
Static Program Analysis
Lecture 2: Dataflow Analysis I

(Introduction & Available Expressions/Live Variables Analysis)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Winter Semester 2014/15

noll@cs.rwth-aachen.de
http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Outline

1 Preliminaries on Dataflow Analysis

2 An Example: Available Expressions Analysis

3 Another Example: Live Variables Analysis

Static Program Analysis Winter Semester 2014/15 2.2

Dataflow Analysis: the Approach

Traditional form of program analysis

Idea: describe how analysis information flows through program

Distinctions:

dependence on statement order:
flow-sensitive vs. flow-insensitive analyses

direction of flow:
forward vs. backward analyses

quantification over paths:
may (union) vs. must (intersection) analyses

procedures:
interprocedural vs. intraprocedural analyses

Static Program Analysis Winter Semester 2014/15 2.3

Dataflow Analysis: the Approach

Traditional form of program analysis

Idea: describe how analysis information flows through program

Distinctions:

dependence on statement order:
flow-sensitive vs. flow-insensitive analyses

direction of flow:
forward vs. backward analyses

quantification over paths:
may (union) vs. must (intersection) analyses

procedures:
interprocedural vs. intraprocedural analyses

Static Program Analysis Winter Semester 2014/15 2.3

Dataflow Analysis: the Approach

Traditional form of program analysis

Idea: describe how analysis information flows through program

Distinctions:

dependence on statement order:
flow-sensitive vs. flow-insensitive analyses

direction of flow:
forward vs. backward analyses

quantification over paths:
may (union) vs. must (intersection) analyses

procedures:
interprocedural vs. intraprocedural analyses

Static Program Analysis Winter Semester 2014/15 2.3

Labelled Programs

Goal: localisation of analysis information

Dataflow information will be associated with
skip statements
assignments
tests in conditionals (if) and loops (while)

Assume set of labels Lab with meta variable l ∈ Lab (usually
Lab = N)

Definition 2.1 (Labelled WHILE programs)

The syntax of labelled WHILE programs is defined by the following
context-free grammar:

a ::= z | x | a1+a2 | a1-a2 | a1*a2 ∈ AExp
b ::= t | a1=a2 | a1>a2 | ¬b | b1∧b2 | b1∨b2 ∈ BExp
c ::= [skip]l | [x := a]l | c1;c2 |

if [b]l then c1 else c2 | while [b]l do c ∈ Cmd

All labels in c ∈ Cmd assumed distinct, denoted by Labc

Labelled fragments of c called blocks, denoted by Blkc

Static Program Analysis Winter Semester 2014/15 2.4

Labelled Programs

Goal: localisation of analysis information
Dataflow information will be associated with

skip statements
assignments
tests in conditionals (if) and loops (while)

Assume set of labels Lab with meta variable l ∈ Lab (usually
Lab = N)

Definition 2.1 (Labelled WHILE programs)

The syntax of labelled WHILE programs is defined by the following
context-free grammar:

a ::= z | x | a1+a2 | a1-a2 | a1*a2 ∈ AExp
b ::= t | a1=a2 | a1>a2 | ¬b | b1∧b2 | b1∨b2 ∈ BExp
c ::= [skip]l | [x := a]l | c1;c2 |

if [b]l then c1 else c2 | while [b]l do c ∈ Cmd

All labels in c ∈ Cmd assumed distinct, denoted by Labc

Labelled fragments of c called blocks, denoted by Blkc

Static Program Analysis Winter Semester 2014/15 2.4

Labelled Programs

Goal: localisation of analysis information
Dataflow information will be associated with

skip statements
assignments
tests in conditionals (if) and loops (while)

Assume set of labels Lab with meta variable l ∈ Lab (usually
Lab = N)

Definition 2.1 (Labelled WHILE programs)

The syntax of labelled WHILE programs is defined by the following
context-free grammar:

a ::= z | x | a1+a2 | a1-a2 | a1*a2 ∈ AExp
b ::= t | a1=a2 | a1>a2 | ¬b | b1∧b2 | b1∨b2 ∈ BExp
c ::= [skip]l | [x := a]l | c1;c2 |

if [b]l then c1 else c2 | while [b]l do c ∈ Cmd

All labels in c ∈ Cmd assumed distinct, denoted by Labc

Labelled fragments of c called blocks, denoted by Blkc

Static Program Analysis Winter Semester 2014/15 2.4

Labelled Programs

Goal: localisation of analysis information
Dataflow information will be associated with

skip statements
assignments
tests in conditionals (if) and loops (while)

Assume set of labels Lab with meta variable l ∈ Lab (usually
Lab = N)

Definition 2.1 (Labelled WHILE programs)

The syntax of labelled WHILE programs is defined by the following
context-free grammar:

a ::= z | x | a1+a2 | a1-a2 | a1*a2 ∈ AExp
b ::= t | a1=a2 | a1>a2 | ¬b | b1∧b2 | b1∨b2 ∈ BExp
c ::= [skip]l | [x := a]l | c1;c2 |

if [b]l then c1 else c2 | while [b]l do c ∈ Cmd

All labels in c ∈ Cmd assumed distinct, denoted by Labc

Labelled fragments of c called blocks, denoted by Blkc
Static Program Analysis Winter Semester 2014/15 2.4

A WHILE Program

with Labels

Example 2.2

x := 6;
y := 7;
z := 0;
while x > 0 do
x := x - 1;
v := y;
while v > 0 do
v := v - 1;
z := z + 1

Static Program Analysis Winter Semester 2014/15 2.5

A WHILE Program with Labels

Example 2.2

[x := 6]1;
[y := 7]2;
[z := 0]3;
while [x > 0]4 do

[x := x - 1]5;
[v := y]6;
while [v > 0]7 do

[v := v - 1]8;
[z := z + 1]9

Static Program Analysis Winter Semester 2014/15 2.5

Representing Control Flow I

Every (labelled) statement has a single entry (given by the initial label)
and generally multiple exits (given by the final labels):

Definition 2.3 (Initial and final labels)

The mapping init : Cmd → Lab returns the initial label of a statement:
init([skip]l) := l

init([x := a]l) := l
init(c1;c2) := init(c1)

init(if [b]l then c1 else c2) := l
init(while [b]l do c) := l

The mapping final : Cmd → 2Lab returns the set of final labels of a
statement:

final([skip]l) := {l}
final([x := a]l) := {l}

final(c1;c2) := final(c2)
final(if [b]l then c1 else c2) := final(c1) ∪ final(c2)

final(while [b]l do c) := {l}

Static Program Analysis Winter Semester 2014/15 2.6

Representing Control Flow I

Every (labelled) statement has a single entry (given by the initial label)
and generally multiple exits (given by the final labels):

Definition 2.3 (Initial and final labels)

The mapping init : Cmd → Lab returns the initial label of a statement:
init([skip]l) := l

init([x := a]l) := l
init(c1;c2) := init(c1)

init(if [b]l then c1 else c2) := l
init(while [b]l do c) := l

The mapping final : Cmd → 2Lab returns the set of final labels of a
statement:

final([skip]l) := {l}
final([x := a]l) := {l}

final(c1;c2) := final(c2)
final(if [b]l then c1 else c2) := final(c1) ∪ final(c2)

final(while [b]l do c) := {l}

Static Program Analysis Winter Semester 2014/15 2.6

Representing Control Flow II

Definition 2.4 (Flow relation)

Given a statement c ∈ Cmd , the (control) flow relation

flow(c) ⊆ Lab × Lab

is defined by

flow([skip]l) := ∅
flow([x := a]l) := ∅

flow(c1;c2) := flow(c1) ∪ flow(c2) ∪
{(l , init(c2)) | l ∈ final(c1)}

flow(if [b]l then c1 else c2) := flow(c1) ∪ flow(c2) ∪
{(l , init(c1)), (l , init(c2))}

flow(while [b]l do c) := flow(c) ∪ {(l , init(c))} ∪
{(l ′, l) | l ′ ∈ final(c)}

Static Program Analysis Winter Semester 2014/15 2.7

Representing Control Flow III

Example 2.5

c = [z := 1]1;
while [x > 0]2 do

[z := z*y]3;
[x := x-1]4

init(c) = 1
final(c) = {2}
flow(c) = {(1, 2), (2, 3), (3, 4), (4, 2)}

Visualization by
(control) flow graph:

[z := 1]1

[x > 0]2

[z := z*y]3

[x := x-1]4

Static Program Analysis Winter Semester 2014/15 2.8

Representing Control Flow III

Example 2.5

c = [z := 1]1;
while [x > 0]2 do

[z := z*y]3;
[x := x-1]4

init(c) = 1
final(c) = {2}
flow(c) = {(1, 2), (2, 3), (3, 4), (4, 2)}

Visualization by
(control) flow graph:

[z := 1]1

[x > 0]2

[z := z*y]3

[x := x-1]4

Static Program Analysis Winter Semester 2014/15 2.8

Representing Control Flow III

Example 2.5

c = [z := 1]1;
while [x > 0]2 do

[z := z*y]3;
[x := x-1]4

init(c) = 1
final(c) = {2}
flow(c) = {(1, 2), (2, 3), (3, 4), (4, 2)}

Visualization by
(control) flow graph:

[z := 1]1

[x > 0]2

[z := z*y]3

[x := x-1]4

Static Program Analysis Winter Semester 2014/15 2.8

Representing Control Flow IV

To simplify the presentation we will often assume that the pro-
gram c ∈ Cmd under consideration has an isolated entry, meaning that

{l ∈ Lab | (l , init(c)) ∈ flow(c)} = ∅
(which is the case when c does not start with a while loop)

Similarly: c ∈ Cmd has isolated exits if
{l ′ ∈ Lab | (l , l ′) ∈ flow(c) for some l ∈ final(c)} = ∅

(which is the case when no final label identifies a loop header)

Example 2.6 (cf. Example 2.5)

[z := 1]1

[x > 0]2

[z := z*y]3

[x := x-1]4

has an isolated entry but not isolated exits

Static Program Analysis Winter Semester 2014/15 2.9

Representing Control Flow IV

To simplify the presentation we will often assume that the pro-
gram c ∈ Cmd under consideration has an isolated entry, meaning that

{l ∈ Lab | (l , init(c)) ∈ flow(c)} = ∅
(which is the case when c does not start with a while loop)
Similarly: c ∈ Cmd has isolated exits if

{l ′ ∈ Lab | (l , l ′) ∈ flow(c) for some l ∈ final(c)} = ∅
(which is the case when no final label identifies a loop header)

Example 2.6 (cf. Example 2.5)

[z := 1]1

[x > 0]2

[z := z*y]3

[x := x-1]4

has an isolated entry but not isolated exits

Static Program Analysis Winter Semester 2014/15 2.9

Representing Control Flow IV

To simplify the presentation we will often assume that the pro-
gram c ∈ Cmd under consideration has an isolated entry, meaning that

{l ∈ Lab | (l , init(c)) ∈ flow(c)} = ∅
(which is the case when c does not start with a while loop)
Similarly: c ∈ Cmd has isolated exits if

{l ′ ∈ Lab | (l , l ′) ∈ flow(c) for some l ∈ final(c)} = ∅
(which is the case when no final label identifies a loop header)

Example 2.6 (cf. Example 2.5)

[z := 1]1

[x > 0]2

[z := z*y]3

[x := x-1]4

has an isolated entry but not isolated exits

Static Program Analysis Winter Semester 2014/15 2.9

Outline

1 Preliminaries on Dataflow Analysis

2 An Example: Available Expressions Analysis

3 Another Example: Live Variables Analysis

Static Program Analysis Winter Semester 2014/15 2.10

Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

Can be used for Common Subexpression Elimination:
replace subexpression by variable that contains up-to-date value

Only interesting for non-trivial (i.e., complex) arithmetic expressions

Example 2.7 (Available Expressions Analysis)

[x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

a+b available at label 3

a+b not available at label 5

possible optimization:
while [y > x]3 do

Static Program Analysis Winter Semester 2014/15 2.11

Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

Can be used for Common Subexpression Elimination:
replace subexpression by variable that contains up-to-date value

Only interesting for non-trivial (i.e., complex) arithmetic expressions

Example 2.7 (Available Expressions Analysis)

[x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

a+b available at label 3

a+b not available at label 5

possible optimization:
while [y > x]3 do

Static Program Analysis Winter Semester 2014/15 2.11

Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

Can be used for Common Subexpression Elimination:
replace subexpression by variable that contains up-to-date value

Only interesting for non-trivial (i.e., complex) arithmetic expressions

Example 2.7 (Available Expressions Analysis)

[x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

a+b available at label 3

a+b not available at label 5

possible optimization:
while [y > x]3 do

Static Program Analysis Winter Semester 2014/15 2.11

Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

Can be used for Common Subexpression Elimination:
replace subexpression by variable that contains up-to-date value

Only interesting for non-trivial (i.e., complex) arithmetic expressions

Example 2.7 (Available Expressions Analysis)

[x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

a+b available at label 3

a+b not available at label 5

possible optimization:
while [y > x]3 do

Static Program Analysis Winter Semester 2014/15 2.11

Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

Can be used for Common Subexpression Elimination:
replace subexpression by variable that contains up-to-date value

Only interesting for non-trivial (i.e., complex) arithmetic expressions

Example 2.7 (Available Expressions Analysis)

[x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

a+b available at label 3

a+b not available at label 5

possible optimization:
while [y > x]3 do

Static Program Analysis Winter Semester 2014/15 2.11

Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

Can be used for Common Subexpression Elimination:
replace subexpression by variable that contains up-to-date value

Only interesting for non-trivial (i.e., complex) arithmetic expressions

Example 2.7 (Available Expressions Analysis)

[x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

a+b available at label 3

a+b not available at label 5

possible optimization:
while [y > x]3 do

Static Program Analysis Winter Semester 2014/15 2.11

Formalizing Available Expressions Analysis I

Given a ∈ AExp, b ∈ BExp, c ∈ Cmd
Var a/Varb/Var c denotes the set of all variables occurring in a/b/c
CExpb/CExpc denote the sets of all complex arithmetic expressions
occurring in b/c

An expression a is killed in a block B if any of the variables in a is
modified in B
Formally: killAE : Blkc → 2CExpc is defined by

killAE([skip]l) := ∅
killAE([x := a]l) := {a′ ∈ CExpc | x ∈ Vara′}

killAE([b]l) := ∅

An expression a is generated in a block B if it is evaluated in and
none of its variables are modified by B
Formally: genAE : Blkc → 2CExpc is defined by

genAE([skip]l) := ∅
genAE([x := a]l) := {a | x /∈ Vara}

genAE([b]l) := CExpb

Static Program Analysis Winter Semester 2014/15 2.12

Formalizing Available Expressions Analysis I

Given a ∈ AExp, b ∈ BExp, c ∈ Cmd
Var a/Varb/Var c denotes the set of all variables occurring in a/b/c
CExpb/CExpc denote the sets of all complex arithmetic expressions
occurring in b/c

An expression a is killed in a block B if any of the variables in a is
modified in B

Formally: killAE : Blkc → 2CExpc is defined by

killAE([skip]l) := ∅
killAE([x := a]l) := {a′ ∈ CExpc | x ∈ Vara′}

killAE([b]l) := ∅

An expression a is generated in a block B if it is evaluated in and
none of its variables are modified by B
Formally: genAE : Blkc → 2CExpc is defined by

genAE([skip]l) := ∅
genAE([x := a]l) := {a | x /∈ Vara}

genAE([b]l) := CExpb

Static Program Analysis Winter Semester 2014/15 2.12

Formalizing Available Expressions Analysis I

Given a ∈ AExp, b ∈ BExp, c ∈ Cmd
Var a/Varb/Var c denotes the set of all variables occurring in a/b/c
CExpb/CExpc denote the sets of all complex arithmetic expressions
occurring in b/c

An expression a is killed in a block B if any of the variables in a is
modified in B
Formally: killAE : Blkc → 2CExpc is defined by

killAE([skip]l) := ∅
killAE([x := a]l) := {a′ ∈ CExpc | x ∈ Vara′}

killAE([b]l) := ∅

An expression a is generated in a block B if it is evaluated in and
none of its variables are modified by B
Formally: genAE : Blkc → 2CExpc is defined by

genAE([skip]l) := ∅
genAE([x := a]l) := {a | x /∈ Vara}

genAE([b]l) := CExpb

Static Program Analysis Winter Semester 2014/15 2.12

Formalizing Available Expressions Analysis I

Given a ∈ AExp, b ∈ BExp, c ∈ Cmd
Var a/Varb/Var c denotes the set of all variables occurring in a/b/c
CExpb/CExpc denote the sets of all complex arithmetic expressions
occurring in b/c

An expression a is killed in a block B if any of the variables in a is
modified in B
Formally: killAE : Blkc → 2CExpc is defined by

killAE([skip]l) := ∅
killAE([x := a]l) := {a′ ∈ CExpc | x ∈ Vara′}

killAE([b]l) := ∅

An expression a is generated in a block B if it is evaluated in and
none of its variables are modified by B

Formally: genAE : Blkc → 2CExpc is defined by

genAE([skip]l) := ∅
genAE([x := a]l) := {a | x /∈ Vara}

genAE([b]l) := CExpb

Static Program Analysis Winter Semester 2014/15 2.12

Formalizing Available Expressions Analysis I

Given a ∈ AExp, b ∈ BExp, c ∈ Cmd
Var a/Varb/Var c denotes the set of all variables occurring in a/b/c
CExpb/CExpc denote the sets of all complex arithmetic expressions
occurring in b/c

An expression a is killed in a block B if any of the variables in a is
modified in B
Formally: killAE : Blkc → 2CExpc is defined by

killAE([skip]l) := ∅
killAE([x := a]l) := {a′ ∈ CExpc | x ∈ Vara′}

killAE([b]l) := ∅

An expression a is generated in a block B if it is evaluated in and
none of its variables are modified by B
Formally: genAE : Blkc → 2CExpc is defined by

genAE([skip]l) := ∅
genAE([x := a]l) := {a | x /∈ Vara}

genAE([b]l) := CExpb

Static Program Analysis Winter Semester 2014/15 2.12

Formalizing Available Expressions Analysis II

Example 2.8 (killAE/genAE functions)

c = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

CExpc = {a+b, a*b, a+1}
Labc killAE(B l) genAE(B l)

1 ∅ {a+b}
2 ∅ {a*b}
3 ∅ {a+b}
4 {a+b, a*b, a+1} ∅
5 ∅ {a+b}

Static Program Analysis Winter Semester 2014/15 2.13

Formalizing Available Expressions Analysis II

Example 2.8 (killAE/genAE functions)

c = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

CExpc = {a+b, a*b, a+1}

Labc killAE(B l) genAE(B l)
1 ∅ {a+b}
2 ∅ {a*b}
3 ∅ {a+b}
4 {a+b, a*b, a+1} ∅
5 ∅ {a+b}

Static Program Analysis Winter Semester 2014/15 2.13

Formalizing Available Expressions Analysis II

Example 2.8 (killAE/genAE functions)

c = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

CExpc = {a+b, a*b, a+1}
Labc killAE(B l) genAE(B l)

1 ∅ {a+b}
2 ∅ {a*b}
3 ∅ {a+b}
4 {a+b, a*b, a+1} ∅
5 ∅ {a+b}

Static Program Analysis Winter Semester 2014/15 2.13

The Equation System I

Analysis itself defined by setting up an equation system

For each l ∈ Labc , AEl ⊆ CExpc represents the set of available
expressions at the entry of block B l

Formally, for c ∈ Cmd with isolated entry:

AEl =

{
∅ if l = init(c)⋂
{ϕl ′(AEl ′) | (l ′, l) ∈ flow(c)} otherwise

where ϕl ′ : 2CExpc → 2CExpc denotes the transfer function of block
B l ′ , given by

ϕl ′(A) := (A \ killAE(B l ′)) ∪ genAE(B l ′)

Characterization of analysis:

flow-sensitive: results depending on order of assignments
forward: starts in init(c) and proceeds downwards

must:
⋂

in equation for AEl

Later: solution not necessarily unique
=⇒ choose greatest one

Static Program Analysis Winter Semester 2014/15 2.14

The Equation System I

Analysis itself defined by setting up an equation system

For each l ∈ Labc , AEl ⊆ CExpc represents the set of available
expressions at the entry of block B l

Formally, for c ∈ Cmd with isolated entry:

AEl =

{
∅ if l = init(c)⋂
{ϕl ′(AEl ′) | (l ′, l) ∈ flow(c)} otherwise

where ϕl ′ : 2CExpc → 2CExpc denotes the transfer function of block
B l ′ , given by

ϕl ′(A) := (A \ killAE(B l ′)) ∪ genAE(B l ′)

Characterization of analysis:

flow-sensitive: results depending on order of assignments
forward: starts in init(c) and proceeds downwards

must:
⋂

in equation for AEl

Later: solution not necessarily unique
=⇒ choose greatest one

Static Program Analysis Winter Semester 2014/15 2.14

The Equation System I

Analysis itself defined by setting up an equation system

For each l ∈ Labc , AEl ⊆ CExpc represents the set of available
expressions at the entry of block B l

Formally, for c ∈ Cmd with isolated entry:

AEl =

{
∅ if l = init(c)⋂
{ϕl ′(AEl ′) | (l ′, l) ∈ flow(c)} otherwise

where ϕl ′ : 2CExpc → 2CExpc denotes the transfer function of block
B l ′ , given by

ϕl ′(A) := (A \ killAE(B l ′)) ∪ genAE(B l ′)

Characterization of analysis:

flow-sensitive: results depending on order of assignments
forward: starts in init(c) and proceeds downwards

must:
⋂

in equation for AEl

Later: solution not necessarily unique
=⇒ choose greatest one

Static Program Analysis Winter Semester 2014/15 2.14

The Equation System I

Analysis itself defined by setting up an equation system

For each l ∈ Labc , AEl ⊆ CExpc represents the set of available
expressions at the entry of block B l

Formally, for c ∈ Cmd with isolated entry:

AEl =

{
∅ if l = init(c)⋂
{ϕl ′(AEl ′) | (l ′, l) ∈ flow(c)} otherwise

where ϕl ′ : 2CExpc → 2CExpc denotes the transfer function of block
B l ′ , given by

ϕl ′(A) := (A \ killAE(B l ′)) ∪ genAE(B l ′)

Characterization of analysis:

flow-sensitive: results depending on order of assignments
forward: starts in init(c) and proceeds downwards

must:
⋂

in equation for AEl

Later: solution not necessarily unique
=⇒ choose greatest one

Static Program Analysis Winter Semester 2014/15 2.14

The Equation System I

Analysis itself defined by setting up an equation system

For each l ∈ Labc , AEl ⊆ CExpc represents the set of available
expressions at the entry of block B l

Formally, for c ∈ Cmd with isolated entry:

AEl =

{
∅ if l = init(c)⋂
{ϕl ′(AEl ′) | (l ′, l) ∈ flow(c)} otherwise

where ϕl ′ : 2CExpc → 2CExpc denotes the transfer function of block
B l ′ , given by

ϕl ′(A) := (A \ killAE(B l ′)) ∪ genAE(B l ′)

Characterization of analysis:

flow-sensitive: results depending on order of assignments
forward: starts in init(c) and proceeds downwards

must:
⋂

in equation for AEl

Later: solution not necessarily unique
=⇒ choose greatest one

Static Program Analysis Winter Semester 2014/15 2.14

The Equation System II

Reminder: AEl =

{
∅ if l = init(c)⋂
{ϕl′(AEl′) | (l ′, l) ∈ flow(c)} otherwise

ϕl′(E) = (E \ killAE(B l′)) ∪ genAE(B l′)

Example 2.9 (AE equation system)

c = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

l ∈ Labc killAE(B l) genAE(B l)
1 ∅ {a+b}
2 ∅ {a*b}
3 ∅ {a+b}
4 {a+b, a*b, a+1} ∅
5 ∅ {a+b}

Equations:
AE1 = ∅
AE2 = ϕ1(AE1) = AE1 ∪ {a+b}
AE3 = ϕ2(AE2) ∩ ϕ5(AE5)

= (AE2 ∪ {a*b}) ∩ (AE5 ∪ {a+b})
AE4 = ϕ3(AE3) = AE3 ∪ {a+b}
AE5 = ϕ4(AE4) = AE4 \ {a+b, a*b, a+1}

Solution: AE1 = ∅
AE2 = {a+b}
AE3 = {a+b}
AE4 = {a+b}
AE5 = ∅

Static Program Analysis Winter Semester 2014/15 2.15

The Equation System II

Reminder: AEl =

{
∅ if l = init(c)⋂
{ϕl′(AEl′) | (l ′, l) ∈ flow(c)} otherwise

ϕl′(E) = (E \ killAE(B l′)) ∪ genAE(B l′)

Example 2.9 (AE equation system)

c = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

l ∈ Labc killAE(B l) genAE(B l)
1 ∅ {a+b}
2 ∅ {a*b}
3 ∅ {a+b}
4 {a+b, a*b, a+1} ∅
5 ∅ {a+b}

Equations:
AE1 = ∅
AE2 = ϕ1(AE1) = AE1 ∪ {a+b}
AE3 = ϕ2(AE2) ∩ ϕ5(AE5)

= (AE2 ∪ {a*b}) ∩ (AE5 ∪ {a+b})
AE4 = ϕ3(AE3) = AE3 ∪ {a+b}
AE5 = ϕ4(AE4) = AE4 \ {a+b, a*b, a+1}

Solution: AE1 = ∅
AE2 = {a+b}
AE3 = {a+b}
AE4 = {a+b}
AE5 = ∅

Static Program Analysis Winter Semester 2014/15 2.15

The Equation System II

Reminder: AEl =

{
∅ if l = init(c)⋂
{ϕl′(AEl′) | (l ′, l) ∈ flow(c)} otherwise

ϕl′(E) = (E \ killAE(B l′)) ∪ genAE(B l′)

Example 2.9 (AE equation system)

c = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

l ∈ Labc killAE(B l) genAE(B l)
1 ∅ {a+b}
2 ∅ {a*b}
3 ∅ {a+b}
4 {a+b, a*b, a+1} ∅
5 ∅ {a+b}

Equations:
AE1 = ∅
AE2 = ϕ1(AE1) = AE1 ∪ {a+b}
AE3 = ϕ2(AE2) ∩ ϕ5(AE5)

= (AE2 ∪ {a*b}) ∩ (AE5 ∪ {a+b})
AE4 = ϕ3(AE3) = AE3 ∪ {a+b}
AE5 = ϕ4(AE4) = AE4 \ {a+b, a*b, a+1}

Solution: AE1 = ∅
AE2 = {a+b}
AE3 = {a+b}
AE4 = {a+b}
AE5 = ∅

Static Program Analysis Winter Semester 2014/15 2.15

The Equation System II

Reminder: AEl =

{
∅ if l = init(c)⋂
{ϕl′(AEl′) | (l ′, l) ∈ flow(c)} otherwise

ϕl′(E) = (E \ killAE(B l′)) ∪ genAE(B l′)

Example 2.9 (AE equation system)

c = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

l ∈ Labc killAE(B l) genAE(B l)
1 ∅ {a+b}
2 ∅ {a*b}
3 ∅ {a+b}
4 {a+b, a*b, a+1} ∅
5 ∅ {a+b}

Equations:
AE1 = ∅
AE2 = ϕ1(AE1) = AE1 ∪ {a+b}
AE3 = ϕ2(AE2) ∩ ϕ5(AE5)

= (AE2 ∪ {a*b}) ∩ (AE5 ∪ {a+b})
AE4 = ϕ3(AE3) = AE3 ∪ {a+b}
AE5 = ϕ4(AE4) = AE4 \ {a+b, a*b, a+1}

Solution: AE1 = ∅
AE2 = {a+b}
AE3 = {a+b}
AE4 = {a+b}
AE5 = ∅

Static Program Analysis Winter Semester 2014/15 2.15

The Equation System II

Reminder: AEl =

{
∅ if l = init(c)⋂
{ϕl′(AEl′) | (l ′, l) ∈ flow(c)} otherwise

ϕl′(E) = (E \ killAE(B l′)) ∪ genAE(B l′)

Example 2.9 (AE equation system)

c = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

l ∈ Labc killAE(B l) genAE(B l)
1 ∅ {a+b}
2 ∅ {a*b}
3 ∅ {a+b}
4 {a+b, a*b, a+1} ∅
5 ∅ {a+b}

Equations:
AE1 = ∅
AE2 = ϕ1(AE1) = AE1 ∪ {a+b}
AE3 = ϕ2(AE2) ∩ ϕ5(AE5)

= (AE2 ∪ {a*b}) ∩ (AE5 ∪ {a+b})
AE4 = ϕ3(AE3) = AE3 ∪ {a+b}
AE5 = ϕ4(AE4) = AE4 \ {a+b, a*b, a+1}

Solution: AE1 = ∅
AE2 = {a+b}
AE3 = {a+b}
AE4 = {a+b}
AE5 = ∅

Static Program Analysis Winter Semester 2014/15 2.15

Outline

1 Preliminaries on Dataflow Analysis

2 An Example: Available Expressions Analysis

3 Another Example: Live Variables Analysis

Static Program Analysis Winter Semester 2014/15 2.16

Goal of Live Variables Analysis

Live Variables Analysis

The goal of Live Variables Analysis is to determine, for each program
point, which variables may be live at the exit from the point.

A variable is called live at the exit from a block if there exists a path
from the block to a use of the variable that does not re-define the
variable

All variables considered to be live at the end of the program
(alternative: restriction to output variables)

Can be used for Dead Code Elimination:
remove assignments to non-live variables

Static Program Analysis Winter Semester 2014/15 2.17

Goal of Live Variables Analysis

Live Variables Analysis

The goal of Live Variables Analysis is to determine, for each program
point, which variables may be live at the exit from the point.

A variable is called live at the exit from a block if there exists a path
from the block to a use of the variable that does not re-define the
variable

All variables considered to be live at the end of the program
(alternative: restriction to output variables)

Can be used for Dead Code Elimination:
remove assignments to non-live variables

Static Program Analysis Winter Semester 2014/15 2.17

Goal of Live Variables Analysis

Live Variables Analysis

The goal of Live Variables Analysis is to determine, for each program
point, which variables may be live at the exit from the point.

A variable is called live at the exit from a block if there exists a path
from the block to a use of the variable that does not re-define the
variable

All variables considered to be live at the end of the program
(alternative: restriction to output variables)

Can be used for Dead Code Elimination:
remove assignments to non-live variables

Static Program Analysis Winter Semester 2014/15 2.17

Goal of Live Variables Analysis

Live Variables Analysis

The goal of Live Variables Analysis is to determine, for each program
point, which variables may be live at the exit from the point.

A variable is called live at the exit from a block if there exists a path
from the block to a use of the variable that does not re-define the
variable

All variables considered to be live at the end of the program
(alternative: restriction to output variables)

Can be used for Dead Code Elimination:
remove assignments to non-live variables

Static Program Analysis Winter Semester 2014/15 2.17

An Example

Example 2.10 (Live Variables Analysis)

[x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

x not live at exit from label 1

y live at exit from 2

x live at exit from 3

z live at exits from 5 and 6

possible optimization: remove [x := 2]1

Static Program Analysis Winter Semester 2014/15 2.18

An Example

Example 2.10 (Live Variables Analysis)

[x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

x not live at exit from label 1

y live at exit from 2

x live at exit from 3

z live at exits from 5 and 6

possible optimization: remove [x := 2]1

Static Program Analysis Winter Semester 2014/15 2.18

An Example

Example 2.10 (Live Variables Analysis)

[x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

x not live at exit from label 1

y live at exit from 2

x live at exit from 3

z live at exits from 5 and 6

possible optimization: remove [x := 2]1

Static Program Analysis Winter Semester 2014/15 2.18

An Example

Example 2.10 (Live Variables Analysis)

[x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

x not live at exit from label 1

y live at exit from 2

x live at exit from 3

z live at exits from 5 and 6

possible optimization: remove [x := 2]1

Static Program Analysis Winter Semester 2014/15 2.18

An Example

Example 2.10 (Live Variables Analysis)

[x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

x not live at exit from label 1

y live at exit from 2

x live at exit from 3

z live at exits from 5 and 6

possible optimization: remove [x := 2]1

Static Program Analysis Winter Semester 2014/15 2.18

An Example

Example 2.10 (Live Variables Analysis)

[x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

x not live at exit from label 1

y live at exit from 2

x live at exit from 3

z live at exits from 5 and 6

possible optimization: remove [x := 2]1

Static Program Analysis Winter Semester 2014/15 2.18

Formalizing Live Variables Analysis I

A variable on the left-hand side of an assignment is killed by the
assignment; tests and skip do not kill

Formally: killLV : Blkc → 2Var c is defined by

killLV([skip]l) := ∅
killLV([x := a]l) := {x}

killLV([b]l) := ∅

Every reading access generates a live variable

Formally: genLV : Blkc → 2Var c is defined by

genLV([skip]l) := ∅
genLV([x := a]l) := Vara

genLV([b]l) := Varb

Static Program Analysis Winter Semester 2014/15 2.19

Formalizing Live Variables Analysis I

A variable on the left-hand side of an assignment is killed by the
assignment; tests and skip do not kill

Formally: killLV : Blkc → 2Var c is defined by

killLV([skip]l) := ∅
killLV([x := a]l) := {x}

killLV([b]l) := ∅

Every reading access generates a live variable

Formally: genLV : Blkc → 2Var c is defined by

genLV([skip]l) := ∅
genLV([x := a]l) := Vara

genLV([b]l) := Varb

Static Program Analysis Winter Semester 2014/15 2.19

Formalizing Live Variables Analysis I

A variable on the left-hand side of an assignment is killed by the
assignment; tests and skip do not kill

Formally: killLV : Blkc → 2Var c is defined by

killLV([skip]l) := ∅
killLV([x := a]l) := {x}

killLV([b]l) := ∅

Every reading access generates a live variable

Formally: genLV : Blkc → 2Var c is defined by

genLV([skip]l) := ∅
genLV([x := a]l) := Vara

genLV([b]l) := Varb

Static Program Analysis Winter Semester 2014/15 2.19

Formalizing Live Variables Analysis I

A variable on the left-hand side of an assignment is killed by the
assignment; tests and skip do not kill

Formally: killLV : Blkc → 2Var c is defined by

killLV([skip]l) := ∅
killLV([x := a]l) := {x}

killLV([b]l) := ∅

Every reading access generates a live variable

Formally: genLV : Blkc → 2Var c is defined by

genLV([skip]l) := ∅
genLV([x := a]l) := Vara

genLV([b]l) := Varb

Static Program Analysis Winter Semester 2014/15 2.19

Formalizing Live Variables Analysis II

Example 2.11 (killLV/genLV functions)

c = [x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

Var c = {x, y, z}
l ∈ Labc killLV(B l) genLV(B l)

1 {x} ∅
2 {y} ∅
3 {x} ∅
4 ∅ {y}
5 {z} {x}
6 {z} {y}
7 {x} {z}

Static Program Analysis Winter Semester 2014/15 2.20

Formalizing Live Variables Analysis II

Example 2.11 (killLV/genLV functions)

c = [x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

Var c = {x, y, z}

l ∈ Labc killLV(B l) genLV(B l)
1 {x} ∅
2 {y} ∅
3 {x} ∅
4 ∅ {y}
5 {z} {x}
6 {z} {y}
7 {x} {z}

Static Program Analysis Winter Semester 2014/15 2.20

Formalizing Live Variables Analysis II

Example 2.11 (killLV/genLV functions)

c = [x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

Var c = {x, y, z}
l ∈ Labc killLV(B l) genLV(B l)

1 {x} ∅
2 {y} ∅
3 {x} ∅
4 ∅ {y}
5 {z} {x}
6 {z} {y}
7 {x} {z}

Static Program Analysis Winter Semester 2014/15 2.20

The Equation System I

For each l ∈ Labc , LVl ⊆ Var c represents the set of live variables at
the exit of block B l

Formally, for a program c ∈ Cmd with isolated exits:

LVl =

{
Var c if l ∈ final(c)⋃
{ϕl ′(LVl ′) | (l , l ′) ∈ flow(c)} otherwise

where ϕl ′ : 2Var c → 2Var c denotes the transfer function of block B l ′ ,
given by

ϕl ′(V) := (V \ killLV(B l ′)) ∪ genLV(B l ′)

Characterization of analysis:

flow-sensitive: results depending on order of assignments
backward: starts in final(c) and proceeds upwards

may:
⋃

in equation for LVl

Later: solution not necessarily unique
=⇒ choose least one

Static Program Analysis Winter Semester 2014/15 2.21

The Equation System I

For each l ∈ Labc , LVl ⊆ Var c represents the set of live variables at
the exit of block B l

Formally, for a program c ∈ Cmd with isolated exits:

LVl =

{
Var c if l ∈ final(c)⋃
{ϕl ′(LVl ′) | (l , l ′) ∈ flow(c)} otherwise

where ϕl ′ : 2Var c → 2Var c denotes the transfer function of block B l ′ ,
given by

ϕl ′(V) := (V \ killLV(B l ′)) ∪ genLV(B l ′)

Characterization of analysis:

flow-sensitive: results depending on order of assignments
backward: starts in final(c) and proceeds upwards

may:
⋃

in equation for LVl

Later: solution not necessarily unique
=⇒ choose least one

Static Program Analysis Winter Semester 2014/15 2.21

The Equation System I

For each l ∈ Labc , LVl ⊆ Var c represents the set of live variables at
the exit of block B l

Formally, for a program c ∈ Cmd with isolated exits:

LVl =

{
Var c if l ∈ final(c)⋃
{ϕl ′(LVl ′) | (l , l ′) ∈ flow(c)} otherwise

where ϕl ′ : 2Var c → 2Var c denotes the transfer function of block B l ′ ,
given by

ϕl ′(V) := (V \ killLV(B l ′)) ∪ genLV(B l ′)

Characterization of analysis:

flow-sensitive: results depending on order of assignments
backward: starts in final(c) and proceeds upwards

may:
⋃

in equation for LVl

Later: solution not necessarily unique
=⇒ choose least one

Static Program Analysis Winter Semester 2014/15 2.21

The Equation System I

For each l ∈ Labc , LVl ⊆ Var c represents the set of live variables at
the exit of block B l

Formally, for a program c ∈ Cmd with isolated exits:

LVl =

{
Var c if l ∈ final(c)⋃
{ϕl ′(LVl ′) | (l , l ′) ∈ flow(c)} otherwise

where ϕl ′ : 2Var c → 2Var c denotes the transfer function of block B l ′ ,
given by

ϕl ′(V) := (V \ killLV(B l ′)) ∪ genLV(B l ′)

Characterization of analysis:

flow-sensitive: results depending on order of assignments
backward: starts in final(c) and proceeds upwards

may:
⋃

in equation for LVl

Later: solution not necessarily unique
=⇒ choose least one

Static Program Analysis Winter Semester 2014/15 2.21

The Equation System II

Reminder: LVl =

{
Var c if l ∈ final(c)⋃
{ϕl′(LVl′) | (l , l ′) ∈ flow(c)} otherwise

ϕl′(V) = (V \ killLV(B l′)) ∪ genLV(B l′)

Example 2.12 (LV equation system)

c = [x := 2]1;[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else
[z := y*y]6;

[x := z]7

l ∈ Labc killLV(B l) genLV(B l)
1 {x} ∅
2 {y} ∅
3 {x} ∅
4 ∅ {y}
5 {z} {x}
6 {z} {y}
7 {x} {z}

LV1 = ϕ2(LV2) = LV2 \ {y}
LV2 = ϕ3(LV3) = LV3 \ {x}
LV3 = ϕ4(LV4) = LV4 ∪ {y}
LV4 = ϕ5(LV5) ∪ ϕ6(LV6)

= ((LV5 \ {z}) ∪ {x}) ∪ ((LV6 \ {z}) ∪ {y})
LV5 = ϕ7(LV7) = (LV7 \ {x}) ∪ {z}
LV6 = ϕ7(LV7) = (LV7 \ {x}) ∪ {z}
LV7 = {x, y, z}

Solution: LV1 = ∅
LV2 = {y}
LV3 = {x, y}
LV4 = {x, y}
LV5 = {y, z}
LV6 = {y, z}
LV7 = {x, y, z}

Static Program Analysis Winter Semester 2014/15 2.22

The Equation System II

Reminder: LVl =

{
Var c if l ∈ final(c)⋃
{ϕl′(LVl′) | (l , l ′) ∈ flow(c)} otherwise

ϕl′(V) = (V \ killLV(B l′)) ∪ genLV(B l′)

Example 2.12 (LV equation system)

c = [x := 2]1;[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else
[z := y*y]6;

[x := z]7

l ∈ Labc killLV(B l) genLV(B l)
1 {x} ∅
2 {y} ∅
3 {x} ∅
4 ∅ {y}
5 {z} {x}
6 {z} {y}
7 {x} {z}

LV1 = ϕ2(LV2) = LV2 \ {y}
LV2 = ϕ3(LV3) = LV3 \ {x}
LV3 = ϕ4(LV4) = LV4 ∪ {y}
LV4 = ϕ5(LV5) ∪ ϕ6(LV6)

= ((LV5 \ {z}) ∪ {x}) ∪ ((LV6 \ {z}) ∪ {y})
LV5 = ϕ7(LV7) = (LV7 \ {x}) ∪ {z}
LV6 = ϕ7(LV7) = (LV7 \ {x}) ∪ {z}
LV7 = {x, y, z}

Solution: LV1 = ∅
LV2 = {y}
LV3 = {x, y}
LV4 = {x, y}
LV5 = {y, z}
LV6 = {y, z}
LV7 = {x, y, z}

Static Program Analysis Winter Semester 2014/15 2.22

The Equation System II

Reminder: LVl =

{
Var c if l ∈ final(c)⋃
{ϕl′(LVl′) | (l , l ′) ∈ flow(c)} otherwise

ϕl′(V) = (V \ killLV(B l′)) ∪ genLV(B l′)

Example 2.12 (LV equation system)

c = [x := 2]1;[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else
[z := y*y]6;

[x := z]7

l ∈ Labc killLV(B l) genLV(B l)
1 {x} ∅
2 {y} ∅
3 {x} ∅
4 ∅ {y}
5 {z} {x}
6 {z} {y}
7 {x} {z}

LV1 = ϕ2(LV2) = LV2 \ {y}
LV2 = ϕ3(LV3) = LV3 \ {x}
LV3 = ϕ4(LV4) = LV4 ∪ {y}
LV4 = ϕ5(LV5) ∪ ϕ6(LV6)

= ((LV5 \ {z}) ∪ {x}) ∪ ((LV6 \ {z}) ∪ {y})
LV5 = ϕ7(LV7) = (LV7 \ {x}) ∪ {z}
LV6 = ϕ7(LV7) = (LV7 \ {x}) ∪ {z}
LV7 = {x, y, z}

Solution: LV1 = ∅
LV2 = {y}
LV3 = {x, y}
LV4 = {x, y}
LV5 = {y, z}
LV6 = {y, z}
LV7 = {x, y, z}

Static Program Analysis Winter Semester 2014/15 2.22

The Equation System II

Reminder: LVl =

{
Var c if l ∈ final(c)⋃
{ϕl′(LVl′) | (l , l ′) ∈ flow(c)} otherwise

ϕl′(V) = (V \ killLV(B l′)) ∪ genLV(B l′)

Example 2.12 (LV equation system)

c = [x := 2]1;[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else
[z := y*y]6;

[x := z]7

l ∈ Labc killLV(B l) genLV(B l)
1 {x} ∅
2 {y} ∅
3 {x} ∅
4 ∅ {y}
5 {z} {x}
6 {z} {y}
7 {x} {z}

LV1 = ϕ2(LV2) = LV2 \ {y}
LV2 = ϕ3(LV3) = LV3 \ {x}
LV3 = ϕ4(LV4) = LV4 ∪ {y}
LV4 = ϕ5(LV5) ∪ ϕ6(LV6)

= ((LV5 \ {z}) ∪ {x}) ∪ ((LV6 \ {z}) ∪ {y})
LV5 = ϕ7(LV7) = (LV7 \ {x}) ∪ {z}
LV6 = ϕ7(LV7) = (LV7 \ {x}) ∪ {z}
LV7 = {x, y, z}

Solution: LV1 = ∅
LV2 = {y}
LV3 = {x, y}
LV4 = {x, y}
LV5 = {y, z}
LV6 = {y, z}
LV7 = {x, y, z}

Static Program Analysis Winter Semester 2014/15 2.22

The Equation System II

Reminder: LVl =

{
Var c if l ∈ final(c)⋃
{ϕl′(LVl′) | (l , l ′) ∈ flow(c)} otherwise

ϕl′(V) = (V \ killLV(B l′)) ∪ genLV(B l′)

Example 2.12 (LV equation system)

c = [x := 2]1;[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else
[z := y*y]6;

[x := z]7

l ∈ Labc killLV(B l) genLV(B l)
1 {x} ∅
2 {y} ∅
3 {x} ∅
4 ∅ {y}
5 {z} {x}
6 {z} {y}
7 {x} {z}

LV1 = ϕ2(LV2) = LV2 \ {y}
LV2 = ϕ3(LV3) = LV3 \ {x}
LV3 = ϕ4(LV4) = LV4 ∪ {y}
LV4 = ϕ5(LV5) ∪ ϕ6(LV6)

= ((LV5 \ {z}) ∪ {x}) ∪ ((LV6 \ {z}) ∪ {y})
LV5 = ϕ7(LV7) = (LV7 \ {x}) ∪ {z}
LV6 = ϕ7(LV7) = (LV7 \ {x}) ∪ {z}
LV7 = {x, y, z}

Solution: LV1 = ∅
LV2 = {y}
LV3 = {x, y}
LV4 = {x, y}
LV5 = {y, z}
LV6 = {y, z}
LV7 = {x, y, z}

Static Program Analysis Winter Semester 2014/15 2.22

	Preliminaries on Dataflow Analysis
	An Example: Available Expressions Analysis
	Another Example: Live Variables Analysis

