notation: $d=\bigsqcup S$).

Example

(1) $S \subseteq \mathbb{N}$ has a LUB in (\mathbb{N}, \leq) iff it is finite
(2) (Live Variables) $(D, \sqsubseteq)=\left(2^{V_{a r}}, \subseteq\right)$. Given $V_{1}, \ldots, V_{n} \subseteq \operatorname{Var}_{c}$,

$$
\bigsqcup\left\{V_{1}, \ldots, V_{n}\right\}=\bigcup\left\{V_{1}, \ldots, V_{n}\right\}
$$

(3) (Avail. Expr.) $(D, \sqsubseteq)=\left(2^{C E x p_{c}}, \supseteq\right)$. Given $A_{1}, \ldots, A_{n} \subseteq C E x p_{c}$,

$$
\bigsqcup\left\{A_{1}, \ldots, A_{n}\right\}=\bigcap\left\{A_{1}, \ldots, A_{n}\right\}
$$

Complete Lattices

Since $\left\{\varphi_{I^{\prime}}\left(\mathrm{Al}_{I^{\prime}}\right) \mid\left(I^{\prime}, I\right) \in F\right\}$ can contain arbitrary elements, the existence of least upper bounds must be ensured for arbitrary subsets.

Definition (Complete lattice)

A complete lattice is a partial order (D, \sqsubseteq) such that all subsets of D have least upper bounds. In this case,

$$
\perp:=\bigsqcup \emptyset
$$

denotes the least element of D.

Example

(1) (\mathbb{N}, \leq) is not a complete lattice as, e.g., \mathbb{N} does not have a LUB
(2) (Live Variables)
$(D, \sqsubseteq)=\left(2^{V_{a r}}, \subseteq\right)$ is a complete lattice with $\perp=\emptyset$
(3) (Available Expressions)
$(D, \sqsubseteq)=\left(2^{C E x p_{c}}, \supseteq\right)$ is a complete lattice with $\perp=C \operatorname{Exp}_{c}$

Chains

Chains are generated by the approximation of the analysis information in the fixpoint iteration.

Definition (Chain)

Let (D, \sqsubseteq) be a partial order.

- A subset $S \subseteq D$ is called a chain in D if, for every $d_{1}, d_{2} \in S$,

$$
d_{1} \sqsubseteq d_{2} \text { or } d_{2} \sqsubseteq d_{1}
$$

(that is, S is a totally ordered subset of D).

- (D, \sqsubseteq) has finite height if all chains are finite. In this case, its height is $\max \{|S| \mid S$ chain in $D\}-1$.

Example

(1) Every $S \subseteq \mathbb{N}$ is a chain in (\mathbb{N}, \leq) (which is of infinite height)
(2) $\{\emptyset,\{0\},\{0,1\},\{0,1,2\}, \ldots\}$ is a chain in $\left(2^{\mathbb{N}}, \subseteq\right)$
(3) $\{\emptyset,\{0\},\{1\}\}$ is not a chain in $\left(2^{\mathbb{N}}, \subseteq\right)$

The Ascending Chain Condition

Termination of fixpoint iteration is guaranteed by the following condition.

Definition (Ascending Chain Condition)

- A sequence $\left(d_{i}\right)_{i \in \mathbb{N}}$ is called an ascending chain in D if $d_{i} \sqsubseteq d_{i+1}$ for each $i \in \mathbb{N}$.
- A partial order (D, \sqsubseteq) satisfies the Ascending Chain Condition (ACC) if each ascending chain $d_{0} \sqsubseteq d_{1} \sqsubseteq \ldots$ eventually stabilizes, i.e., there exists $n \in \mathbb{N}$ such that $d_{n}=d_{n+1}=\ldots$

Notes:

- The finite height property implies ACC, but not vice versa (as there might be non-stabilizing descending chains)
- The complete lattice and ACC properties are orthogonal

Outline

(1) Recapitulation: Heading for a Dataflow Analysis Framework
(2) Recapitulation: Order-Theoretic Foundations: The Domain
(3) Order-Theoretic Foundations: The Function

4 Application to Dataflow Analysis

Monotonicity of Functions

The monotonicity of transfer functions excludes "oscillating behavior" in fixpoint iteration.

Definition 4.1 (Monotonicity)

Let (D, \sqsubseteq) and $\left(D^{\prime}, \sqsubseteq^{\prime}\right)$ be partial orders, and let $\Phi: D \rightarrow D^{\prime} . \Phi$ is called monotonic (w.r.t. (D, \sqsubseteq) and $\left.\left(D^{\prime}, \sqsubseteq^{\prime}\right)\right)$ if, for every $d_{1}, d_{2} \in D$, $d_{1} \sqsubseteq d_{2} \Longrightarrow \Phi\left(d_{1}\right) \sqsubseteq^{\prime} \Phi\left(d_{2}\right)$.

Monotonicity of Functions

The monotonicity of transfer functions excludes "oscillating behavior" in fixpoint iteration.

Definition 4.1 (Monotonicity)

Let (D, \sqsubseteq) and $\left(D^{\prime}, \sqsubseteq^{\prime}\right)$ be partial orders, and let $\Phi: D \rightarrow D^{\prime} . \Phi$ is called monotonic (w.r.t. (D, \sqsubseteq) and $\left.\left(D^{\prime}, \sqsubseteq^{\prime}\right)\right)$ if, for every $d_{1}, d_{2} \in D$, $d_{1} \sqsubseteq d_{2} \Longrightarrow \Phi\left(d_{1}\right) \sqsubseteq^{\prime} \Phi\left(d_{2}\right)$.

Example 4.2

(1) Let $T:=\{S \subseteq \mathbb{N} \mid S$ finite $\}$. Then $\Phi_{1}: T \rightarrow \mathbb{N}: S \mapsto \sum_{n \in S} n$ is monotonic w.r.t. $\left(2^{\mathbb{N}}, \subseteq\right)$ and (\mathbb{N}, \leq).

Monotonicity of Functions

The monotonicity of transfer functions excludes "oscillating behavior" in fixpoint iteration.

Definition 4.1 (Monotonicity)

Let (D, \sqsubseteq) and $\left(D^{\prime}, \sqsubseteq^{\prime}\right)$ be partial orders, and let $\Phi: D \rightarrow D^{\prime} . \Phi$ is called monotonic (w.r.t. (D, \sqsubseteq) and $\left.\left(D^{\prime}, \sqsubseteq^{\prime}\right)\right)$ if, for every $d_{1}, d_{2} \in D$, $d_{1} \sqsubseteq d_{2} \Longrightarrow \Phi\left(d_{1}\right) \sqsubseteq^{\prime} \Phi\left(d_{2}\right)$.

Example 4.2

(1) Let $T:=\{S \subseteq \mathbb{N} \mid S$ finite $\}$. Then $\Phi_{1}: T \rightarrow \mathbb{N}: S \mapsto \sum_{n \in S} n$ is monotonic w.r.t. $\left(2^{\mathbb{N}}, \subseteq\right)$ and (\mathbb{N}, \leq).
(2) $\Phi_{2}: 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}: S \mapsto \mathbb{N} \backslash S$ is not monotonic w.r.t. $\left(2^{\mathbb{N}}, \subseteq\right)$ (since, e.g., $\emptyset \subseteq \mathbb{N}$ but $\Phi_{2}(\emptyset)=\mathbb{N} \nsubseteq \Phi_{2}(\mathbb{N})=\emptyset$).

Monotonicity of Functions

The monotonicity of transfer functions excludes "oscillating behavior" in fixpoint iteration.

Definition 4.1 (Monotonicity)

Let (D, \sqsubseteq) and $\left(D^{\prime}, \sqsubseteq^{\prime}\right)$ be partial orders, and let $\Phi: D \rightarrow D^{\prime} . \Phi$ is called monotonic (w.r.t. (D, \sqsubseteq) and $\left(D^{\prime}, \sqsubseteq^{\prime}\right)$) if, for every $d_{1}, d_{2} \in D$,

$$
d_{1} \sqsubseteq d_{2} \Longrightarrow \Phi\left(d_{1}\right) \sqsubseteq^{\prime} \Phi\left(d_{2}\right) .
$$

Example 4.2

(1) Let $T:=\{S \subseteq \mathbb{N} \mid S$ finite $\}$. Then $\Phi_{1}: T \rightarrow \mathbb{N}: S \mapsto \sum_{n \in S} n$ is monotonic w.r.t. $\left(2^{\mathbb{N}}, \subseteq\right)$ and (\mathbb{N}, \leq).
(2) $\Phi_{2}: 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}: S \mapsto \mathbb{N} \backslash S$ is not monotonic w.r.t. $\left(2^{\mathbb{N}}, \subseteq\right)$ (since, e.g., $\emptyset \subseteq \mathbb{N}$ but $\Phi_{2}(\emptyset)=\mathbb{N} \nsubseteq \Phi_{2}(\mathbb{N})=\emptyset$).
(3) (Live Variables) $(D, \sqsubseteq)=\left(D^{\prime}, \sqsubseteq^{\prime}\right)=\left(2^{\text {Var }_{c}}, \subseteq\right)$

Each transfer function $\varphi_{l^{\prime}}(V):=\left(V \backslash \operatorname{kill}_{\mathrm{LV}}\left(B^{\prime^{\prime}}\right)\right) \cup \operatorname{gen}_{\mathrm{LV}}\left(B^{\prime \prime}\right)$ is obviously monotonic

Monotonicity of Functions

The monotonicity of transfer functions excludes "oscillating behavior" in fixpoint iteration.

Definition 4.1 (Monotonicity)

Let (D, \sqsubseteq) and $\left(D^{\prime}, \sqsubseteq^{\prime}\right)$ be partial orders, and let $\Phi: D \rightarrow D^{\prime} . \Phi$ is called monotonic (w.r.t. (D, \sqsubseteq) and $\left(D^{\prime}, \sqsubseteq^{\prime}\right)$) if, for every $d_{1}, d_{2} \in D$,

$$
d_{1} \sqsubseteq d_{2} \Longrightarrow \Phi\left(d_{1}\right) \sqsubseteq^{\prime} \Phi\left(d_{2}\right) .
$$

Example 4.2

(1) Let $T:=\{S \subseteq \mathbb{N} \mid S$ finite $\}$. Then $\Phi_{1}: T \rightarrow \mathbb{N}: S \mapsto \sum_{n \in S} n$ is monotonic w.r.t. $\left(2^{\mathbb{N}}, \subseteq\right)$ and (\mathbb{N}, \leq).
(2) $\Phi_{2}: 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}: S \mapsto \mathbb{N} \backslash S$ is not monotonic w.r.t. $\left(2^{\mathbb{N}}, \subseteq\right)$ (since, e.g., $\emptyset \subseteq \mathbb{N}$ but $\left.\Phi_{2}(\emptyset)=\mathbb{N} \nsubseteq \Phi_{2}(\mathbb{N})=\emptyset\right)$.
(3) (Live Variables) $(D, \sqsubseteq)=\left(D^{\prime}, \sqsubseteq^{\prime}\right)=\left(2^{\text {Var }_{c}}, \subseteq\right)$

Each transfer function $\varphi_{l^{\prime}}(V):=\left(V \backslash \operatorname{kill}_{\mathrm{LV}}\left(B^{\prime^{\prime}}\right)\right) \cup \operatorname{gen}_{\mathrm{LV}}\left(B^{\prime \prime}\right)$ is obviously monotonic
(1) (Available Expressions) $(D, \sqsubseteq)=\left(D^{\prime}, \sqsubseteq^{\prime}\right)=\left(2^{C E x p_{c}}, \supseteq\right)$ ditto

Fixpoints

Definition 4.3 (Fixpoint)

Let D be some domain, $d \in D$, and $\Phi: D \rightarrow D$. If

$$
\Phi(d)=d
$$

then d is called a fixpoint of Φ.

Fixpoints

Definition 4.3 (Fixpoint)

Let D be some domain, $d \in D$, and $\Phi: D \rightarrow D$. If

$$
\Phi(d)=d
$$

then d is called a fixpoint of Φ.

Example 4.4

The (only) fixpoints of $\Phi: \mathbb{N} \rightarrow \mathbb{N}: n \mapsto n^{2}$ are 0 and 1

Alfred Tarski (1901-1983)

Bronislaw Knaster (1893-1990)

Theorem 4.5 (Fixpoint Theorem by Tarski and Knaster)
Let (D, \sqsubseteq) be a complete lattice satisfying $A C C$ and $\Phi: D \rightarrow D$ monotonic. Then

$$
\operatorname{fix}(\Phi):=\bigsqcup\left\{\Phi^{k}(\perp) \mid k \in \mathbb{N}\right\}
$$

is the least fixpoint of Φ where

$$
\Phi^{0}(d):=d \text { and } \Phi^{k+1}(d):=\Phi\left(\Phi^{k}(d)\right)
$$

Alfred Tarski (1901-1983)

Bronislaw Knaster (1893-1990)

Theorem 4.5 (Fixpoint Theorem by Tarski and Knaster)
Let (D, \sqsubseteq) be a complete lattice satisfying $A C C$ and $\Phi: D \rightarrow D$ monotonic. Then

$$
\operatorname{fix}(\Phi):=\bigsqcup\left\{\Phi^{k}(\perp) \mid k \in \mathbb{N}\right\}
$$

is the least fixpoint of Φ where

$$
\Phi^{0}(d):=d \text { and } \Phi^{k+1}(d):=\Phi\left(\Phi^{k}(d)\right)
$$

Function requirements for dataflow analysis
All transfer functions must be a monotonic

The Fixpoint Theorem II

The proof of Theorem 4.5 requires the following lemma.

Lemma 4.6

Let (D, \sqsubseteq) be a complete lattice satisfying $A C C, S \subseteq D$ a chain, and $\Phi: D \rightarrow D$ monotonic. Then

$$
\Phi(\bigsqcup S)=\bigsqcup \Phi(S)
$$

The Fixpoint Theorem II

The proof of Theorem 4.5 requires the following lemma.

Lemma 4.6

Let (D, \sqsubseteq) be a complete lattice satisfying $A C C, S \subseteq D$ a chain, and $\Phi: D \rightarrow D$ monotonic. Then

$$
\Phi(\bigsqcup S)=\bigsqcup \Phi(S)
$$

Proof (Lemma 4.6).

 on the board
The Fixpoint Theorem II

The proof of Theorem 4.5 requires the following lemma.

Lemma 4.6

Let (D, \sqsubseteq) be a complete lattice satisfying $A C C, S \subseteq D$ a chain, and $\Phi: D \rightarrow D$ monotonic. Then

$$
\Phi(\sqcup S)=\bigsqcup \Phi(S)
$$

Proof (Lemma 4.6).

on the board

Proof (Theorem 4.5).

on the board

The Fixpoint Theorem II

The proof of Theorem 4.5 requires the following lemma.

Lemma 4.6

Let (D, \sqsubseteq) be a complete lattice satisfying $A C C, S \subseteq D$ a chain, and $\Phi: D \rightarrow D$ monotonic. Then

$$
\Phi(\sqcup S)=\bigsqcup \Phi(S)
$$

Proof (Lemma 4.6).

on the board

Proof (Theorem 4.5).

on the board

Remark: ACC $\Longrightarrow\left(\Phi^{k}(\perp)\right)_{k \in \mathbb{N}}$ stabilizes at some $k_{0} \in \mathbb{N}$ with $\operatorname{fix}(\Phi)=\Phi^{k_{0}}(\perp)$ (where k_{0} bounded by height of $\left.(D, \sqsubseteq)\right)$

Outline

(1) Recapitulation: Heading for a Dataflow Analysis Framework
(2) Recapitulation: Order-Theoretic Foundations: The Domain
(3) Order-Theoretic Foundations: The Function

4 Application to Dataflow Analysis

Dataflow Systems I

Definition 4.7 (Dataflow system)

A dataflow system $S=(L a b, E, F,(D, \sqsubseteq), \iota, \varphi)$ consists of

- a finite set of (program) labels Lab (here: $L a b_{c}$),
- a set of extremal labels $E \subseteq \operatorname{Lab}$ (here: $\{\operatorname{init}(c)\}$ or final (c)),
- a flow relation $F \subseteq \operatorname{Lab} \times \operatorname{Lab}$ (here: flow(c) or flow ${ }^{R}(c)$),
- a complete lattice (D, \sqsubseteq) satisfying ACC (with LUB operator \bigsqcup and least element \perp),
- an extremal value $\iota \in D$ (for the extremal labels), and
- a collection of monotonic transfer functions $\left\{\varphi_{1} \mid I \in \operatorname{Lab}\right\}$ of type $\varphi_{l}: D \rightarrow D$.

Dataflow Systems II

Example 4.8

Problem	Available Expressions	Live Variables
E	$\{\operatorname{init}(c)\}$	final (c)
F	flow (c)	flow $^{R}(c)$
D	$2^{C E x p_{c}}$	$2^{\operatorname{Var}_{c}}$
\sqsubseteq	\supseteq	\subseteq
\bigsqcup	$\bigcap_{X p_{c}}$	\bigcup
\perp	\emptyset	\emptyset
ι	Var_{c}	
φ_{l}	$\varphi_{l}(d)=\left(d \backslash \operatorname{kill}\left(B^{\prime}\right)\right) \cup \operatorname{gen}\left(B^{\prime}\right)$	

Dataflow Systems and Fixpoints

Definition 4.9 (Dataflow equation system)

Given: dataflow system $S=(\operatorname{Lab}, E, F,(D, \sqsubseteq), \iota, \varphi), \operatorname{Lab}=\{1, \ldots, n\}$ (w.l.o.g.)

- S determines the equation system (where $I \in L a b$)

$$
\mathrm{Al}_{I}= \begin{cases}\iota & \text { if } I \in E \\ \bigsqcup\left\{\varphi_{I^{\prime}}\left(\mathrm{Al}_{\prime^{\prime}}\right) \mid\left(I^{\prime}, I\right) \in F\right\} & \text { otherwise }\end{cases}
$$

Dataflow Systems and Fixpoints

Definition 4.9 (Dataflow equation system)

Given: dataflow system $S=(\operatorname{Lab}, E, F,(D, \sqsubseteq), \iota, \varphi), \operatorname{Lab}=\{1, \ldots, n\}$ (w.l.o.g.)

- S determines the equation system (where $I \in L a b$)

$$
\mathrm{Al}_{I}= \begin{cases}\iota & \text { if } I \in E \\ \bigsqcup\left\{\varphi_{I^{\prime}}\left(\mathrm{Al}_{\prime^{\prime}}\right) \mid\left(I^{\prime}, I\right) \in F\right\} & \text { otherwise }\end{cases}
$$

- $\left(d_{1}, \ldots, d_{n}\right) \in D^{n}$ is called a solution if

$$
d_{l}= \begin{cases}\iota & \text { if } I \in E \\ \bigsqcup\left\{\varphi_{l^{\prime}}\left(d_{l^{\prime}}\right) \mid\left(I^{\prime}, I\right) \in F\right\} & \text { otherwise }\end{cases}
$$

Dataflow Systems and Fixpoints

Definition 4.9 (Dataflow equation system)

Given: dataflow system $S=(\operatorname{Lab}, E, F,(D, \sqsubseteq), \iota, \varphi), \operatorname{Lab}=\{1, \ldots, n\}$ (w.l.o.g.)

- S determines the equation system (where $I \in L a b$)

$$
\mathrm{Al}_{I}= \begin{cases}\iota & \text { if } I \in E \\ \bigsqcup\left\{\varphi_{I^{\prime}}\left(\mathrm{Al}_{\prime^{\prime}}\right) \mid\left(I^{\prime}, I\right) \in F\right\} & \text { otherwise }\end{cases}
$$

- $\left(d_{1}, \ldots, d_{n}\right) \in D^{n}$ is called a solution if

$$
d_{l}= \begin{cases}\iota & \text { if } I \in E \\ \bigsqcup\left\{\varphi_{l^{\prime}}\left(d_{l^{\prime}}\right) \mid\left(I^{\prime}, I\right) \in F\right\} & \text { otherwise }\end{cases}
$$

- S determines the transformation

$$
\Phi_{S}: D^{n} \rightarrow D^{n}:\left(d_{1}, \ldots, d_{n}\right) \mapsto\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime}\right)
$$

where

$$
d_{l}^{\prime}:= \begin{cases}\iota & \text { if } I \in E \\ \bigsqcup\left\{\varphi_{l^{\prime}}\left(d_{l^{\prime}}\right) \mid\left(l^{\prime}, l\right) \in F\right\} & \text { otherwise }\end{cases}
$$

Dataflow Systems and Fixpoints

Definition 4.9 (Dataflow equation system)

Given: dataflow system $S=(L a b, E, F,(D, \sqsubseteq), \iota, \varphi), L a b=\{1, \ldots, n\}$ (w.l.o.g.)

- S determines the equation system (where $I \in L a b$)

$$
\mathrm{Al}_{I}= \begin{cases}\iota & \text { if } I \in E \\ \bigsqcup\left\{\varphi_{I^{\prime}}\left(\mathrm{Al}_{\prime^{\prime}}\right) \mid\left(I^{\prime}, I\right) \in F\right\} & \text { otherwise }\end{cases}
$$

- $\left(d_{1}, \ldots, d_{n}\right) \in D^{n}$ is called a solution if

$$
d_{l}= \begin{cases}\iota & \text { if } I \in E \\ \bigsqcup\left\{\varphi_{I^{\prime}}\left(d_{l^{\prime}}\right) \mid\left(I^{\prime}, I\right) \in F\right\} & \text { otherwise }\end{cases}
$$

- S determines the transformation

$$
\Phi_{S}: D^{n} \rightarrow D^{n}:\left(d_{1}, \ldots, d_{n}\right) \mapsto\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime}\right)
$$

where

$$
d_{l}^{\prime}:= \begin{cases}\iota & \text { if } I \in E \\ \bigsqcup\left\{\varphi_{l^{\prime}}\left(d_{l^{\prime}}\right) \mid\left(l^{\prime}, l\right) \in F\right\} & \text { otherwise }\end{cases}
$$

Corollary 4.10

$\left(d_{1}, \ldots, d_{n}\right) \in D^{n}$ solves the equation system iff it is a fixpoint of Φ_{S}

Solving Dataflow Problems by Fixpoint Iteration

Remarks:

- (D, \sqsubseteq) being a complete lattice ensures that Φ_{S} is well defined

Solving Dataflow Problems by Fixpoint Iteration

Remarks:

- (D, \sqsubseteq) being a complete lattice ensures that Φ_{S} is well defined
- Since (D, \sqsubseteq) is a complete lattice satisfying ACC, so is $\left(D^{n}, \sqsubseteq^{n}\right)$ (where $\left(d_{1}, \ldots, d_{n}\right) \sqsubseteq^{n}\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime}\right)$ iff $d_{i} \sqsubseteq d_{i}^{\prime}$ for every $1 \leq i \leq n$)

Solving Dataflow Problems by Fixpoint Iteration

Remarks:

- (D, \sqsubseteq) being a complete lattice ensures that Φ_{S} is well defined
- Since (D, \sqsubseteq) is a complete lattice satisfying ACC, so is $\left(D^{n}, \sqsubseteq^{n}\right)$ (where $\left(d_{1}, \ldots, d_{n}\right) \sqsubseteq^{n}\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime}\right)$ iff $d_{i} \sqsubseteq d_{i}^{\prime}$ for every $1 \leq i \leq n$)
- Monotonicity of transfer functions φ_{I} in (D, \sqsubseteq) implies monotonicity of Φ_{S} in $\left(D^{n}, \sqsubseteq^{n}\right)$ (since \bigsqcup also monotonic)

Solving Dataflow Problems by Fixpoint Iteration

Remarks:

- (D, \sqsubseteq) being a complete lattice ensures that Φ_{S} is well defined
- Since (D, \sqsubseteq) is a complete lattice satisfying ACC, so is $\left(D^{n}, \sqsubseteq^{n}\right)$ (where $\left(d_{1}, \ldots, d_{n}\right) \sqsubseteq^{n}\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime}\right)$ iff $d_{i} \sqsubseteq d_{i}^{\prime}$ for every $1 \leq i \leq n$)
- Monotonicity of transfer functions φ_{1} in (D, \sqsubseteq) implies monotonicity of Φ_{S} in $\left(D^{n}, \sqsubseteq^{n}\right)$ (since \bigsqcup also monotonic)
- Thus the (least) fixpoint is effectively computable by iteration:

$$
\operatorname{fix}\left(\Phi_{S}\right)=\bigsqcup\left\{\Phi_{S}^{k}\left(\perp_{D^{n}}\right) \mid k \in \mathbb{N}\right\}
$$

where $\perp_{D^{n}}=(\underbrace{\perp_{D}, \ldots, \perp_{D}}_{n \text { times }})$

Solving Dataflow Problems by Fixpoint Iteration

Remarks:

- (D, \sqsubseteq) being a complete lattice ensures that Φ_{S} is well defined
- Since (D, \sqsubseteq) is a complete lattice satisfying ACC, so is $\left(D^{n}, \sqsubseteq^{n}\right)$ (where $\left(d_{1}, \ldots, d_{n}\right) \sqsubseteq^{n}\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime}\right)$ iff $d_{i} \sqsubseteq d_{i}^{\prime}$ for every $1 \leq i \leq n$)
- Monotonicity of transfer functions φ_{l} in (D, \sqsubseteq) implies monotonicity of Φ_{S} in $\left(D^{n}, \sqsubseteq^{n}\right)$ (since \bigsqcup also monotonic)
- Thus the (least) fixpoint is effectively computable by iteration:

$$
\operatorname{fix}\left(\Phi_{S}\right)=\bigsqcup\left\{\Phi_{S}^{k}\left(\perp_{D^{n}}\right) \mid k \in \mathbb{N}\right\}
$$

where $\perp_{D^{n}}=(\underbrace{\perp_{D}, \ldots, \perp_{D}}_{n \text { times }})$

- If height of (D, \sqsubseteq) is m
\Longrightarrow height of $\left(D^{n}, \sqsubseteq^{n}\right)$ is $m \cdot n$
\Longrightarrow fixpoint iteration requires at most $m \cdot n$ steps

Example: Available Expressions

Example 4.11 (Available Expressions; cf. Example 2.9)

Program:

$$
\begin{aligned}
c= & {[\mathrm{x}:=\mathrm{a}+\mathrm{b}]^{1} ; } \\
& {[\mathrm{y}:=\mathrm{a} * \mathrm{~b}]^{2} ; } \\
& \text { While }[\mathrm{y}>\mathrm{a}+\mathrm{b}]^{3} \text { do } \\
& {[\mathrm{a}:=\mathrm{a}+1]^{4} ; } \\
& {[\mathrm{x}:=\mathrm{a}+\mathrm{b}]^{5} }
\end{aligned}
$$

Example: Available Expressions

Example 4.11 (Available Expressions; cf. Example 2.9)

Program:

$$
\begin{aligned}
c= & {\left[\begin{array}{ll}
\mathrm{x}:=\mathrm{a}+\mathrm{b}]^{1} ; \\
& {[\mathrm{y}:=\mathrm{a}+\mathrm{b}]^{2} ;} \\
& \text { while }[\mathrm{y}>\mathrm{a}+\mathrm{b}]^{3} \text { do } \\
& {[\mathrm{a}:=\mathrm{a}+1]^{4} ;} \\
& {[\mathrm{x}:=\mathrm{a}+\mathrm{b}]^{5}}
\end{array}\right.}
\end{aligned}
$$

Equation system:

$$
\mathrm{AE}_{1}=\emptyset
$$

$$
\mathrm{AE}_{2}=\mathrm{AE}_{1} \cup\{\mathrm{a}+\mathrm{b}\}
$$

$$
\mathrm{AE}_{3}=\left(\mathrm{AE}_{2} \cup\{\mathrm{a} * \mathrm{~b}\}\right) \cap\left(\mathrm{AE}_{5} \cup\{\mathrm{a}+\mathrm{b}\}\right)
$$

$$
\mathrm{AE}_{4}=\mathrm{AE} E_{3} \cup\{\mathrm{a}+\mathrm{b}\}
$$

$$
\mathrm{AE}_{5}=\mathrm{AE} 4 \backslash\{\mathrm{a}+\mathrm{b}, \mathrm{a} * \mathrm{~b}, \mathrm{a}+1\}
$$

Example: Available Expressions

Example 4.11 (Available Expressions; cf. Example 2.9)

Program:

$$
\begin{aligned}
c= & {[\mathrm{x}:=\mathrm{a}+\mathrm{b}]^{1} ; } \\
& {[\mathrm{y}:=\mathrm{a} * \mathrm{~b}]^{2} ; } \\
& \text { while }[\mathrm{y}>\mathrm{a}+\mathrm{b}]^{3} \text { do } \\
& {[\mathrm{a}:=\mathrm{a}+1]^{4} ; } \\
& {[\mathrm{x}:=\mathrm{a}+\mathrm{b}]^{5} }
\end{aligned}
$$

Equation system:

$$
\begin{aligned}
& A E_{1}=\emptyset \\
& A E_{2}=A E_{1} \cup\{a+b\} \\
& A E_{3}=\left(A E_{2} \cup\{a * b\}\right) \cap\left(A E_{5} \cup\{a+b\}\right) \\
& A E_{4}=A E_{3} \cup\{a+b\} \\
& A E_{5}=A E_{4} \backslash\{a+b, a * b, a+1\}
\end{aligned}
$$

Fixpoint iteration:

i	1	2	3	4	5
0	Exp		Ex		

Example: Available Expressions

Example 4.11 (Available Expressions; cf. Example 2.9)

Program:

$$
\begin{aligned}
c= & {[\mathrm{x}:=\mathrm{a}+\mathrm{b}]^{1} ; } \\
& {[\mathrm{y}:=\mathrm{a}+\mathrm{b}]^{2} ; } \\
& \text { while }[\mathrm{y}>\mathrm{a}+\mathrm{b}]^{3} \text { do } \\
& {[\mathrm{a}:=\mathrm{a}+1]^{4} ; } \\
& {[\mathrm{x}:=\mathrm{a}+\mathrm{b}]^{5} }
\end{aligned}
$$

Equation system:

$$
\begin{aligned}
& A E_{1}=\emptyset \\
& A E_{2}=A E_{1} \cup\{a+b\} \\
& A E_{3}=\left(A E_{2} \cup\{a * b\}\right) \cap\left(A E_{5} \cup\{a+b\}\right) \\
& A E_{4}=A E_{3} \cup\{a+b\} \\
& A E_{5}=A E_{4} \backslash\{a+b, a * b, a+1\}
\end{aligned}
$$

Fixpoint iteration:

i	1	2	3	4	5
0	CExp_{c}	CExp_{c}	CExp_{c}	CExp_{c}	$C \operatorname{Exp}_{c}$
1	\emptyset	CExp_{c}	CExp_{c}	$C \operatorname{Exp}_{c}$	\emptyset

Example: Available Expressions

Example 4.11 (Available Expressions; cf. Example 2.9)

Program:

$$
\begin{aligned}
c= & {[\mathrm{x}:=\mathrm{a}+\mathrm{b}]^{1} ; } \\
& {[\mathrm{y}:=\mathrm{a}+\mathrm{b}]^{2} ; } \\
& \text { while }[\mathrm{y}>\mathrm{a}+\mathrm{b}]^{3} \text { do } \\
& {[\mathrm{a}:=\mathrm{a}+1]^{4} ; } \\
& {[\mathrm{x}:=\mathrm{a}+\mathrm{b}]^{5} }
\end{aligned}
$$

Equation system:

$$
\begin{aligned}
& A E_{1}=\emptyset \\
& A E_{2}=A E_{1} \cup\{a+b\} \\
& A E_{3}=\left(A E_{2} \cup\{a * b\}\right) \cap\left(A E_{5} \cup\{a+b\}\right) \\
& A E_{4}=A E_{3} \cup\{a+b\} \\
& A E_{5}=A E_{4} \backslash\{a+b, a * b, a+1\}
\end{aligned}
$$

Fixpoint iteration:

	1	2	3	4	5
0	CExp ${ }_{\text {c }}$	CExp_{c}	CExp ${ }_{c}$	CExp_{c}	CExp ${ }_{\text {c }}$
1	\emptyset	CExp ${ }_{c}$	CExp ${ }_{c}$	CExp ${ }_{c}$	\emptyset
2	0	\{a+b\}	\{a+b\}	CExp ${ }_{c}$	\emptyset

Example: Available Expressions

Example 4.11 (Available Expressions; cf. Example 2.9)

Program:

$$
\begin{aligned}
c= & {[\mathrm{x}:=\mathrm{a}+\mathrm{b}]^{1} ; } \\
& {[\mathrm{y}:=\mathrm{a} * \mathrm{~b}]^{2} ; } \\
& \text { while }[\mathrm{y}>\mathrm{a}+\mathrm{b}]^{3} \text { do } \\
& {[\mathrm{a}:=\mathrm{a}+1]^{4} ; } \\
& {[\mathrm{x}:=\mathrm{a}+\mathrm{b}]^{5} }
\end{aligned}
$$

Equation system:

$$
\begin{aligned}
& A E_{1}=\emptyset \\
& A E_{2}=A E_{1} \cup\{a+b\} \\
& A E_{3}=\left(A E_{2} \cup\{a * b\}\right) \cap\left(A E_{5} \cup\{a+b\}\right) \\
& A E_{4}=A E_{3} \cup\{a+b\} \\
& A E_{5}=A E_{4} \backslash\{a+b, a * b, a+1\}
\end{aligned}
$$

Fixpoint iteration:

	1	2	3	4	5
0	CExp ${ }_{c}$				
1	\emptyset	CExp ${ }_{c}$	CExp ${ }_{c}$	CExp ${ }_{c}$	\emptyset
2	\emptyset	\{a+b\}	\{a+b\}	CExp ${ }_{c}$	\emptyset
3	\emptyset	\{a+b\}	\{a+b\}	\{a+b $\}$	\emptyset

Example: Available Expressions

Example 4.11 (Available Expressions; cf. Example 2.9)

Program:

$$
\begin{aligned}
c= & {[\mathrm{x}:=\mathrm{a}+\mathrm{b}]^{1} ; } \\
& {[\mathrm{y}:=\mathrm{a}+\mathrm{b}]^{2} ; } \\
& \text { while }[\mathrm{y}>\mathrm{a}+\mathrm{b}]^{3} \text { do } \\
& {[\mathrm{a}:=\mathrm{a}+1]^{4} ; } \\
& {[\mathrm{x}:=\mathrm{a}+\mathrm{b}]^{5} }
\end{aligned}
$$

Equation system:

$A E_{1}=\emptyset$
$A E_{2}=A E_{1} \cup\{a+b\}$
$A E_{3}=\left(A E_{2} \cup\{a * b\}\right) \cap\left(A E_{5} \cup\{a+b\}\right)$
$A E_{4}=A E_{3} \cup\{a+b\}$
$\mathrm{AE}_{5}=A \mathrm{E}_{4} \backslash\{\mathrm{a}+\mathrm{b}, \mathrm{a} * \mathrm{~b}, \mathrm{a}+1\}$

Fixpoint iteration:

i	1	2	3	4	5
0	CExp_{c}	CExp ${ }_{c}$	CExp ${ }_{\text {c }}$	CExp ${ }_{c}$	CExp ${ }_{\text {c }}$
1	\emptyset	CExp ${ }_{c}$	CExp ${ }_{c}$	CExp ${ }_{c}$	\emptyset
2	,	\{a+b\}	\{a+b\}	CExp ${ }_{\text {c }}$	\emptyset
3	\emptyset	\{a+b\}	$\{\mathrm{a}+\mathrm{b}\}$	\{a+b $\}$	\emptyset
4	\emptyset	\{a+b\}	\{a+b\}	$\{\mathrm{a}+\mathrm{b}$ \}	\emptyset

Example: Live Variables

Example 4.12 (Live Variables; cf. Example 2.12)

Program:

$$
\begin{aligned}
& {\left[\begin{array}{l}
\mathrm{x}:=2]^{1} ;[\mathrm{y}:=4]^{2} ; \\
{[\mathrm{x}:=1]^{3} ;} \\
\text { if }[\mathrm{y}>0]^{4} \text { then } \\
{[\mathrm{z}:=\mathrm{x}]^{5}} \\
\text { else } \\
{[\mathrm{z}:=\mathrm{y} * \mathrm{y}]^{6} ;} \\
{[\mathrm{x}:=\mathrm{z}]^{7}}
\end{array}\right.}
\end{aligned}
$$

Example: Live Variables

Example 4.12 (Live Variables; cf. Example 2.12)

Program:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
\mathrm{x}:=2
\end{array}\right]^{1} ;[\mathrm{y}:=4]^{2} ;} \\
& {[\mathrm{x}:=1]^{3} ;} \\
& \text { if }[\mathrm{y}>0]^{4} \text { then } \\
& {[\mathrm{z}:=\mathrm{x}]^{5}} \\
& \text { else } \\
& {[\mathrm{z}:=\mathrm{y} * \mathrm{y}]^{6} ;} \\
& {[\mathrm{x}:=\mathrm{z}]^{7}}
\end{aligned}
$$

Equation system:

$$
\begin{aligned}
& \mathrm{LV}_{1}=\mathrm{LV}_{2} \backslash\{\mathrm{y}\} \\
& \mathrm{LV}_{2}=\mathrm{LV}_{3} \backslash\{\mathrm{x}\} \\
& \mathrm{LV}_{3}=\mathrm{LV}_{4} \cup\{\mathrm{y}\} \\
& \mathrm{LV}_{4}=\left(\left(\mathrm{LV}_{5} \backslash\{\mathrm{z}\}\right) \cup\{\mathrm{x}\}\right) \cup\left(\left(\mathrm{LV}_{6} \backslash\{\mathrm{z}\}\right) \cup\{\mathrm{y}\}\right) \\
& \mathrm{LV}_{5}=(\mathrm{LV} \backslash\{\mathrm{x}\}) \cup\{\mathrm{z}\} \\
& \mathrm{LV}_{6}=(\mathrm{LV}, \backslash\{\mathrm{x}\}) \cup\{\mathrm{z}\} \\
& \mathrm{LV}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}
\end{aligned}
$$

Example: Live Variables

Example 4.12 (Live Variables; cf. Example 2.12)

Program:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
\mathrm{x}:=2
\end{array}\right]^{1} ;[\mathrm{y}:=4]^{2} ;} \\
& {[\mathrm{x}:=1]^{3} ;} \\
& \text { if }[\mathrm{y}>0]^{4} \text { then } \\
& {[\mathrm{z}:=\mathrm{x}]^{5}} \\
& \text { else } \\
& {[\mathrm{z}:=\mathrm{y} * \mathrm{y}]^{6} ;} \\
& {[\mathrm{x}:=\mathrm{z}]^{7}}
\end{aligned}
$$

Equation system:
$\mathrm{LV}_{1}=\mathrm{LV}_{2} \backslash\{\mathrm{y}\}$
$\mathrm{LV}_{2}=\mathrm{LV}_{3} \backslash\{\mathrm{x}\}$
$\mathrm{LV}_{3}=\mathrm{LV}_{4} \cup\{\mathrm{y}\}$
$\mathrm{LV}_{4}=\left(\left(\mathrm{LV}_{5} \backslash\{\mathrm{z}\}\right) \cup\{\mathrm{x}\}\right) \cup\left(\left(\mathrm{LV}_{6} \backslash\{\mathrm{z}\}\right) \cup\{\mathrm{y}\}\right)$
$\mathrm{LV}_{5}=\left(\mathrm{LV}_{7} \backslash\{\mathrm{x}\}\right) \cup\{\mathrm{z}\}$
$\mathrm{LV}_{6}=\left(\mathrm{LV}_{7} \backslash\{\mathrm{x}\}\right) \cup\{\mathrm{z}\}$
$\mathrm{LV}_{7}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$

Fixpoint iteration:

i	1	2	3	4	5	6	7
0	\emptyset						

Example: Live Variables

Example 4.12 (Live Variables; cf. Example 2.12)

Program:

$$
\begin{aligned}
& {[\mathrm{x}:=2]^{1} ;[\mathrm{y}:=4]^{2} \text {; }} \\
& \text { [x := 1] }{ }^{3} \text {; } \\
& \text { if }[y>0]^{4} \text { then } \\
& {[z:=x]^{5}} \\
& \text { else } \\
& \text { [z := y*y] }{ }^{6} \text {; } \\
& {[\mathrm{x}:=\mathrm{z}]^{7}}
\end{aligned}
$$

Equation system:
$\mathrm{LV}_{1}=\mathrm{LV}_{2} \backslash\{\mathrm{y}\}$
$\mathrm{LV}_{2}=\mathrm{LV}_{3} \backslash\{\mathrm{x}\}$
$\mathrm{LV}_{3}=\mathrm{LV}_{4} \cup\{\mathrm{y}\}$
$\mathrm{LV}_{4}=\left(\left(\mathrm{LV}_{5} \backslash\{\mathrm{z}\}\right) \cup\{\mathrm{x}\}\right) \cup\left(\left(\mathrm{LV}_{6} \backslash\{\mathrm{z}\}\right) \cup\{\mathrm{y}\}\right)$
$\mathrm{LV}_{5}=\left(\mathrm{LV}_{7} \backslash\{\mathrm{x}\}\right) \cup\{\mathrm{z}\}$
$\mathrm{LV}_{6}=\left(\mathrm{LV}_{7} \backslash\{\mathrm{x}\}\right) \cup\{\mathrm{z}\}$
$\mathrm{LV}_{7}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$

Fixpoint iteration:

i	1	2	3	4	5	6	7
0	\emptyset						
1	\emptyset	\emptyset	$\{y\}$	$\{\mathrm{x}, \mathrm{y}\}$	$\{\mathrm{z}\}$	$\{\mathrm{z}\}$	$\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$

Example: Live Variables

Example 4.12 (Live Variables; cf. Example 2.12)

Program:

$$
\begin{aligned}
& {\left[\begin{array}{l}
\mathrm{x}:=2]^{1} ;[\mathrm{y}:=4]^{2} ; \\
{[\mathrm{x}:=1}
\end{array}\right]^{3} ;} \\
& \text { if }[\mathrm{y}>0]^{4} \text { then } \\
& {[\mathrm{z}:=\mathrm{x}]^{5}} \\
& \text { else } \\
& {\left[\begin{array}{ll}
\mathrm{z}:=\mathrm{y} * \mathrm{y}]^{6} ; \\
\mathrm{x}:=\mathrm{z}]^{7}
\end{array}\right.}
\end{aligned}
$$

Equation system:
$\mathrm{LV}_{1}=\mathrm{LV}_{2} \backslash\{\mathrm{y}\}$
$\mathrm{LV}_{2}=\mathrm{LV}_{3} \backslash\{\mathrm{x}\}$
$\mathrm{LV}_{3}=\mathrm{LV}_{4} \cup\{\mathrm{y}\}$
$\mathrm{LV}_{4}=\left(\left(\mathrm{LV}_{5} \backslash\{\mathrm{z}\}\right) \cup\{\mathrm{x}\}\right) \cup\left(\left(\mathrm{LV}_{6} \backslash\{\mathrm{z}\}\right) \cup\{\mathrm{y}\}\right)$
$\mathrm{LV}_{5}=\left(\mathrm{LV}_{7} \backslash\{\mathrm{x}\}\right) \cup\{\mathrm{z}\}$
$\mathrm{LV}_{6}=\left(\mathrm{LV}_{7} \backslash\{\mathrm{x}\}\right) \cup\{\mathrm{z}\}$
$\mathrm{LV}_{7}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$

Fixpoint iteration:

i	1	2	3	4	5	6	7
0	\emptyset						
1	\emptyset	\emptyset	$\{y\}$	$\{\mathrm{x}, \mathrm{y}\}$	$\{\mathrm{z}\}$	$\{\mathrm{z}\}$	$\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$
2	\emptyset	$\{\mathrm{y}\}$	$\{\mathrm{x}, \mathrm{y}\}$	$\{\mathrm{x}, \mathrm{y}\}$	$\{\mathrm{y}, \mathrm{z}\}$	$\{\mathrm{y}, \mathrm{z}\}$	$\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$

Example: Live Variables

Example 4.12 (Live Variables; cf. Example 2.12)

Program:

$$
\begin{aligned}
& {\left[\begin{array}{l}
\mathrm{x}:=2
\end{array}\right]^{1} ;[\mathrm{y}:=4]^{2} ;} \\
& {[\mathrm{x}:=1]^{3} ;} \\
& \text { if }\left[\begin{array}{ll}
\mathrm{y} & >
\end{array}\right]^{4} \text { then } \\
& {[\mathrm{z}:=\mathrm{x}]^{5}} \\
& \text { else } \\
& {\left[\begin{array}{ll}
\mathrm{z}:=\mathrm{y} * \mathrm{y}]^{6} ; \\
{[\mathrm{x}:=} & \mathrm{z}]^{7}
\end{array}\right.}
\end{aligned}
$$

Equation system:

$\mathrm{LV}_{1}=\mathrm{LV}_{2} \backslash\{\mathrm{y}\}$
$\mathrm{LV}_{2}=\mathrm{LV}_{3} \backslash\{\mathrm{x}\}$
$\mathrm{LV}_{3}=\mathrm{LV}_{4} \cup\{\mathrm{y}\}$
$\mathrm{LV}_{4}=\left(\left(\mathrm{LV}_{5} \backslash\{\mathrm{z}\}\right) \cup\{\mathrm{x}\}\right) \cup\left(\left(\mathrm{LV}_{6} \backslash\{\mathrm{z}\}\right) \cup\{\mathrm{y}\}\right)$
$\mathrm{LV}_{5}=\left(\mathrm{LV}_{7} \backslash\{\mathrm{x}\}\right) \cup\{\mathrm{z}\}$
$\mathrm{LV}_{6}=\left(\mathrm{LV}_{7} \backslash\{\mathrm{x}\}\right) \cup\{\mathrm{z}\}$
$\mathrm{LV}_{7}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$

Fixpoint iteration:

i	1	2	3	4	5	6	7
0	\emptyset						
1	\emptyset	\emptyset	$\{y\}$	$\{\mathrm{x}, \mathrm{y}\}$	$\{\mathrm{z}\}$	$\{\mathrm{z}\}$	$\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$
2	\emptyset	$\{\mathrm{y}\}$	$\{\mathrm{x}, \mathrm{y}\}$	$\{\mathrm{x}, \mathrm{y}\}$	$\{\mathrm{y}, \mathrm{z}\}$	$\{\mathrm{y}, \mathrm{z}\}$	$\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$
3	\emptyset	$\{\mathrm{y}\}$	$\{\mathrm{x}, \mathrm{y}\}$	$\{\mathrm{x}, \mathrm{y}\}$	$\{\mathrm{y}, \mathrm{z}\}$	$\{\mathrm{y}, \mathrm{z}\}$	$\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$

