
Static Program Analysis

Lecture 21: Shape Analysis & Final Remarks

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Winter Semester 2014/15

noll@cs.rwth-aachen.de
http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Outline

1 Recap: Pointer Analysis

2 Shape Analysis

3 Further Topic in Program Analysis

4 Final Remarks

Static Program Analysis Winter Semester 2014/15 21.2

The Shape Analysis Approach

Goal: determine the possible shapes of a dynamically allocated data
structure at given program point
Interesting information:

data types (to avoid type errors, such as dereferencing nil)
aliasing (different pointer variables having same value)
sharing (different heap pointers referencing same location)
reachability of nodes (garbage collection)
disjointness of heap regions (parallelizability)
shapes (lists, trees, absence of cycles, ...)

Concrete questions:

Does x.next point to a shared element?
Does a variable p point to an allocated element every time p is
dereferenced?
Does a variable point to an acyclic list?
Does a variable point to a doubly-linked list?
Can a loop or procedure cause a memory leak?

Here: basic outline; details in [Nielson/Nielson/Hankin 2005,
Sct. 2.6]

Static Program Analysis Winter Semester 2014/15 21.3

Extending the Syntax

Syntactic categories:

Category Domain Meta variable
Arithmetic expressions AExp a
Boolean expressions BExp b
Selector names Sel sel
Pointer expressions PExp p
Commands (statements) Cmd c

Context-free grammar:

a ::= z | x | a1+a2 | . . . | p | nil ∈ AExp
b ::= t | a1=a2 | b1∧b2 | . . . | is-nil(p) ∈ BExp
p ::= x | x.sel
c ::= [skip]l | [p := a]l | c1;c2 | if [b]l then c1 else c2 |

while [b]l do c | [malloc p]l ∈ Cmd

Static Program Analysis Winter Semester 2014/15 21.4

Shape Graphs I

Approach: representation of (infinitely many) concrete heap states by
(finitely many) abstract shape graphs

abstract nodes X = sets of variables

interpretation: x ∈ X iff x points to concrete node represented by X

∅ represents all concrete nodes that are not directly addressed by
pointer variables

x , y ∈ X (with x 6= y) indicate aliasing (as x and y point to the same
concrete node)

if x .sel and y refer to the same heap address and if X ,Y are abstract

nodes with x ∈ X and y ∈ Y , this yields abstract edge X
sel
−→ Y

transfer functions transform (sets of) shape graphs

Static Program Analysis Winter Semester 2014/15 21.5

Shape Graphs II

Definition (Shape graph)

A shape graph G = (S ,H) consists of

a set S ⊆ 2Var of abstract locations and
an abstract heap H ⊆ S × Sel × S

notation: X
sel
−→ Y for (X , sel ,Y) ∈ H

with the following properties:

Disjointness: X ,Y ∈ S =⇒ X = Y or X ∩ Y = ∅
(a variable can refer to at most one heap location)

Determinacy: X 6= ∅ and X
sel
−→ Y and X

sel
−→ Z =⇒ Y = Z

(target location is unique if source node is unique)

SG denotes the set of all shape graphs.

Remark: the following example shows that determinacy requires X 6= ∅:

Concrete: y −→ •
sel
←− •

z −→ •
sel
←− •

Abstract: Y = {y}
sel
←− X = ∅

sel
−→ Z = {z}

Static Program Analysis Winter Semester 2014/15 21.6

Shape Graphs and Concrete Heap Properties

Example

Let G = (S ,H) be a shape graph. Then the following concrete heap
properties can be expressed as conditions on G :

x 6= nil

⇐⇒ ∃X ∈ S : x ∈ X

x = y 6= nil (aliasing)
⇐⇒ ∃Z ∈ S : x, y ∈ Z

x.sel1 = y.sel2 6= nil (sharing)

=⇒ ∃X ,Y ,Z ∈ S : x ∈ X , y ∈ Y ,X
sel1
−→ Z

sel2
←− Y

(“⇐=” only valid if Z 6= ∅)

Static Program Analysis Winter Semester 2014/15 21.7

Outline

1 Recap: Pointer Analysis

2 Shape Analysis

3 Further Topic in Program Analysis

4 Final Remarks

Static Program Analysis Winter Semester 2014/15 21.8

The Goal

Shape Analysis

The goal of Shape Analysis is to determine, for each program point, a set
of shape graphs that represent all heap structures which can occur during
program execution at that point.

Forward analysis
Domain: (D,⊑) := (2SG ,⊆)

Var , Sel finite =⇒ SG finite =⇒ 2SG finite =⇒ ACC

Extremal value: ι := {shape graphs for possible initial values of Var}

Example 21.1 (List reversal; cf. Example 20.4)

Variables: Var = {x, y, z}
Assumption: x points to any (finite, non-cyclic) list, y = z = nil

=⇒ ι =

(∅, ∅)
︸ ︷︷ ︸

empty

, {x}
︸ ︷︷ ︸

1 elem.

, {x}
next
−→ ∅

︸ ︷︷ ︸

2 elem.

, {x}
next
−→

next
y

∅
︸ ︷︷ ︸

≥ 3 elem.

Static Program Analysis Winter Semester 2014/15 21.9

The Transfer Functions

Transfer functions: ϕl : 2
SG → 2SG (monotonic)

Transform each single shape graph into a set of shape graphs:
ϕl({G1, . . . ,Gn}) =

⋃
n

i=1 ϕl (Gi)

ϕl(G) determined by B l (where G = (S ,H)):
[skip]l : ϕl (G) := {G}
[b]l : ϕl (G) := {G}
[p := a]l : case-by-case analysis w.r.t. p and a

[Nielson/Nielson/Hankin 2005, Sct. 2.6.3]: 12 cases
may involve (high degree of) non-determinism
see example on following slide

[malloc x]l : ϕl (G) := {(S ′ ∪ {{x}},H ′)} where
S

′ := {X \ {x} | X ∈ S}
H

′ := H ∩ S
′ × Sel × S

′

[malloc x .sel]l : equivalent to [malloc t]l1;[x.sel := t]l2;[t := nil]l3;
(with fresh t ∈ Var and l1, l2, l3 ∈ Lab)

Crucial for soundness: safety of approximation
If shape graph G approximates heap h and h

B l

−→ h′,
then there exists G ′ ∈ ϕl(G) such that G ′ approximates h′

Static Program Analysis Winter Semester 2014/15 21.10

An Example

Example 21.2

{y} ∅ {z}
sel

sel1

sel2

⇓ϕx := y.sel

(a)

{y} {x} {z}
sel

sel1

sel2

(b) ∅

{y} {x} {z}
sel sel2

sel1

(c) ∅

{y} {x} {z}
sel sel2

sel1

sel1

(d) ∅

{y} {x} {z}
sel

sel1

sel2 (e) ∅

{y} {x} {z}
sel

sel1

sel1

sel2

Static Program Analysis Winter Semester 2014/15 21.11

Application to List Reversal

Example 21.3 (List reversal; cf. Example 20.4)

Shape analysis of list reversal program yields final result

(∅, ∅)
︸ ︷︷ ︸

empty

, {y}
︸ ︷︷ ︸

1 elem.

, {y}
next
−→ ∅

︸ ︷︷ ︸

2 elem.

, {y}
next
−→

next
y

∅
︸ ︷︷ ︸

≥ 3 elem.

Interpretation:

+ Result again a finite list

− but potentially cyclic (may be a “lasso”, but not a ring)

− also “reversal” property not guaranteed

Static Program Analysis Winter Semester 2014/15 21.12

Outline

1 Recap: Pointer Analysis

2 Shape Analysis

3 Further Topic in Program Analysis

4 Final Remarks

Static Program Analysis Winter Semester 2014/15 21.13

Dedicated Algorithms for Pointer Analysis

nil Pointer Analysis: checks whether dereferencing operations
possibly involve nil pointers

with shape analysis: possible for x ∈ Var if there exists (reachable)
G = (S ,H) such that x /∈

⋃

X∈S
X

Points-To Analysis: yields function pt that for each x ∈ Var returns
set pt(x) of possible pointer targets

x and y may be aliases if pt(x) ∩ pt(y) 6= ∅
with shape analysis: there exists (reachable) G = (S ,H) and Z ∈ S

such that x , y ∈ Z

Usually faster and sometimes more precise than shape analysis, but
less general (only “shallow” properties)

Fastest algorithms are flow-insensitive (points-to edges only added
but never removed)

Static Program Analysis Winter Semester 2014/15 21.14

Graph Grammar Approaches to Pointer Analysis

e.g., J. Heinen, C. Jansen, J.-P. Katoen, T. Noll: Verifying Pointer

Programs using Graph Grammars. Science of Computer Programming
97, 157–162, 2015

idea: specify data structures by graph production rules

concretization by forward application

abstraction by backward application

all pointer operations remain concrete
=⇒ avoids complicated definition of transfer functions

Example 21.4 (Doubly-linked lists)

L
1 2

1 L 2L→
n

p
1 2

1 2

n

p

L→

L

n

p
1 2

n

p

n

p p

n

Static Program Analysis Winter Semester 2014/15 21.15

Correctness of Dataflow Analyses

So far: semantics and dataflow analysis of programs considered
independently (formal soundness proofs only for abstract
interpretation; cf. Lecture 13)

Of course both are (and should be) related!

To this aim: compare results of concrete semantics (Definition 11.9)
with outcome of analysis

Example: correctness of Constant Propagation

Let c ∈ Cmd with l0 = init(c), and let l ∈ Labc , x ∈ Var , and z ∈ Z

such that CPl(x) = z . Then for all σ0, σ ∈ Σ such that
〈l0, σ0〉 →

∗ 〈l , σ〉, σ(x) = z .

see [Nielson/Nielson/Hankin 2005, Sct. 2.2]

Static Program Analysis Winter Semester 2014/15 21.16

Outline

1 Recap: Pointer Analysis

2 Shape Analysis

3 Further Topic in Program Analysis

4 Final Remarks

Static Program Analysis Winter Semester 2014/15 21.17

Oral Exams

Schedule online

12 + 24 March, 8 April
see http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Q&A session on Tuesday, 24 February, 14:00–15:30, AH 6

please submit questions beforehand to dehnert@cs.rwth-aachen.de

or benjamin.kaminski@cs.rwth-aachen.de
contact me in case of unresolved/later questions

Static Program Analysis Winter Semester 2014/15 21.18

http://moves.rwth-aachen.de/teaching/ws-1415/spa/
dehnert@cs.rwth-aachen.de
benjamin.kaminski@cs.rwth-aachen.de

Thesis: Analysing Information Flows Using Slicing

Computer security: system architectures that disallow sensitive
information to be “leaked” to unauthorised entities

Critical: covert channels that expose information

Requires analysis of information flows within and between
architectural components

Standard approaches (non-interference, slicing) ignore encryption

Goal: analysis of cryptographically-masked information flows using
slicing techniques

Static Program Analysis Winter Semester 2014/15 21.19

Forthcoming Courses in SS 2015

Introduction to Model Checking [Katoen; V3 Ü2]

1 Labelled transition systems

2 Classification of properties: safety, liveness, fairness

3 Temporal logics LTL and CTL

4 Model checking algorithms

5 Abstraction using (bi-)simulation

Semantics and Verification of Software [Noll; V3 Ü2]

1 The imperative model language WHILE

2 Operational, denotational and axiomatic semantics of WHILE

3 Equivalence of the semantics

4 Applications: compiler correctness, ...

5 Extensions: procedures, non-determinism, concurrency

Static Program Analysis Winter Semester 2014/15 21.21

	Recap: Pointer Analysis
	Shape Analysis
	Further Topic in Program Analysis
	Final Remarks

