Static Program Analysis Lecture 4: Dataflow Analysis III (The Framework)

Thomas Noll

Lehrstuhl für Informatik 2 (Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Winter Semester 2014/15

Wanted: Software Engineering HiWis

- What we offer: work in
 - EU project D-MILS
 - Dependability and Security of Distributed Information and Communication Infrastructures
 - http://www.d-mils.org/
 - Goal: [design and] implementation of high-level specification language
 - ESA project CATSY
 - Catalogue of System and Software Properties
 - Successor of COMPASS project
 - (http://compass.informatik.rwth-aachen.de)
 - goal: support early V & V activities in model-based system development
- What we expect: prospective candidates
 - like formal methods (model checking, program/model transformations)
 - program efficiently (Python)
 - work 9–19 hrs/week

RNTHAACHEN

• Contact: Thomas Noll (noll@cs.rwth-aachen.de)

Recapitulation: Heading for a Dataflow Analysis Framework

- 2 Recapitulation: Order-Theoretic Foundations: The Domain
- **3** Order-Theoretic Foundations: The Function
- 4 Application to Dataflow Analysis

Similarities Between Analysis Problems

- Observation: the analyses presented so far have some similarities
- ⇒ Look for underlying framework
 - Advantage: possibility for designing (efficient) generic algorithms for solving dataflow equations
 - **Overall pattern:** for $c \in Cmd$ and $l \in Lab_c$, the analysis information (AI) is described by equations of the form

$$\mathsf{AI}_{I} = \begin{cases} \iota & \text{if } I \in E \\ \bigsqcup \{ \varphi_{l'}(\mathsf{AI}_{l'}) \mid (l', I) \in F \} & \text{otherwise} \end{cases}$$

where

- the set of extremal labels, *E*, is {init(c)} or final(c)
- ι specifies the extremal analysis information
- the combination operator, [, is \bigcap or [
- $\varphi_{l'}$ denotes the transfer function of block $B^{l'}$
- the flow relation F is flow(c) or flow^R(c) (:= { $(l', l) | (l, l') \in flow(c)$ })

Goal: solve dataflow equation system by fixpoint iteration

- Characterize solution of equation system as fixpoint of a transformation
- Introduce partial order for comparing analysis results
- Stablish least upper bound as combination operator
- Ensure monotonicity of transfer functions
- Guarantee termination of fixpoint iteration by ascending chain condition
- Optimize fixpoint iteration by worklist algorithm

Recapitulation: Heading for a Dataflow Analysis Framework

2 Recapitulation: Order-Theoretic Foundations: The Domain

3 Order-Theoretic Foundations: The Function

Partial Orders

The domain of analysis information usually forms a partial order where the ordering relation compares the "precision" of information.

Definition (Partial order)

A partial order (PO) (D, \sqsubseteq) consists of a set D, called domain, and of a relation $\sqsubseteq \subseteq D \times D$ such that, for every $d_1, d_2, d_3 \in D$, reflexivity: $d_1 \sqsubseteq d_1$ transitivity: $d_1 \sqsubseteq d_2$ and $d_2 \sqsubseteq d_3 \implies d_1 \sqsubseteq d_3$ antisymmetry: $d_1 \sqsubseteq d_2$ and $d_2 \sqsubseteq d_1 \implies d_1 = d_2$ It is called total if, in addition, always $d_1 \sqsubset d_2$ or $d_2 \sqsubset d_1$.

- (\mathbb{N}, \leq) is a total partial order
- **2** $(\mathbb{N}, <)$ is not a partial order (since not reflexive)
- (Live Variables) $(2^{Var_c}, \subseteq)$ is a (non-total) partial order
- (Available Expressions) $(2^{CExp_c}, \supseteq)$ is a (non-total) partial order

Upper Bounds

In the dataflow equation system, analysis information from several predecessors is combined by taking the least upper bound.

Definition ((Least) upper bound)

Let (D, \sqsubseteq) be a partial order and $S \subseteq D$.

- An element d ∈ D is called an upper bound of S if s ⊑ d for every s ∈ S (notation: S ⊑ d).
- An upper bound d of S is called least upper bound (LUB) or supremum of S if d ⊑ d' for every upper bound d' of S (notation: d = ∐ S).

•
$$S \subseteq \mathbb{N}$$
 has a LUB in (\mathbb{N}, \leq) iff it is finite
• (Live Variables) $(D, \sqsubseteq) = (2^{Var_c}, \subseteq)$. Given $V_1, \ldots, V_n \subseteq Var_c$,
 $\bigsqcup \{V_1, \ldots, V_n\} = \bigcup \{V_1, \ldots, V_n\}$
• (Avail. Expr.) $(D, \sqsubseteq) = (2^{CExp_c}, \supseteq)$. Given $A_1, \ldots, A_n \subseteq CExp_c$,
 $\bigsqcup \{A_1, \ldots, A_n\} = \bigcap \{A_1, \ldots, A_n\}$

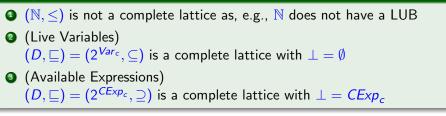
Complete Lattices

Since $\{\varphi_{l'}(AI_{l'}) \mid (l', l) \in F\}$ can contain arbitrary elements, the existence of least upper bounds must be ensured for arbitrary subsets.

Definition (Complete lattice)

A complete lattice is a partial order (D, \sqsubseteq) such that all subsets of D have least upper bounds. In this case, $\perp := | | \emptyset$

denotes the least element of *D*.



Chains

Chains are generated by the approximation of the analysis information in the fixpoint iteration.

Definition (Chain)

- Let (D, \sqsubseteq) be a partial order.
 - A subset $S \subseteq D$ is called a chain in D if, for every $d_1, d_2 \in S$,

$d_1 \sqsubseteq d_2$ or $d_2 \sqsubseteq d_1$

(that is, S is a totally ordered subset of D).

(D, ⊑) has finite height if all chains are finite. In this case, its height is max{|S| | S chain in D} - 1.

- Every $S \subseteq \mathbb{N}$ is a chain in (\mathbb{N}, \leq) (which is of infinite height)
- ② { \emptyset , {0}, {0,1}, {0,1,2},...} is a chain in (2^{\mathbb{N}}, ⊆)
- $\textcircled{0} \{ \emptyset, \{0\}, \{1\} \} \text{ is not a chain in } (2^{\mathbb{N}}, \subseteq)$

The Ascending Chain Condition

Termination of fixpoint iteration is guaranteed by the following condition.

Definition (Ascending Chain Condition)

- A sequence (d_i)_{i∈ℕ} is called an ascending chain in D if d_i ⊑ d_{i+1} for each i ∈ ℕ.
- A partial order (D, \sqsubseteq) satisfies the Ascending Chain Condition (ACC) if each ascending chain $d_0 \sqsubseteq d_1 \sqsubseteq \ldots$ eventually stabilizes, i.e., there exists $n \in \mathbb{N}$ such that $d_n = d_{n+1} = \ldots$

Notes:

- The finite height property implies ACC, but not vice versa (as there might be non-stabilizing descending chains)
- The complete lattice and ACC properties are orthogonal

Recapitulation: Heading for a Dataflow Analysis Framework

2 Recapitulation: Order-Theoretic Foundations: The Domain

3 Order-Theoretic Foundations: The Function

The monotonicity of transfer functions excludes "oscillating behavior" in fixpoint iteration.

Definition 4.1 (Monotonicity)

Let (D, \sqsubseteq) and (D', \sqsubseteq') be partial orders, and let $\Phi : D \to D'$. Φ is called monotonic (w.r.t. (D, \sqsubseteq) and (D', \sqsubseteq')) if, for every $d_1, d_2 \in D$, $d_1 \sqsubseteq d_2 \implies \Phi(d_1) \sqsubseteq' \Phi(d_2)$.

The monotonicity of transfer functions excludes "oscillating behavior" in fixpoint iteration.

Definition 4.1 (Monotonicity)

Let (D, \sqsubseteq) and (D', \sqsubseteq') be partial orders, and let $\Phi : D \to D'$. Φ is called monotonic (w.r.t. (D, \sqsubseteq) and (D', \sqsubseteq')) if, for every $d_1, d_2 \in D$, $d_1 \sqsubseteq d_2 \implies \Phi(d_1) \sqsubseteq' \Phi(d_2)$.

Example 4.2

• Let $T := \{S \subseteq \mathbb{N} \mid S \text{ finite}\}$. Then $\Phi_1 : T \to \mathbb{N} : S \mapsto \sum_{n \in S} n$ is monotonic w.r.t. $(2^{\mathbb{N}}, \subseteq)$ and (\mathbb{N}, \leq) .

The monotonicity of transfer functions excludes "oscillating behavior" in fixpoint iteration.

Definition 4.1 (Monotonicity)

Let (D, \sqsubseteq) and (D', \sqsubseteq') be partial orders, and let $\Phi : D \to D'$. Φ is called monotonic (w.r.t. (D, \sqsubseteq) and (D', \sqsubseteq')) if, for every $d_1, d_2 \in D$, $d_1 \sqsubseteq d_2 \implies \Phi(d_1) \sqsubseteq' \Phi(d_2)$.

Example 4.2

- Let $T := \{S \subseteq \mathbb{N} \mid S \text{ finite}\}$. Then $\Phi_1 : T \to \mathbb{N} : S \mapsto \sum_{n \in S} n \text{ is monotonic w.r.t. } (2^{\mathbb{N}}, \subseteq) \text{ and } (\mathbb{N}, \leq).$

The monotonicity of transfer functions excludes "oscillating behavior" in fixpoint iteration.

Definition 4.1 (Monotonicity)

Let (D, \sqsubseteq) and (D', \sqsubseteq') be partial orders, and let $\Phi : D \to D'$. Φ is called monotonic (w.r.t. (D, \sqsubseteq) and (D', \sqsubseteq')) if, for every $d_1, d_2 \in D$, $d_1 \sqsubseteq d_2 \implies \Phi(d_1) \sqsubseteq' \Phi(d_2)$.

Example 4.2

- Let $T := \{S \subseteq \mathbb{N} \mid S \text{ finite}\}$. Then $\Phi_1 : T \to \mathbb{N} : S \mapsto \sum_{n \in S} n \text{ is monotonic w.r.t. } (2^{\mathbb{N}}, \subseteq) \text{ and } (\mathbb{N}, \leq).$
- $\Phi_2: 2^{\mathbb{N}} \to 2^{\mathbb{N}}: S \mapsto \mathbb{N} \setminus S$ is not monotonic w.r.t. (2^N, ⊆) (since, e.g., Ø ⊆ N but $\Phi_2(\emptyset) = \mathbb{N} \not\subseteq \Phi_2(\mathbb{N}) = \emptyset$).
- (Live Variables) (D, ⊑) = (D', ⊑') = (2^{Var_c}, ⊆) Each transfer function φ_{l'}(V) := (V \ kill_{LV}(B^{l'})) ∪ gen_{LV}(B^{l'}) is obviously monotonic

The monotonicity of transfer functions excludes "oscillating behavior" in fixpoint iteration.

Definition 4.1 (Monotonicity)

Let (D, \sqsubseteq) and (D', \sqsubseteq') be partial orders, and let $\Phi : D \to D'$. Φ is called monotonic (w.r.t. (D, \sqsubseteq) and (D', \sqsubseteq')) if, for every $d_1, d_2 \in D$, $d_1 \sqsubseteq d_2 \implies \Phi(d_1) \sqsubseteq' \Phi(d_2)$.

Example 4.2

- Let $T := \{S \subseteq \mathbb{N} \mid S \text{ finite}\}$. Then $\Phi_1 : T \to \mathbb{N} : S \mapsto \sum_{n \in S} n$ is monotonic w.r.t. $(2^{\mathbb{N}}, \subseteq)$ and (\mathbb{N}, \leq) .
- $\Phi_2: 2^{\mathbb{N}} \to 2^{\mathbb{N}}: S \mapsto \mathbb{N} \setminus S$ is not monotonic w.r.t. (2^N, ⊆) (since, e.g., Ø ⊆ N but $\Phi_2(\emptyset) = \mathbb{N} \not\subseteq \Phi_2(\mathbb{N}) = \emptyset$).
- (Live Variables) $(D, \sqsubseteq) = (D', \sqsubseteq') = (2^{Var_c}, ⊆)$ Each transfer function $\varphi_{l'}(V) := (V \setminus kill_{LV}(B^{l'})) \cup gen_{LV}(B^{l'})$ is obviously monotonic

● (Available Expressions) $(D, \sqsubseteq) = (D', \sqsubseteq') = (2^{CExp_c}, \supseteq)$ ditto

Definition 4.3 (Fixpoint)

Let *D* be some domain, $d \in D$, and $\Phi : D \to D$. If

 $\Phi(d)=d$

then *d* is called a fixpoint of Φ .

Definition 4.3 (Fixpoint)

Let *D* be some domain, $d \in D$, and $\Phi : D \to D$. If

 $\Phi(d)=d$

then d is called a fixpoint of Φ .

Example 4.4

The (only) fixpoints of $\Phi : \mathbb{N} \to \mathbb{N} : n \mapsto n^2$ are 0 and 1

Alfred Tarski (1901-1983)

Theorem 4.5 (Fixpoint Theorem by Tarski and Knaster)

Let (D, \sqsubseteq) be a complete lattice satisfying ACC and $\Phi: D \to D$ monotonic. Then

$$\mathsf{fix}(\Phi) := igsqcup \left\{ \Phi^k\left(ot
ight) \mid k \in \mathbb{N}
ight\}$$

Bronislaw Knaster (1893–1990)

is the least fixpoint of Φ where

 $\Phi^{0}(d) := d \text{ and } \Phi^{k+1}(d) := \Phi(\Phi^{k}(d)).$

Alfred Tarski (1901-1983)

Theorem 4.5 (Fixpoint Theorem by Tarski and Knaster)

Let (D, \sqsubseteq) be a complete lattice satisfying ACC and $\Phi: D \to D$ monotonic. Then

$$\mathsf{fix}(\Phi) := igsqcup \left\{ \Phi^k\left(ot
ight) \mid k \in \mathbb{N}
ight\}$$

Bronislaw Knaster (1893–1990)

is the least fixpoint of Φ where

 $\Phi^{0}(d) := d \text{ and } \Phi^{k+1}(d) := \Phi(\Phi^{k}(d)).$

Function requirements for dataflow analysis

All transfer functions must be a monotonic

RWTHAACHEN

Static Program Analysis

The proof of Theorem 4.5 requires the following lemma.

Lemma 4.6

Let (D, \sqsubseteq) be a complete lattice satisfying ACC, $S \subseteq D$ a chain, and $\Phi: D \to D$ monotonic. Then $\Phi(||S) = ||\Phi(S)$

The proof of Theorem 4.5 requires the following lemma.

Lemma 4.6

Let (D, \sqsubseteq) be a complete lattice satisfying ACC, $S \subseteq D$ a chain, and $\Phi: D \rightarrow D$ monotonic. Then $\Phi(||S) = ||\Phi(S)$

Proof (Lemma 4.6).

on the board

The proof of Theorem 4.5 requires the following lemma.

Lemma 4.6

Let (D, \sqsubseteq) be a complete lattice satisfying ACC, $S \subseteq D$ a chain, and $\Phi: D \to D$ monotonic. Then $\Phi(||S) = ||\Phi(S)$

Proof (Lemma 4.6).

on the board

Proof (Theorem 4.5).

RNTHAACHEN

on the board

The proof of Theorem 4.5 requires the following lemma.

Lemma 4.6

Let (D, \sqsubseteq) be a complete lattice satisfying ACC, $S \subseteq D$ a chain, and $\Phi: D \rightarrow D$ monotonic. Then $\Phi(||S) = ||\Phi(S)$

Proof (Lemma 4.6).

on the board

Proof (Theorem 4.5).

on the board

Remark: ACC $\implies (\Phi^k(\bot))_{k\in\mathbb{N}}$ stabilizes at some $k_0 \in \mathbb{N}$ with fix $(\Phi) = \Phi^{k_0}(\bot)$ (where k_0 bounded by height of (D, \sqsubseteq))

RNTHAACHEN

Recapitulation: Heading for a Dataflow Analysis Framework

- 2 Recapitulation: Order-Theoretic Foundations: The Domain
- 3 Order-Theoretic Foundations: The Function

Definition 4.7 (Dataflow system)

- A dataflow system $S = (Lab, E, F, (D, \sqsubseteq), \iota, \varphi)$ consists of
 - a finite set of (program) labels Lab (here: Lab_c),
 - a set of extremal labels $E \subseteq Lab$ (here: {init(c)} or final(c)),
 - a flow relation $F \subseteq Lab \times Lab$ (here: flow(c) or flow^R(c)),
 - a complete lattice (D, ⊑) satisfying ACC (with LUB operator ∐ and least element ⊥),
 - an extremal value $\iota \in D$ (for the extremal labels), and
 - a collection of monotonic transfer functions {φ_l | l ∈ Lab} of type φ_l : D → D.

Example 4.8

Problem	Available Expressions	Live Variables
E	$\{init(c)\}$	final(<i>c</i>)
F	flow(c)	$flow^R(c)$
D	2 ^{CExp} c	2 ^{Var} c
	\supseteq	\subseteq
	\cap	Ų
	CExp _c	Ø
l	Ø	Var _c
φ_{I}	$arphi_I(d) = (d \setminus kill(B')) \cup gen(B')$	

Definition 4.9 (Dataflow equation system)

Given: dataflow system $S = (Lab, E, F, (D, \sqsubseteq), \iota, \varphi)$, $Lab = \{1, ..., n\}$ (w.l.o.g.)

• S determines the equation system (where $l \in Lab$)

$$\mathsf{AI}_{l} = \begin{cases} \iota & \text{if } l \in E \\ \bigsqcup \{ \varphi_{l'}(\mathsf{AI}_{l'}) \mid (l', l) \in F \} & \text{otherwise} \end{cases}$$

Definition 4.9 (Dataflow equation system)

Given: dataflow system $S = (Lab, E, F, (D, \sqsubseteq), \iota, \varphi)$, $Lab = \{1, ..., n\}$ (w.l.o.g.)

• S determines the equation system (where $l \in Lab$)

 $\mathsf{AI}_{I} = \begin{cases} \iota & \text{if } I \in E \\ \bigsqcup \{\varphi_{l'}(\mathsf{AI}_{l'}) \mid (l', l) \in F \} & \text{otherwise} \end{cases}$ • $(d_{1}, \ldots, d_{n}) \in D^{n}$ is called a solution if $d_{I} = \begin{cases} \iota & \text{if } I \in E \\ \bigsqcup \{\varphi_{l'}(d_{l'}) \mid (l', l) \in F \} & \text{otherwise} \end{cases}$

Definition 4.9 (Dataflow equation system)

Given: dataflow system $S = (Lab, E, F, (D, \sqsubseteq), \iota, \varphi)$, $Lab = \{1, ..., n\}$ (w.l.o.g.)

• S determines the equation system (where $l \in Lab$)

$$\mathsf{AI}_{l} = \begin{cases} \iota & \text{if } l \in E \\ \bigsqcup \{\varphi_{l'}(\mathsf{AI}_{l'}) \mid (l', l) \in F\} & \text{otherwise} \end{cases}$$

$$\bullet (d_{1}, \ldots, d_{n}) \in D^{n} \text{ is called a solution if} \\ d_{l} = \begin{cases} \iota & \text{if } l \in E \\ \bigsqcup \{\varphi_{l'}(d_{l'}) \mid (l', l) \in F\} & \text{otherwise} \end{cases}$$

S determines the transformation

$$\Phi_S: D^n \to D^n: (d_1, \ldots, d_n) \mapsto (d'_1, \ldots, d'_n)$$

where

$$d'_{l} := \begin{cases} \iota & \text{if } l \in E \\ \bigsqcup \{ \varphi_{l'}(d_{l'}) \mid (l', l) \in F \} & \text{otherwise} \end{cases}$$

Definition 4.9 (Dataflow equation system)

Given: dataflow system $S = (Lab, E, F, (D, \sqsubseteq), \iota, \varphi)$, $Lab = \{1, ..., n\}$ (w.l.o.g.)

• S determines the equation system (where $l \in Lab$)

$$\mathsf{AI}_{l} = \begin{cases} \iota & \text{if } l \in E \\ \bigsqcup \{\varphi_{l'}(\mathsf{AI}_{l'}) \mid (l', l) \in F\} & \text{otherwise} \end{cases}$$

$$\bullet (d_{1}, \ldots, d_{n}) \in D^{n} \text{ is called a solution if}$$

$$d_{l} = \begin{cases} \iota & \text{if } l \in E \\ \bigsqcup \{\varphi_{l'}(d_{l'}) \mid (l', l) \in F\} & \text{otherwise} \end{cases}$$

S determines the transformation

$$\Phi_S: D^n \to D^n: (d_1, \ldots, d_n) \mapsto (d'_1, \ldots, d'_n)$$

where

$$d'_{l} := \begin{cases} \iota & \text{if } l \in E \\ \bigsqcup \{ \varphi_{l'}(d_{l'}) \mid (l', l) \in F \} & \text{otherwise} \end{cases}$$

Corollary 4.10

RNTHAACHEN

 $(d_1, \ldots, d_n) \in D^n$ solves the equation system iff it is a fixpoint of Φ_S

Solving Dataflow Problems by Fixpoint Iteration

Remarks:

• (D, \sqsubseteq) being a complete lattice ensures that Φ_S is well defined

Solving Dataflow Problems by Fixpoint Iteration

Remarks:

- (D, \sqsubseteq) being a complete lattice ensures that Φ_S is well defined
- Since (D, □) is a complete lattice satisfying ACC, so is (Dⁿ, □ⁿ) (where (d₁,..., d_n) □ⁿ (d'₁,..., d'_n) iff d_i □ d'_i for every 1 ≤ i ≤ n)

Remarks:

- (D, \sqsubseteq) being a complete lattice ensures that Φ_S is well defined
- Since (D, ⊑) is a complete lattice satisfying ACC, so is (Dⁿ, ⊑ⁿ) (where (d₁,..., d_n) ⊑ⁿ (d'₁,..., d'_n) iff d_i ⊑ d'_i for every 1 ≤ i ≤ n)
- Monotonicity of transfer functions φ_l in (D, ⊑) implies monotonicity of Φ_S in (Dⁿ, ⊑ⁿ) (since ∐ also monotonic)

Remarks:

- (D, \sqsubseteq) being a complete lattice ensures that Φ_S is well defined
- Since (D, ⊑) is a complete lattice satisfying ACC, so is (Dⁿ, ⊑ⁿ) (where (d₁,..., d_n) ⊑ⁿ (d'₁,..., d'_n) iff d_i ⊑ d'_i for every 1 ≤ i ≤ n)
- Monotonicity of transfer functions φ_l in (D, ⊑) implies monotonicity of Φ_S in (Dⁿ, ⊑ⁿ) (since ∐ also monotonic)
- Thus the (least) fixpoint is effectively computable by iteration:

$$\mathsf{fix}(\Phi_{\mathcal{S}}) = \bigsqcup \{ \Phi^k_{\mathcal{S}}(\perp_{D^n}) \mid k \in \mathbb{N} \}$$

where $\perp_{D^n} = (\underbrace{\perp_D, \dots, \perp_D}_{n \text{ times}})$

Remarks:

- (D, \sqsubseteq) being a complete lattice ensures that Φ_S is well defined
- Since (D, □) is a complete lattice satisfying ACC, so is (Dⁿ, □ⁿ) (where (d₁,..., d_n) □ⁿ (d'₁,..., d'_n) iff d_i □ d'_i for every 1 ≤ i ≤ n)
- Monotonicity of transfer functions φ_l in (D, ⊑) implies monotonicity of Φ_S in (Dⁿ, ⊑ⁿ) (since ∐ also monotonic)
- Thus the (least) fixpoint is effectively computable by iteration:

$$\mathsf{fix}(\Phi_{\mathcal{S}}) = \bigsqcup \{ \Phi^k_{\mathcal{S}}(\perp_{D^n}) \mid k \in \mathbb{N} \}$$

where $\perp_{D^n} = (\underbrace{\perp_D, \dots, \perp_D}_{n \text{ times}})$

• If height of (D, \sqsubseteq) is m

 \implies height of (D^n, \sqsubseteq^n) is $m \cdot n$

 \implies fixpoint iteration requires at most $m \cdot n$ steps

Example 4.11 (Available Expressions; cf. Example 2.9)

Program:

```
c = [x := a+b]^{1};
[y := a+b]^{2};
while [y > a+b]^{3} do
[a := a+1]^{4};
[x := a+b]^{5}
```


Example 4.11 (Available Expressions; cf. Example 2.9)

Program:

Equation system:

$$c = [x := a+b]^{1};$$

$$[y := a*b]^{2};$$
while $[y > a+b]^{3}$ do
$$[a := a+1]^{4};$$

$$[x := a+b]^{5}$$

$$\begin{array}{l} \mathsf{AE}_1 = \emptyset \\ \mathsf{AE}_2 = \mathsf{AE}_1 \cup \{ a \! + \! b \} \\ \mathsf{AE}_3 = (\mathsf{AE}_2 \cup \{ a \! * \! b \}) \cap (\mathsf{AE}_5 \cup \{ a \! + \! b \} \\ \mathsf{AE}_4 = \mathsf{AE}_3 \cup \{ a \! + \! b \} \\ \mathsf{AE}_5 = \mathsf{AE}_4 \setminus \{ a \! + \! b, a \! * \! b, a \! + \! 1 \} \end{array}$$

Example 4.11 (Available Expressions; cf. Example 2.9)

Program:

Equation system:

$$\begin{split} c &= [\mathbf{x} := \mathbf{a} + \mathbf{b}]^1; \\ & [\mathbf{y} := \mathbf{a} * \mathbf{b}]^2; \\ & \text{while} [\mathbf{y} > \mathbf{a} + \mathbf{b}]^3 \text{ do} \\ & [\mathbf{a} := \mathbf{a} + 1]^4; \\ & [\mathbf{x} := \mathbf{a} + \mathbf{b}]^5 \end{split}$$

$$\begin{array}{l} AE_1 = \emptyset \\ AE_2 = AE_1 \cup \{a\!+\!b\} \\ AE_3 = (AE_2 \cup \{a\!*\!b\}) \cap (AE_5 \cup \{a\!+\!b\}) \\ AE_4 = AE_3 \cup \{a\!+\!b\} \\ AE_5 = AE_4 \setminus \{a\!+\!b, a\!*\!b, a\!+\!1\} \end{array}$$

Example 4.11 (Available Expressions; cf. Example 2.9)

Program:

Equation system:

$$c = [x := a+b]^{1};$$

$$[y := a*b]^{2};$$
while $[y > a+b]^{3}$ do
$$[a := a+1]^{4};$$

$$[x := a+b]^{5}$$

$$\begin{array}{l} AE_1 = \emptyset \\ AE_2 = AE_1 \cup \{a\!+\!b\} \\ AE_3 = (AE_2 \cup \{a\!+\!b\}) \cap (AE_5 \cup \{a\!+\!b\}) \\ AE_4 = AE_3 \cup \{a\!+\!b\} \\ AE_5 = AE_4 \setminus \{a\!+\!b, a\!+\!b, a\!+\!1\} \end{array}$$

Example 4.11 (Available Expressions; cf. Example 2.9)

Program:

Equation system:

$$c = [x := a+b]^{1};$$

[y := a*b]²;
while [y > a+b]³ do
[a := a+1]⁴;
[x := a+b]⁵

$$\begin{array}{l} AE_1 = \emptyset \\ AE_2 = AE_1 \cup \{a\!+\!b\} \\ AE_3 = (AE_2 \cup \{a\!*\!b\}) \cap (AE_5 \cup \{a\!+\!b\}) \\ AE_4 = AE_3 \cup \{a\!+\!b\} \\ AE_5 = AE_4 \setminus \{a\!+\!b, a\!*\!b, a\!+\!1\} \end{array}$$

Example 4.11 (Available Expressions; cf. Example 2.9)

Program:

Equation system:

$$\begin{split} c &= [x := a+b]^{1}; \\ & [y := a*b]^{2}; \\ & \text{while} [y > a+b]^{3} \text{ do} \\ & [a := a+1]^{4}; \\ & [x := a+b]^{5} \end{split}$$

$$\begin{array}{l} AE_1 = \emptyset \\ AE_2 = AE_1 \cup \{a\!+\!b\} \\ AE_3 = (AE_2 \cup \{a\!*\!b\}) \cap (AE_5 \cup \{a\!+\!b\}) \\ AE_4 = AE_3 \cup \{a\!+\!b\} \\ AE_5 = AE_4 \setminus \{a\!+\!b, a\!*\!b, a\!+\!1\} \end{array}$$

i	1	2	3	4	5
0	CExp _c				
1	Ø	CExp _c	CExp _c	$CExp_c$	Ø
2	Ø	{ a+b }	{ a+b }	CExp	Ø
3	Ø	a+b	{a+b}	$\{a+b\}$	Ø

Example 4.11 (Available Expressions; cf. Example 2.9)

Program:

Equation system:

$$\begin{split} c &= [x := a+b]^{1}; \\ & [y := a*b]^{2}; \\ & \text{while} [y > a+b]^{3} \text{ do} \\ & [a := a+1]^{4}; \\ & [x := a+b]^{5} \end{split}$$

$$\begin{array}{l} AE_1 = \emptyset \\ AE_2 = AE_1 \cup \{a\!+\!b\} \\ AE_3 = (AE_2 \cup \{a\!*\!b\}) \cap (AE_5 \cup \{a\!+\!b\}) \\ AE_4 = AE_3 \cup \{a\!+\!b\} \\ AE_5 = AE_4 \setminus \{a\!+\!b, a\!*\!b, a\!+\!1\} \end{array}$$

i	1	2	3	4	5
0	CExp _c				
1	Ø	CExp _c	CExp _c	CExp _c	Ø
2	Ø	{ a+b }	{ a+b }	CExp	Ø
3	Ø	{a+b}	a+b	{ a+b }	Ø
4	Ø	a+b	{a+b}	{a+b}	Ø

Example 4.12 (Live Variables; cf. Example 2.12)

Program:

```
\begin{array}{ll} [x := 2]^{1}; [y := 4]^{2}; \\ [x := 1]^{3}; \\ \text{if } [y > 0]^{4} \text{ then} \\ [z := x]^{5} \\ \text{else} \\ [z := y*y]^{6}; \\ [x := z]^{7} \end{array}
```


Example 4.12 (Live Variables; cf. Example 2.12)

Program:

Equation system:

 $\begin{array}{ll} [x := 2]^1; [y := 4]^2; \\ [x := 1]^3; \\ \text{if } [y > 0]^4 \text{ then} \\ [z := x]^5 \\ \text{else} \\ [z := y*y]^6; \\ [x := z]^7 \end{array}$

$$\begin{array}{l} \mathsf{LV}_1 = \mathsf{LV}_2 \setminus \{y\} \\ \mathsf{LV}_2 = \mathsf{LV}_3 \setminus \{x\} \\ \mathsf{LV}_3 = \mathsf{LV}_4 \cup \{y\} \\ \mathsf{LV}_4 = ((\mathsf{LV}_5 \setminus \{z\}) \cup \{x\}) \cup ((\mathsf{LV}_6 \setminus \{z\}) \cup \{y\}) \\ \mathsf{LV}_5 = (\mathsf{LV}_7 \setminus \{x\}) \cup \{z\} \\ \mathsf{LV}_6 = (\mathsf{LV}_7 \setminus \{x\}) \cup \{z\} \\ \mathsf{LV}_7 = \{x, y, z\} \end{array}$$

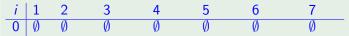
Example 4.12 (Live Variables; cf. Example 2.12)

Program:

Equation system:

$[x := 2]^1; [y := 4]^2;$ $[x := 1]^3;$
if $[y > 0]^4$ then
$[z := x]^5$
else
$[z := y*y]^6;$
$[x := z]^7$

$\begin{array}{l} \mathsf{LV}_1 = \mathsf{LV}_2 \setminus \{y\} \\ \mathsf{LV}_2 = \mathsf{LV}_3 \setminus \{x\} \\ \mathsf{LV}_3 = \mathsf{LV}_4 \cup \{y\} \\ \mathsf{LV}_4 = ((\mathsf{LV}_5 \setminus \{z\}) \cup \{x\}) \cup ((\mathsf{LV}_6 \setminus \{z\}) \cup \{y\}) \\ \mathsf{LV}_5 = (\mathsf{LV}_7 \setminus \{x\}) \cup \{z\} \\ \mathsf{LV}_6 = (\mathsf{LV}_7 \setminus \{x\}) \cup \{z\} \\ \mathsf{LV}_7 = \{x, y, z\} \end{array}$



Example 4.12 (Live Variables; cf. Example 2.12)

Program:

Equation system:

$[x := 2]^1; [y := 4]^2;$
$[x := 1]^3;$
if $[y > 0]^4$ then
$[z := x]^5$
else
$[z := y*y]^6;$
$[x := z]^7$

 $LV_1 = LV_2 \setminus \{y\}$ $LV_2 = LV_3 \setminus \{x\}$ $LV_3 = LV_4 \cup \{y\}$ $\mathsf{LV}_4 = ((\mathsf{LV}_5 \setminus \{z\}) \cup \{x\}) \cup ((\mathsf{LV}_6 \setminus \{z\}) \cup \{y\})$ $LV_5 = (LV_7 \setminus \{x\}) \cup \{z\}$ $LV_6 = (LV_7 \setminus \{x\}) \cup \{z\}$ $LV_7 = \{x, y, z\}$

			3		5	6	7
0	Ø	Ø	Ø	Ø	Ø	Ø	Ø
1	Ø	Ø	{ y }	$\{x,y\}$	{ z }	{z}	

Example 4.12 (Live Variables; cf. Example 2.12)

Program:

Equation system:

 $\begin{array}{ll} [x := 2]^1; [y := 4]^2; \\ [x := 1]^3; \\ \text{if } [y > 0]^4 \text{ then} \\ [z := x]^5 \\ \text{else} \\ [z := y*y]^6; \\ [x := z]^7 \end{array}$

$$\begin{array}{l} \mathsf{LV}_1 = \mathsf{LV}_2 \setminus \{y\} \\ \mathsf{LV}_2 = \mathsf{LV}_3 \setminus \{x\} \\ \mathsf{LV}_3 = \mathsf{LV}_4 \cup \{y\} \\ \mathsf{LV}_4 = ((\mathsf{LV}_5 \setminus \{z\}) \cup \{x\}) \cup ((\mathsf{LV}_6 \setminus \{z\}) \cup \{y\}) \\ \mathsf{LV}_5 = (\mathsf{LV}_7 \setminus \{x\}) \cup \{z\} \\ \mathsf{LV}_6 = (\mathsf{LV}_7 \setminus \{x\}) \cup \{z\} \\ \mathsf{LV}_7 = \{x, y, z\} \end{array}$$

i	1	2	3	4	5	6	7
				Ø			Ø
1	Ø	Ø	{y}	$\{x, y\}$	{ z }	{z}	$\{x, y, z\}$
2	Ø	{ y }	$\{x, y\}$	$\{x, y\}$	$\{y, z\}$	$\{y, z\}$	$\begin{array}{l} \{\mathtt{x}, \mathtt{y}, \mathtt{z}\} \\ \{\mathtt{x}, \mathtt{y}, \mathtt{z}\} \end{array}$

Example 4.12 (Live Variables; cf. Example 2.12)

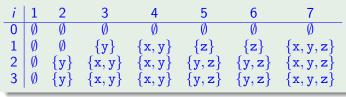
Program:

Equation system:

 $\begin{array}{ll} [x := 2]^1; [y := 4]^2; \\ [x := 1]^3; \\ \text{if } [y > 0]^4 \text{ then} \\ [z := x]^5 \\ \text{else} \\ [z := y*y]^6; \\ [x := z]^7 \end{array}$

$$\begin{array}{l} \mathsf{LV}_1 = \mathsf{LV}_2 \setminus \{y\} \\ \mathsf{LV}_2 = \mathsf{LV}_3 \setminus \{x\} \\ \mathsf{LV}_3 = \mathsf{LV}_4 \cup \{y\} \\ \mathsf{LV}_4 = ((\mathsf{LV}_5 \setminus \{z\}) \cup \{x\}) \cup ((\mathsf{LV}_6 \setminus \{z\}) \cup \{y\}) \\ \mathsf{LV}_5 = (\mathsf{LV}_7 \setminus \{x\}) \cup \{z\} \\ \mathsf{LV}_6 = (\mathsf{LV}_7 \setminus \{x\}) \cup \{z\} \\ \mathsf{LV}_7 = \{x, y, z\} \end{array}$$

Fixpoint iteration:



RNTHAACHEN