Static Program Analysis Lecture 2: Dataflow Analysis I (Introduction & Available Expressions/Live Variables Analysis)

Thomas Noll

Lehrstuhl für Informatik 2 (Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Winter Semester 2014/15

1 Preliminaries on Dataflow Analysis

2 An Example: Available Expressions Analysis

3 Another Example: Live Variables Analysis

Dataflow Analysis: the Approach

• Traditional form of program analysis

Dataflow Analysis: the Approach

- Traditional form of program analysis
- Idea: describe how analysis information flows through program

Dataflow Analysis: the Approach

- Traditional form of program analysis
- Idea: describe how analysis information flows through program
- Distinctions:

dependence on statement order:

flow-sensitive vs. flow-insensitive analyses direction of flow: forward vs. backward analyses

quantification over paths:

may (union) vs. must (intersection) analyses procedures:

interprocedural vs. intraprocedural analyses

• Goal: localisation of analysis information

- Goal: localisation of analysis information
- Dataflow information will be associated with
 - skip statements
 - assignments
 - tests in conditionals (if) and loops (while)

- Goal: localisation of analysis information
- Dataflow information will be associated with
 - skip statements
 - assignments
 - tests in conditionals (if) and loops (while)
- Assume set of labels *Lab* with meta variable $l \in Lab$ (usually l = l = N)

 $Lab = \mathbb{N}$)

- Goal: localisation of analysis information
- Dataflow information will be associated with
 - skip statements
 - assignments
 - tests in conditionals (if) and loops (while)
- Assume set of labels *Lab* with meta variable $l \in Lab$ (usually $Lab = \mathbb{N}$)

Definition 2.1 (Labelled WHILE programs)

The syntax of labelled WHILE programs is defined by the following context-free grammar:

 $\begin{array}{l} a ::= z \mid x \mid a_1 + a_2 \mid a_1 - a_2 \mid a_1 * a_2 \in AExp \\ b ::= t \mid a_1 = a_2 \mid a_1 > a_2 \mid \neg b \mid b_1 \land b_2 \mid b_1 \lor b_2 \in BExp \\ c ::= [skip]' \mid [x := a]' \mid c_1; c_2 \mid \\ & \text{if } [b]' \text{ then } c_1 \text{ else } c_2 \mid \text{ while } [b]' \text{ do } c \in Cmd \end{array}$

- All labels in $c \in Cmd$ assumed distinct, denoted by Lab_c
- Labelled fragments of c called blocks, denoted by Blkc

RWTHAACHEN

Static Program Analysis

A WHILE Program

Example 2.2

```
x := 6;
y := 7;
z := 0;
while x > 0 do
x := x - 1;
v := y;
while v > 0 do
v := v - 1;
z := z + 1
```


A WHILE Program with Labels

Example 2.2

RWTHAACHEN

Representing Control Flow I

Every (labelled) statement has a single entry (given by the initial label) and generally multiple exits (given by the final labels):

Definition 2.3 (Initial and final labels)

The mapping init : $Cmd \rightarrow Lab$ returns the initial label of a statement: $init([skip]^{l}) := l$ $init([x := a]^{l}) := l$ $init(c_1; c_2) := init(c_1)$ $init(if [b]^{l}$ then c_1 else $c_2) := l$ $init(while [b]^{l}$ do c) := l

Representing Control Flow I

Every (labelled) statement has a single entry (given by the initial label) and generally multiple exits (given by the final labels):

Definition 2.3 (Initial and final labels)

The mapping init : $Cmd \rightarrow Lab$ returns the initial label of a statement: init([skip]') := l init([x := a]') := l $init(c_1; c_2) := init(c_1)$ $init(if [b]' then c_1 else c_2) := l$ init(while [b]' do c) := lThe mapping final : $Cmd \rightarrow 2^{Lab}$ returns the set of final labels of a statement:

$$\begin{aligned} & \text{final}([\texttt{skip}]') := \{l\} \\ & \text{final}([x := a]') := \{l\} \\ & \text{final}(c_1; c_2) := \text{final}(c_2) \\ & \text{final}(\texttt{if } [b]' \texttt{ then } c_1 \texttt{ else } c_2) := \text{final}(c_1) \cup \text{final}(c_2) \\ & \text{final}(\texttt{while } [b]' \texttt{ do } c) := \{l\} \end{aligned}$$

Definition 2.4 (Flow relation)

Given a statement $c \in Cmd$, the (control) flow relation

 $flow(c) \subseteq Lab \times Lab$

is defined by

$$\begin{array}{l} \mathsf{flow}([\mathtt{skip}]^{I}) := \emptyset \\ \mathsf{flow}([x := a]^{I}) := \emptyset \\ \mathsf{flow}(c_{1}; c_{2}) := \mathsf{flow}(c_{1}) \cup \mathsf{flow}(c_{2}) \cup \\ & \left\{(I, \mathsf{init}(c_{2})) \mid I \in \mathsf{final}(c_{1})\right\} \\ \mathsf{flow}(\mathtt{if} \ [b]^{I} \ \mathtt{then} \ c_{1} \ \mathtt{else} \ c_{2}) := \mathsf{flow}(c_{1}) \cup \mathsf{flow}(c_{2}) \cup \\ & \left\{(I, \mathsf{init}(c_{1})), (I, \mathsf{init}(c_{2}))\right\} \\ \mathsf{flow}(\mathtt{while} \ [b]^{I} \ \mathtt{do} \ c) := \mathsf{flow}(c) \cup \left\{(I, \mathsf{init}(c))\right\} \cup \\ & \left\{(I', I) \mid I' \in \mathsf{final}(c)\right\} \end{array}$$

Representing Control Flow III

Example 2.5

$$\begin{split} c &= [z := 1]^1; \\ & \text{while} \ [x > 0]^2 \ \text{dc} \\ & [z := z*y]^3; \\ & [x := x-1]^4 \end{split}$$

Representing Control Flow III

Example 2.5

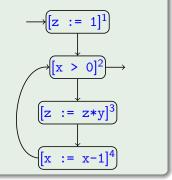
$$\begin{split} c &= [z := 1]^{1};\\ &\text{while} \ [x > 0]^{2} \ \text{do} \\ & [z := z*y]^{3};\\ & [x := x-1]^{4} \end{split}$$
 init(c) = 1
final(c) = {2}
flow(c) = {(1,2), (2,3), (3,4), (4,2)} \end{split}

Example 2.5

$$c = [z := 1]^{1};$$

while $[x > 0]^{2}$ do
 $[z := z*y]^{3};$
 $[x := x-1]^{4}$
init $(c) = 1$
final $(c) = \{2\}$

final(c) = $\{2\}$ flow(c) = $\{(1, 2), (2, 3), (3, 4), (4, 2)\}$ Visualization by (control) flow graph:



Representing Control Flow IV

To simplify the presentation we will often assume that the program c ∈ Cmd under consideration has an isolated entry, meaning that
 {*l* ∈ Lab | (*l*, init(c)) ∈ flow(c)} = Ø

(which is the case when *c* does not start with a while loop)

Representing Control Flow IV

To simplify the presentation we will often assume that the program c ∈ Cmd under consideration has an isolated entry, meaning that
 {*l* ∈ Lab | (*l*, init(c)) ∈ flow(c)} = Ø

(which is the case when *c* does not start with a while loop)

• Similarly: $c \in Cmd$ has isolated exits if

 $\{l' \in Lab \mid (l, l') \in flow(c) \text{ for some } l \in final(c)\} = \emptyset$ (which is the case when no final label identifies a loop header)

Representing Control Flow IV

To simplify the presentation we will often assume that the program c ∈ Cmd under consideration has an isolated entry, meaning that
 {*l* ∈ Lab | (*l*, init(c)) ∈ flow(c)} = Ø

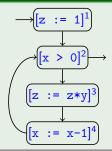
(which is the case when *c* does not start with a while loop)

• Similarly: $c \in Cmd$ has isolated exits if

 $\{l' \in Lab \mid (l,l') \in flow(c) \text{ for some } l \in final(c)\} = \emptyset$

(which is the case when no final label identifies a loop header)

Example 2.6 (cf. Example 2.5)



RNNTHAACHEN

has an isolated entry but not isolated exits

Preliminaries on Dataflow Analysis

2 An Example: Available Expressions Analysis

3 Another Example: Live Variables Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each program point, which (complex) expressions *must* have been computed, and not later modified, on all paths to the program point.

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each program point, which (complex) expressions *must* have been computed, and not later modified, on all paths to the program point.

- Can be used for Common Subexpression Elimination: replace subexpression by variable that contains up-to-date value
- Only interesting for non-trivial (i.e., complex) arithmetic expressions

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each program point, which (complex) expressions *must* have been computed, and not later modified, on all paths to the program point.

- Can be used for Common Subexpression Elimination: replace subexpression by variable that contains up-to-date value
- Only interesting for non-trivial (i.e., complex) arithmetic expressions

Example 2.7 (Available Expressions Analysis)

```
\begin{array}{ll} [x := a + b]^1; \\ [y := a * b]^2; \\ \text{while} & [y > a + b]^3 \ \text{do} \\ & [a := a + 1]^4; \\ & [x := a + b]^5 \end{array}
```

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each program point, which (complex) expressions *must* have been computed, and not later modified, on all paths to the program point.

- Can be used for Common Subexpression Elimination: replace subexpression by variable that contains up-to-date value
- Only interesting for non-trivial (i.e., complex) arithmetic expressions

Example 2.7 (Available Expressions Analysis)

```
\begin{array}{ll} [\texttt{x} := \texttt{a+b}]^1;\\ [\texttt{y} := \texttt{a+b}]^2;\\ \texttt{while} \; [\texttt{y} > \texttt{a+b}]^3 \; \texttt{do}\\ [\texttt{a} := \texttt{a+1}]^4;\\ [\texttt{x} := \texttt{a+b}]^5 \end{array}
```

• a+b available at label 3

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each program point, which (complex) expressions *must* have been computed, and not later modified, on all paths to the program point.

- Can be used for Common Subexpression Elimination: replace subexpression by variable that contains up-to-date value
- Only interesting for non-trivial (i.e., complex) arithmetic expressions

Example 2.7 (Available Expressions Analysis)

```
\begin{array}{ll} [x := a + b]^{1};\\ [y := a + b]^{2};\\ \text{while} [y > a + b]^{3} \mbox{ do}\\ [a := a + 1]^{4};\\ [x := a + b]^{5} \end{array}
```

- a+b available at label 3
- a+b not available at label 5

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each program point, which (complex) expressions *must* have been computed, and not later modified, on all paths to the program point.

- Can be used for Common Subexpression Elimination: replace subexpression by variable that contains up-to-date value
- Only interesting for non-trivial (i.e., complex) arithmetic expressions

Example 2.7 (Available Expressions Analysis)

```
\begin{array}{ll} [x := a + b]^1; \\ [y := a * b]^2; \\ \text{while} & [y > a + b]^3 \ \text{do} \\ & [a := a + 1]^4; \\ & [x := a + b]^5 \end{array}
```

- a+b available at label 3
- a+b not available at label 5
- possible optimization: while [y > x]³ do

• Given $a \in AExp$, $b \in BExp$, $c \in Cmd$

- $Var_a/Var_b/Var_c$ denotes the set of all variables occurring in a/b/c
- $CExp_b/CExp_c$ denote the sets of all complex arithmetic expressions occurring in b/c

- Given $a \in AExp$, $b \in BExp$, $c \in Cmd$
 - $Var_a/Var_b/Var_c$ denotes the set of all variables occurring in a/b/c
 - $CExp_b/CExp_c$ denote the sets of all complex arithmetic expressions occurring in b/c
- An expression *a* is killed in a block *B* if any of the variables in *a* is modified in *B*

- Given $a \in AExp$, $b \in BExp$, $c \in Cmd$
 - $Var_a/Var_b/Var_c$ denotes the set of all variables occurring in a/b/c
 - $CExp_b/CExp_c$ denote the sets of all complex arithmetic expressions occurring in b/c
- An expression *a* is killed in a block *B* if any of the variables in *a* is modified in *B*
- Formally: $kill_{AE} : Blk_c \rightarrow 2^{CExp_c}$ is defined by

$$\begin{array}{l} \mathsf{kill}_{\mathsf{AE}}([\texttt{skip}]') := \emptyset\\ \mathsf{kill}_{\mathsf{AE}}([x := a]') := \{a' \in \mathit{CExp}_c \mid x \in \mathit{Var}_{a'}\}\\ \mathsf{kill}_{\mathsf{AE}}([b]') := \emptyset \end{array}$$

- Given $a \in AExp$, $b \in BExp$, $c \in Cmd$
 - $Var_a/Var_b/Var_c$ denotes the set of all variables occurring in a/b/c
 - $CExp_b/CExp_c$ denote the sets of all complex arithmetic expressions occurring in b/c
- An expression *a* is killed in a block *B* if any of the variables in *a* is modified in *B*
- Formally: $kill_{AE} : Blk_c \rightarrow 2^{CExp_c}$ is defined by

$$\begin{array}{l} \mathsf{kill}_{\mathsf{AE}}([\mathtt{skip}]') := \emptyset \\ \mathsf{kill}_{\mathsf{AE}}([x := a]') := \{a' \in \mathit{CExp}_c \mid x \in \mathit{Var}_{a'}\} \\ \mathsf{kill}_{\mathsf{AE}}([b]') := \emptyset \end{array}$$

• An expression *a* is generated in a block *B* if it is evaluated in and none of its variables are modified by *B*

- Given $a \in AExp$, $b \in BExp$, $c \in Cmd$
 - $Var_a/Var_b/Var_c$ denotes the set of all variables occurring in a/b/c
 - $CExp_b/CExp_c$ denote the sets of all complex arithmetic expressions occurring in b/c
- An expression *a* is killed in a block *B* if any of the variables in *a* is modified in *B*
- Formally: $kill_{AE} : Blk_c \rightarrow 2^{CExp_c}$ is defined by

$$\begin{array}{l} \mathsf{kill}_{\mathsf{AE}}([\mathtt{skip}]') := \emptyset \\ \mathsf{kill}_{\mathsf{AE}}([x := a]') := \{a' \in \mathit{CExp}_c \mid x \in \mathit{Var}_{a'}\} \\ \mathsf{kill}_{\mathsf{AE}}([b]') := \emptyset \end{array}$$

- An expression *a* is generated in a block *B* if it is evaluated in and none of its variables are modified by *B*
- Formally: $gen_{AE} : Blk_c \rightarrow 2^{CExp_c}$ is defined by

$$\begin{array}{l} \operatorname{gen}_{\mathsf{AE}}([\operatorname{skip}]') := \emptyset \\ \operatorname{gen}_{\mathsf{AE}}([x := a]') := \{a \mid x \notin Var_a\} \\ \operatorname{gen}_{\mathsf{AE}}([b]') := CExp_b \end{array}$$

Example 2.8 (kill_{AE}/gen_{AE} functions)

$$c = [x := a+b]^{1};$$

$$[y := a*b]^{2};$$
while $[y > a+b]^{3}$ do
$$[a := a+1]^{4};$$

$$[x := a+b]^{5}$$

Example 2.8 (kill_{AE}/gen_{AE} functions)

•
$$CExp_c = \{a+b, a+b, a+1\}$$

```
c = [x := a+b]^{1};
[y := a*b]^{2};
while [y > a+b]^{3} do
[a := a+1]^{4};
[x := a+b]^{5}
```


Example 2.8 (kill_{AE}/gen_{AE} functions)

$$\begin{split} c &= [\texttt{x} := \texttt{a+b}]^1; \\ & [\texttt{y} := \texttt{a+b}]^2; \\ & \texttt{while} \ [\texttt{y} > \texttt{a+b}]^3 \ \texttt{do} \\ & [\texttt{a} := \texttt{a+1}]^4; \\ & [\texttt{x} := \texttt{a+b}]^5 \end{split}$$

•
$$CExp_c = \{a+b, a*b, a+1\}$$

•
$$\begin{array}{c|c} Lab_c & \text{kill}_{AE}(B') & \text{gen}_{AE}(B') \\ \hline 1 & \emptyset & \{a+b\} \\ 2 & \emptyset & \{a+b\} \\ 3 & \emptyset & \{a+b\} \\ 4 & \{a+b, a*b, a+1\} & \emptyset \\ 5 & \emptyset & \{a+b\} \end{array}$$

The Equation System I

• Analysis itself defined by setting up an equation system

- Analysis itself defined by setting up an equation system
- For each *l* ∈ *Lab_c*, AE_{*l*} ⊆ *CExp_c* represents the set of available expressions at the entry of block B^{*l*}

- Analysis itself defined by setting up an equation system
- For each *l* ∈ *Lab_c*, AE_{*l*} ⊆ *CExp_c* represents the set of available expressions at the entry of block B^{*l*}
- Formally, for $c \in Cmd$ with isolated entry:

 $AE_{I} = \begin{cases} \emptyset & \text{if } I = \text{init}(c) \\ \bigcap \{\varphi_{l'}(AE_{l'}) \mid (l', l) \in \text{flow}(c) \} & \text{otherwise} \end{cases}$ where $\varphi_{l'} : 2^{CExp_{c}} \rightarrow 2^{CExp_{c}}$ denotes the transfer function of block $B^{l'}$, given by

 $\varphi_{l'}(A) := (A \setminus \mathsf{kill}_{\mathsf{AE}}(B^{l'})) \cup \mathsf{gen}_{\mathsf{AE}}(B^{l'})$

- Analysis itself defined by setting up an equation system
- For each *l* ∈ *Lab_c*, AE_{*l*} ⊆ *CExp_c* represents the set of available expressions at the entry of block B^{*l*}
- Formally, for $c \in Cmd$ with isolated entry:

 $\mathsf{AE}_{I} = \begin{cases} \emptyset & \text{if } I = \text{init}(c) \\ \bigcap \{\varphi_{I'}(\mathsf{AE}_{I'}) \mid (I', I) \in \mathsf{flow}(c) \} & \text{otherwise} \end{cases}$ where $\varphi_{I'} : 2^{CExp_c} \to 2^{CExp_c}$ denotes the transfer function of block $B^{I'}$, given by

 $\varphi_{l'}(A) := (A \setminus \mathsf{kill}_{\mathsf{AE}}(B'')) \cup \mathsf{gen}_{\mathsf{AE}}(B'')$

• Characterization of analysis:

flow-sensitive: results depending on order of assignments forward: starts in init(c) and proceeds downwards must: \bigcap in equation for AE₁

- Analysis itself defined by setting up an equation system
- For each *l* ∈ *Lab_c*, AE_{*l*} ⊆ *CExp_c* represents the set of available expressions at the entry of block B^{*l*}
- Formally, for $c \in Cmd$ with isolated entry:

 $\mathsf{AE}_{I} = \begin{cases} \emptyset & \text{if } I = \text{init}(c) \\ \bigcap \{ \varphi_{I'}(\mathsf{AE}_{I'}) \mid (I', I) \in \mathsf{flow}(c) \} & \text{otherwise} \end{cases}$ where $\varphi_{I'} : 2^{CExp_{c}} \to 2^{CExp_{c}}$ denotes the transfer function of block $B^{I'}$, given by

 $\varphi_{l'}(A) := (A \setminus \mathsf{kill}_{\mathsf{AE}}(B'')) \cup \mathsf{gen}_{\mathsf{AE}}(B'')$

• Characterization of analysis:

flow-sensitive: results depending on order of assignments
 forward: starts in init(c) and proceeds downwards
 must: ∩ in equation for AE_I

- Later: solution not necessarily unique
 - \implies choose greatest one

Reminder:

$$\mathsf{AE}_{I} = \begin{cases} \emptyset & \text{if } I = \mathsf{init}(c) \\ \bigcap \{ \varphi_{l'}(\mathsf{AE}_{l'}) \mid (l', l) \in \mathsf{flow}(c) \} & \text{otherwise} \end{cases}$$
$$\varphi_{l'}(E) = (E \setminus \mathsf{kill}_{\mathsf{AE}}(B^{l'})) \cup \mathsf{gen}_{\mathsf{AE}}(B^{l'})$$

Reminder:

$$\mathsf{AE}_{l} = \begin{cases} \emptyset & \text{if } l = \mathsf{init}(c) \\ \bigcap \{ \varphi_{l'}(\mathsf{AE}_{l'}) \mid (l', l) \in \mathsf{flow}(c) \} & \text{otherwise} \end{cases}$$
$$\varphi_{l'}(E) = (E \setminus \mathsf{kill}_{\mathsf{AE}}(B^{l'})) \cup \mathsf{gen}_{\mathsf{AE}}(B^{l'})$$

Example 2.9 (AE equation system)

Reminder:

$$\begin{split} \mathsf{AE}_{l} &= \begin{cases} \emptyset & \text{if } l = \mathsf{init}(c) \\ \bigcap \{ \varphi_{l'}(\mathsf{AE}_{l'}) \mid (l', l) \in \mathsf{flow}(c) \} & \text{otherwise} \end{cases} \\ \varphi_{l'}(E) &= (E \setminus \mathsf{kill}_{\mathsf{AE}}(B^{l'})) \cup \mathsf{gen}_{\mathsf{AE}}(B^{l'}) \end{split}$$

Example 2.9 (AE equation system)

$$\begin{split} c &= [\texttt{x} := \texttt{a+b}]^1; \\ & [\texttt{y} := \texttt{a+b}]^2; \\ & \texttt{while} \; [\texttt{y} > \texttt{a+b}]^3 \; \texttt{do} \\ & [\texttt{a} := \texttt{a+1}]^4; \\ & [\texttt{x} := \texttt{a+b}]^5 \end{split}$$

$I \in Lab_c$	$kill_{AE}(B')$	$gen_{AE}(B')$
1	Ø	{a+b}
2	Ø	{a*b}
3	Ø	{a+b}
4	{a+b, a*b, a+1}	· ÌǾ
5	Ø	{a+b}

Reminder:

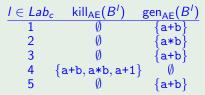
$$\begin{split} \mathsf{AE}_{I} &= \begin{cases} \emptyset & \text{if } I = \mathsf{init}(c) \\ \bigcap \{ \varphi_{I'}(\mathsf{AE}_{I'}) \mid (I', I) \in \mathsf{flow}(c) \} & \text{otherwise} \end{cases} \\ (E) &= (E \setminus \mathsf{kill}_{\mathsf{AE}}(B^{I'})) \cup \mathsf{gen}_{\mathsf{AE}}(B^{I'}) \end{split}$$

Example 2.9 (AE equation system)

$$\begin{split} c &= [x := a + b]^1; \\ & [y := a * b]^2; \\ & \text{while} [y > a + b]^3 \text{ do} \\ & [a := a + 1]^4; \\ & [x := a + b]^5 \end{split}$$

 $\varphi_{l'}$

$$\begin{array}{l} \mbox{Equations:} \\ AE_1 = \emptyset \\ AE_2 = \varphi_1(AE_1) = AE_1 \cup \{a\!+\!b\} \\ AE_3 = \varphi_2(AE_2) \cap \varphi_5(AE_5) \\ = (AE_2 \cup \{a\!+\!b\}) \cap (AE_5 \cup \{a\!+\!b\}) \\ AE_4 = \varphi_3(AE_3) = AE_3 \cup \{a\!+\!b\} \\ AE_5 = \varphi_4(AE_4) = AE_4 \setminus \{a\!+\!b, a\!+\!b, a\!+\!1\} \end{array}$$

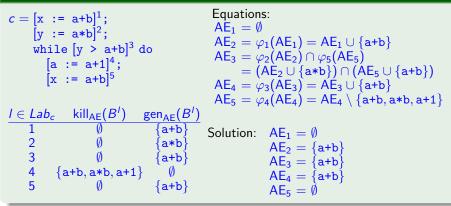


Reminder:

$$\begin{split} \mathsf{AE}_{I} &= \begin{cases} \emptyset & \text{if } I = \mathsf{init}(c) \\ \bigcap \{ \varphi_{I'}(\mathsf{AE}_{I'}) \mid (I', I) \in \mathsf{flow}(c) \} & \text{otherwise} \end{cases} \\ (E) &= (E \setminus \mathsf{kill}_{\mathsf{AE}}(B^{I'})) \cup \mathsf{gen}_{\mathsf{AE}}(B^{I'}) \end{split}$$

Example 2.9 (AE equation system)

 $\varphi_{l'}$



RNTHAACHEN

Preliminaries on Dataflow Analysis

2 An Example: Available Expressions Analysis

3 Another Example: Live Variables Analysis

The goal of Live Variables Analysis is to determine, for each program point, which variables *may* be live at the exit from the point.

The goal of Live Variables Analysis is to determine, for each program point, which variables *may* be live at the exit from the point.

• A variable is called live at the exit from a block if there exists a path from the block to a use of the variable that does not re-define the variable

The goal of Live Variables Analysis is to determine, for each program point, which variables *may* be live at the exit from the point.

- A variable is called live at the exit from a block if there exists a path from the block to a use of the variable that does not re-define the variable
- All variables considered to be live at the end of the program (alternative: restriction to output variables)

The goal of Live Variables Analysis is to determine, for each program point, which variables *may* be live at the exit from the point.

- A variable is called live at the exit from a block if there exists a path from the block to a use of the variable that does not re-define the variable
- All variables considered to be live at the end of the program (alternative: restriction to output variables)
- Can be used for Dead Code Elimination: remove assignments to non-live variables


```
\begin{array}{ll} [x := 2]^{1}; \\ [y := 4]^{2}; \\ [x := 1]^{3}; \\ \text{if } [y > 0]^{4} \text{ then} \\ [z := x]^{5} \\ \text{else} \\ [z := y*y]^{6}; \\ [x := z]^{7} \end{array}
```



```
\begin{split} & [\mathbf{x} := 2]^{1}; \\ & [\mathbf{y} := 4]^{2}; \\ & [\mathbf{x} := 1]^{3}; \\ & \text{if } [\mathbf{y} > 0]^{4} \text{ then} \\ & [\mathbf{z} := \mathbf{x}]^{5} \\ & \text{else} \\ & [\mathbf{z} := \mathbf{y}*\mathbf{y}]^{6}; \\ & [\mathbf{x} := \mathbf{z}]^{7} \end{split}
```

• x not live at exit from label 1


```
\begin{array}{ll} [x := 2]^{1}; \\ [y := 4]^{2}; \\ [x := 1]^{3}; \\ \text{if } [y > 0]^{4} \text{ then} \\ [z := x]^{5} \\ \text{else} \\ [z := y*y]^{6}; \\ [x := z]^{7} \end{array}
```

- x not live at exit from label 1
- y live at exit from 2


```
\begin{array}{ll} [x := 2]^{1}; \\ [y := 4]^{2}; \\ [x := 1]^{3}; \\ \text{if } [y > 0]^{4} \text{ then} \\ [z := x]^{5} \\ \text{else} \\ [z := y*y]^{6}; \\ [x := z]^{7} \end{array}
```

- x not live at exit from label 1
- y live at exit from 2
- x live at exit from 3


```
\begin{array}{ll} [x := 2]^{1}; \\ [y := 4]^{2}; \\ [x := 1]^{3}; \\ \text{if } [y > 0]^{4} \text{ then} \\ [z := x]^{5} \\ \text{else} \\ [z := y*y]^{6}; \\ [x := z]^{7} \end{array}
```

- x not live at exit from label 1
- y live at exit from 2
- x live at exit from 3
- z live at exits from 5 and 6

```
\begin{array}{ll} [x := 2]^{1};\\ [y := 4]^{2};\\ [x := 1]^{3};\\ \text{if } [y > 0]^{4} \text{ then}\\ [z := x]^{5}\\ \text{else}\\ [z := y*y]^{6};\\ [x := z]^{7} \end{array}
```

- x not live at exit from label 1
- y live at exit from 2
- x live at exit from 3
- \bullet z live at exits from 5 and 6
- possible optimization: remove [x := 2]¹

• A variable on the left-hand side of an assignment is killed by the assignment; tests and skip do not kill

- A variable on the left-hand side of an assignment is killed by the assignment; tests and skip do not kill
- Formally: $kill_{LV} : Blk_c \rightarrow 2^{Var_c}$ is defined by

 $\begin{aligned} & \operatorname{kill}_{\operatorname{LV}}([\operatorname{skip}]^{I}) := \emptyset \\ & \operatorname{kill}_{\operatorname{LV}}([x := a]^{I}) := \{x\} \\ & \operatorname{kill}_{\operatorname{LV}}([b]^{I}) := \emptyset \end{aligned}$

- A variable on the left-hand side of an assignment is killed by the assignment; tests and skip do not kill
- Formally: $kill_{LV} : Blk_c \rightarrow 2^{Var_c}$ is defined by

 $\begin{aligned} & \operatorname{kill}_{\operatorname{LV}}([\operatorname{skip}]^{I}) := \emptyset \\ & \operatorname{kill}_{\operatorname{LV}}([x := a]^{I}) := \{x\} \\ & \operatorname{kill}_{\operatorname{LV}}([b]^{I}) := \emptyset \end{aligned}$

• Every reading access generates a live variable

- A variable on the left-hand side of an assignment is killed by the assignment; tests and skip do not kill
- Formally: $kill_{LV} : Blk_c \rightarrow 2^{Var_c}$ is defined by

 $\begin{aligned} & \operatorname{kill}_{\operatorname{LV}}([\operatorname{skip}]^{I}) := \emptyset \\ & \operatorname{kill}_{\operatorname{LV}}([x := a]^{I}) := \{x\} \\ & \operatorname{kill}_{\operatorname{LV}}([b]^{I}) := \emptyset \end{aligned}$

- Every reading access generates a live variable
- Formally: $gen_{LV} : Blk_c \rightarrow 2^{Var_c}$ is defined by

 $gen_{LV}([skip]') := \emptyset$ $gen_{LV}([x := a]') := Var_a$ $gen_{LV}([b]') := Var_b$

Example 2.11 (kill_{LV}/gen_{LV} functions)

$$\begin{split} c &= [x := 2]^{1}; \\ & [y := 4]^{2}; \\ & [x := 1]^{3}; \\ & \text{if } [y > 0]^{4} \text{ then} \\ & [z := x]^{5} \\ & \text{else} \\ & [z := y*y]^{6}; \\ & [x := z]^{7} \end{split}$$

Example 2.11 (kill_{LV}/gen_{LV} functions)

$$\begin{split} c &= [x := 2]^{1}; \\ & [y := 4]^{2}; \\ & [x := 1]^{3}; \\ & \text{if } [y > 0]^{4} \text{ then} \\ & [z := x]^{5} \\ & \text{else} \\ & [z := y*y]^{6}; \\ & [x := z]^{7} \end{split}$$

•
$$Var_c = \{x, y, z\}$$

Example 2.11 (kill_{LV}/gen_{LV} functions)

$$c = [x := 2]^{1};$$

$$[y := 4]^{2};$$

$$[x := 1]^{3};$$
if $[y > 0]^{4}$ then
$$[z := x]^{5}$$
else
$$[z := y*y]^{6};$$

$$[x := z]^{7}$$

•
$$Var_c = \{x, y, z\}$$

•
$$\frac{I \in Lab_{c} \text{ kill}_{LV}(B') \text{ gen}_{LV}(B')}{1 \quad \{x\} \quad \emptyset} \\ 2 \quad \{y\} \quad \emptyset \\ 3 \quad \{x\} \quad \emptyset \\ 4 \quad \emptyset \quad \{y\} \\ 5 \quad \{z\} \quad \{x\} \\ 6 \quad \{z\} \quad \{y\} \\ 7 \quad \{x\} \quad \{z\} \\ \end{bmatrix}$$

. .

 For each *l* ∈ *Lab_c*, LV_{*l*} ⊆ *Var_c* represents the set of live variables at the exit of block B^{*l*}

- For each *l* ∈ *Lab_c*, LV_{*l*} ⊆ *Var_c* represents the set of live variables at the exit of block B^{*l*}
- Formally, for a program $c \in Cmd$ with isolated exits: $LV_{I} = \begin{cases} Var_{c} & \text{if } I \in \text{final}(c) \\ \bigcup \{\varphi_{l'}(LV_{l'}) \mid (I, I') \in \text{flow}(c) \} & \text{otherwise} \end{cases}$ where $\varphi_{l'} : 2^{Var_{c}} \rightarrow 2^{Var_{c}}$ denotes the transfer function of block $B^{l'}$, given by

 $\varphi_{l'}(V) := (V \setminus \mathsf{kill}_\mathsf{LV}(B^{l'})) \cup \mathsf{gen}_\mathsf{LV}(B^{l'})$

- For each *l* ∈ *Lab_c*, LV_{*l*} ⊆ *Var_c* represents the set of live variables at the exit of block B^{*l*}
- Formally, for a program $c \in Cmd$ with isolated exits:

 $\mathsf{LV}_{I} = \begin{cases} \mathsf{Var}_{c} & \text{if } I \in \mathsf{final}(c) \\ \bigcup \{ \varphi_{I'}(\mathsf{LV}_{I'}) \mid (I, I') \in \mathsf{flow}(c) \} & \text{otherwise} \end{cases}$ where $\varphi_{I'} : 2^{\mathsf{Var}_{c}} \to 2^{\mathsf{Var}_{c}}$ denotes the transfer function of block $B^{I'}$, given by

 $\varphi_{l'}(V) := (V \setminus \mathsf{kill}_\mathsf{LV}(B^{l'})) \cup \mathsf{gen}_\mathsf{LV}(B^{l'})$

• Characterization of analysis:

flow-sensitive: results depending on order of assignments
 backward: starts in final(c) and proceeds upwards
 may: U in equation for LV₁

- For each *l* ∈ *Lab_c*, LV_{*l*} ⊆ *Var_c* represents the set of live variables at the exit of block B^{*l*}
- Formally, for a program $c \in Cmd$ with isolated exits:

 $\mathsf{LV}_{I} = \begin{cases} \mathsf{Var}_{c} & \text{if } I \in \mathsf{final}(c) \\ \bigcup \{ \varphi_{I'}(\mathsf{LV}_{I'}) \mid (I, I') \in \mathsf{flow}(c) \} & \text{otherwise} \end{cases}$ where $\varphi_{I'} : 2^{\mathsf{Var}_{c}} \to 2^{\mathsf{Var}_{c}}$ denotes the transfer function of block $B^{I'}$, given by

 $\varphi_{l'}(V) := (V \setminus \mathsf{kill}_\mathsf{LV}(B^{l'})) \cup \mathsf{gen}_\mathsf{LV}(B^{l'})$

• Characterization of analysis:

flow-sensitive: results depending on order of assignments
 backward: starts in final(c) and proceeds upwards
 may: U in equation for LV₁

- Later: solution not necessarily unique
 - \implies choose least one

Reminder:

$$\mathsf{LV}_{l} = \begin{cases} \mathsf{Var}_{c} & \text{if } l \in \mathsf{final}(c) \\ \bigcup \{ \varphi_{l'}(\mathsf{LV}_{l'}) \mid (l, l') \in \mathsf{flow}(c) \} & \text{otherwise} \end{cases}$$
$$\varphi_{l'}(V) = (V \setminus \mathsf{kill}_{\mathsf{LV}}(B^{l'})) \cup \mathsf{gen}_{\mathsf{LV}}(B^{l'})$$

Reminder:

$$\begin{split} c &= [x := 2]^{1}; [y := 4]^{2}; \\ & [x := 1]^{3}; \\ & \text{if } [y > 0]^{4} \text{ then} \\ & [z := x]^{5} \\ & \text{else} \\ & [z := y*y]^{6}; \\ & [x := z]^{7} \end{split}$$

Reminder:

$$\mathsf{LV}_{I} = \begin{cases} \mathsf{Var}_{c} & \text{if } I \in \mathsf{final}(c) \\ \bigcup \{ \varphi_{I'}(\mathsf{LV}_{I'}) \mid (I, I') \in \mathsf{flow}(c) \} & \text{otherwise} \end{cases}$$

$$\varphi_{I'}(V) = (V \setminus \mathsf{kill}_{\mathsf{LV}}(B^{I'})) \cup \mathsf{gen}_{\mathsf{LV}}(B^{I'})$$

$$c = [x := 2]^{1}; [y := 4]^{2};$$

$$[x := 1]^{3};$$
if $[y > 0]^{4}$ then
$$[z := x]^{5}$$
else
$$[z := y*y]^{6};$$

$$[x := z]^{7}$$

$$l \in Lab_{c} \text{ kill}_{LV}(B') \text{ gen}_{LV}(B')$$

$$1 \quad \{x\} \quad \emptyset$$

$$2 \quad \{y\} \quad \emptyset$$

$$3 \quad \{x\} \quad \emptyset$$

$$4 \quad \emptyset \quad \{y\}$$

$$5 \quad \{z\} \quad \{x\}$$

$$6 \quad \{z\} \quad \{y\}$$

$$7 \quad \{x\} \quad \{z\}$$
EXTHACHEN s

Reminder:

$$\mathsf{LV}_{I} = \begin{cases} \mathsf{Var}_{c} & \text{if } I \in \mathsf{final}(c) \\ \bigcup \{ \varphi_{I'}(\mathsf{LV}_{I'}) \mid (I, I') \in \mathsf{flow}(c) \} & \text{otherwise} \end{cases}$$

$$\varphi_{I'}(V) = (V \setminus \mathsf{kill}_{\mathsf{LV}}(B^{I'})) \cup \mathsf{gen}_{\mathsf{LV}}(B^{I'})$$

$\begin{split} c &= [x := 2]^1; [y := 4]^2; \\ & [x := 1]^3; \\ & \text{if } [y > 0]^4 \text{ then} \\ & [z := x]^5 \\ & \text{else} \\ & [z := y*y]^6; \\ & [x := z]^7 \end{split}$				
$I \in Lab_c \text{ kill}_{LV}(B^{I}) \text{ gen}_{LV}(B^{I})$				
1	{x}	Ø		
2	{y}	Ø		
3	{x}	Ø		
4	`Ǿ	{y}		
5	{ z }	{x}		
6	$\{\mathbf{z}\}$	{v}		
7	{x}	$\{z\}$		

$$\begin{array}{l} \mathsf{LV}_1 = \varphi_2(\mathsf{LV}_2) = \mathsf{LV}_2 \setminus \{y\} \\ \mathsf{LV}_2 = \varphi_3(\mathsf{LV}_3) = \mathsf{LV}_3 \setminus \{x\} \\ \mathsf{LV}_3 = \varphi_4(\mathsf{LV}_4) = \mathsf{LV}_4 \cup \{y\} \\ \mathsf{LV}_4 = \varphi_5(\mathsf{LV}_5) \cup \varphi_6(\mathsf{LV}_6) \\ = ((\mathsf{LV}_5 \setminus \{z\}) \cup \{x\}) \cup ((\mathsf{LV}_6 \setminus \{z\}) \cup \{y\}) \\ \mathsf{LV}_5 = \varphi_7(\mathsf{LV}_7) = (\mathsf{LV}_7 \setminus \{x\}) \cup \{z\} \\ \mathsf{LV}_6 = \varphi_7(\mathsf{LV}_7) = (\mathsf{LV}_7 \setminus \{x\}) \cup \{z\} \\ \mathsf{LV}_7 = \{x, y, z\} \end{array}$$

Reminder:

$$\mathsf{LV}_{l} = \begin{cases} \mathsf{Var}_{c} & \text{if } l \in \mathsf{final}(c) \\ \bigcup \{ \varphi_{l'}(\mathsf{LV}_{l'}) \mid (l,l') \in \mathsf{flow}(c) \} & \text{otherwise} \end{cases}$$

$$\varphi_{l'}(V) = (V \setminus \mathsf{kill}_{\mathsf{LV}}(\mathcal{B}^{l'})) \cup \mathsf{gen}_{\mathsf{LV}}(\mathcal{B}^{l'})$$