Static Program Analysis

Lecture 2: Dataflow Analysis I
(Introduction \& Available Expressions/Live Variables Analysis)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

$$
\begin{gathered}
\text { noll@cs.rwth-aachen.de } \\
\text { http://moves.rwth-aachen.de/teaching/ws-1415/spa/ }
\end{gathered}
$$

Winter Semester 2014/15

Outline

(1) Preliminaries on Dataflow Analysis

(2) An Example: Available Expressions Analysis

(3) Another Example: Live Variables Analysis

- Traditional form of program analysis

Dataflow Analysis: the Approach

- Traditional form of program analysis
- Idea: describe how analysis information flows through program
- Traditional form of program analysis
- Idea: describe how analysis information flows through program
- Distinctions:
dependence on statement order:
flow-sensitive vs. flow-insensitive analyses
direction of flow:
forward vs. backward analyses
quantification over paths:
may (union) vs. must (intersection) analyses
procedures:
interprocedural vs. intraprocedural analyses

Labelled Programs

- Goal: localisation of analysis information

Labelled Programs

- Goal: localisation of analysis information
- Dataflow information will be associated with
- skip statements
- assignments
- tests in conditionals (if) and loops (while)

Labelled Programs

- Goal: localisation of analysis information
- Dataflow information will be associated with
- skip statements
- assignments
- tests in conditionals (if) and loops (while)
- Assume set of labels $L a b$ with meta variable $I \in L a b$ (usually $L a b=\mathbb{N}$)

Labelled Programs

- Goal: localisation of analysis information
- Dataflow information will be associated with
- skip statements
- assignments
- tests in conditionals (if) and loops (while)
- Assume set of labels Lab with meta variable I $\in L a b$ (usually $L a b=\mathbb{N}$)

Definition 2.1 (Labelled WHILE programs)

The syntax of labelled WHILE programs is defined by the following context-free grammar:

$$
\begin{aligned}
& a::=z|x| a_{1}+a_{2}\left|a_{1}-a_{2}\right| a_{1} * a_{2} \in A E x p \\
& b::=t\left|a_{1}=a_{2}\right| a_{1}>a_{2}|\neg b| b_{1} \wedge b_{2} \mid b_{1} \vee b_{2} \in B E x p \\
& c::= {[\text { skip }]^{\prime}\left|[x:=a]^{\prime}\right| c_{1} ; c_{2} \mid } \\
& \text { if }[b]^{\prime} \text { then } c_{1} \text { else } c_{2} \mid \text { while }[b]^{\prime} \text { do } c \in \text { Cmd }
\end{aligned}
$$

- All labels in $c \in C m d$ assumed distinct, denoted by $L a b_{c}$
- Labelled fragments of c called blocks, denoted by $B l k_{c}$

A WHILE Program

Example 2.2

$$
\begin{aligned}
& \mathrm{x}:=6 ; \\
& \mathrm{y}:=7 ; \\
& \mathrm{z}:=0 ; \\
& \text { while } \mathrm{x}>0 \text { do } \\
& \quad \mathrm{x}:=\mathrm{x}-1 ; \\
& \mathrm{v}:=\mathrm{y} ; \\
& \text { while v > 0 do } \\
& \quad \mathrm{v}:=\mathrm{v}-1 ; \\
& \quad \mathrm{z}:=\mathrm{z}+1
\end{aligned}
$$

A WHILE Program with Labels

Example 2.2

$$
\begin{aligned}
& {[\mathrm{x}:=6]^{1} ;} \\
& {[\mathrm{y}:=7]^{2} \text {; }} \\
& {[\mathrm{z}:=0]^{3} \text {; }} \\
& \text { while }[\mathrm{x}>0]^{4} \text { do } \\
& {[\mathrm{x}:=\mathrm{x}-1]^{5} \text {; }} \\
& {[\mathrm{v}:=\mathrm{y}]^{6} \text {; }} \\
& \text { while }[\mathrm{v}>0]^{7} \text { do } \\
& {[\mathrm{v}:=\mathrm{v}-1]^{8} \text {; }} \\
& {[z:=z+1]^{9}}
\end{aligned}
$$

Representing Control Flow I

Every (labelled) statement has a single entry (given by the initial label) and generally multiple exits (given by the final labels):

Definition 2.3 (Initial and final labels)

The mapping init : Cmd \rightarrow Lab returns the initial label of a statement:

$$
\begin{aligned}
\operatorname{init}\left([\text { skip }]^{\prime}\right) & :=1 \\
\operatorname{init}\left([x:=a]^{\prime}\right) & :=1 \\
\operatorname{init}\left(c_{1} ; c_{2}\right) & :=\operatorname{init}\left(c_{1}\right) \\
\operatorname{init}\left(\text { if }[b]^{\prime} \text { then } c_{1} \text { else } c_{2}\right) & :=1 \\
\text { init (while } \left.[b]^{\prime} \text { do } c\right) & :=1
\end{aligned}
$$

Representing Control Flow I

Every (labelled) statement has a single entry (given by the initial label) and generally multiple exits (given by the final labels):

Definition 2.3 (Initial and final labels)

The mapping init: Cmd \rightarrow Lab returns the initial label of a statement:

$$
\begin{aligned}
\operatorname{init}\left([\text { skip }]^{\prime}\right) & :=1 \\
\operatorname{init}\left([x:=a]^{\prime}\right) & :=1 \\
\operatorname{init}\left(c_{1} ; c_{2}\right) & :=\operatorname{init}\left(c_{1}\right) \\
\operatorname{init}\left(\text { if }[b]^{\prime} \text { then } c_{1} \text { else } c_{2}\right) & :=1 \\
\text { init (while } \left.[b]^{\prime} \text { do } c\right) & :=1
\end{aligned}
$$

The mapping final :Cmd $\rightarrow 2^{\text {Lab }}$ returns the set of final labels of a statement:

$$
\begin{aligned}
\text { final }\left([\text { skip }]^{\prime}\right) & :=\{I\} \\
\text { final }\left([x:=a]^{\prime}\right) & :=\{/\} \\
\text { final }\left(c_{1} ; c_{2}\right) & :=\text { final }\left(c_{2}\right) \\
\text { final }\left(\text { if }[b]^{\prime} \text { then } c_{1} \text { else } c_{2}\right) & :=\text { final }\left(c_{1}\right) \cup \text { final }\left(c_{2}\right) \\
\text { final }\left(\text { while }[b]^{\prime} \text { do } c\right) & :=\{I\}
\end{aligned}
$$

Representing Control Flow II

Definition 2.4 (Flow relation)

Given a statement $c \in C m d$, the (control) flow relation

$$
\text { flow }(c) \subseteq L a b \times L a b
$$

is defined by

$$
\begin{aligned}
\text { flow }\left([\text { skip }]^{\prime}\right): & =\emptyset \\
\text { flow }\left([x:=a]^{\prime}\right): & \emptyset \\
\text { flow }\left(c_{1} ; c_{2}\right): & =\text { flow }\left(c_{1}\right) \cup \text { flow }\left(c_{2}\right) \cup \\
& \left\{\left(I, \text { init }\left(c_{2}\right)\right) \mid I \in \text { final }\left(c_{1}\right)\right\}
\end{aligned}
$$

flow (if [b] then c_{1} else c_{2}) $:=$ flow $\left(c_{1}\right) \cup$ flow $\left(c_{2}\right) \cup$ $\left\{\left(1, \operatorname{init}\left(c_{1}\right)\right),\left(I, \operatorname{init}\left(c_{2}\right)\right)\right\}$
flow(while $[b]^{\prime}$ do $\left.c\right):=$ flow $(c) \cup\{(I$, init $(c))\} \cup$ $\left\{\left(I^{\prime}, I\right) \mid I^{\prime} \in\right.$ final $\left.(c)\right\}$

Representing Control Flow III

Example 2.5

$$
\begin{aligned}
c= & {[z:=1]{ }^{1} ; } \\
& \text { while }\left[\begin{array}{ll}
\mathrm{x} & >
\end{array}\right]^{2} \text { do } \\
& {[\mathrm{z}:=\mathrm{z*y}]^{3} ; } \\
& {[\mathrm{x}:=\mathrm{x}-1]^{4} }
\end{aligned}
$$

Representing Control Flow III

Example 2.5

$$
\begin{aligned}
& \text { while }[\mathrm{x}>0]^{2} \text { do } \\
& \text { [z := z*y }]^{3} \text {; } \\
& {[\mathrm{x}:=\mathrm{x}-1]^{4}}
\end{aligned}
$$

$\operatorname{init}(c)=1$
final $(c)=\{2\}$
flow $(c)=\{(1,2),(2,3),(3,4),(4,2)\}$

Representing Control Flow III

Example 2.5

Visualization by

(control) flow graph:

$$
\begin{aligned}
& c=\left[\begin{array}{ll}
z:=1
\end{array}\right]^{1} \text {; } \\
& \text { while }[\mathrm{x}>0]^{2} \text { do } \\
& \text { [z := z*y] }{ }^{3} \text {; } \\
& {[\mathrm{x}:=\mathrm{x}-1]^{4}}
\end{aligned}
$$

$\operatorname{init}(c)=1$
final $(c)=\{2\}$
flow $(c)=\{(1,2),(2,3),(3,4),(4,2)\}$

Representing Control Flow IV

- To simplify the presentation we will often assume that the program $c \in C m d$ under consideration has an isolated entry, meaning that

$$
\{I \in L a b \mid(I, \operatorname{init}(c)) \in \operatorname{flow}(c)\}=\emptyset
$$

(which is the case when c does not start with a while loop)

Representing Control Flow IV

- To simplify the presentation we will often assume that the program $c \in C m d$ under consideration has an isolated entry, meaning that

$$
\{I \in L a b \mid(I, \operatorname{init}(c)) \in \operatorname{flow}(c)\}=\emptyset
$$

(which is the case when c does not start with a while loop)

- Similarly: $c \in C m d$ has isolated exits if

$$
\left\{I^{\prime} \in \operatorname{Lab} \mid\left(I, I^{\prime}\right) \in \text { flow }(c) \text { for some } I \in \text { final }(c)\right\}=\emptyset
$$

(which is the case when no final label identifies a loop header)

Representing Control Flow IV

- To simplify the presentation we will often assume that the program $c \in C m d$ under consideration has an isolated entry, meaning that

$$
\{I \in L a b \mid(I, \operatorname{init}(c)) \in \operatorname{flow}(c)\}=\emptyset
$$

(which is the case when c does not start with a while loop)

- Similarly: $c \in C m d$ has isolated exits if

$$
\left\{I^{\prime} \in \operatorname{Lab} \mid\left(I, I^{\prime}\right) \in \text { flow }(c) \text { for some } I \in \text { final }(c)\right\}=\emptyset
$$

(which is the case when no final label identifies a loop header)

Example 2.6 (cf. Example 2.5)

has an isolated entry but not isolated exits

Outline

(1) Preliminaries on Dataflow Analysis

(2) An Example: Available Expressions Analysis

(3) Another Example: Live Variables Analysis

Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each program point, which (complex) expressions must have been computed, and not later modified, on all paths to the program point.

Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each program point, which (complex) expressions must have been computed, and not later modified, on all paths to the program point.

- Can be used for Common Subexpression Elimination: replace subexpression by variable that contains up-to-date value
- Only interesting for non-trivial (i.e., complex) arithmetic expressions

Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each program point, which (complex) expressions must have been computed, and not later modified, on all paths to the program point.

- Can be used for Common Subexpression Elimination: replace subexpression by variable that contains up-to-date value
- Only interesting for non-trivial (i.e., complex) arithmetic expressions

Example 2.7 (Available Expressions Analysis)

$$
\begin{aligned}
& {[\mathrm{x}:=\mathrm{a}+\mathrm{b}]^{1} ;} \\
& {[\mathrm{y}:=\mathrm{a}+\mathrm{b}]^{2} ;} \\
& \text { while }[\mathrm{y}>\mathrm{a}+\mathrm{b}]^{3} \text { do } \\
& \quad[\mathrm{a}:=\mathrm{a}+1]^{4} ; \\
& {[\mathrm{x}:=\mathrm{a}+\mathrm{b}]^{5}}
\end{aligned}
$$

Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each program point, which (complex) expressions must have been computed, and not later modified, on all paths to the program point.

- Can be used for Common Subexpression Elimination: replace subexpression by variable that contains up-to-date value
- Only interesting for non-trivial (i.e., complex) arithmetic expressions

Example 2.7 (Available Expressions Analysis)

```
[x := a+b] [';
[y := a*b] ';
while [y > a+b]3 do
    [a := a+1] ;
    [x := a+b] 5
```

- $a+b$ available at label 3

```
\([\mathrm{a}:=\mathrm{a}+1]^{4}\);
\([\mathrm{x}:=\mathrm{a}+\mathrm{b}]^{5}\)
```


Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each program point, which (complex) expressions must have been computed, and not later modified, on all paths to the program point.

- Can be used for Common Subexpression Elimination: replace subexpression by variable that contains up-to-date value
- Only interesting for non-trivial (i.e., complex) arithmetic expressions

Example 2.7 (Available Expressions Analysis)

```
[x := a+b] [';
[y := a*b] '2;
while [y > a+b]}\mp@subsup{}{}{3}\mathrm{ do
    [a := a+1] [;
    [x := a+b] 5
```

- a+b available at label 3
- a+b not available at label 5

Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each program point, which (complex) expressions must have been computed, and not later modified, on all paths to the program point.

- Can be used for Common Subexpression Elimination: replace subexpression by variable that contains up-to-date value
- Only interesting for non-trivial (i.e., complex) arithmetic expressions

Example 2.7 (Available Expressions Analysis)

```
[x := a+b] [';
[y := a*b] '2;
while [y > a+b]}\mp@subsup{}{}{3}\mathrm{ do
    [a := a+1] ';
    [x := a+b] 5
```

- a+b available at label 3
- a+b not available at label 5
- possible optimization: while $[y>x]^{3}$ do

Formalizing Available Expressions Analysis I

- Given $a \in A E x p, b \in B E x p, c \in C m d$
- $V a r_{a} / \operatorname{Var}_{b} / \operatorname{Var}_{c}$ denotes the set of all variables occurring in $a / b / c$
- $C E x p_{b} / C E x p_{c}$ denote the sets of all complex arithmetic expressions occurring in b / c

Formalizing Available Expressions Analysis I

- Given $a \in A E x p, b \in B E x p, c \in C m d$
- $V a r_{a} / \operatorname{Var}_{b} / \operatorname{Var}_{c}$ denotes the set of all variables occurring in $a / b / c$
- $C E x p_{b} / C E x p_{c}$ denote the sets of all complex arithmetic expressions occurring in b / c
- An expression a is killed in a block B if any of the variables in a is modified in B
- Given $a \in A E x p, b \in B E x p, c \in C m d$
- $\operatorname{Var}_{a} / \operatorname{Var}_{b} / \operatorname{Var}_{c}$ denotes the set of all variables occurring in $a / b / c$
- $C E x p_{b} / C E x p_{c}$ denote the sets of all complex arithmetic expressions occurring in b / c
- An expression a is killed in a block B if any of the variables in a is modified in B
- Formally: kill ${ }_{A E}: B / k_{c} \rightarrow 2^{\text {CExp }}{ }_{c}$ is defined by

$$
\begin{aligned}
\operatorname{kill}_{\mathrm{AE}}\left([\text { skip }]^{\prime}\right) & :=\emptyset \\
\operatorname{kill}_{\mathrm{AE}}\left([x:=a]^{\prime}\right) & :=\left\{a^{\prime} \in \operatorname{CExp}_{c} \mid x \in \operatorname{Var}_{a^{\prime}}\right\} \\
\operatorname{kill}_{\mathrm{AE}}\left([b]^{\prime}\right) & :=\emptyset
\end{aligned}
$$

- Given $a \in A E x p, b \in B E x p, c \in C m d$
- $\operatorname{Var}_{a} / \operatorname{Var}_{b} / \operatorname{Var}_{c}$ denotes the set of all variables occurring in $a / b / c$
- $C E x p_{b} / C E x p_{c}$ denote the sets of all complex arithmetic expressions occurring in b / c
- An expression a is killed in a block B if any of the variables in a is modified in B
- Formally: kill ${ }_{A E}$: $B / k_{c} \rightarrow 2^{\text {CExp }}{ }_{c}$ is defined by

$$
\begin{aligned}
\operatorname{kill}_{\mathrm{AE}}\left([\text { skip }]^{\prime}\right) & :=\emptyset \\
\operatorname{kill}_{\mathrm{AE}}\left([x:=a]^{\prime}\right) & :=\left\{a^{\prime} \in \operatorname{CExp} p_{c} \mid x \in \operatorname{Var}_{a^{\prime}}\right\} \\
\quad \operatorname{kill}_{\mathrm{AE}}\left([b]^{\prime}\right) & :=\emptyset
\end{aligned}
$$

- An expression a is generated in a block B if it is evaluated in and none of its variables are modified by B
- Given $a \in A E x p, b \in B E x p, c \in C m d$
- $V a r_{a} / \operatorname{Var}_{b} / \operatorname{Var}_{c}$ denotes the set of all variables occurring in $a / b / c$
- $C E x p_{b} / C E x p_{c}$ denote the sets of all complex arithmetic expressions occurring in b / c
- An expression a is killed in a block B if any of the variables in a is modified in B
- Formally: kill ${ }_{A E}: B l k_{c} \rightarrow 2^{C E x p_{c}}$ is defined by

$$
\begin{aligned}
\operatorname{kill}_{\mathrm{AE}}\left([\text { skip }]^{\prime}\right) & :=\emptyset \\
\operatorname{kill}_{\mathrm{AE}}\left([x:=a]^{\prime}\right) & :=\left\{a^{\prime} \in \operatorname{CExp} p_{c} \mid x \in \operatorname{Var}_{a^{\prime}}\right\} \\
\operatorname{kill}_{\mathrm{AE}}\left([b]^{\prime}\right) & :=\emptyset
\end{aligned}
$$

- An expression a is generated in a block B if it is evaluated in and none of its variables are modified by B
- Formally: gen $A E: B l k_{c} \rightarrow 2^{C E x p_{c}}$ is defined by

$$
\begin{aligned}
\operatorname{gen}_{\mathrm{AE}}\left([\text { skip }]^{\prime}\right) & :=\emptyset \\
\operatorname{gen}_{\mathrm{AE}}\left([x:=a]^{\prime}\right) & :=\left\{a \mid x \notin \operatorname{Var}_{a}\right\} \\
\operatorname{gen}_{\mathrm{AE}}\left([b]^{\prime}\right) & :=\operatorname{CExp}_{b}
\end{aligned}
$$

Formalizing Available Expressions Analysis II

Example 2.8 (kill $_{\mathrm{AE}} / \mathrm{gen}_{\mathrm{AE}}$ functions)

$$
\begin{aligned}
c= & {[\mathrm{x}:=\mathrm{a}+\mathrm{b}]^{1} ; } \\
& {[\mathrm{y} \quad:=\mathrm{a} * \mathrm{~b}]^{2} ; } \\
& \text { while }[\mathrm{y}>\mathrm{a}+\mathrm{b}]^{3} \text { do } \\
& {[\mathrm{a}:=\mathrm{a}+1]^{4} ; } \\
& {[\mathrm{x} \quad:=\mathrm{a}+\mathrm{b}]^{5} }
\end{aligned}
$$

Formalizing Available Expressions Analysis II

Example 2.8 (kill $_{\mathrm{AE}} / \mathrm{gen}_{\mathrm{AE}}$ functions)

$$
\begin{aligned}
c= & {[\mathrm{x}:=\mathrm{a}+\mathrm{b}]^{1} ; } \\
& {[\mathrm{y} \quad:=\mathrm{a} * \mathrm{~b}]^{2} ; } \\
& \text { while }[\mathrm{y}>\mathrm{a}+\mathrm{b}]^{3} \text { do } \\
& {[\mathrm{a}:=\mathrm{a}+1]^{4} ; } \\
& {[\mathrm{x} \quad:=\mathrm{a}+\mathrm{b}]^{5} }
\end{aligned}
$$

Formalizing Available Expressions Analysis II

Example 2.8 (kill $_{\text {AE }} / \mathrm{gen}_{\mathrm{AE}}$ functions)

$$
\begin{aligned}
c= & {[\mathrm{x} \quad:=\mathrm{a}+\mathrm{b}]^{1} ; } \\
& {[\mathrm{y} \quad:=\mathrm{a} * \mathrm{~b}]^{2} ; } \\
& \text { while }[\mathrm{y}>\mathrm{a}+\mathrm{b}]^{3} \text { do } \\
& {[\mathrm{a}:=\mathrm{a}+1]^{4} ; } \\
& {[\mathrm{x} \quad:=\mathrm{a}+\mathrm{b}]^{5} }
\end{aligned}
$$

- CExp $_{c}=\{\mathrm{a}+\mathrm{b}, \mathrm{a} * \mathrm{~b}, \mathrm{a}+1\}$
- Lab_{c} kill $_{\mathrm{AE}}\left(B^{\prime}\right) ~$ gen $_{\mathrm{AE}}\left(B^{\prime}\right)$
$4\{\mathrm{a}+\mathrm{b}, \mathrm{a} * \mathrm{~b}, \mathrm{a}+1\} \quad \emptyset$
$5 \quad \emptyset \quad\{\mathrm{a}+\mathrm{b}\}$

The Equation System I

- Analysis itself defined by setting up an equation system
- Analysis itself defined by setting up an equation system
- For each $I \in L a b_{c}, A E_{I} \subseteq C E x p$ represents the set of available expressions at the entry of block B^{\prime}
- Analysis itself defined by setting up an equation system
- For each $I \in L a b_{c}, A E_{I} \subseteq C E x p$ represents the set of available expressions at the entry of block B^{\prime}
- Formally, for $c \in C m d$ with isolated entry:

$$
\mathrm{AE}_{I}=\left\{\bigcap_{\bigcap}^{\emptyset} \varphi_{\prime^{\prime}}\left(\mathrm{AE}_{I^{\prime}}\right) \mid\left(I^{\prime}, I\right) \in \operatorname{flow}(c)\right\} \quad \text { if } I=\operatorname{init}(c)
$$

where $\varphi_{I^{\prime}}: 2^{C E x p_{c}} \rightarrow 2^{C E x p_{c}}$ denotes the transfer function of block $B^{\prime \prime}$, given by

$$
\varphi_{I^{\prime}}(A):=\left(A \backslash \operatorname{kill}_{\mathrm{AE}}\left(B^{\prime^{\prime}}\right)\right) \cup \operatorname{gen}_{\mathrm{AE}}\left(B^{\prime^{\prime}}\right)
$$

- Analysis itself defined by setting up an equation system
- For each $I \in L a b_{c}, A E_{I} \subseteq C E x p$ represents the set of available expressions at the entry of block B^{\prime}
- Formally, for $c \in C m d$ with isolated entry:

$$
\mathrm{AE}_{I}= \begin{cases}\emptyset & \text { if } I=\operatorname{init}(c) \\ \left.\bigcap \varphi_{\prime^{\prime}}\left(\mathrm{AE}_{I^{\prime}}\right) \mid\left(I^{\prime}, I\right) \in \operatorname{flow}(c)\right\} & \text { otherwise }\end{cases}
$$

where $\varphi_{I^{\prime}}: 2^{C E x p_{c}} \rightarrow 2^{C E x p_{c}}$ denotes the transfer function of block $B^{\prime \prime}$, given by

$$
\varphi_{\prime^{\prime}}(A):=\left(A \backslash \operatorname{kill}_{\mathrm{AE}}\left(B^{\prime^{\prime}}\right)\right) \cup \operatorname{gen}_{\mathrm{AE}}\left(B^{\prime^{\prime}}\right)
$$

- Characterization of analysis:
flow-sensitive: results depending on order of assignments
forward: starts in init(c) and proceeds downwards must: \bigcap in equation for $A E_{\text {, }}$
- Analysis itself defined by setting up an equation system
- For each $I \in L a b_{c}, A E_{I} \subseteq C E x p$ represents the set of available expressions at the entry of block B^{\prime}
- Formally, for $c \in C m d$ with isolated entry:

$$
\mathrm{AE}_{I}= \begin{cases}\emptyset & \text { if } I=\operatorname{init}(c) \\ \left.\bigcap \varphi_{I^{\prime}}\left(\mathrm{AE}_{I^{\prime}}\right) \mid\left(I^{\prime}, I\right) \in \text { flow }(c)\right\} & \text { otherwise }\end{cases}
$$

where $\varphi_{I^{\prime}}: 2^{C E x p_{c}} \rightarrow 2^{C E x p_{c}}$ denotes the transfer function of block $B^{\prime \prime}$, given by

$$
\varphi_{l^{\prime}}(A):=\left(A \backslash \operatorname{kill}_{\mathrm{AE}}\left(B^{\prime^{\prime}}\right)\right) \cup \operatorname{gen}_{\mathrm{AE}}\left(B^{\prime^{\prime}}\right)
$$

- Characterization of analysis:
flow-sensitive: results depending on order of assignments
forward: starts in init(c) and proceeds downwards must: \bigcap in equation for $A E_{\text {, }}$
- Later: solution not necessarily unique
\Longrightarrow choose greatest one

The Equation System II

The Equation System II
Reminder: $\begin{array}{rll}\mathrm{AE}_{I} & =\left\{\begin{array}{l}\emptyset \\ \left.\bigcap \varphi_{\prime^{\prime}}\left(\mathrm{AE}_{\prime^{\prime}}\right) \mid\left(I^{\prime}, l\right) \in \text { flow }(c)\right\} \\ \text { if } I=\operatorname{init}(c) \\ \text { otherwise }\end{array}\right. \\ \varphi_{\prime^{\prime}}(E) & =\left(E \backslash \operatorname{kill}_{\mathrm{AE}}\left(B^{\prime \prime}\right)\right) \cup \operatorname{gen}_{\mathrm{AE}}\left(B^{\prime \prime}\right)\end{array}$

Example 2.9 (AE equation system)

$$
\begin{aligned}
& c=\begin{array}{l}
{\left[\begin{array}{ll}
\mathrm{x} & :=\mathrm{a}+\mathrm{b}]^{1} ; \\
{[\mathrm{y}} & :=\mathrm{a} * \mathrm{~b}]^{2} ;
\end{array}\right. \text {; }}
\end{array} \\
& \text { while }[y>a+b]^{3} \text { do } \\
& {[a:=a+1]^{4} \text {; }} \\
& {[\mathrm{x}:=\mathrm{a}+\mathrm{b}]^{5}}
\end{aligned}
$$

The Equation System II
Reminder: $\begin{aligned} & \mathrm{AE}_{I}= \begin{cases}\emptyset & \text { if } I=\operatorname{init}(c) \\ \varphi_{I^{\prime}}(E) & =\left(E \backslash \varphi_{I^{\prime}}\left(\mathrm{AE}_{\prime^{\prime}}\right) \mid\left(I^{\prime}, I\right) \in \operatorname{flow}(c)\right\} \\ \text { otherwise }\end{cases} \\ &\left.\operatorname{kil}_{\mathrm{AE}}\left(B^{\prime^{\prime}}\right)\right) \cup \operatorname{gen}_{\mathrm{AE}}\left(B^{\prime^{\prime}}\right)\end{aligned}$

Example 2.9 (AE equation system)

$$
\begin{gathered}
c=\left[\begin{array}{l}
\mathrm{x}:=\mathrm{a}+\mathrm{b}]^{1} ; \\
{[\mathrm{y}:=\mathrm{a} * \mathrm{~b}]^{2} ;} \\
\text { while }[\mathrm{y}>\mathrm{a}+\mathrm{b}]^{3} \text { do } \\
{[\mathrm{a}:=\mathrm{a}+1]^{4} ;} \\
{[\mathrm{x} \quad:=\mathrm{a}+\mathrm{b}]^{5}}
\end{array}\right.
\end{gathered}
$$

$$
\begin{array}{ccc}
I \in L a b_{c} & \text { kill }_{\mathrm{AE}}\left(B^{\prime}\right) & \text { gen }_{\mathrm{AE}}\left(B^{\prime}\right) \\
\hline 1 & \emptyset & \{\mathrm{a}+\mathrm{b}\} \\
2 & \emptyset & \{\mathrm{a} * \mathrm{~b}\} \\
3 & \emptyset & \{\mathrm{a}+\mathrm{b}\} \\
4 & \{\mathrm{a}+\mathrm{b}, \mathrm{a} * \mathrm{~b}, \mathrm{a}+1\} & \emptyset \\
5 & \emptyset & \{\mathrm{a}+\mathrm{b}\}
\end{array}
$$

The Equation System II

Reminder: $\begin{array}{rll}\mathrm{AE}_{I} & = \begin{cases}\emptyset & \text { if } I=\operatorname{init}(c) \\ \varphi_{\prime^{\prime}}(E) & =\left(E \backslash \varphi_{\prime^{\prime}}\left(\mathrm{AE}_{I^{\prime}}\right) \mid\left(I^{\prime}, l\right) \in \text { flow }(c)\right\} \\ \text { otherwise }\end{cases} \\ \left.\mathrm{AE}\left(B^{\prime \prime}\right)\right) \cup \operatorname{gen}_{\mathrm{AE}}\left(B^{\prime \prime}\right) & \end{array}$

Example 2.9 (AE equation system)

$$
\begin{aligned}
& c= {[\mathrm{x}:=\mathrm{a}+\mathrm{b}]^{1} ; } \\
& {[\mathrm{y}:=\mathrm{a} * \mathrm{~b}]^{2} ; } \\
& \text { while }[\mathrm{y}>\mathrm{a}+\mathrm{b}]^{3} \text { do } \\
& {[\mathrm{a}:=\mathrm{a}+1]^{4} ; } \\
& {[\mathrm{x}:=\mathrm{a}+\mathrm{b}]^{5} }
\end{aligned}
$$

$$
\begin{aligned}
& A E_{1}=\emptyset \\
& A E_{2}=\varphi_{1}\left(A E_{1}\right)=A E_{1} \cup\{a+b\} \\
& A E_{3}=\varphi_{2}\left(A E_{2}\right) \cap \varphi_{5}\left(A E_{5}\right) \\
& =\left(A E_{2} \cup\{a * b\}\right) \cap\left(A E_{5} \cup\{a+b\}\right) \\
& A E_{4}=\varphi_{3}\left(A E_{3}\right)=A E_{3} \cup\{a+b\} \\
& A E_{5}=\varphi_{4}\left(\mathrm{AE}_{4}\right)=A E_{4} \backslash\{\mathrm{a}+\mathrm{b}, \mathrm{a} * \mathrm{~b}, \mathrm{a}+1\}
\end{aligned}
$$

The Equation System II

Reminder: $\begin{array}{rll}\mathrm{AE}_{I} & = \begin{cases}\emptyset & \text { if } I=\operatorname{init}(c) \\ \varphi_{\prime^{\prime}}(E) & =\left(E \backslash \varphi_{\prime^{\prime}}\left(\mathrm{AE}_{I^{\prime}}\right) \mid\left(I^{\prime}, l\right) \in \text { flow }(c)\right\} \\ \text { otherwise }\end{cases} \\ \left.\mathrm{AE}\left(B^{\prime \prime}\right)\right) \cup \operatorname{gen}_{\mathrm{AE}}\left(B^{\prime \prime}\right) & \end{array}$

Example 2.9 (AE equation system)

$$
\begin{aligned}
& c= {[\mathrm{x}:=\mathrm{a}+\mathrm{b}]^{1} ; } \\
& {[\mathrm{y}:=\mathrm{a} * \mathrm{~b}]^{2} ; } \\
& \text { while }[\mathrm{y}>\mathrm{a}+\mathrm{b}]^{3} \text { do } \\
& {[\mathrm{a}:=\mathrm{a}+1]^{4} ; } \\
& {[\mathrm{x}:=\mathrm{a}+\mathrm{b}]^{5} }
\end{aligned}
$$

Equations:

$$
\begin{aligned}
\mathrm{AE}_{1} & =\emptyset \\
\mathrm{AE}_{2} & =\varphi_{1}\left(\mathrm{AE}_{1}\right)=A E_{1} \cup\{\mathrm{a}+\mathrm{b}\} \\
\mathrm{AE}_{3} & =\varphi_{2}\left(\mathrm{AE}_{2}\right) \cap \varphi_{5}\left(\mathrm{AE}_{5}\right) \\
& =\left(\mathrm{AE} E_{2} \cup\{\mathrm{a} * \mathrm{~b}\}\right) \cap(\mathrm{AE} \\
5 & \cup\{\mathrm{a}+\mathrm{b}\}) \\
\mathrm{AE}_{4} & =\varphi_{3}\left(\mathrm{AE}_{3}\right)=A E_{3} \cup\{\mathrm{a}+\mathrm{b}\} \\
\mathrm{AE}_{5} & =\varphi_{4}(\mathrm{AE} 4)=A E_{4} \backslash\{\mathrm{a}+\mathrm{b}, \mathrm{a} * \mathrm{~b}, \mathrm{a}+1\}
\end{aligned}
$$

$$
\begin{array}{ccc}
I \in L a b_{c} & \text { kill }_{\mathrm{AE}}\left(B^{\prime}\right) & \operatorname{gen}_{\mathrm{AE}}\left(B^{\prime}\right) \\
\hline 1 & \emptyset & \{\mathrm{a}+\mathrm{b}\} \\
2 & \emptyset & \{\mathrm{a} * \mathrm{~b}\} \\
3 & \emptyset & \{\mathrm{a}+\mathrm{b}\} \\
4 & \{\mathrm{a}+\mathrm{b}, \mathrm{a} * \mathrm{~b}, \mathrm{a}+1\} & \emptyset
\end{array}
$$

Solution: $\quad \mathrm{AE}_{1}=\emptyset$
$A E_{2}=\{a+b\}$
$A E_{3}=\{a+b\}$
$\begin{array}{ccc}4 & \{\mathrm{a}+\mathrm{b}, \mathrm{a} * \mathrm{~b}, \mathrm{a}+1\} & \emptyset \\ 5 & \emptyset & \{\mathrm{a}+\mathrm{b}\}\end{array}$
$A E_{4}=\{a+b\}$
$A E_{5}=\emptyset$

Outline

(1) Preliminaries on Dataflow Analysis

(2) An Example: Available Expressions Analysis
(3) Another Example: Live Variables Analysis

Goal of Live Variables Analysis

Live Variables Analysis

The goal of Live Variables Analysis is to determine, for each program point, which variables may be live at the exit from the point.

Goal of Live Variables Analysis

Live Variables Analysis

The goal of Live Variables Analysis is to determine, for each program point, which variables may be live at the exit from the point.

- A variable is called live at the exit from a block if there exists a path from the block to a use of the variable that does not re-define the variable

Goal of Live Variables Analysis

Live Variables Analysis

The goal of Live Variables Analysis is to determine, for each program point, which variables may be live at the exit from the point.

- A variable is called live at the exit from a block if there exists a path from the block to a use of the variable that does not re-define the variable
- All variables considered to be live at the end of the program (alternative: restriction to output variables)

Goal of Live Variables Analysis

Live Variables Analysis

The goal of Live Variables Analysis is to determine, for each program point, which variables may be live at the exit from the point.

- A variable is called live at the exit from a block if there exists a path from the block to a use of the variable that does not re-define the variable
- All variables considered to be live at the end of the program (alternative: restriction to output variables)
- Can be used for Dead Code Elimination: remove assignments to non-live variables

An Example

$$
\begin{aligned}
& \text { Example } 2.10 \text { (Live Variables Analysis) } \\
& \text { [x := } 2]^{1} \text {; } \\
& \text { [y := 4] }{ }^{2} \text {; } \\
& \text { [x:= 1] }{ }^{3} \text {; } \\
& \text { if }[y>0]^{4} \text { then } \\
& {\left[\begin{array}{c}
\mathrm{z}
\end{array}=\mathrm{x}\right]^{5}} \\
& \text { else } \\
& \text { [z := y*y] }{ }^{6} \text {; } \\
& {[\mathrm{x}:=\mathrm{z}]^{7}}
\end{aligned}
$$

An Example

```
Example 2.10 (Live Variables Analysis)
\([\mathrm{x}:=2]^{1}\);
\([y:=4]^{2}\);
    - x not live at exit from label 1
[x := 1] \({ }^{3}\);
if \([y>0]^{4}\) then
    \([z:=x]^{5}\)
else
        [z := y*y] \({ }^{6}\);
\([\mathrm{x}:=\mathrm{z}]^{7}\)
```


An Example

```
Example 2.10 (Live Variables Analysis)
[x := 2] \({ }^{1}\);
\([\mathrm{y}:=4]^{2}\);
    - x not live at exit from label 1
[x := 1] \({ }^{3}\);
if \([y>0]^{4}\) then
    \([\mathrm{z}:=\mathrm{x}]^{5}\)
else
        \([\mathrm{z}:=\mathrm{y} * \mathrm{y}]^{6}\);
\([\mathrm{x}:=\mathrm{z}]^{7}\)
```


An Example

```
Example 2.10 (Live Variables Analysis)
[x := 2] \({ }^{1}\);
\([\mathrm{y}:=4]^{2}\);
- x not live at exit from label 1
[x := 1] \({ }^{3}\);
if \([y>0]^{4}\) then
    \([\mathrm{z}:=\mathrm{x}]^{5}\)
else
        \([\mathrm{z}:=\mathrm{y} * \mathrm{y}]^{6}\);
\([\mathrm{x}:=\mathrm{z}]^{7}\)
```


An Example

Example 2.10 (Live Variables Analysis)

[x := 2$]^{1}$;
$[\mathrm{y}:=4]^{2}$;

- x not live at exit from label 1
$[\mathrm{x}:=1]^{3}$;
if $[y>0]^{4}$ then
- y live at exit from 2
$[\mathrm{z}:=\mathrm{x}]^{5}$
- x live at exit from 3
else
- z live at exits from 5 and 6

An Example

Example 2.10 (Live Variables Analysis)

[x := 2] ${ }^{1}$;
$[\mathrm{y}:=4]^{2}$;

- x not live at exit from label 1
$[\mathrm{x}:=1]^{3}$;
if $[y>0]^{4}$ then
- y live at exit from 2
$[z:=x]^{5}$
- x live at exit from 3
else
[z := y*y] ${ }^{6}$;
$[\mathrm{x}:=\mathrm{z}]^{7}$
- z live at exits from 5 and 6
- possible optimization: remove $[\mathrm{x}:=2]^{1}$

Formalizing Live Variables Analysis I

- A variable on the left-hand side of an assignment is killed by the assignment; tests and skip do not kill

Formalizing Live Variables Analysis I

- A variable on the left-hand side of an assignment is killed by the assignment; tests and skip do not kill
- Formally: kill $\mathrm{LV}: B / k_{c} \rightarrow 2^{\text {Var }_{c}}$ is defined by

$$
\begin{aligned}
& \operatorname{kill}_{\mathrm{LV}}\left([\text { skip }]^{\prime}\right):=\emptyset \\
& \operatorname{kill}_{\mathrm{LV}\left([x:=a]^{\prime}\right)}:=\{x\} \\
& \operatorname{kill}_{\mathrm{LV}}\left([b]^{\prime}\right):=\emptyset
\end{aligned}
$$

Formalizing Live Variables Analysis I

- A variable on the left-hand side of an assignment is killed by the assignment; tests and skip do not kill
- Formally: kill $\mathrm{LV}: B / k_{c} \rightarrow 2^{\text {Var }_{c}}$ is defined by

$$
\begin{aligned}
& \operatorname{kil}_{\mathrm{LV}}\left([\text { skip }]^{\prime}\right):=\emptyset \\
& \operatorname{kill}_{\mathrm{LV}\left([x:=a]^{\prime}\right)}:=\{x\} \\
& \operatorname{kill} l_{\mathrm{LV}}\left([b]^{\prime}\right):=\emptyset
\end{aligned}
$$

- Every reading access generates a live variable
- A variable on the left-hand side of an assignment is killed by the assignment; tests and skip do not kill
- Formally: kill $\mathrm{LV}: B / k_{c} \rightarrow 2^{\text {Var }_{c}}$ is defined by

$$
\begin{aligned}
& \operatorname{kil}_{\mathrm{LV}}\left([\text { skip }]^{\prime}\right):=\emptyset \\
& \operatorname{kill}_{\mathrm{LV}\left([x:=a]^{\prime}\right)}:=\{x\} \\
& \operatorname{kill}_{\mathrm{LV}}\left([b]^{\prime}\right):=\emptyset
\end{aligned}
$$

- Every reading access generates a live variable
- Formally: gen $\mathrm{LV}: B / k_{c} \rightarrow 2^{\text {Var }_{c}}$ is defined by

$$
\begin{aligned}
\operatorname{gen}_{\mathrm{LV}}\left([\text { skip }]^{\prime}\right) & :=\emptyset \\
\operatorname{gen}_{\mathrm{LV}}\left([x:=a]^{\prime}\right) & :=\operatorname{Var}_{a} \\
\operatorname{gen}_{\mathrm{LV}}\left([b]^{\prime}\right) & :=\operatorname{Var}_{b}
\end{aligned}
$$

Formalizing Live Variables Analysis II

Example 2.11 (kill ${ }_{\mathrm{LV}} /$ gen $_{\mathrm{LV}}$ functions)

$$
\begin{aligned}
& c=\left[\begin{array}{ll}
\mathrm{x} & :=2
\end{array}\right]^{1} \text {; } \\
& {[\mathrm{y}:=4]^{2} \text {; }} \\
& {[\mathrm{x}:=1]^{3} \text {; }} \\
& \text { if }[y>0]^{4} \text { then } \\
& {[\mathrm{z}:=\mathrm{x}]^{5}} \\
& \text { else } \\
& {[\mathrm{z}:=\mathrm{y} * \mathrm{y}]^{6} \text {; }} \\
& {[\mathrm{x}:=\mathrm{z}]^{7}}
\end{aligned}
$$

Formalizing Live Variables Analysis II

Example 2.11 (kill ${ }_{\mathrm{LV}} /$ gen $_{\mathrm{LV}}$ functions)

$$
\left.\begin{array}{rl}
c= & {[\mathrm{x}:=2}
\end{array}\right]^{1} ; \quad \bullet \operatorname{Var}_{c}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}
$$

Formalizing Live Variables Analysis II

Example 2.11 (kill ${ }_{\mathrm{LV}} /$ gen $_{\mathrm{LV}}$ functions)

$$
\text { - } \operatorname{Var}_{c}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}
$$

$$
\begin{array}{ccc}
\bullet l \in L a b_{c} & \text { kill }_{\mathrm{LV}}\left(B^{\prime}\right) \operatorname{gen}_{\mathrm{LV}}\left(B^{\prime}\right) \\
\hline 1 & \{\mathrm{x}\} & \emptyset \\
2 & \{\mathrm{y}\} & \emptyset \\
3 & \{\mathrm{x}\} & \emptyset \\
4 & \emptyset & \{\mathrm{y}\} \\
5 & \{\mathrm{z}\} & \{\mathrm{x}\} \\
6 & \{\mathrm{z}\} & \{\mathrm{y}\} \\
7 & \{\mathrm{x}\} & \{\mathrm{z}\}
\end{array}
$$

$$
\begin{aligned}
& c=\left[\begin{array}{ll}
\mathrm{x} & :=2
\end{array}\right]^{1} \text {; } \\
& {[\mathrm{y}:=4]^{2} \text {; }} \\
& {[\mathrm{x}:=1]^{3} \text {; }} \\
& \text { if }[y>0]^{4} \text { then } \\
& {[z:=x]^{5}} \\
& \text { else } \\
& {[z:=y * y]^{6} \text {; }} \\
& {[\mathrm{x}:=\mathrm{z}]^{7}}
\end{aligned}
$$

- For each $I \in L a b_{c}, L V$, \subseteq Var represents the set of live variables at the exit of block B^{\prime}
- For each $I \in L a b_{c}, L V_{I} \subseteq \operatorname{Var}_{c}$ represents the set of live variables at the exit of block B^{\prime}
- Formally, for a program $c \in C m d$ with isolated exits:

$$
\mathrm{LV} \text { I }= \begin{cases}\operatorname{Var}_{c} & \text { if } I \in \text { final }(c) \\ \bigcup\left\{\varphi_{I^{\prime}}\left(\mathrm{LV}_{I^{\prime}}\right) \mid\left(I, I^{\prime}\right) \in \operatorname{flow}(c)\right\} & \text { otherwise }\end{cases}
$$

where $\varphi_{I^{\prime}}: 2^{\operatorname{Var}_{c}} \rightarrow 2^{\operatorname{Var}_{c}}$ denotes the transfer function of block $B^{\prime \prime}$, given by

$$
\varphi_{\prime^{\prime}}(V):=\left(V \backslash \operatorname{kill}_{\mathrm{LV}}\left(B^{\prime \prime}\right)\right) \cup \operatorname{gen}_{\mathrm{LV}}\left(B^{\prime^{\prime}}\right)
$$

- For each $I \in L a b_{c}, L V$, \subseteq Var r_{c} represents the set of live variables at the exit of block B^{\prime}
- Formally, for a program $c \in C m d$ with isolated exits:

$$
\mathrm{LV}_{I}= \begin{cases}\operatorname{Var}_{c} & \text { if } I \in \text { final }(c) \\ \bigcup\left\{\varphi_{I^{\prime}}\left(\mathrm{LV}_{I^{\prime}}\right) \mid\left(I, I^{\prime}\right) \in \operatorname{flow}(c)\right\} & \text { otherwise }\end{cases}
$$

where $\varphi_{I^{\prime}}: 2^{\operatorname{Var}_{c}} \rightarrow 2^{\operatorname{Var}_{c}}$ denotes the transfer function of block $B^{\prime \prime}$, given by

$$
\varphi_{\prime^{\prime}}(V):=\left(V \backslash \operatorname{kill}_{\mathrm{LV}}\left(B^{\prime \prime}\right)\right) \cup \operatorname{gen}_{\mathrm{LV}}\left(B^{\prime^{\prime}}\right)
$$

- Characterization of analysis:
flow-sensitive: results depending on order of assignments
backward: starts in final(c) and proceeds upwards
may: U in equation for $L V_{\text {, }}$
- For each $I \in L a b_{c}, L V$, \subseteq Var r_{c} represents the set of live variables at the exit of block B^{\prime}
- Formally, for a program $c \in C m d$ with isolated exits:

$$
\mathrm{LV}_{I}= \begin{cases}\operatorname{Var}_{c} & \text { if } I \in \text { final }(c) \\ \bigcup\left\{\varphi_{I^{\prime}}\left(\mathrm{LV}_{I^{\prime}}\right) \mid\left(I, I^{\prime}\right) \in \operatorname{flow}(c)\right\} & \text { otherwise }\end{cases}
$$

where $\varphi_{I^{\prime}}: 2^{\operatorname{Var}_{c}} \rightarrow 2^{\operatorname{Var}_{c}}$ denotes the transfer function of block $B^{\prime \prime}$, given by

$$
\varphi_{\prime^{\prime}}(V):=\left(V \backslash \operatorname{kill}_{\mathrm{LV}}\left(B^{\prime \prime}\right)\right) \cup \operatorname{gen}_{\mathrm{LV}}\left(B^{\prime^{\prime}}\right)
$$

- Characterization of analysis:
flow-sensitive: results depending on order of assignments
backward: starts in final(c) and proceeds upwards
may: \cup in equation for $L V_{\text {I }}$
- Later: solution not necessarily unique
\Longrightarrow choose least one

The Equation System II

The Equation System II
Reminder: $\quad \mathrm{LV},= \begin{cases}\operatorname{Var}_{c} \\ \bigcup\left\{\varphi^{\prime}\left(\mathrm{LV}_{l^{\prime}}\right) \mid\left(I, I^{\prime}\right) \in \text { flow }(c)\right\} & \text { if } I \in \text { final }(c) \\ \text { otherwise }\end{cases}$

$$
\varphi_{I^{\prime}}(V)=\left(V \backslash \operatorname{kill}_{\mathrm{LV}}\left(B^{\prime^{\prime}}\right)\right) \cup \operatorname{gen}_{\mathrm{LV}}\left(B^{\prime^{\prime}}\right)
$$

Example 2.12 (LV equation system)

$$
\begin{aligned}
& c=\left[\begin{array}{ll}
\mathrm{x} & :=2
\end{array}\right]^{1} ;[\mathrm{y}:=4]^{2} \text {; } \\
& {[\mathrm{x}:=1]^{3} \text {; }} \\
& \text { if }[y>0]^{4} \text { then } \\
& {[z:=x]^{5}} \\
& \text { else } \\
& {[\mathrm{z}:=\mathrm{y} * \mathrm{y}]^{6} \text {; }} \\
& {[\mathrm{x}:=\mathrm{z}]^{7}}
\end{aligned}
$$

Reminder: $\quad \mathrm{LV}_{I}= \begin{cases}\operatorname{Var}_{c} \\ \bigcup\left\{\varphi_{\prime^{\prime}}\left(\mathrm{LV}_{l^{\prime}}\right) \mid\left(I, I^{\prime}\right) \in \text { flow }(c)\right\} & \text { if } I \in \text { final }(c) \\ \text { otherwise }\end{cases}$

$$
\varphi_{I^{\prime}}(V)=\left(V \backslash \operatorname{kill}_{\mathrm{LV}}\left(B^{\prime^{\prime}}\right)\right) \cup \operatorname{gen}_{\mathrm{LV}}\left(B^{\prime^{\prime}}\right)
$$

Example 2.12 (LV equation system)

$$
\begin{aligned}
& c=\left[\begin{array}{ll}
\mathrm{x} & :=2
\end{array}\right]^{1} ;[\mathrm{y}:=4]^{2} \text {; } \\
& {[\mathrm{x}:=1]^{3} \text {; }} \\
& \text { if }[y>0]^{4} \text { then } \\
& {[z:=x]^{5}} \\
& \text { else } \\
& {[\mathrm{z}:=\mathrm{y} * \mathrm{y}]^{6} \text {; }} \\
& {[\mathrm{x}:=\mathrm{z}]^{7}}
\end{aligned}
$$

$l \in L a b_{c}$	kill $_{\mathrm{LV}}\left(B^{\prime}\right)$	$\operatorname{gen}_{\mathrm{LV}}\left(B^{\prime}\right)$
1	$\{\mathrm{x}\}$	\emptyset
2	$\{\mathrm{y}\}$	\emptyset
3	$\{\mathrm{x}\}$	\emptyset
4	\emptyset	$\{\mathrm{y}\}$
5	$\{\mathrm{z}\}$	$\{\mathrm{x}\}$
6	$\{\mathrm{z}\}$	$\{\mathrm{y}\}$
7	$\{\mathrm{x}\}$	$\{\mathrm{z}\}$

Reminder: $\quad \mathrm{LV},= \begin{cases}\operatorname{Var}_{c} & \text { if } I \in \text { final }(c) \\ \bigcup\left\{\varphi_{I^{\prime}}\left(\mathrm{LV}_{\prime^{\prime}}\right) \mid\left(I, I^{\prime}\right) \in \text { flow }(c)\right\} & \text { otherwise }\end{cases}$

$$
\varphi_{l^{\prime}}(V)=\left(V \backslash \operatorname{kill}_{\mathrm{LV}}\left(B^{\prime^{\prime}}\right)\right) \cup \operatorname{gen}_{\mathrm{LV}}\left(B^{\prime^{\prime}}\right)
$$

Example 2.12 (LV equation system)

$$
\begin{array}{ccc}
I \in L_{a} b_{c} & \text { kill }_{\mathrm{LV}}\left(B^{\prime}\right) & \text { gen }_{\mathrm{LV}}\left(B^{\prime}\right) \\
\hline 1 & \{\mathrm{x}\} & \emptyset \\
2 & \{\mathrm{y}\} & \emptyset \\
3 & \{\mathrm{x}\} & \emptyset \\
4 & \emptyset & \{\mathrm{y}\} \\
5 & \{\mathrm{z}\} & \{\mathrm{x}\} \\
6 & \{\mathrm{z}\} & \{\mathrm{y}\} \\
7 & \{\mathrm{x}\} & \{\mathrm{z}\}
\end{array}
$$

$$
\begin{aligned}
& c=\left[\begin{array}{ll}
\mathrm{x} & :=2
\end{array}\right]^{1} ;[\mathrm{y}:=4]^{2} \text {; } \\
& {[\mathrm{x}:=1]^{3} \text {; }} \\
& \text { if }[y>0]^{4} \text { then } \\
& {[z:=x]^{5}} \\
& \text { else } \\
& {[\mathrm{z}:=\mathrm{y} * \mathrm{y}]^{6} \text {; }} \\
& {[\mathrm{x}:=\mathrm{z}]^{7}}
\end{aligned}
$$

$\mathrm{LV}_{1}=\varphi_{2}\left(\mathrm{LV}_{2}\right)=\mathrm{LV}_{2} \backslash\{\mathrm{y}\}$
$\mathrm{LV}_{2}=\varphi_{3}\left(\mathrm{LV}_{3}\right)=\mathrm{LV}_{3} \backslash\{\mathrm{x}\}$
$L V_{3}=\varphi_{4}\left(\mathrm{LV}_{4}\right)=\mathrm{LV}_{4} \cup\{\mathrm{y}\}$
$\mathrm{LV}_{4}=\varphi_{5}\left(\mathrm{LV}_{5}\right) \cup \varphi_{6}\left(\mathrm{LV}_{6}\right)$
$=\left(\left(\mathrm{LV}_{5} \backslash\{\mathrm{z}\}\right) \cup\{\mathrm{x}\}\right) \cup\left(\left(\mathrm{LV}_{6} \backslash\{\mathrm{z}\}\right) \cup\{\mathrm{y}\}\right)$
$\mathrm{LV}_{5}=\varphi_{7}\left(\mathrm{LV}_{7}\right)=\left(\mathrm{LV}_{7} \backslash\{\mathrm{x}\}\right) \cup\{\mathrm{z}\}$
$\mathrm{LV}_{6}=\varphi_{7}\left(\mathrm{LV}_{7}\right)=\left(\mathrm{LV}_{7} \backslash\{\mathrm{x}\}\right) \cup\{\mathrm{z}\}$
$\mathrm{LV}_{7}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$

Reminder: $\quad \mathrm{LV}_{I}= \begin{cases}\operatorname{Var}_{c} & \text { if } I \in \text { final }(c) \\ \bigcup\left\{\varphi_{I^{\prime}}\left(\mathrm{LV}_{\prime^{\prime}}\right) \mid\left(I, I^{\prime}\right) \in \text { flow }(c)\right\} & \text { otherwise }\end{cases}$

$$
\varphi_{l^{\prime}}(V)=\left(V \backslash \operatorname{kill}_{\mathrm{LV}}\left(B^{\prime^{\prime}}\right)\right) \cup \operatorname{gen}_{\mathrm{LV}}\left(B^{\prime^{\prime}}\right)
$$

Example 2.12 (LV equation system)

$$
\begin{array}{ccc}
l \in L^{c} b_{c} & \text { kill }_{\mathrm{LV}}\left(B^{\prime}\right) & \operatorname{gen}_{\mathrm{LV}}\left(B^{\prime}\right) \\
\hline 1 & \{\mathrm{x}\} & \emptyset \\
2 & \{\mathrm{y}\} & \emptyset \\
3 & \{\mathrm{x}\} & \emptyset \\
4 & \emptyset & \{\mathrm{y}\} \\
5 & \{\mathrm{z}\} & \{\mathrm{x}\} \\
6 & \{\mathrm{z}\} & \{\mathrm{y}\} \\
7 & \{\mathrm{x}\} & \{\mathrm{z}\}
\end{array}
$$

$$
\begin{aligned}
& c=\left[\begin{array}{ll}
\mathrm{x} & :=2
\end{array}\right]^{1} ;[\mathrm{y}:=4]^{2} \text {; } \\
& {[\mathrm{x}:=1]^{3} \text {; }} \\
& \text { if }[y>0]^{4} \text { then } \\
& {[z:=x]^{5}} \\
& \text { else } \\
& {[\mathrm{z}:=\mathrm{y} * \mathrm{y}]^{6} \text {; }} \\
& {[\mathrm{x}:=\mathrm{z}]^{7}}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{LV}_{1} & =\varphi_{2}\left(\mathrm{LV}_{2}\right)=\mathrm{LV}_{2} \backslash\{\mathrm{y}\} \\
\mathrm{LV}_{2} & =\varphi_{3}\left(\mathrm{LV}_{3}\right)=\mathrm{LV}_{3} \backslash\{\mathrm{x}\} \\
\mathrm{LV}_{3} & =\varphi_{4}\left(\mathrm{LV}_{4}\right)=\mathrm{LV}_{4} \cup\{\mathrm{y}\} \\
\mathrm{LV}_{4} & =\varphi_{5}\left(\mathrm{LV}_{5}\right) \cup \varphi_{6}(\mathrm{LV} \\
& =\left(\left(\mathrm{LV}_{5} \backslash\{\mathrm{z}\}\right) \cup\{\mathrm{x}\}\right) \cup\left(\left(\mathrm{LV}_{6} \backslash\{\mathrm{z}\}\right) \cup\{\mathrm{y}\}\right) \\
\mathrm{LV}_{5} & =\varphi_{7}\left(\mathrm{LV}_{7}\right)=\left(\mathrm{LV}_{7} \backslash\{\mathrm{x}\}\right) \cup\{\mathrm{z}\} \\
\mathrm{LV}_{6} & =\varphi_{7}\left(\mathrm{LV}_{7}\right)=(\mathrm{LV} 7 \backslash\{\mathrm{x}\}) \cup\{\mathrm{z}\} \\
\mathrm{LV}_{7} & =\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}
\end{aligned}
$$

Solution: $\quad \mathrm{LV}_{1}=\emptyset$

$$
\mathrm{LV}_{2}=\{\mathrm{y}\}
$$

$$
\mathrm{LV}_{3}=\{\mathrm{x}, \mathrm{y}\}
$$

$$
\mathrm{LV}_{4}=\{\mathrm{x}, \mathrm{y}\}
$$

$$
\mathrm{LV}_{5}=\{\mathrm{y}, \mathrm{z}\}
$$

$$
\mathrm{LV}_{6}=\{\mathrm{y}, \mathrm{z}\}
$$

$$
\mathrm{LV}_{7}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}
$$

