Static Program Analysis

Lecture 19: Interprocedural Dataflow Analysis Il
(Fixpoint Solution)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTHAACHEN
UNIVERSITY

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Winter Semester 2014/15

noll@cs.rwth-aachen.de
http://moves.rwth-aachen.de/teaching/ws-1415/spa/

%CHI,E'I INFORMATIK IRNTHAACHEN

UNIVERSITY

Online Registration for
Seminars and Practical Courses (Praktika)
in Summer Term 2015

Who?
Students of: = Master Courses
» Bachelor Informatik (PréSeminar!)

Where?
www.graphics.rwth-aachen.de/apse

When?
14.01.2015 - 28.01.2015

@ Recap: Interprocedural Dataflow Analysis

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 19.3

Extending the Syntax

Syntactic categories:

Category Domain Meta variable
Procedure identifiers Pid ={p,Q,...} P
Procedure declarations PDec p
Commands (statements) Cmd c

Context-free grammar:

p ::= proc [P(val x,res y)]" is c [end]*;p | ¢ € PDec
c == [skip]' | [x := a]' | c1;c0 | if [b]' then ¢ else o |
while [b]' do c | [call P(a,x)]f € Cmd

@ All labels and procedure names in program p ¢ distinct

e In proc [P(val x,res y)]" is c [end], I,/I; refers to the
entry/exit of P

@ In [call P(a,x)];f, lc/ 1, refers to the call of/return from P
o First parameter call-by-value, second call-by-result
RWTHAACHEN Static Program Analysis Winter Semester 2014/15 19.4

Naive Formulation |

o Attempt: directly transfer techniques from intraprocedural analysis
— treat (lc; In) like (lc, In) and (I; ;) like (Ix, Ir)

o Given: dataflow system S = (Lab, E, F,(D,C),¢,)

@ For each procedure call [call P(a,x)]ff:
transfer functions ¢,_, ¢, : D — D (definition later)

o For each procedure declaration proc [P (val x,res y)]" is c [end]*:
transfer functions ¢, ¢, : D — D (definition later)

@ Induces equation system

Al — ¢ iflcE
"YW er (ALY | (1) € For (I1) € F} - otherwise

e Problem: procedure calls (/; /,) and procedure returns (/y; I,) treated
like goto's
— nesting of calls and returns ignored
—> too many paths considered
— analysis information imprecise (but still correct)

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 19.5

Naive Formulation 1l

Example (Impreciseness of constant propagation analysis)

proc [P(val x, res y)]l is Two “valid” and two “invalid” paths:
[y :=]2 o Valid: [4,5,1,2,3,6,7,11]
[end]3; \ = y =0 at label 11
if [y=10l] Pt(lien 15, o Valid: [4,8,1,2,3,9,10,11]
[ca » VIR = y =0 at label 11

= y-1]7
el[sye vl o Invalid: [4,5,1,2,3,9,10,11]
[call P(2, P]§; = y = —1 at label 11
[y := y-2]'% o Invalid: [4,8,1,2,3,6,7,11]
[skip]™ — y=1 at label 11

— actually always y = 0 at 11, but naive method yields y = T

RWTHAACHE Static Program Analysis Winter Semester 2014/15 19.6

The MVP Solution |

Definition (Complete valid paths)

Let S = (Lab, E,F,(D,C),t,¢) be a dataflow system. For every | € Lab,
the set of valid paths up to / is given by

VPath(l) = {[h, ..., lk_1] | k > 1, h € E, I = I,
[h,...,] valid path from /; to I;}.

For a path m = [/1,. .., k1] € VPath(/l), we define the transfer function
or: D — D by

O ' =Qp_,0...0p, 0idp

(SO that o= idD).

RWTHAACHEN Static Program Analysis Winter Semester 2014 /15 19.7

The MVP Solution |l

Definition (MVP solution)

Let S = (Lab,E,F,(D,C), ¢,) be a dataflow system where
Lab={h,...,In}. The MVP solution for S is determined by

mvp(S) := (mvp(h),...,mvp(/p)) € D"
where, for every | € Lab,
mvp(/) := |_|{<p7r(L) | m € VPath(l)}.

v
Corollary

@ mvp(S) C mop(S)
@ The MVP solution is undecidable.

Q since VPath(l) C Path(/) for every | € Lab
@ since mvp(S) = mop(S) in intraprocedural case, and by undecidability

of MOP solution (cf. Theorem 7. 4))
RWNTH

© The Interprocedural Fixpoint Solution

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 19.9

Making Context Explicit

@ Goal: adapt fixpoint solution to avoid invalid paths

@ Approach: encode call history into data flow properties
(use stacks DT as dataflow version of runtime stack)

@ Non-procedural constructs (skip, assignments, tests):
operate only on topmost element

@ call: computes new topmost entry from current and pushes it

@ return: removes topmost entry and combines it with underlying
(= call-site) entry

nerAACHEN Static Program Analysis Winter Semester 2014/15 19.10

The Interprocedural Extension |

Definition 19.1 (Interprocedural extension (forward analysis))

Let S = (Lab, E,F,(D,C),t,) be a dataflow system where ¢, : D> — D
for each (Ic, In, I, Ir) € iflow (and ¢, : D — D otherwise).
The interprocedural extension of S is given by

§ = (Lab7 E, Fy(ﬁaﬁ)vz\?@)

where
e D:=D*
od .dy Cd...diffd; Cdl forevery 1 <i<n
@ i:=1€DF
° Py D+—>D+Where

o for each I € Lab\ {lc, Iy | (Ic, In, I, I) € iflow}:
Gi(d-w):=qi(d) - w
o for each (I, In, Iy, I;) € iflow:

¢r(d-w)
¢ (d"-d-w):

er(d) - d-w
o (d',d) w

RWNTH Static Program Analysis Winter Semester 2014/15 19.11

The Interprocedural Extension Il

Visualization of
Q 4.(d-w) =g (d)-d-w

Q@ ¢,(d"d- W) o, (d")-d-w
Q ¢, (d-dw)=p,(d)dw
Q ¢, (d"dw)=¢,(d' d)w

[[P(val Xx,res y)]’"]

d-w' W ® ¢, (p.(d))-dw

[[call P(a,z)];j
0 ¢, (v, (d'),d) w

d.-d-w

© o, (d')-d-

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 19.12

The Interprocedural Extension 11l

Example 19.2 (Constant Propagation; cf. Lecture 5/6)
S:=(Lab,E,F,(D,C),7,$) is determined by
e D:={6|6: Varc - ZU{L, T}} (constant/undefined/overdefined)
@ LCzLC T forevery z€ Z

e, =07€D
@ For each I € Lab\ {lc, In, lx, Ir | (Ic, In, Ix, I;) € iflow},
.) if B! = skip or B! € BExp
#i(0) = {(5[X > vals(a)] if B = (x := a)
e Whenever p ¢ contains [call P(a,z)];f and
proc [P(val x,res y)]" is c [end]*,
o call/entry: set input/reset output parameter
0. (0) :=d[x — vals(a),y — T], ¢, (6) =46

o exit/return: reset parameters/set return value
(lplx(é) = 67 <Plr(5/7 6) = 6/[X = 6(X)7.y = 6(}/)’ Z— 6/(_)/)]

v

RWNTH Static Program Analysis Winter Semester 2014/15 19.13

© The Equation System

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 19.14

Types of Equations

For an interprocedural dataflow system § := (Lab, E, F, (ﬁ, £),%,), the
intraprocedural equation system (cf. Definition 4.9)

Al = ¢ ifle E
T AL er(Al) | (I,1) € F} otherwise
is extended to a system with three kinds of equations
(for every | € Lab):

e for actual dataflow information: Al, € D
e counterpart of intraprocedural Al

o for transfer functions of single nodes: f; : D—D

e extension of intraprocedural transfer functions by special handling of
procedure calls

o for transfer functions of complete procedures: F; : DD

o Fi(w) yields information at / if surrounding procedure is called with
information w
o thus complete procedure represented by F; (“procedure summary")

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 19.15

Formal Definition of Equation System

Dataflow equations:
L if e E
Al; = < Ay if I =1, for some (lc, In, Iy, I;) € iflow
LI{f(Aly) | (I',]) € F} otherwise

Node transfer functions:

fi(w) = &1, (61 (Fi(@1.(w)))) if I =1 for some (Ic, In, Ix, I;) € iflow
W)= @i(w) otherwise
(if / not an exit label)

Procedure transfer functions:
w if =1,
Fi(w) = for some (l¢, In, Iy, I;) € iflow
LI{fr(Fr(w)) | (I',]) € F} otherwise
(if / occurs in some procedure)
As before: induces monotonic functional on lattice with ACC
= least fixpoint effectively computable

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 19.16

Example of Equation System

Example 19.3 (Constant Propagation)

Program: Node transfer functions:
proc [P(val x, res y)]'is @1(dw) = ow

[y 1= 2*(}(—1)]2; {)2(6w) = (S[Y — va/5(2*(x—1))]w
lonal’; o) ot 2,70 Tl
[call P(2, 2)]3; _palow) = olx = 2,y = T]ow
[call P(z, 2)]%; P5(0'dw) = 8'[x = §(x),y — d(y),z — &' (y)]w
[skip]® Pe(dw) = d[x — d(2),y — Tlow

. P7(0"6w) = &'[x = 6(x),y = o(y),z = &' (y)]w

Dataflow equations: f(Sw) = 31 (6w) = dw
Alp = fa(Alg) L f5(Als) H(ow) = @a(dw) = [y = vals(2* (x-1))|w
Al = fi(Al) f(6w) = Ga(dw) = d[x — 2,y — T]ow
Als = BH(Al) f(Sw) = @s(3(F3(2a(6w)))) = Bs(F3(Ga(dW)))
Alg =0=TTT fs(ow) = Pe(dw) = d[x — 8(z),y — T]ow
Als = Als fr(dw) = @7(B3(F3(Pe(dw)))) = P7(F3(Pe(0w)))
Als = f5(Als) fs(0w) = Gg(w) = dw
2:7 - '?I(?M) Procedure transfer functions:

&= e F(0w) = éw
Fixpoint iteration: F(6w) = A(Fi(dw)) = dw
on the board F3(dw) = H(Fa(dw)) = Sy — vals(2*(x-1))]w

RWNTH Static Program Analysis Winter Semester 2014/15 19.17

	Recap: Interprocedural Dataflow Analysis
	The Interprocedural Fixpoint Solution
	The Equation System

