Static Program Analysis

Lecture 3: Dataflow Analysis II (Order-Theoretic Foundations)

Thomas Noll

Lehrstuhl für Informatik 2 (Software Modeling and Verification)

RWIHAACHEN UNIVERSITY

noll@cs.rwth-aachen.de
http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Winter Semester 2014/15

Outline

(1) Recap: Dataflow Analysis
(2) Heading for a Dataflow Analysis Framework
(3) Order-Theoretic Foundations: The Domain

Labelled Programs

- Goal: localisation of analysis information
- Dataflow information will be associated with
- skip statements
- assignments
- tests in conditionals (if) and loops (while)
- Assume set of labels Lab with meta variable I $\in L a b$ (usually $L a b=\mathbb{N}$)

Definition (Labelled WHILE programs)

The syntax of labelled WHILE programs is defined by the following context-free grammar:

$$
\begin{aligned}
& a::=z|x| a_{1}+a_{2}\left|a_{1}-a_{2}\right| a_{1} * a_{2} \in A E x p \\
& b::=t\left|a_{1}=a_{2}\right| a_{1}>a_{2}|\neg b| b_{1} \wedge b_{2} \mid b_{1} \vee b_{2} \in B E x p \\
& c::= {[\text { skip] }]^{\prime}\left|[x:=a]^{\prime}\right| c_{1} ; c_{2} \mid } \\
& \text { if }[b]^{\prime} \text { then } c_{1} \text { else } c_{2} \mid \text { while }[b]^{\prime} \text { do } c \in \text { Cmd }
\end{aligned}
$$

- All labels in $c \in C m d$ assumed distinct, denoted by $L a b_{c}$
- Labelled fragments of c called blocks, denoted by $B l k_{c}$

Representing Control Flow

Example

Visualization by

(control) flow graph:

$$
\begin{aligned}
& c=\left[\begin{array}{ll}
\mathrm{z} & :=1]^{1} \text {; }
\end{array}\right. \\
& \text { while }[\mathrm{x}>0]^{2} \text { do } \\
& \text { [z := z*y }]^{3} \text {; } \\
& {[\mathrm{x}:=\mathrm{x}-1]^{4}}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{init}(c) & =1 \\
\operatorname{final}(c) & =\{2\} \\
\operatorname{flow}(c) & =\{(1,2),(2,3),(3,4),(4,2)\}
\end{aligned}
$$

Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each program point, which (complex) expressions must have been computed, and not later modified, on all paths to the program point.

Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each program point, which (complex) expressions must have been computed, and not later modified, on all paths to the program point.

- Can be used for Common Subexpression Elimination: replace subexpression by variable that contains up-to-date value
- Only interesting for non-trivial (i.e., complex) arithmetic expressions

Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each program point, which (complex) expressions must have been computed, and not later modified, on all paths to the program point.

- Can be used for Common Subexpression Elimination: replace subexpression by variable that contains up-to-date value
- Only interesting for non-trivial (i.e., complex) arithmetic expressions

Example (Available Expressions Analysis)

$$
\begin{aligned}
& {[\mathrm{x}:=\mathrm{a}+\mathrm{b}]^{1} ;} \\
& {[\mathrm{y}:=\mathrm{a} * \mathrm{~b}]^{2} ;} \\
& \text { while }[\mathrm{y}>\mathrm{a}+\mathrm{b}]^{3} \text { do } \\
& {[\mathrm{a}:=\mathrm{a}+1]^{4} ;} \\
& {[\mathrm{x}:=\mathrm{a}+\mathrm{b}]^{5}}
\end{aligned}
$$

Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each program point, which (complex) expressions must have been computed, and not later modified, on all paths to the program point.

- Can be used for Common Subexpression Elimination: replace subexpression by variable that contains up-to-date value
- Only interesting for non-trivial (i.e., complex) arithmetic expressions

Example (Available Expressions Analysis)

```
[x := a+b] 1
[y := a*b] 2
while [y > a+b] 3}\mathrm{ do
    [a := a+1] ';
    [x := a+b] }\mp@subsup{}{}{5
```

- $a+b$ available at label 3

```
\([\mathrm{a}:=\mathrm{a}+1]^{4}\);
\([\mathrm{x}:=\mathrm{a}+\mathrm{b}]^{5}\)
```


Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each program point, which (complex) expressions must have been computed, and not later modified, on all paths to the program point.

- Can be used for Common Subexpression Elimination: replace subexpression by variable that contains up-to-date value
- Only interesting for non-trivial (i.e., complex) arithmetic expressions

Example (Available Expressions Analysis)

```
[x := a+b] ];
[y := a*b] '2;
while [y > a+b]}\mp@subsup{}{}{3}\mathrm{ do
    [a := a+1] [;
    [x := a+b] 5
```

- a+b available at label 3
- a+b not available at label 5

Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each program point, which (complex) expressions must have been computed, and not later modified, on all paths to the program point.

- Can be used for Common Subexpression Elimination: replace subexpression by variable that contains up-to-date value
- Only interesting for non-trivial (i.e., complex) arithmetic expressions

Example (Available Expressions Analysis)

```
[x := a+b] ];
[y := a*b] '2;
while [y > a+b]}\mp@subsup{}{}{3}\mathrm{ do
    [a := a+1] ';
    [x := a+b] 5
```

- a+b available at label 3
- a+b not available at label 5
- possible optimization: while $[y>x]^{3}$ do
- Analysis itself defined by setting up an equation system
- For each $I \in L a b_{c}, A E_{I} \subseteq C E x p$ represents the set of available expressions at the entry of block B^{\prime}
- Formally, for $c \in C m d$ with isolated entry:

$$
\mathrm{AE}_{I}=\left\{\bigcap_{\bigcap}^{\emptyset} \varphi_{I^{\prime}}\left(\mathrm{AE}_{I^{\prime}}\right) \mid\left(I^{\prime}, I\right) \in \operatorname{flow}(c)\right\} \quad \text { if } I=\operatorname{init}(c)
$$

where $\varphi_{I^{\prime}}: 2^{C E x p_{c}} \rightarrow 2^{C E x p_{c}}$ denotes the transfer function of block $B^{\prime \prime}$, given by

$$
\varphi_{l^{\prime}}(A):=\left(A \backslash \operatorname{kill}_{\mathrm{AE}}\left(B^{\prime^{\prime}}\right)\right) \cup \operatorname{gen}_{\mathrm{AE}}\left(B^{\prime^{\prime}}\right)
$$

- Characterization of analysis:
flow-sensitive: results depending on order of assignments
forward: starts in init(c) and proceeds downwards must: \bigcap in equation for $A E_{\text {, }}$
- Later: solution not necessarily unique
\Longrightarrow choose greatest one

The Equation System II

The Equation System II
Reminder: $\begin{array}{rll}\mathrm{AE}_{I} & =\left\{\begin{array}{l}\emptyset \\ \left.\bigcap \varphi_{\prime^{\prime}}\left(\mathrm{AE}_{\prime^{\prime}}\right) \mid\left(I^{\prime}, I\right) \in \text { flow }(c)\right\} \\ \text { if } I=\operatorname{init}(c) \\ \text { otherwise }\end{array}\right. \\ \varphi_{\prime^{\prime}}(E) & =\left(E \backslash \operatorname{kill}_{\mathrm{AE}}\left(B^{\prime \prime}\right)\right) \cup \operatorname{gen}_{\mathrm{AE}}\left(B^{\prime \prime}\right) & \end{array}$

Example (AE equation system)

$$
\begin{aligned}
c= & {[\mathrm{x}:=\mathrm{a}+\mathrm{b}]^{1} ; } \\
& {[\mathrm{y}:=\mathrm{a} * \mathrm{~b}]^{2} ; } \\
& \text { while }[\mathrm{y}>\mathrm{a}+\mathrm{b}]^{3} \text { do } \\
& {[\mathrm{a}:=\mathrm{a}+1]^{4} ; } \\
& {[\mathrm{x}:=\mathrm{a}+\mathrm{b}]^{5} }
\end{aligned}
$$

The Equation System II
Reminder: $\begin{aligned} & \mathrm{AE}_{I}= \begin{cases}\emptyset & \text { if } I=\operatorname{init}(c) \\ \varphi_{I^{\prime}}(E) & =\left(E \backslash \varphi_{I^{\prime}}\left(\mathrm{AE}_{\prime^{\prime}}\right) \mid\left(I^{\prime}, I\right) \in \operatorname{flow}(c)\right\} \\ \text { otherwise }\end{cases} \\ &\left.\operatorname{kil}_{\mathrm{AE}}\left(B^{\prime^{\prime}}\right)\right) \cup \operatorname{gen}_{\mathrm{AE}}\left(B^{\prime^{\prime}}\right)\end{aligned}$

Example (AE equation system)

$$
\begin{gathered}
c=\left[\begin{array}{l}
\mathrm{x}:=\mathrm{a}+\mathrm{b}]^{1} ; \\
{[\mathrm{y}:=\mathrm{a} * \mathrm{~b}]^{2} ;} \\
\text { while }[\mathrm{y}>\mathrm{a}+\mathrm{b}]^{3} \text { do } \\
{[\mathrm{a}:=\mathrm{a}+1]^{4} ;} \\
{[\mathrm{x} \quad:=\mathrm{a}+\mathrm{b}]^{5}}
\end{array}\right.
\end{gathered}
$$

$I \in L a b_{c}$	kill $_{\mathrm{AE}}\left(B^{\prime}\right)$	$\operatorname{gen}_{\mathrm{AE}}\left(B^{\prime}\right)$
1	\emptyset	$\{\mathrm{a}+\mathrm{b}\}$
2	\emptyset	$\{\mathrm{a} * \mathrm{~b}\}$
3	\emptyset	$\{\mathrm{a}+\mathrm{b}\}$
4	$\{\mathrm{a}+\mathrm{b}, \mathrm{a} * \mathrm{~b}, \mathrm{a}+1\}$	\emptyset
5	\emptyset	$\{\mathrm{a}+\mathrm{b}\}$

The Equation System II

Reminder: $\begin{array}{rll}\mathrm{AE}_{I} & = \begin{cases}\emptyset & \text { if } I=\operatorname{init}(c) \\ \varphi_{\prime^{\prime}}(E) & =\left(E \backslash \varphi_{\prime^{\prime}}\left(\mathrm{AE}_{I^{\prime}}\right) \mid\left(I^{\prime}, l\right) \in \text { flow }(c)\right\} \\ \text { otherwise }\end{cases} \\ \left.\mathrm{AE}\left(B^{\prime \prime}\right)\right) \cup \operatorname{gen}_{\mathrm{AE}}\left(B^{\prime \prime}\right) & \end{array}$

Example (AE equation system)

$$
\begin{aligned}
c= & {[\mathrm{x}:=\mathrm{a}+\mathrm{b}]^{1} ; } \\
& {[\mathrm{y}:=\mathrm{a} * \mathrm{~b}]^{2} ; } \\
& \text { while }[\mathrm{y}>\mathrm{a}+\mathrm{b}]^{3} \text { do } \\
& {[\mathrm{a}:=\mathrm{a}+1]^{4} ; } \\
& {[\mathrm{x}:=\mathrm{a}+\mathrm{b}]^{5} }
\end{aligned}
$$

Equations:

$$
\begin{aligned}
\mathrm{AE}_{1} & =\emptyset \\
\mathrm{AE}_{2} & =\varphi_{1}\left(\mathrm{AE}_{1}\right)=\mathrm{AE}_{1} \cup\{\mathrm{a}+\mathrm{b}\} \\
\mathrm{AE}_{3} & =\varphi_{2}\left(\mathrm{AE}_{2}\right) \cap \varphi_{5}\left(\mathrm{AE}_{5}\right) \\
& =\left(\mathrm{AE} E_{2} \cup\{\mathrm{a} * \mathrm{~b}\}\right) \cap(\mathrm{AE} 5 \cup\{\mathrm{a}+\mathrm{b}\}) \\
\mathrm{AE}_{4} & =\varphi_{3}\left(\mathrm{AE}_{3}\right)=A E_{3} \cup\{\mathrm{a}+\mathrm{b}\} \\
\mathrm{AE}_{5} & =\varphi_{4}\left(\mathrm{AE}_{4}\right)=A E_{4} \backslash\{\mathrm{a}+\mathrm{b}, \mathrm{a} * \mathrm{~b}, \mathrm{a}+1\}
\end{aligned}
$$

$I \in L a b_{c}$	kill $_{\mathrm{AE}}\left(B^{\prime}\right)$	$\operatorname{gen}_{\mathrm{AE}}\left(B^{\prime}\right)$
1	\emptyset	$\{\mathrm{a}+\mathrm{b}\}$
2	\emptyset	$\{\mathrm{a} * \mathrm{~b}\}$
3	\emptyset	$\{\mathrm{a}+\mathrm{b}\}$
4	$\{\mathrm{a}+\mathrm{b}, \mathrm{a} * \mathrm{~b}, \mathrm{a}+1\}$	\emptyset
5	\emptyset	$\{\mathrm{a}+\mathrm{b}\}$

The Equation System II

Reminder: $\begin{array}{rll}\mathrm{AE}_{I} & = \begin{cases}\emptyset & \text { if } I=\operatorname{init}(c) \\ \varphi_{\prime^{\prime}}(E) & =\left(E \backslash \varphi_{\prime^{\prime}}\left(\mathrm{AE}_{I^{\prime}}\right) \mid\left(I^{\prime}, l\right) \in \text { flow }(c)\right\} \\ \text { otherwise }\end{cases} \\ \left.\mathrm{AE}\left(B^{\prime \prime}\right)\right) \cup \operatorname{gen}_{\mathrm{AE}}\left(B^{\prime \prime}\right) & \end{array}$

Example (AE equation system)

$$
\begin{aligned}
& c= {[\mathrm{x}:=\mathrm{a}+\mathrm{b}]^{1} ; } \\
& {[\mathrm{y}:=\mathrm{a} * \mathrm{~b}]^{2} ; } \\
& \text { while }[\mathrm{y}>\mathrm{a}>\mathrm{b}]^{3} \text { do } \\
& {[\mathrm{a}:=\mathrm{a}+1]^{4} ; } \\
& {[\mathrm{x}:=\mathrm{a}+\mathrm{b}]^{5} }
\end{aligned}
$$

$$
\begin{array}{ccc}
I \in L a b_{c} & \text { kill }_{\mathrm{AE}}\left(B^{\prime}\right) & \operatorname{gen}_{\mathrm{AE}}\left(B^{\prime}\right) \\
\hline 1 & \emptyset & \{\mathrm{a}+\mathrm{b}\} \\
2 & \emptyset & \{\mathrm{a} * \mathrm{~b}\} \\
3 & \emptyset & \{\mathrm{a}+\mathrm{b}\} \\
4 & \{a+\mathrm{h} & \mathrm{a} * \mathrm{~b} \\
& \mathrm{a}+1\} &
\end{array}
$$

$$
\begin{array}{ccc}
4 & \{\mathrm{a}+\mathrm{b}, \mathrm{a} * \mathrm{~b}, \mathrm{a}+1\} & \emptyset \\
5 & \emptyset & \{\mathrm{a}+\mathrm{b}\}
\end{array}
$$

Equations:

$$
\begin{aligned}
\mathrm{AE}_{1} & =\emptyset \\
\mathrm{AE}_{2} & =\varphi_{1}\left(\mathrm{AE}_{1}\right)=\mathrm{AE}_{1} \cup\{\mathrm{a}+\mathrm{b}\} \\
\mathrm{AE}_{3} & =\varphi_{2}\left(\mathrm{AE}_{2}\right) \cap \varphi_{5}\left(\mathrm{AE}_{5}\right) \\
& =\left(\mathrm{AE} E_{2} \cup\{\mathrm{a} * \mathrm{~b}\}\right) \cap(\mathrm{AE} 5 \cup\{\mathrm{a}+\mathrm{b}\}) \\
\mathrm{AE}_{4} & =\varphi_{3}\left(\mathrm{AE}_{3}\right)=A E_{3} \cup\{\mathrm{a}+\mathrm{b}\} \\
\mathrm{AE}_{5} & =\varphi_{4}\left(\mathrm{AE}_{4}\right)=A E_{4} \backslash\{\mathrm{a}+\mathrm{b}, \mathrm{a} * \mathrm{~b}, \mathrm{a}+1\}
\end{aligned}
$$

Solution: $\quad \mathrm{AE}_{1}=\emptyset$
$A E_{2}=\{a+b\}$
$A E_{3}=\{a+b\}$
$A E_{4}=\{a+b\}$
$A E_{5}=\emptyset$

Goal of Live Variables Analysis

Live Variables Analysis

The goal of Live Variables Analysis is to determine, for each program point, which variables may be live at the exit from the point.

- A variable is called live at the exit from a block if there exists a path from the block to a use of the variable that does not re-define the variable
- All variables considered to be live at the end of the program (alternative: restriction to output variables)
- Can be used for Dead Code Elimination: remove assignments to non-live variables
- For each $I \in L a b_{c}, L V$, \subseteq Var r_{c} represents the set of live variables at the exit of block B^{\prime}
- Formally, for a program $c \in C m d$ with isolated exits:

$$
\mathrm{LV}_{I}= \begin{cases}\operatorname{Var}_{c} & \text { if } I \in \text { final }(c) \\ \bigcup\left\{\varphi_{I^{\prime}}\left(\mathrm{LV}_{I^{\prime}}\right) \mid\left(I, I^{\prime}\right) \in \operatorname{flow}(c)\right\} & \text { otherwise }\end{cases}
$$

where $\varphi_{I^{\prime}}: 2^{\operatorname{Var}_{c}} \rightarrow 2^{\operatorname{Var}_{c}}$ denotes the transfer function of block $B^{\prime \prime}$, given by

$$
\varphi_{\prime^{\prime}}(V):=\left(V \backslash \operatorname{kill}_{\mathrm{LV}}\left(B^{\prime \prime}\right)\right) \cup \operatorname{gen}_{\mathrm{LV}}\left(B^{\prime^{\prime}}\right)
$$

- Characterization of analysis:
flow-sensitive: results depending on order of assignments
backward: starts in final(c) and proceeds upwards
may: U in equation for $L V_{\text {, }}$
- Later: solution not necessarily unique
\Longrightarrow choose least one

The Equation System II

The Equation System II
Reminder: $\quad \mathrm{LV},= \begin{cases}\operatorname{Var}_{c} \\ \bigcup\left\{\varphi^{\prime}\left(\mathrm{LV}_{l^{\prime}}\right) \mid\left(I, I^{\prime}\right) \in \text { flow }(c)\right\} & \text { if } I \in \text { final }(c) \\ \text { otherwise }\end{cases}$

$$
\varphi_{I^{\prime}}(V)=\left(V \backslash \operatorname{kill}_{\mathrm{LV}}\left(B^{\prime^{\prime}}\right)\right) \cup \operatorname{gen}_{\mathrm{LV}}\left(B^{\prime^{\prime}}\right)
$$

Example (LV equation system)

$$
\begin{aligned}
& c=\left[\begin{array}{ll}
\mathrm{x} & :=2
\end{array}\right]^{1} ;[\mathrm{y}:=4]^{2} \text {; } \\
& {[\mathrm{x}:=1]^{3} \text {; }} \\
& \text { if }[y>0]^{4} \text { then } \\
& {[z:=x]^{5}} \\
& \text { else } \\
& {[z:=y * y]^{6} \text {; }} \\
& {[\mathrm{x}:=\mathrm{z}]^{7}}
\end{aligned}
$$

The Equation System II

Example (LV equation system)

$$
\begin{aligned}
c= & {\left[\begin{array}{ll}
\mathrm{x} \quad:=2
\end{array}\right]^{1} ;[\mathrm{y}:=4]^{2} } \\
& {[\mathrm{x}:=1]^{3} ; } \\
& \text { if }[\mathrm{y}>0]^{4} \text { then } \\
& {[\mathrm{z}:=\mathrm{x}]^{5} } \\
& \text { else } \\
& {[\mathrm{z}:=\mathrm{y} * \mathrm{y}]^{6} } \\
& {[\mathrm{x} \quad:=\mathrm{z}]^{7} }
\end{aligned}
$$

$I \in L a b_{c}$	kill $_{\mathrm{LV}}\left(B^{\prime}\right)$ gen $_{\mathrm{LV}}\left(B^{\prime}\right)$	
1	$\{\mathrm{x}\}$	\emptyset
2	$\{\mathrm{y}\}$	\emptyset
3	$\{\mathrm{x}\}$	\emptyset
4	\emptyset	$\{\mathrm{y}\}$
5	$\{\mathrm{z}\}$	$\{\mathrm{x}\}$
6	$\{\mathrm{z}\}$	$\{\mathrm{y}\}$
7	$\{\mathrm{x}\}$	$\{\mathrm{z}\}$

Reminder: $\quad \mathrm{LV},= \begin{cases}\operatorname{Var}_{c} & \text { if } I \in \text { final }(c) \\ \bigcup\left\{\varphi_{I^{\prime}}\left(\mathrm{LV}_{\prime^{\prime}}\right) \mid\left(I, I^{\prime}\right) \in \text { flow }(c)\right\} & \text { otherwise }\end{cases}$

$$
\varphi_{l^{\prime}}(V)=\left(V \backslash \operatorname{kill}_{\mathrm{LV}}\left(B^{\prime^{\prime}}\right)\right) \cup \operatorname{gen}_{\mathrm{LV}}\left(B^{\prime^{\prime}}\right)
$$

Example (LV equation system)

$$
\left.\begin{array}{rl}
c= & {\left[\begin{array}{ll}
\mathrm{x}: & := \\
\hline
\end{array}\right]^{1} ;[\mathrm{y}:=4]^{2} ;} \\
& {[\mathrm{x}:=1]^{3} ;} \\
& \text { if }[\mathrm{y}>0
\end{array}\right]^{4} \text { then }, ~\left[\begin{array}{l}
\mathrm{z}:=\mathrm{x}]^{5} \\
\\
\text { else } \\
{[\mathrm{z}:=\mathrm{y} * \mathrm{y}]^{6} ;} \\
{[\mathrm{x}:=\mathrm{z}]^{7}}
\end{array}\right.
$$

$$
\begin{array}{ccc}
I \in L_{a} b_{c} & \text { kill }_{\mathrm{LV}}\left(B^{\prime}\right) & \text { gen }_{\mathrm{LV}}\left(B^{\prime}\right) \\
\hline 1 & \{\mathrm{x}\} & \emptyset \\
2 & \{\mathrm{y}\} & \emptyset \\
3 & \{\mathrm{x}\} & \emptyset \\
4 & \emptyset & \{\mathrm{y}\} \\
5 & \{\mathrm{z}\} & \{\mathrm{x}\} \\
6 & \{\mathrm{z}\} & \{\mathrm{y}\} \\
7 & \{\mathrm{x}\} & \{\mathrm{z}\}
\end{array}
$$

$\mathrm{LV}_{1}=\varphi_{2}\left(\mathrm{LV}_{2}\right)=\mathrm{LV}_{2} \backslash\{\mathrm{y}\}$
$\mathrm{LV}_{2}=\varphi_{3}\left(\mathrm{LV}_{3}\right)=\mathrm{LV}_{3} \backslash\{\mathrm{x}\}$
$\mathrm{LV}_{3}=\varphi_{4}\left(\mathrm{LV}_{4}\right)=\mathrm{LV}_{4} \cup\{\mathrm{y}\}$
$\mathrm{LV}_{4}=\varphi_{5}\left(\mathrm{LV}_{5}\right) \cup \varphi_{6}\left(\mathrm{LV}_{6}\right)$
$=\left(\left(L \mathrm{~L}_{5} \backslash\{\mathrm{z}\}\right) \cup\{\mathrm{x}\}\right) \cup\left(\left(\mathrm{LV}_{6} \backslash\{\mathrm{z}\}\right) \cup\{\mathrm{y}\}\right)$
$\mathrm{LV}_{5}=\varphi_{7}\left(\mathrm{LV}_{7}\right)=\left(\mathrm{LV}_{7} \backslash\{\mathrm{x}\}\right) \cup\{\mathrm{z}\}$
$\mathrm{LV}_{6}=\varphi_{7}\left(\mathrm{LV}_{7}\right)=\left(\mathrm{LV}_{7} \backslash\{\mathrm{x}\}\right) \cup\{\mathrm{z}\}$
$\mathrm{LV}_{7}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$

Reminder: $\quad \mathrm{LV}_{I}= \begin{cases}\operatorname{Var}_{c} \\ \bigcup\left\{\varphi_{I^{\prime}}\left(\mathrm{LV}_{\prime^{\prime}}\right) \mid\left(I, I^{\prime}\right) \in \text { flow }(c)\right\} & \text { if } I \in \text { final }(c) \\ \text { otherwise }\end{cases}$

$$
\varphi_{l^{\prime}}(V)=\left(V \backslash \operatorname{kill}_{\mathrm{LV}}\left(B^{\prime^{\prime}}\right)\right) \cup \operatorname{gen}_{\mathrm{LV}}\left(B^{\prime^{\prime}}\right)
$$

Example (LV equation system)

$$
\left.\begin{array}{rl}
c= & {\left[\begin{array}{ll}
\mathrm{x}: & := \\
\hline
\end{array}\right]^{1} ;[\mathrm{y}:=4]^{2} ;} \\
& {[\mathrm{x}:=1]^{3} ;} \\
& \text { if }[\mathrm{y}>0
\end{array}\right]^{4} \text { then }, ~\left[\begin{array}{l}
\mathrm{z}:=\mathrm{x}]^{5} \\
\\
\text { else } \\
{[\mathrm{z}:=\mathrm{y} * \mathrm{y}]^{6} ;} \\
{[\mathrm{x}:=\mathrm{z}]^{7}}
\end{array}\right.
$$

$$
\begin{array}{ccc}
l \in L^{c} b_{c} & \text { kill }_{\mathrm{LV}}\left(B^{\prime}\right) & \operatorname{gen}_{\mathrm{LV}}\left(B^{\prime}\right) \\
\hline 1 & \{\mathrm{x}\} & \emptyset \\
2 & \{\mathrm{y}\} & \emptyset \\
3 & \{\mathrm{x}\} & \emptyset \\
4 & \emptyset & \{\mathrm{y}\} \\
5 & \{\mathrm{z}\} & \{\mathrm{x}\} \\
6 & \{\mathrm{z}\} & \{\mathrm{y}\} \\
7 & \{\mathrm{x}\} & \{\mathrm{z}\}
\end{array}
$$

$$
\begin{aligned}
\mathrm{LV}_{1} & =\varphi_{2}\left(\mathrm{LV}_{2}\right)=\mathrm{LV}_{2} \backslash\{\mathrm{y}\} \\
\mathrm{LV}_{2} & =\varphi_{3}\left(\mathrm{LV}_{3}\right)=\mathrm{LV}_{3} \backslash\{\mathrm{x}\} \\
\mathrm{LV}_{3} & =\varphi_{4}\left(\mathrm{LV}_{4}\right)=\mathrm{LV}_{4} \cup\{\mathrm{y}\} \\
\mathrm{LV}_{4} & =\varphi_{5}\left(\mathrm{LV}_{5}\right) \cup \varphi_{6}(\mathrm{LV} \\
& =\left(\left(\mathrm{LV}_{5} \backslash\{\mathrm{z}\}\right) \cup\{\mathrm{x}\}\right) \cup\left(\left(\mathrm{LV}_{6} \backslash\{\mathrm{z}\}\right) \cup\{\mathrm{y}\}\right) \\
\mathrm{LV}_{5} & =\varphi_{7}\left(\mathrm{LV}_{7}\right)=\left(\mathrm{LV}_{7} \backslash\{\mathrm{x}\}\right) \cup\{\mathrm{z}\} \\
\mathrm{LV}_{6} & =\varphi_{7}\left(\mathrm{LV}_{7}\right)=(\mathrm{LV} 7 \backslash\{\mathrm{x}\}) \cup\{\mathrm{z}\} \\
\mathrm{LV}_{7} & =\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}
\end{aligned}
$$

Solution: $\quad L V_{1}=\emptyset$

$$
\mathrm{LV}_{2}=\{\mathrm{y}\}
$$

$$
\mathrm{LV}_{3}=\{\mathrm{x}, \mathrm{y}\}
$$

$$
\mathrm{LV}_{4}=\{\mathrm{x}, \mathrm{y}\}
$$

$$
L V_{5}=\{y, z\}
$$

$$
\mathrm{LV}_{6}=\{\mathrm{y}, \mathrm{z}\}
$$

$$
\mathrm{LV}_{7}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}
$$

Outline

(1) Recap: Dataflow Analysis

(2) Heading for a Dataflow Analysis Framework
(3) Order-Theoretic Foundations: The Domain

Similarities Between Analysis Problems

- Observation: the analyses presented so far have some similarities

Similarities Between Analysis Problems

- Observation: the analyses presented so far have some similarities
\Longrightarrow Look for underlying framework

Similarities Between Analysis Problems

- Observation: the analyses presented so far have some similarities
\Longrightarrow Look for underlying framework
- Advantage: possibility for designing (efficient) generic algorithms for solving dataflow equations

Similarities Between Analysis Problems

- Observation: the analyses presented so far have some similarities
\Longrightarrow Look for underlying framework
- Advantage: possibility for designing (efficient) generic algorithms for solving dataflow equations
- Overall pattern: for $c \in C m d$ and $I \in L a b_{c}$, the analysis information (Al) is described by equations of the form

$$
\mathrm{Al}_{I}= \begin{cases}\iota & \text { if } I \in E \\ \bigsqcup\left\{\varphi_{I^{\prime}}\left(\mathrm{Al}_{\prime^{\prime}}\right) \mid\left(I^{\prime}, I\right) \in F\right\} & \text { otherwise }\end{cases}
$$

where

- the set of extremal labels, E, is $\{\operatorname{init}(c)\}$ or final(c)
- ι specifies the extremal analysis information
- the combination operator, \bigsqcup, is \bigcap or \bigcup
- $\varphi^{\prime \prime}$ denotes the transfer function of block $B^{\prime \prime}$
- the flow relation F is flow (c) or flow ${ }^{R}(c)\left(:=\left\{\left(I^{\prime}, I\right) \mid\left(I, I^{\prime}\right) \in\right.\right.$ flow $\left.\left.(c)\right\}\right)$

Characterization of Analyses

- Direction of information flow:
- forward:
- $F=$ flow (c)
- $\mathrm{Al}_{\text {, concerns entry of } B^{\prime}}$
- c has isolated entry
- backward:
- $F=\operatorname{flow}^{R}(c)$
- $\mathrm{Al}_{\text {}}$ concerns exit of B^{\prime}
- c has isolated exits

Characterization of Analyses

- Direction of information flow:
- forward:
- $F=$ flow (c)
- $\mathrm{Al}_{\text {, concerns entry of } B^{\prime}}$
- c has isolated entry
- backward:
- $F=$ flow $^{R}(c)$
- Al_{l} concerns exit of B^{\prime}
- c has isolated exits
- Quantification over paths:
- may:
- $\bigsqcup=\bigcup$
- property satisfied by some path
- interested in least solution (later)
- must:
- $\sqcup=\bigcap$
- property satisfied by all paths
- interested in greatest solution (later)

Goal: solve dataflow equation system by fixpoint iteration
(1) Characterize solution of equation system as fixpoint of a transformation

Goal: solve dataflow equation system by fixpoint iteration
(1) Characterize solution of equation system as fixpoint of a transformation
(2) Introduce partial order for comparing analysis results

Goal: solve dataflow equation system by fixpoint iteration
(1) Characterize solution of equation system as fixpoint of a transformation
(2) Introduce partial order for comparing analysis results
(3) Establish least upper bound as combination operator

Goal: solve dataflow equation system by fixpoint iteration
(1) Characterize solution of equation system as fixpoint of a transformation
(2) Introduce partial order for comparing analysis results
(3) Establish least upper bound as combination operator
(9) Ensure monotonicity of transfer functions

Goal: solve dataflow equation system by fixpoint iteration
(1) Characterize solution of equation system as fixpoint of a transformation
(2) Introduce partial order for comparing analysis results
(3) Establish least upper bound as combination operator
(1) Ensure monotonicity of transfer functions
(6) Guarantee termination of fixpoint iteration by ascending chain condition

Goal: solve dataflow equation system by fixpoint iteration
(1) Characterize solution of equation system as fixpoint of a transformation
(2) Introduce partial order for comparing analysis results
(3) Establish least upper bound as combination operator
(1) Ensure monotonicity of transfer functions
(6) Guarantee termination of fixpoint iteration by ascending chain condition
(0) Optimize fixpoint iteration by worklist algorithm

Outline

(1) Recap: Dataflow Analysis
(2) Heading for a Dataflow Analysis Framework
(3) Order-Theoretic Foundations: The Domain

- Wanted: solution of (dataflow) equation system
- Wanted: solution of (dataflow) equation system
- Problem: recursive dependencies between dataflow variables
- Wanted: solution of (dataflow) equation system
- Problem: recursive dependencies between dataflow variables
- Idea: characterize solution as fixpoint of transformation:

$$
\left(\mathrm{Al}_{l}=\tau_{l}\right)_{l \in L a b_{c}} \Longleftrightarrow \Phi\left(\left(\mathrm{Al}_{l}\right)_{l \in L a b_{c}}\right)=\left(\mathrm{Al}_{l}\right)_{l \in L_{a b_{c}}}
$$

where $\Phi\left(\left(\mathrm{Al}_{l}\right)_{l \in L_{a b_{c}}}\right):=\left(\tau_{l}\right)_{l \in L a b_{c}}$

- Wanted: solution of (dataflow) equation system
- Problem: recursive dependencies between dataflow variables
- Idea: characterize solution as fixpoint of transformation:

$$
\left(\mathrm{Al}_{l}=\tau_{l}\right)_{l \in L a b_{c}} \Longleftrightarrow \Phi\left(\left(\mathrm{Al}_{l}\right)_{l \in L a b_{c}}\right)=\left(\mathrm{Al}_{l}\right)_{l \in L a b_{c}}
$$

where $\Phi\left(\left(\mathrm{Al}_{l}\right)_{l \in L_{a b}}\right):=\left(\tau_{l}\right)_{I \in L a b_{c}}$

- Approach: approximate fixpoint by iteration

Partial Orders

The domain of analysis information usually forms a partial order where the ordering relation compares the "precision" of information.

Definition 3.1 (Partial order)

A partial order $(\mathrm{PO})(D, \sqsubseteq)$ consists of a set D, called domain, and of a relation $\sqsubseteq \subseteq D \times D$ such that, for every $d_{1}, d_{2}, d_{3} \in D$,
reflexivity: $d_{1} \sqsubseteq d_{1}$
transitivity: $d_{1} \sqsubseteq d_{2}$ and $d_{2} \sqsubseteq d_{3} \Longrightarrow d_{1} \sqsubseteq d_{3}$
antisymmetry: $d_{1} \sqsubseteq d_{2}$ and $d_{2} \sqsubseteq d_{1} \Longrightarrow d_{1}=d_{2}$
It is called total if, in addition, always $d_{1} \sqsubseteq d_{2}$ or $d_{2} \sqsubseteq d_{1}$.

Partial Orders

The domain of analysis information usually forms a partial order where the ordering relation compares the "precision" of information.

Definition 3.1 (Partial order)

A partial order (PO) (D, \sqsubseteq) consists of a set D, called domain, and of a relation $\sqsubseteq \subseteq D \times D$ such that, for every $d_{1}, d_{2}, d_{3} \in D$,
reflexivity: $d_{1} \sqsubseteq d_{1}$
transitivity: $d_{1} \sqsubseteq d_{2}$ and $d_{2} \sqsubseteq d_{3} \Longrightarrow d_{1} \sqsubseteq d_{3}$
antisymmetry: $d_{1} \sqsubseteq d_{2}$ and $d_{2} \sqsubseteq d_{1} \Longrightarrow d_{1}=d_{2}$
It is called total if, in addition, always $d_{1} \sqsubseteq d_{2}$ or $d_{2} \sqsubseteq d_{1}$.

Example 3.2

(1) (\mathbb{N}, \leq) is a total partial order

Partial Orders

The domain of analysis information usually forms a partial order where the ordering relation compares the "precision" of information.

Definition 3.1 (Partial order)

A partial order (PO) (D, \sqsubseteq) consists of a set D, called domain, and of a relation $\sqsubseteq \subseteq D \times D$ such that, for every $d_{1}, d_{2}, d_{3} \in D$,
reflexivity: $d_{1} \sqsubseteq d_{1}$
transitivity: $d_{1} \sqsubseteq d_{2}$ and $d_{2} \sqsubseteq d_{3} \Longrightarrow d_{1} \sqsubseteq d_{3}$
antisymmetry: $d_{1} \sqsubseteq d_{2}$ and $d_{2} \sqsubseteq d_{1} \Longrightarrow d_{1}=d_{2}$
It is called total if, in addition, always $d_{1} \sqsubseteq d_{2}$ or $d_{2} \sqsubseteq d_{1}$.

Example 3.2

(1) (\mathbb{N}, \leq) is a total partial order
(2) ($\mathbb{N},<)$ is not a partial order (since not reflexive)

Partial Orders

The domain of analysis information usually forms a partial order where the ordering relation compares the "precision" of information.

Definition 3.1 (Partial order)

A partial order (PO) (D, \sqsubseteq) consists of a set D, called domain, and of a relation $\sqsubseteq \subseteq D \times D$ such that, for every $d_{1}, d_{2}, d_{3} \in D$,
reflexivity: $d_{1} \sqsubseteq d_{1}$
transitivity: $d_{1} \sqsubseteq d_{2}$ and $d_{2} \sqsubseteq d_{3} \Longrightarrow d_{1} \sqsubseteq d_{3}$
antisymmetry: $d_{1} \sqsubseteq d_{2}$ and $d_{2} \sqsubseteq d_{1} \Longrightarrow d_{1}=d_{2}$
It is called total if, in addition, always $d_{1} \sqsubseteq d_{2}$ or $d_{2} \sqsubseteq d_{1}$.

Example 3.2

(1) (\mathbb{N}, \leq) is a total partial order
(2) ($\mathbb{N},<)$ is not a partial order (since not reflexive)
(3) (Live Variables) $\left(2^{\text {Var }_{c}}, \subseteq\right)$ is a (non-total) partial order

Partial Orders

The domain of analysis information usually forms a partial order where the ordering relation compares the "precision" of information.

Definition 3.1 (Partial order)

A partial order (PO) (D, \sqsubseteq) consists of a set D, called domain, and of a relation $\sqsubseteq \subseteq D \times D$ such that, for every $d_{1}, d_{2}, d_{3} \in D$,
reflexivity: $d_{1} \sqsubseteq d_{1}$
transitivity: $d_{1} \sqsubseteq d_{2}$ and $d_{2} \sqsubseteq d_{3} \Longrightarrow d_{1} \sqsubseteq d_{3}$
antisymmetry: $d_{1} \sqsubseteq d_{2}$ and $d_{2} \sqsubseteq d_{1} \Longrightarrow d_{1}=d_{2}$
It is called total if, in addition, always $d_{1} \sqsubseteq d_{2}$ or $d_{2} \sqsubseteq d_{1}$.

Example 3.2

(1) (\mathbb{N}, \leq) is a total partial order
(2) ($\mathbb{N},<)$ is not a partial order (since not reflexive)
(3) (Live Variables) $\left(2^{\text {Var }_{c}}, \subseteq\right)$ is a (non-total) partial order
(9) (Available Expressions) $\left(2^{C E x p} c, \supseteq\right)$ is a (non-total) partial order

Upper Bounds

In the dataflow equation system, analysis information from several predecessors is combined by taking the least upper bound.

Definition 3.3 ((Least) upper bound)

Let (D, \sqsubseteq) be a partial order and $S \subseteq D$.
(1) An element $d \in D$ is called an upper bound of S if $s \sqsubseteq d$ for every $s \in S$ (notation: $S \sqsubseteq d$).

Upper Bounds

In the dataflow equation system, analysis information from several predecessors is combined by taking the least upper bound.

Definition 3.3 ((Least) upper bound)

Let (D, \sqsubseteq) be a partial order and $S \subseteq D$.
(1) An element $d \in D$ is called an upper bound of S if $s \sqsubseteq d$ for every $s \in S$ (notation: $S \sqsubseteq d$).
(2) An upper bound d of S is called least upper bound (LUB) or supremum of S if $d \sqsubseteq d^{\prime}$ for every upper bound d^{\prime} of S (notation: $d=\bigsqcup S$).

Upper Bounds

In the dataflow equation system, analysis information from several predecessors is combined by taking the least upper bound.

Definition 3.3 ((Least) upper bound)

Let (D, \sqsubseteq) be a partial order and $S \subseteq D$.
(1) An element $d \in D$ is called an upper bound of S if $s \sqsubseteq d$ for every $s \in S$ (notation: $S \sqsubseteq d$).
(2) An upper bound d of S is called least upper bound (LUB) or supremum of S if $d \sqsubseteq d^{\prime}$ for every upper bound d^{\prime} of S (notation: $d=\bigsqcup S$).

Example 3.4

(1) $S \subseteq \mathbb{N}$ has a LUB in (\mathbb{N}, \leq) iff it is finite

Upper Bounds

In the dataflow equation system, analysis information from several predecessors is combined by taking the least upper bound.

Definition 3.3 ((Least) upper bound)

Let (D, \sqsubseteq) be a partial order and $S \subseteq D$.
(1) An element $d \in D$ is called an upper bound of S if $s \sqsubseteq d$ for every $s \in S$ (notation: $S \sqsubseteq d$).
(2) An upper bound d of S is called least upper bound (LUB) or supremum of S if $d \sqsubseteq d^{\prime}$ for every upper bound d^{\prime} of S (notation: $d=\bigsqcup S$).

Example 3.4

(1) $S \subseteq \mathbb{N}$ has a LUB in (\mathbb{N}, \leq) iff it is finite
(2) (Live Variables) $(D, \sqsubseteq)=\left(2^{V_{a r}}, \subseteq\right)$. Given $V_{1}, \ldots, V_{n} \subseteq \operatorname{Var}_{c}$, $\bigsqcup\left\{V_{1}, \ldots, V_{n}\right\}=\bigcup\left\{V_{1}, \ldots, V_{n}\right\}$

Upper Bounds

In the dataflow equation system, analysis information from several predecessors is combined by taking the least upper bound.

Definition 3.3 ((Least) upper bound)

Let (D, \sqsubseteq) be a partial order and $S \subseteq D$.
(1) An element $d \in D$ is called an upper bound of S if $s \sqsubseteq d$ for every $s \in S$ (notation: $S \sqsubseteq d$).
(2) An upper bound d of S is called least upper bound (LUB) or supremum of S if $d \sqsubseteq d^{\prime}$ for every upper bound d^{\prime} of S (notation: $d=\bigsqcup S$).

Example 3.4

(1) $S \subseteq \mathbb{N}$ has a LUB in (\mathbb{N}, \leq) iff it is finite
(2) (Live Variables) $(D, \sqsubseteq)=\left(2^{V_{a r}}, \subseteq\right)$. Given $V_{1}, \ldots, V_{n} \subseteq V^{\prime} r_{c}$,

$$
\bigsqcup\left\{V_{1}, \ldots, V_{n}\right\}=\bigcup\left\{V_{1}, \ldots, V_{n}\right\}
$$

(3) (Avail. Expr.) $(D, \sqsubseteq)=\left(2^{C E x p_{c}}, \supseteq\right)$. Given $A_{1}, \ldots, A_{n} \subseteq C \operatorname{Exp}_{c}$,

$$
\bigsqcup\left\{A_{1}, \ldots, A_{n}\right\}=\bigcap\left\{A_{1}, \ldots, A_{n}\right\}
$$

Complete Lattices

Since $\left\{\varphi_{I^{\prime}}\left(\mathrm{Al}_{\prime^{\prime}}\right) \mid\left(I^{\prime}, I\right) \in F\right\}$ can contain arbitrary elements, the existence of least upper bounds must be ensured for arbitrary subsets.

Definition 3.5 (Complete lattice)

A complete lattice is a partial order (D, \sqsubseteq) such that all subsets of D have least upper bounds. In this case,

$$
\perp:=\bigsqcup \emptyset
$$

denotes the least element of D.

Complete Lattices

Since $\left\{\varphi_{I^{\prime}}\left(\mathrm{Al}_{I^{\prime}}\right) \mid\left(I^{\prime}, I\right) \in F\right\}$ can contain arbitrary elements, the existence of least upper bounds must be ensured for arbitrary subsets.

Definition 3.5 (Complete lattice)

A complete lattice is a partial order (D, \sqsubseteq) such that all subsets of D have least upper bounds. In this case,

$$
\perp:=\bigsqcup \emptyset
$$

denotes the least element of D.

Example 3.6

(1) (\mathbb{N}, \leq) is not a complete lattice as, e.g., \mathbb{N} does not have a LUB

Complete Lattices

Since $\left\{\varphi_{I^{\prime}}\left(\mathrm{Al}_{I^{\prime}}\right) \mid\left(I^{\prime}, I\right) \in F\right\}$ can contain arbitrary elements, the existence of least upper bounds must be ensured for arbitrary subsets.

Definition 3.5 (Complete lattice)

A complete lattice is a partial order (D, \sqsubseteq) such that all subsets of D have least upper bounds. In this case,

$$
\perp:=\bigsqcup \emptyset
$$

denotes the least element of D.

Example 3.6

(1) (\mathbb{N}, \leq) is not a complete lattice as, e.g., \mathbb{N} does not have a LUB
(2) (Live Variables)
$(D, \sqsubseteq)=\left(2^{\text {Var }_{c}}, \subseteq\right)$ is a complete lattice with $\perp=\emptyset$

Complete Lattices

Since $\left\{\varphi_{I^{\prime}}\left(\mathrm{Al}_{I^{\prime}}\right) \mid\left(I^{\prime}, I\right) \in F\right\}$ can contain arbitrary elements, the existence of least upper bounds must be ensured for arbitrary subsets.

Definition 3.5 (Complete lattice)

A complete lattice is a partial order (D, \sqsubseteq) such that all subsets of D have least upper bounds. In this case,

$$
\perp:=\bigsqcup \emptyset
$$

denotes the least element of D.

Example 3.6

(1) (\mathbb{N}, \leq) is not a complete lattice as, e.g., \mathbb{N} does not have a LUB
(2) (Live Variables)
$(D, \sqsubseteq)=\left(2^{V_{a}{ }_{c}}, \subseteq\right)$ is a complete lattice with $\perp=\emptyset$
(3) (Available Expressions)
$(D, \sqsubseteq)=\left(2^{C E x p_{c}}, \supseteq\right)$ is a complete lattice with $\perp=C \operatorname{Exp}_{c}$

Duality in Complete Lattices

- Dual concept of least upper bound: greatest lower bound
- Definitions:
- An element $d \in D$ is called a lower bound of $S \subseteq D$ if $d \sqsubseteq s$ for every $s \in S$ (notation: $d \sqsubseteq S$).
- A lower bound d is called greatest lower bound (GLB) or infimum of S if $d^{\prime} \sqsubseteq d$ for every lower bound d^{\prime} of S (notation: $d=\Pi S$).

Duality in Complete Lattices

- Dual concept of least upper bound: greatest lower bound
- Definitions:
- An element $d \in D$ is called a lower bound of $S \subseteq D$ if $d \sqsubseteq s$ for every $s \in S$ (notation: $d \sqsubseteq S$).
- A lower bound d is called greatest lower bound (GLB) or infimum of S if $d^{\prime} \sqsubseteq d$ for every lower bound d^{\prime} of S (notation: $d=\Pi S$).
- Examples:
- (Live Variables) $\left.(D, \sqsubseteq)=\left(2^{\text {Var }_{c}}, \subseteq\right),\right\rceil\left\{V_{1}, \ldots, V_{n}\right\}=\bigcap\left\{V_{1}, \ldots, V_{n}\right\}$
- (Available Expressions) $(D, \sqsubseteq)=\left(2^{C E x p}{ }_{c}, \supseteq\right)$, $\rceil\left\{A_{1}, \ldots, A_{n}\right\}=\bigcup\left\{A_{1}, \ldots, A_{n}\right\}$

Duality in Complete Lattices

- Dual concept of least upper bound: greatest lower bound
- Definitions:
- An element $d \in D$ is called a lower bound of $S \subseteq D$ if $d \sqsubseteq s$ for every $s \in S$ (notation: $d \sqsubseteq S$).
- A lower bound d is called greatest lower bound (GLB) or infimum of S if $d^{\prime} \sqsubseteq d$ for every lower bound d^{\prime} of S (notation: $d=\Pi S$).
- Examples:
- (Live Variables) $(D, \sqsubseteq)=\left(2^{V a r_{c}}, \subseteq\right), ~ \bigcap\left\{V_{1}, \ldots, V_{n}\right\}=\bigcap\left\{V_{1}, \ldots, V_{n}\right\}$
- (Available Expressions) $(D, \sqsubseteq)=\left(2^{C E x p}{ }_{c}, \supseteq\right)$, $\rceil\left\{A_{1}, \ldots, A_{n}\right\}=\bigcup\left\{A_{1}, \ldots, A_{n}\right\}$
- Lemma: the following are equivalent:
- (D, \sqsubseteq) is a complete lattice
(i.e., every subset of D has a least upper bound)
- Every subset of D has a greatest lower bound

Duality in Complete Lattices

- Dual concept of least upper bound: greatest lower bound
- Definitions:
- An element $d \in D$ is called a lower bound of $S \subseteq D$ if $d \sqsubseteq s$ for every $s \in S$ (notation: $d \sqsubseteq S$).
- A lower bound d is called greatest lower bound (GLB) or infimum of S if $d^{\prime} \sqsubseteq d$ for every lower bound d^{\prime} of S (notation: $d=\Pi S$).
- Examples:
- (Live Variables) $(D, \sqsubseteq)=\left(2^{V a r_{c}}, \subseteq\right), ~ \bigcap\left\{V_{1}, \ldots, V_{n}\right\}=\bigcap\left\{V_{1}, \ldots, V_{n}\right\}$
- (Available Expressions) $(D, \sqsubseteq)=\left(2^{C E x p}{ }_{c}, \supseteq\right)$, $\rceil\left\{A_{1}, \ldots, A_{n}\right\}=\bigcup\left\{A_{1}, \ldots, A_{n}\right\}$
- Lemma: the following are equivalent:
- (D, \sqsubseteq) is a complete lattice (i.e., every subset of D has a least upper bound)
- Every subset of D has a greatest lower bound
- Corollary: every complete lattice has a greatest element $T:=\Pi \emptyset$

Chains

Chains are generated by the approximation of the analysis information in the fixpoint iteration.

Definition 3.7 (Chain)

Let (D, \sqsubseteq) be a partial order.

- A subset $S \subseteq D$ is called a chain in D if, for every $d_{1}, d_{2} \in S$,

$$
d_{1} \sqsubseteq d_{2} \text { or } d_{2} \sqsubseteq d_{1}
$$

(that is, S is a totally ordered subset of D).

Chains

Chains are generated by the approximation of the analysis information in the fixpoint iteration.

Definition 3.7 (Chain)

Let (D, \sqsubseteq) be a partial order.

- A subset $S \subseteq D$ is called a chain in D if, for every $d_{1}, d_{2} \in S$,

$$
d_{1} \sqsubseteq d_{2} \text { or } d_{2} \sqsubseteq d_{1}
$$

(that is, S is a totally ordered subset of D).

- (D, \sqsubseteq) has finite height if all chains are finite. In this case, its height is $\max \{|S| \mid S$ chain in $D\}-1$.

Chains

Chains are generated by the approximation of the analysis information in the fixpoint iteration.

Definition 3.7 (Chain)

Let (D, \sqsubseteq) be a partial order.

- A subset $S \subseteq D$ is called a chain in D if, for every $d_{1}, d_{2} \in S$,

$$
d_{1} \sqsubseteq d_{2} \text { or } d_{2} \sqsubseteq d_{1}
$$

(that is, S is a totally ordered subset of D).

- (D, \sqsubseteq) has finite height if all chains are finite. In this case, its height is $\max \{|S| \mid S$ chain in $D\}-1$.

Example 3.8

(1) Every $S \subseteq \mathbb{N}$ is a chain in (\mathbb{N}, \leq) (which is of infinite height)

Chains

Chains are generated by the approximation of the analysis information in the fixpoint iteration.

Definition 3.7 (Chain)

Let (D, \sqsubseteq) be a partial order.

- A subset $S \subseteq D$ is called a chain in D if, for every $d_{1}, d_{2} \in S$,

$$
d_{1} \sqsubseteq d_{2} \text { or } d_{2} \sqsubseteq d_{1}
$$

(that is, S is a totally ordered subset of D).

- (D, \sqsubseteq) has finite height if all chains are finite. In this case, its height is $\max \{|S| \mid S$ chain in $D\}-1$.

Example 3.8

(1) Every $S \subseteq \mathbb{N}$ is a chain in (\mathbb{N}, \leq) (which is of infinite height)
(2) $\{\emptyset,\{0\},\{0,1\},\{0,1,2\}, \ldots\}$ is a chain in $\left(2^{\mathbb{N}}, \subseteq\right)$

Chains

Chains are generated by the approximation of the analysis information in the fixpoint iteration.

Definition 3.7 (Chain)

Let (D, \sqsubseteq) be a partial order.

- A subset $S \subseteq D$ is called a chain in D if, for every $d_{1}, d_{2} \in S$,

$$
d_{1} \sqsubseteq d_{2} \text { or } d_{2} \sqsubseteq d_{1}
$$

(that is, S is a totally ordered subset of D).

- (D, \sqsubseteq) has finite height if all chains are finite. In this case, its height is $\max \{|S| \mid S$ chain in $D\}-1$.

Example 3.8

(1) Every $S \subseteq \mathbb{N}$ is a chain in ($\mathbb{N}, \leq)$ (which is of infinite height)
(2) $\{\emptyset,\{0\},\{0,1\},\{0,1,2\}, \ldots\}$ is a chain in $\left(2^{\mathbb{N}}, \subseteq\right)$
(3) $\{\emptyset,\{0\},\{1\}\}$ is not a chain in $\left(2^{\mathbb{N}}, \subseteq\right)$

The Ascending Chain Condition I

Termination of fixpoint iteration is guaranteed by the following condition.

Definition 3.9 (Ascending Chain Condition)

- A sequence $\left(d_{i}\right)_{i \in \mathbb{N}}$ is called an ascending chain in D if $d_{i} \sqsubseteq d_{i+1}$ for each $i \in \mathbb{N}$.

The Ascending Chain Condition I

Termination of fixpoint iteration is guaranteed by the following condition.

Definition 3.9 (Ascending Chain Condition)

- A sequence $\left(d_{i}\right)_{i \in \mathbb{N}}$ is called an ascending chain in D if $d_{i} \sqsubseteq d_{i+1}$ for each $i \in \mathbb{N}$.
- A partial order (D, \sqsubseteq) satisfies the Ascending Chain Condition (ACC) if each ascending chain $d_{0} \sqsubseteq d_{1} \sqsubseteq \ldots$ eventually stabilizes, i.e., there exists $n \in \mathbb{N}$ such that $d_{n}=d_{n+1}=\ldots$

The Ascending Chain Condition I

Termination of fixpoint iteration is guaranteed by the following condition.

Definition 3.9 (Ascending Chain Condition)

- A sequence $\left(d_{i}\right)_{i \in \mathbb{N}}$ is called an ascending chain in D if $d_{i} \sqsubseteq d_{i+1}$ for each $i \in \mathbb{N}$.
- A partial order (D, \sqsubseteq) satisfies the Ascending Chain Condition (ACC) if each ascending chain $d_{0} \sqsubseteq d_{1} \sqsubseteq \ldots$ eventually stabilizes, i.e., there exists $n \in \mathbb{N}$ such that $d_{n}=d_{n+1}=\ldots$

Notes:

- The finite height property implies ACC, but not vice versa (as there might be non-stabilizing descending chains)
- The complete lattice and ACC properties are orthogonal

The Ascending Chain Condition II

Example 3.10

(1) (\mathbb{N}, \leq) does not satisfy ACC and is of infinite height (and not a complete lattice)

Example 3.10

(1) (\mathbb{N}, \leq) does not satisfy ACC and is of infinite height (and not a complete lattice)
(2) $\left(\mathbb{Z}_{\leq 0}, \leq\right)$ satisfies ACC but is of infinite height (and not a complete lattice)

Example 3.10

(1) (\mathbb{N}, \leq) does not satisfy ACC and is of infinite height (and not a complete lattice)
(2) $\left(\mathbb{Z}_{\leq 0}, \leq\right)$ satisfies ACC but is of infinite height (and not a complete lattice)
(3) $(\mathbb{Z} \cup\{-\infty,+\infty\}, \leq)$ (where $-\infty \leq z \leq+\infty$ for all $z \in \mathbb{Z}$) is a complete lattice but does not satisfy ACC

Example 3.10

(1) (\mathbb{N}, \leq) does not satisfy ACC and is of infinite height (and not a complete lattice)
(2) $\left(\mathbb{Z}_{\leq 0}, \leq\right)$ satisfies ACC but is of infinite height (and not a complete lattice)
(3) $(\mathbb{Z} \cup\{-\infty,+\infty\}, \leq)$ (where $-\infty \leq z \leq+\infty$ for all $z \in \mathbb{Z}$) is a complete lattice but does not satisfy ACC
(9) $(\{\emptyset,\{0\},\{1\}\}, \subseteq)$ satisfies ACC but is not a complete lattice

Example 3.10

(1) (\mathbb{N}, \leq) does not satisfy ACC and is of infinite height (and not a complete lattice)
(2) $\left(\mathbb{Z}_{\leq 0}, \leq\right)$ satisfies ACC but is of infinite height (and not a complete lattice)
(3) $(\mathbb{Z} \cup\{-\infty,+\infty\}, \leq)$ (where $-\infty \leq z \leq+\infty$ for all $z \in \mathbb{Z}$) is a complete lattice but does not satisfy ACC
(9) $(\{\emptyset,\{0\},\{1\}\}, \subseteq)$ satisfies ACC but is not a complete lattice
(3. (Live Variables) ($2^{\mathrm{Var}_{c}}, \subseteq$) is a complete lattice satisfying ACC and is of finite height (since $V a r_{c}$ [unlike $V a r$] is finite)

Example 3.10

(1) (\mathbb{N}, \leq) does not satisfy ACC and is of infinite height (and not a complete lattice)
(2) $\left(\mathbb{Z}_{\leq 0}, \leq\right)$ satisfies ACC but is of infinite height (and not a complete lattice)
(3) $(\mathbb{Z} \cup\{-\infty,+\infty\}, \leq)$ (where $-\infty \leq z \leq+\infty$ for all $z \in \mathbb{Z}$) is a complete lattice but does not satisfy ACC
(9) $(\{\emptyset,\{0\},\{1\}\}, \subseteq)$ satisfies ACC but is not a complete lattice
(6) (Live Variables) ($2^{\mathrm{Var}_{c}}, \subseteq$) is a complete lattice satisfying ACC and is of finite height (since Var_{c} [unlike Var] is finite)
(0) (Available Expressions) $\left(2^{C E x p_{c}}, \supseteq\right)$ is a complete lattice satisfying ACC and is of finite height (since $C E x p_{c}$ [unlike $\left.A E x p\right]$ is finite)

Example 3.10

(1) (\mathbb{N}, \leq) does not satisfy ACC and is of infinite height (and not a complete lattice)
(2) $\left(\mathbb{Z}_{\leq 0}, \leq\right)$ satisfies ACC but is of infinite height (and not a complete lattice)
(3) $(\mathbb{Z} \cup\{-\infty,+\infty\}, \leq)$ (where $-\infty \leq z \leq+\infty$ for all $z \in \mathbb{Z}$) is a complete lattice but does not satisfy ACC
(3) $(\{\emptyset,\{0\},\{1\}\}, \subseteq)$ satisfies ACC but is not a complete lattice
(3. (Live Variables) ($2^{\mathrm{Var}_{c}}, \subseteq$) is a complete lattice satisfying ACC and is of finite height (since Var_{c} [unlike Var] is finite)
(0) (Available Expressions) $\left(2^{C E x p_{c}}, \supseteq\right)$ is a complete lattice satisfying ACC and is of finite height (since $C E_{x p}$ [unlike $A E x p$] is finite)

Domain requirements for dataflow analysis

(D, \sqsubseteq) must be a complete lattice satisfying ACC

